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Abstract

This thesis presents a compilation of work focused on Monte Carlo crit-
icality, kinetics and burnup calculations in reactor physics. Performing such
calculations usually comes at a high computing cost. Therefore, the main mo-
tivation behind the presented work is lowering the computing cost of Monte
Carlo calculations. To this end, three new methods for improving the comput-
ing efficiency are proposed: a method for neutron population control in Monte
Carlo criticality calculations; a hybrid stochastic-deterministic response ma-
trix method for reactor kinetics calculations; and an optimisation method for
Monte Carlo burnup calculations.

The first method gradually increases the neutron population size over the
successive cycles in Monte Carlo criticality calculations. This enables faster
fission source iterations at the beginning of a calculation where the source
may contain errors from the initial cycle while at the same time preventing
the source bias from dominating the error later in the calculation. The method
is tested on a set of full-core PWR criticality calculations.

The second method is based on the response matrix formalism which de-
scribes a system by a set of response functions. The response functions are
computed during Monte Carlo criticality calculations. These functions are
then used in a deterministic set of equations for solving a space-time depen-
dent problem. The method is demonstrated on a set of absorber movement
transients in a PWR-type mini-core.

The third method sets the time step length and the number of neutron
histories simulated during each time step of Monte Carlo burnup calculations
according to the fraction of the computing cost assigned to the depletion solu-
tions (and other procedures that are repeatedly executed before starting the
active cycles) and the overall computing cost of a Monte Carlo burnup calcu-
lation. Optimal values of this fraction are studied in a set of test calculations.

Additionally, numerical tests on tally error convergence in Monte Carlo
criticality calculations and stability of Monte Carlo burnup calculations are
presented. The context and the outcomes of the work are summarized in
the main body of the thesis while the details are presented in the appended
publications.
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Sammanfattning

Denna avhandling presenterar en sammanställning av arbete fokuserat
på Monte Carlo-kriticitets, kinetik och utbränningsberäkningar inom reak-
torfysik. Att utföra sådana beräkningar innebär vanligtvis en hög datorkost-
nad. Därför är den främsta motivationen bakom det presenterade arbetet att
sänka beräkningskostnaden för Monte Carlo-beräkningar. För detta ändamål
föreslås tre nya metoder för att förbättra beräkningseffektiviteten: en me-
tod för neutronpopulationskontroll i Monte Carlo-kriticitetsberäkningar; en
stokastisk-deterministisk responsmatrismetod för reaktorkinetikberäkningar;
och en optimeringsmetod för Monte Carlo-utbränningsberäkningar.

Den första metoden ökar gradvis neutronpopulationens storlek över de på
varandra följande cyklerna i Monte Carlo-kriticitetsberäkningar. Detta möj-
liggör en snabbare iteration av klyvningskällan i början av en beräkning där
källan kan innehålla fel från den inledande cykeln samtidigt som källförskjut-
ningen förhindras från att dominera felet senare i beräkningen. Metoden testas
på en uppsättning helhärdskriticitesberäkningar i en PWR.

Den andra metoden är baserad på responsmatrisformalismen som beskri-
ver ett system med en uppsättning responsfunktioner. Responsfunktionerna
beräknas vid Monte Carlo-kriticitetsberäkningar. Dessa funktioner används
sedan i en deterministisk uppsättning ekvationer för att lösa ett rum- och
tidsberoende problem. Metoden demonstreras på en uppsättning styrstavs-
transienter i en minihärd av PWR-typ.

Den tredje metoden anger tidsstegslängden och antalet neutronhistori-
er som simuleras under varje tidssteg i Monte Carlo-utbränningsberäkningar
enligt andelen av beräkningskostnaden som tilldelas utbränningslösningarna
(och andra procedurer som utförs upprepade gånger innan de aktiva cyklerna
startas) och den totala beräkningskostnaden för en Monte Carlo-utbrännings-
beräkning. Optimala värden för denna andel studeras i en uppsättning test-
beräkningar.

Dessutom presenteras numeriska tester för felkonvergens i Monte Carlo-
kriticitetsberäkningar och stabiliteten för Monte Carlo-utbränningsberäkningar.
Kontexten och resultaten av arbetet sammanfattas i avhandlingens huvuddel
medan detaljerna presenteras i de bifogade publikationerna.





List of Papers

Included Papers

The thesis is based on the following papers:

I I. Mickus and J. Dufek, “Optimal neutron population growth in accelerated
Monte Carlo criticality calculations,” Annals of Nuclear Energy vol. 117, pp.
297-304, 2018.

II I. Mickus and J. Dufek, “Does neutron clustering affect tally errors in Monte
Carlo criticality calculations?” Annals of Nuclear Energy vol. 155, p. 108130,
2021.

III I. Mickus, J. A. Roberts, and J. Dufek, “Stochastic-deterministic response
matrix method for reactor transients,” Annals of Nuclear Energy, vol. 140, p.
107103, 2020.

IV I. Mickus, J. A. Roberts, and J. Dufek, “Application of response matrix method
to transient simulations of nuclear systems,” EPJ Web of Conferences, vol. 247,
p. 04014, 2021.

V I. Mickus, J. Dufek, and K. Tuttelberg, “Performance of the explicit Euler and
predictor-corrector-based coupling schemes in Monte Carlo burnup calculations
of fast reactors,” Nuclear Technology, vol. 191, no. 2, pp. 193-198, 2015.

VI J. Dufek and I. Mickus, “Optimal time step length and statistics in Monte
Carlo burnup simulations,” Annals of Nuclear Energy, vol. 139, p. 107244,
2020.

Author’s Contribution

I. Mickus is the main author of Papers I-V, where he performed conceptualization,
methodology, code implementation, calculations, analyses and wrote the texts with
feedback from J. Dufek. J. A. Roberts contributed to conceptual and method-
ological discussions, and writing of Papers III and IV. I. Mickus contributed to
conceptual and methodological discussions, analyses and writing of Paper VI.

vii



viii

Other Publications

1. I. Mickus and J. Dufek, “Study of Free Parameters in Monte Carlo Burnup
Calculations,” submitted to PHYSOR2022.

2. J. Dufek and I. Mickus, “Towards Efficient Coupled Steady-State Monte Carlo
Simulations,” submitted to PHYSOR2022.

3. J. Dufek and I. Mickus, “Optimisation of Monte Carlo Burnup Simulations,”
EPJ Web of Conferences, vol. 247, p. 04016, 2021.

4. I. Mickus, J. Dufek, and K. Tuttelberg, “Comparative study of the explicit
Euler and predictor-corrector based coupling schemes in Monte Carlo burnup
calculations of fast and thermal reactors,” in The 17th meeting on Reactor
Physics in the Nordic Countries, (Gothenburg, Sweden), 2015.

5. F. Dehlin, G. Acharya, S. Bortot, and I. Mickus, “Implementation of an Au-
tonomous Reactivity Control System in a Small Lead-Cooled Fast Reactor,”
EPJ Web of Conferences, vol. 247, p. 07006, 2021.

6. G. Acharya, F. Dehlin, S. Bortot, and I. Mickus, “Investigation of a Self-
Actuated, Gravity-Driven Shutdown System in a Small Lead-Cooled Reac-
tor,” EPJ Web of Conferences, vol. 247, p. 07007, 2021.

7. M. M. Stempniewicz, K. Zwijsen, F. Roelofs, J. Wallenius, S. Bortot, and
I. Mickus, “Thermal-Hydraulic Analysis of SEALER under Steady-State and
Accident Scenarios,” in SESAME International Workshop, (Petten, The Nether-
lands), 2019.

8. C. Geffray, A. Gerschenfeld, P. Kudinov, I. Mickus, M. Jeltsov, K. Kööp,
D. Grishchenko, and D. Pointer, “Verification and validation and uncertainty
quantification,” in Thermal Hydraulics Aspects of Liquid Metal Cooled Nu-
clear Reactors (F. Roelofs, ed.), ch. 8, pp. 383-405, Woodhead Publishing,
2019.

9. J. Wallenius, S. Qvist, I. Mickus, S. Bortot, P. Szakalos, and J. Ejenstam,
“Design of SEALER, a very small lead-cooled reactor for commercial power
production in off-grid applications,” Nuclear Engineering and Design, vol.
338, pp. 23-33, 2018.

10. J. Wallenius, S. Bortot, and I. Mickus, “Unprotected transients in SEALER: A
small lead-cooled reactor for commercial power production in Arctic regions,”
in PHYSOR 2018: Reactor Physics paving the way towards more efficient
systems, (Cancun, Mexico), 2018.

11. I. Mickus, J. Wallenius, and S. Bortot, “Preliminary Transient Analysis of
SEALER,” in Fast Reactors and Related Fuel Cycles: Next Generation Nu-
clear Systems for Sustainable Development (FR17), (Jekaterinburg, Russian
Federation), 2017.



ix

12. J. Wallenius, S. Qvist, I. Mickus, S. Bortot, J. Ejenstam, and P. Szakalos.
“SEALER: A small lead-cooled reactor for power production in the Canadian
Arctic,” in Fast Reactors and Related Fuel Cycles: Next Generation Nuclear
Systems for Sustainable Development (FR17), (Jekaterinburg, Russian Fed-
eration), 2017.

13. S. Bortot, I. Mickus, and J. Wallenius, “Preliminary Safety Performance As-
sessment of ESFR CONF-2 Sphere-Pac-Fueled Core,” in Fast Reactors and
Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable De-
velopment (FR17), (Jekaterinburg, Russian Federation), 2017.

14. P. Larroche, S. Bortot, J. Wallenius, and I. Mickus, “Design of a Nitride-
fuelled Lead Fast Reactor for Minor Actinides Transmutation,” in Fast Reac-
tors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustain-
able Development (FR17), (Jekaterinburg, Russian Federation), 2017.

15. D. Grishchenko, K. Kööp, M. Jeltsov, I. Mickus, and P. Kudinov “TALL-3D
test series for calibration and validation of coupled thermal-hydraulics codes,”
in 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(NURETH-17), (Xian, China), 2017.

16. I. Mickus, K. Kööp, M. Jeltsov, D. Grishchenko, P. Kudinov, J. Lappalainen,
“Development of TALL-3D Test Matrix for APROS Code Validation,” in
16th International Topical Meeting on Nuclear Reactor Thermalhydraulics
(NURETH-16), (Chicago, USA), 2015.

17. I. Mickus, J. Lappalainen, P. Kudinov, “Validation of APROS code against ex-
perimental data from a lead-bismuth eutectic thermal-hydraulic loop,” in 2015
International Congress on Advances in Nuclear Power Plants (ICAPP ’15),
(Nice, France), 2015.

18. I. Mickus, K. Kööp, M. Jeltsov, Y. Vorobyev, W. Villanueva, P. Kudinov,
“An Approach to Physics Based Surrogate Model Development for Appli-
cation with IDPSA,” in Probabilistic Safety Assessment and Management
(PSAM 12), (Honolulu, Hawaii), 2014.





Acknowledgements

I would like to thank my supervisor dr. Jan Dufek for the opportunity to work on
this topic and for supporting me throughout the process. Thank you for encour-
aging me to pursue new ideas and helping implementation through constructive
discussions and feedback.

I would also like to acknowledge dr. Jeremy A. Roberts from Kansas State Uni-
versity. I am grateful for the fruitful and motivating discussions we had on the
response matrix methods. Even though global events have so far prevented an in-
person meeting, I hope such an opportunity will come in the future.

To the colleagues in the Nuclear Engineering Division, thank you for the motivating
environment, the lunch conversations, and for your help. I feel fortunate to have
had the opportunity to work in this group.

Finally, a particular note goes to my friends and family. Thank you for your contin-
uous encouragement and support. Your presence throughout both the happy and
the difficult moments meant a lot. Thank you for helping me adopt a more positive
outlook when I needed it.

The work was financially supported by the McSAFE project which was funded by
the Euratom research and training programme 2014-2018 under grant agreement
No 755097.

Calculations presented in Paper I were performed on resources provided by the
Swedish National Infrastructure for Computing (SNIC) at PDC Centre for High
Performance Computing (PDC-HPC).

xi





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Neutron Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Deterministic Methods for Neutron Transport . . . . . . . . . . . . . . . . 7
1.4 Monte Carlo Simulation of Neutron Transport . . . . . . . . . . . . . . . . 8
1.5 Scope and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Criticality Calculations 11
2.1 k-Eigenvalue Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Monte Carlo Simulation of k-Eigenvalue Problems . . . . . . . . . . . . . . 12
2.3 Fission Source Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Errors in Monte Carlo Fission Source . . . . . . . . . . . . . . . . . . . . . 16
2.5 Methods for Accelerating Source Convergence . . . . . . . . . . . . . . . . 16

2.5.1 Fission Matrix Methods . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Response Matrix Methods . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Optimization of Neutron Population Size . . . . . . . . . . . . . . . . . . . 22
2.7 Errors in Results from Criticality Calculations . . . . . . . . . . . . . . . . 25

3 Short-Term Reactor Kinetics Calculations 29
3.1 Time-Dependent Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Time-Dependent Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Tracking in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Treatment of Delayed Neutrons . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Branchless Collision Kernel . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Transient Fission Matrix Method . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Time-Dependent Response Matrix Method . . . . . . . . . . . . . . . . . . 38

4 Burnup Calculations 45
4.1 Fuel Depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Burnup Coupling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Stability of Burnup Coupling Schemes . . . . . . . . . . . . . . . . . . . . . 49
4.4 Efficiency of Monte Carlo Burnup Calculations . . . . . . . . . . . . . . . . 51

5 Conclusions and Outlook 59

Bibliography 63

xiii





Chapter 1

Introduction

1.1 Background

Accurate and efficient tools are required for performance and safety analyses of
existing and new nuclear systems. Specifically, the analyses of nuclear reactor cores
rely on reactor physics tools that must be capable of calculating accurate distribu-
tions of reactor power and other quantities of interest during various normal and
abnormal operating conditions. Performing such calculations has long been a chal-
lenging task due to the multi-physics and multi-scale aspects of reactor systems [1].
The methods applied in the calculations have been shaped by the computing re-
sources available at a given time.

The development of reactor theory can be traced back to the works of E. Fermi,
E. P. Wigner and A. M. Weinberg, among others, in the late 1930s and early
1940s [2]. During this time, the analyses were performed using analytically de-
duced models and mechanical calculators manned by human computers [3]. The
completion of the first programmable electronic computer, the ENIAC, in 1945
was shortly followed by the application of statistical methods to neutron transport
problems by Los Alamos scientists S. Ulam, J. von Neumann and N. Metropo-
lis. N. Metropolis is attributed with suggesting the name “Monte Carlo” for such
calculations, while the first known computer program for performing Monte Carlo
calculations was developed by J. von Neumann in 1947 [4]. Here, it is interest-
ing to note the computing requirements estimated by von Neumann: Monte Carlo
calculation of 100 neutrons undergoing 100 collisions would take five hours on the
ENIAC [4].

Advances in reactor theory, computing hardware and computer software dur-
ing the 1950s and 1960s lead to increased use of computer programs for reactor
analyses. These programs primarily relied on numerical schemes derived from de-
terministic methods; for example, the Naval Reactors Physics Handbook of 1964 [5]
describes the techniques used in few-group two-dimensional diffusion programs de-
veloped for the IBM-704 and the Philco-2000 computers, while noting that “the

1



2 CHAPTER 1. INTRODUCTION

use of multigroup Monte Carlo has been extensive, but the tractable application of
this technique has been limited to small cells in either the resonance region or the
thermal neutron range”. Similar trends continued in the following decades; increas-
ingly sophisticated deterministic calculation methods and computational tools had
been developed for routine reactor analyses, driven by advancements in computer
technology, development of the utility-scale nuclear power reactors and the world-
wide adoption of civil nuclear technologies. The Monte Carlo method had been
considered the “method of last resort” [4] since it could be applied on relatively
small-scale problems while still requiring computing resources accessible only at
large computing centres.

The arrival of workstation clusters in the 1990s, multicore processors in the 2000s
and growth in readily accessible computing power that continues to this day, have
resulted in increased interest of applying Monte Carlo methods for solving reactor
physics problems [4]. This interest is motivated by the advantages that Monte
Carlo methods offer: neutron transport can be simulated in any geometry using
the best available data for neutron interactions in continuous energy. Moreover,
calculations that previously required resources of computing centres can now be
performed on office computers or small office clusters. Similarly, the increase of
computing power available at computing centres enabled the application of Monte
Carlo methods to a wider range of problems; for example, the feasibility of applying
Monte Carlo methods to large-scale industry-like problems, such as coupled full-core
burnup calculations [6, 7] and dynamic transient calculations [8–10], was recently
demonstrated during the EU McSAFE project [11].

Nevertheless, common industrial practices continue to rely on deterministic com-
putational tools, while the tools that employ Monte Carlo methods continue to be
considered computationally too expensive for routine analyses. Deterministic tools,
given their extensive development history, have been optimized for efficiently per-
forming specific tasks for current reactor designs and configurations. On the other
hand, this optimization resulted in a loss of flexibility to apply such tools for analy-
ses of evolutionary reactor configurations or new reactor designs. Monte Carlo tools
are capable of performing such analyses as well as providing reference solutions for
assessing the approximations present in the deterministic methods. This is because
of the lack of approximations and the inherent flexibility of Monte Carlo methods.
Consequently, the development of efficient Monte Carlo methods remains of interest
for the reactor physics community.

1.2 Neutron Transport

The nuclear performance of a reactor core is governed by the spatial, energy and
temporal distribution of the neutrons in the system. Knowing this distribution
enables determining the reactor power, criticality state, reaction rates, and other
quantities of interest. The mathematical model describing the behaviour of neu-
trons is given by the neutron transport theory. Therefore, before focusing the dis-
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cussion on specific methods, it is instructive to briefly introduce the main concepts
of this theory and its implications on method development.

The neutron transport theory describes the motion of neutrons undergoing
multiple scattering interactions with the nuclei present in the reactor core until
absorbed or leaking out of the system. The theory treats neutrons as point parti-
cles, fully described by their position and velocity. This means that the quantum-
mechanical effects or the effects of neutron properties such as spin and magnetic
moment may be assumed negligible for practical purposes in reactor analyses [12].
The neutron population may therefore be quantified by defining a phase-space den-
sity function n(r,v, t), where

n(r,v, t)drdv (1.1)
gives the expected number of neutrons in volume dr about r, moving in dv about
v, at time t. Further, it is common to decompose the velocity vector v into a scalar
term for the neutron speed v = |v| and a unit direction vector Ω = v/|v|, and
replace the speed with kinetic energy E1 leading to the definition known as the
angular neutron density n(r,Ω, E, t) [14], where

n(r,Ω, E, t)drdΩdE (1.2)

gives the expected number of neutrons in volume dr about r, moving in direction Ω
in solid angle dΩ, with energies dE about E at time t. Hence, neutrons as described
by the transport theory exist in a six-dimensional phase-space (r = x, y, z; Ω =
θ, ϕ;E), at time instant t.

It should be emphasized that the definitions in Eqs. (1.1) and (1.2) include the
term expected. This means that the transport theory is formulated for the average
behaviour of the neutron population. Due to the probabilistic nature of neutron
transport (e.g. neutron-nucleus interactions are characterized by probabilities), the
quantities associated with the real population would fluctuate around the expected
values. The study of the fluctuations of neutron population is the subject of reactor
noise analyses. While it is beyond the scope of this thesis, the interested reader
may find more information in a specialized text on the subject, e.g. [15].

According to the transport theory, the behaviour of neutrons is described by
straight flight paths and interactions (collisions) with the nuclei in the surrounding
medium. In reactor analyses, neutron-neutron interactions are ignored, motivated
by the small neutron density compared to the density of the nuclei in the surround-
ing medium [12]. Interactions between the neutrons and nuclei may be quantified
through reaction rate densities as

fi,j(r,Ω, E, t) = vΣi,j(r, E)n(r,Ω, E, t) , (1.3)

where Σi,j(r, E) denotes the macroscopic cross-section for a type j reaction with
a type i nucleus. The macroscopic cross-sections can be interpreted as interaction

1The classical definition of kinetic energy, E = mv2/2, is accurate enough for practical pur-
poses for neutrons with energies E ≤ 0.02Erest ≈ 20MeV [13]. Relativistic formulations need to
be used for higher energy neutrons.
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probabilities per unit path length travelled by a neutron in a medium and are
defined as

Σi,j(r, E) = Ni(r)σi,j(E) , (1.4)
where σi,j(E) is the microscopic cross-section that represents a measure of proba-
bility (expressed in terms of the effective interaction area) of type j reaction for a
neutron with energy E and a nucleus of type i, and Ni is the number density of
i type nuclei in the medium. For a medium consisting of several different nuclei,
the macroscopic cross-section of a material is calculated as the sum over all the
constituents, i.e.

Σj(r, E) =
∑
i

Ni(r)σi,j(E) . (1.5)

The reaction types are commonly grouped into scattering and absorption reactions.
Scattering can then be further divided into elastic and inelastic scattering reactions,
while absorption includes radiative capture, fission, and all other reactions except
for scattering [14]. Combined microscopic cross-sections (e.g. total, total absorp-
tion, etc.) can be calculated as the sum over the respective reaction channels:

σi,x(E) =
∑
j

σi,j(E) , (1.6)

where x may be substituted with a subscript representing the combined reaction
type considered.

The microscopic cross-sections, together with other nuclear data, are compiled
in the evaluated data libraries. In these libraries, the cross-sections are provided
as a function of the incident neutron energy and the temperature of target nuclei.
The nuclear data are determined from measurements and calculations using nuclear
models; then the libraries are compiled following evaluations of this data [1]. The
United States Evaluated Nuclear Data File (ENDF) [16] and the Joint Evaluated
Fission and Fusion File (JEFF) [17] are among the examples of the nuclear data
libraries most frequently used for reactor physics calculations.

The product vn(r,Ω, E, t) in Eq. (1.3) frequently appears in reactor analyses.
For this reason, it was assigned a special designation, namely the angular neutron
flux, ψ,

ψ(r,Ω, E, t) ≡ vn(r,Ω, E, t) . (1.7)
The angular neutron flux is simply a mathematical definition used in place of the
product vn(r,Ω, E, t) for convenience when expressing reaction rate densities.

An accurate description of neutron transport requires considering the angular
dependence of quantities that characterize the neutron population. Nevertheless,
consideration of angular dependence is unnecessary in capture reactions and reac-
tions with isotropic emission of secondary neutrons, such as fission [18]. Then, it
is convenient to work with the so-called scalar neutron flux, which is obtained by
integrating the angular neutron flux over the solid angle:

φ(r, E, t) =
∫

4π
ψ(r,Ω, E, t)dΩ . (1.8)
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Definitions of other related concepts, such as the angular current density j(r,Ω, E, t),
and the corresponding scalar quantities are omitted from this description for the
sake of brevity2.

The neutron transport theory further considers the balance of mechanisms by
which neutrons are gained or lost from an arbitrary phase-space point, leading to
the time-dependent transport equation [14]

1
v

∂

∂t
ψ(r,Ω, E, t) + Ω · ∇ψ(r,Ω, E, t) + Σt(r, E)ψ(r,Ω, E, t) = q(r,Ω, E, t) , (1.9)

where q(r,Ω, E, t) denotes the neutron sources and Σt is the macroscopic total
cross-section. The first term on the left-hand side describes the change of angular
neutron density in time. The second and the third terms describe the loss mecha-
nisms due to streaming of neutrons from an arbitrary differential volume element
through its boundaries and due to all neutron-nucleus interactions respectively.

The neutron sources on the right-hand side of Eq. (1.9) can be further decom-
posed into three terms as

q(r,Ω, E, t) = qs(r,Ω, E, t) + qf (r,Ω, E, t) + qext(r,Ω, E, t) , (1.10)

where the subscripts s, f and ext denote the scattering, fission and external sources
respectively. The external sources can be included by simply defining the source
density qext(r,Ω, E, t).

The scattering source describes the addition of neutrons into the considered
phase-space point due to scattering from all other energies and angles:

qs(r,Ω, E, t) =
∫

4π
dΩ′

∫ ∞
0

dE′Σs(r,Ω′ → Ω, E′ → E)ψ(r,Ω′, E′, t) , (1.11)

where Σs(r,Ω′ → Ω, E′ → E) is the so-called macroscopic double-differential scat-
tering cross-section, describing the measure of probability for neutrons with initial
energy E′ and angle Ω′ to be scattered to angle Ω and energy E at r.

The source of fission neutrons is given by

qf (r,Ω, E, t) = χ(r, E)
4π

∫
4π

dΩ′
∫ ∞

0
dE′ν(r, E′)Σf (r, E′)ψ(r,Ω′, E′, t) , (1.12)

where Σf (r, E′) is the macroscopic fission cross-section, χ(r, E) is the fission neu-
tron energy distribution, and ν(r, E′) gives the average number of neutrons emitted
in a fission reaction induced by a neutron with energy E′. For the moment, all neu-
trons were assumed to appear instantaneously at the time of fission. The concept
of delayed neutrons, which is important in solving time-dependent reactor physics
problems, will be introduced in Chapter 3.

2The interested reader may find extensive descriptions in any textbook on nuclear reactor
theory, e.g. [12, 14]
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Finally, substituting Eqs. (1.11) and (1.12) into Eq. (1.10), and Eq. (1.10) into
Eq. (1.9) leads to the common integro-differential form of the time-dependent neu-
tron transport equation [14]

1
v

∂

∂t
ψ(r,Ω, E, t) + Ω · ∇ψ(r,Ω, E, t) + Σt(r, E)ψ(r,Ω, E, t) =

qex(r,Ω, E, t) +
∫

4π
dΩ′

∫ ∞
0

dE′Σs(r,Ω′ → Ω, E′ → E)ψ(r,Ω′, E′, t)+

χ(r, E)
4π

∫
4π

dΩ′
∫ ∞

0
dE′ν(r, E′)Σf (r, E′)ψ(r,Ω′, E′, t) .

(1.13)

Solving Eq. (1.13) would result in the angular neutron flux which contains all of
the information necessary for describing the core behaviour, given that the equation
is parametrized with the correct cross-sections, ν values and spectra of the fission
neutrons. Nevertheless, the cross-sections display complicated dependencies on the
incident neutron energy and generally depend on the physical properties of the
materials (e.g. temperature) witch may change over time. Moreover, the material
composition may change over time due to burnup. Resolving feedbacks between
the core neutronics and the changes in the composition and the physical properties
of materials requires solving a multi-physics problem. This is usually achieved by
coupling the neutronics model with the models that describe those changes, such
as thermal-hydraulic, fuel performance, or fuel depletion models.

The time dependence of the transport equation may be resolved according to the
time scales considered. The solution may be sought for a system in a steady-state
as well as undergoing short-term or long-term transients. Finding a solution for a
steady-state system requires formulating a time-independent form of the transport
equation which is further discussed in Chapter 2. Considering short-term time de-
pendence requires including the delayed neutron sources which is further explained
in Chapter 3. Changes in material composition due to burnup lead to a long-term
time dependence and requires coupling between the neutronics and the burnup
solvers. This is further discussed in Chapter 4.
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1.3 Deterministic Methods for Neutron Transport

Due to the complex dependencies of cross-sections with neutron energy, angular
dependencies, and the highly heterogeneous geometrical arrangement of materials
in a reactor core, a direct, “brute force” discretization and solution of the neutron
transport equation becomes computationally prohibitive. Common deterministic
approaches, therefore, follow a multi-step calculation sequence, which aims to ad-
dress the multi-scale aspects of the problem [1], while retaining sufficient accuracy
at an affordable computing cost. The calculation sequence starts with solving small-
scale problems for the fuel pin cells and pin lattices, followed by large-scale calcu-
lations for the entire reactor core. The energy-condensed and space-homogenized
results from the previous step in the calculation sequence are used for the subse-
quent step.

Energy condensation and space homogenization are the main simplifications
used for reducing the complexity in deterministic calculations. The continuous en-
ergy variable is treated using a multi-group approach, where the energy dependence
is averaged over a selected number of energy groups. Thousands of energy groups
(the so-called micro-group structure) may be used when performing pin-cell level
calculations, which are then condensed into hundreds of energy groups (the macro-
group structure) for lattice level calculations and subsequently into a few-group
structure for core level calculations [1]. Space homogenization aims at replacing
the heterogeneous components with equivalent homogeneous nodes by averaging
the continuous space dependence over each node. Applying these simplifications
comes with a requirement of preserving the reaction rates when averaging over
energies and space. Calculation of the reaction rates requires knowledge of the neu-
tron flux, which is the unknown function to be solved for in the first place. Hence,
problem-specific assumptions about the features of the unknown flux have to be
applied in the process.

The small-scale calculations are typically performed using 1D fuel pin cell and
2D pin lattice geometries, and a fine discretization of the continuous variables. The
surroundings of the studied geometry are modelled by introducing approximate
boundary conditions. The calculations use methods for solving the neutron trans-
port equation directly, such as the method of characteristics, the collision probabil-
ity method, the discrete ordinates method, or the method of spherical harmonics [1].
The methods for small-scale calculations may be implemented in dedicated lattice
physics codes, such as CASMO-5 [19], or as modules in general-purpose determin-
istic codes, such as APOLLO3 [20]. The results from lattice calculations consist of
the energy-condensed and space-homogenized nuclear data libraries, parametrized
according to the reactor operating conditions (temperatures, control rod position,
burnup, etc.), for every lattice type used in the core configuration. The format of
these libraries has to be consistent with the requirements of the specific code used
for the core level calculations.

Recent advancements in computing hardware enabled performing large-scale de-
terministic transport calculations at the core level [20–22]. Nevertheless, common
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practices rely on nodal diffusion codes [1], such as SIMULATE-5 [23]. Nodal diffu-
sion codes approximate the neutron transport equation with the diffusion equation
which is solved on a course spatial mesh, using a few-group energy structure and
the data libraries prepared during the previous step of the calculation sequence.

1.4 Monte Carlo Simulation of Neutron Transport

The neutron transport equation is useful for explaining the physical concepts and
is a starting point for deriving various deterministic methods. However, the equa-
tion, per se, is not necessary for solving a problem using Monte Carlo methods.
Monte Carlo methods theoretically duplicate (simulate) the stochastic transport of
individual particles in a modelled system and infer the average behaviour of the
particles in a real system from the average behaviour of the simulated particles [26].
Consequently, Monte Carlo simulations yield the same mean result as the original
problem, i.e. the average neutron behaviour in a Monte Carlo simulation is de-
scribed by the neutron transport equation. However, Monte Carlo methods do not
directly solve the transport equation as opposed to the deterministic methods, or,
as humorously summarized by T. E. Booth, “saying that Monte Carlo is “solving”
the transport equation seems a bit like saying that a ball is “solving” Newton’s
equation” [27].

Typical Monte Carlo reactor physics calculation procedure is illustrated in Fig-
ure 1.1. First, the model is prepared by defining the composition and geometrical
arrangement of materials in the studied system. Any three-dimensional geometry
may be considered using constructive solid geometry (CSG) models [24,28] or three-
dimensional computer-aided design (CAD) geometries supported in some codes [29].
Then, the histories of individual neutrons3 are simulated by tracking each neutron
through a series of probabilistic events that describe the neutrons’ interaction with
matter. These events are statistically sampled from probability distributions char-
acterizing the physical phenomena, using random numbers. The histories start at
some source location (e.g. at fission sites or user-defined locations) and are simu-
lated until eventual neutron absorption or leakage out of the system. Quantities of
interest are scored (tallied) during the neutron tracking, together with statistical
precision estimates. Finally, the characteristics of the system can be inferred after
simulating a large number of neutron histories.

Following the history of each neutron by explicitly simulating every event (e.g.
scattering, fission, capture, etc.) would yield an analog Monte Carlo simulation.
In cases where the events with a low probability of occurrence are of interest,
the analog simulation would require tracking a very large number of histories to
collect results with acceptable statistical precision. Hence, for such applications,
the analog approach would lead to unacceptable computing times. This problem
is resolved by applying various non-analog Monte Carlo methods. The non-analog

3Some reactor physics codes have capabilities for performing coupled neutron-photon transport
simulations. The interested reader may refer to [26,30].
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Figure 1.1: Illustration of a Monte Carlo reactor physics calculation. Large num-
ber of neutron histories are tracked in a reactor core geometry and the results
are collected during neutron tracking. The images were generated using the Ser-
pent 2 Monte Carlo reactor physics code [24] and the PWR performance benchmark
model [25].

methods bias the analog transport process in a way that the events of interest
occur more frequently. To assure that the collected results are not biased (i.e. the
expected value of a non-analog simulation is equal to that of the analog simulation),
each neutron is assigned a statistical weight which is modified every time the analog
transport process is changed. The results are then scored considering the statistical
weight of each neutron contributing to a specific result.
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Monte Carlo calculations in reactor physics can be classified into two broad cate-
gories based on problem formulation: steady-state calculations and time-dependent
calculations. The steady-state calculations include three sub-categories: fixed source
calculations, criticality calculations, and coupled steady state calculations which
consider the effects of multi-physics on the steady-state neutronics solution. The
time-dependent calculations may be further divided into short-term transient cal-
culations (with or without consideration of reactivity feedbacks) and burnup cal-
culations which may also include multi-physics effects.

1.5 Scope and Objective

This thesis presents a compilation of work performed in three areas of Monte Carlo
calculations in reactor physics: Monte Carlo criticality calculations, Monte Carlo
methods for reactor kinetics calculations and Monte Carlo burnup calculations. The
methods proposed in the included papers aim at improving the efficiency of these
calculations.

1.6 Thesis Structure

The thesis is structured as a compilation thesis. Correspondingly, the author’s
main contribution is presented in the included papers, while Chapters 2, 3 and 4
provide a comprehensive summary, consisting of supporting information and the
summaries of the included papers. Chapter 2 discusses the application of Monte
Carlo methods for criticality calculations and focuses on the efficiency aspects of
these calculations. Chapter 3 discusses the application of Monte Carlo methods
for solving short-term time-dependent reactor physics problems. It provides an
overview of the time-dependent Monte Carlo method together with two hybrid
stochastic-deterministic schemes for time-dependent problems. Chapter 4 intro-
duces the mathematical model of fuel burnup and discusses coupling between the
Monte Carlo neutronics and the burnup solvers. An approach for selecting the
parameters in burnup calculations is presented. Finally, conclusions for this thesis
together with an outlook for the future work are given in Chapter 5.



Chapter 2

Criticality Calculations

This chapter provides the context supporting Papers I and II. First, we explain
the k-eigenvalue formulation of the neutron transport equation and Monte Carlo
simulation of k-eigenvalue problems, followed by a discussion on the fission source
convergence in Monte Carlo criticality calculations and the errors in the Monte
Carlo fission source. We then overview the fission matrix and the response matrix
methods previously proposed for convergence acceleration and summarize the neu-
tron population size optimisation method proposed in Paper I. Finally, we discuss
the errors in the results from Monte Carlo criticality calculations and summarize
the numerical tests that investigate the effects of neutron clustering on the results,
presented in Paper II.

2.1 k-Eigenvalue Equation

Criticality calculations aim at finding steady-state (time-independent) solutions in
multiplying systems without external neutron sources. Looking back to Eq. (1.13),
the neutron population would exhibit time-dependence, unless the neutron losses
are exactly balanced by the neutron sources. For example, in a sub-critical multi-
plying system, the neutron source rate due to fission is smaller than the neutron
loss rate due to absorption and leakage. In such a system, the fission chain reaction
is not self-sustaining, so a non-zero initial neutron population would decrease in
time unless maintained by an external neutron source. On the other hand, in a
super-critical multiplying system, the fission source rate is larger than the neutron
loss rate, so the neutron population would increase in time. Hence, a steady-state
neutron population is possible either in a sub-critical system with an external neu-
tron source, or in a critical system without an external neutron source, where the
fission source rate exactly balances the neutron loss rate resulting in a steady, self-
sustaining fission chain reaction.

However, such exactly critical systems are practically hard to attain in a nu-
merical model. One way to overcome this issue in criticality calculations relies on

11
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formulating the k-eigenvalue problem. The k-eigenvalue formulation is obtained
by dividing the number of fission neutrons, ν(r, E′), by a factor k such that the
solution becomes time-independent. Then, dropping the time derivative term in
Eq. (1.13) and setting the external source qext to zero yields

Ω · ∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) =∫
4π

dΩ′
∫ ∞

0
dE′Σs(r,Ω′ → Ω, E′ → E)ψ(r,Ω′, E′)+

1
k

χ(r, E)
4π

∫
4π

dΩ′
∫ ∞

0
dE′ν(r, E′)Σf (r, E′)ψ(r,Ω′, E′) ,

(2.1)

which is an eigenvalue equation with ki eigenvalues and ψi eigenfunctions, with
i = 0, 1, . . .. Let us denote the largest eigenvalue as k0. It can be interpreted as
the effective multiplication factor of the system, k0 = keff , and the corresponding
eigenfunction, ψ0, provides the fundamental mode flux distribution in the system.
For super-critical and sub-critical systems keff > 1 and keff < 1 respectively;
therefore, the number of fission neutrons has to be artificially reduced or increased
to obtain a time-independent solution. Consequently, Eq. (2.1) is equivalent to
Eq. (1.13) only if keff is strictly equal to one (the system is exactly critical).

As discussed by Cullen et al. [31], artificially modifying the fission source changes
the original problem, so the k-eigenvalue method yields sufficiently accurate solu-
tions only for systems that are close to critical. Applying the k-eigenvalue method
to highly sub-critical or highly super-critical systems can yield considerable errors,
because the fission neutrons become either over-represented or under-represented
respectively. Then, other methods should be used instead, such as the α-eigenvalue
method or the dynamic criticality method. Description of the α-eigenvalue method
is excluded from this text, while the interested reader is encouraged to study
Ref. [31].

2.2 Monte Carlo Simulation of k-Eigenvalue Problems

In most Monte Carlo codes1, criticality calculations are implemented using an it-
erative procedure, similar to the procedure for finding the fundamental eigenpair
of Eq. (2.1). To explain this procedure, it is convenient to re-write Eq. (2.1) in
operator notation as [33]

Mψ(r,Ω, E) = 1
k

χ(r, E)
4π S(r) , (2.2)

where M denotes the net loss operator defined as

Mψ(r,Ω, E) = Ω · ∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E)−∫
4π

dΩ′
∫ ∞

0
dE′Σs(r,Ω′ → Ω, E′ → E)ψ(r,Ω′, E′) ,

(2.3)

1Some codes, such as MCNP, support the α-eigenvalue method for criticality calculations [32].
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and S(r) is the fission source

S(r) =
∫

4π
dΩ′

∫ ∞
0

dE′ν(r, E′)Σf (r, E′)ψ(r,Ω′, E′) . (2.4)

It can be further shown [33,34] that by defining the Green’s function to the problem
expressed by Eq. (2.2), an eigenvalue equation equivalent to Eq. (2.2) can be written
just in terms of the fission source as

S(r) = 1
k

∫
V

dr0H(r0 → r)S(r0) , (2.5)

where the kernel H(r0 → r) is given by

H(r0 → r) =∫∫∫∫
dEdΩdE0dΩ0·ν(E)Σf (r, E)χ(E0)

4π G(r0, E0,Ω0 → r, E,Ω) .
(2.6)

The kernel H(r0 → r) gives the expected number of fission neutrons at r due
to parent fission neutrons born at r0. It corresponds to the Green’s function,
G, weighted by the initial spectrum and the final fission neutron production, and
integrated over energies and angles [34]. Finally, denoting the right-hand side of
Eq. (2.5) through an integral fission operator F , the source eigenvalue equation can
be written as

S = 1
k
FS . (2.7)

Monte Carlo criticality calculation can be understood as an iterative procedure
equivalent to the procedure for determining the fundamental eigenpair of operator
F in Eq. (2.7), k0 = keff and S0(r). The procedure to find the fundamental
eigenpair of linear eigenproblems such as Eq. (2.7) commonly follows the power
iteration scheme [13]

S(i+1) = 1
k(i)FS

(i) , (2.8)

where

k(i) =
∫
V

drFS(i)∫
V

drS(i) . (2.9)

The power iteration is known to always converge to the fundamental eigenpair when
the largest eigenvalues are not of equal magnitude [35].

During each iteration cycle (the so-called criticality cycle), Monte Carlo codes
sample m neutrons from the fission sites corresponding to S(i) and simulate their
transport through the system to determine the fission sites for the next-generation
source S(i+1). The iterations start from some initial source distribution, S(0), and
eigenvalue, k(0), which have to be provided as an input. Moreover, the user has to
select the number of neutrons to be simulated during each criticality cycle, m, the
number of criticality cycles to be performed, n, and decide how many of these cycles
should be excluded before starting collecting the results. This is further discussed
in the following section.
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2.3 Fission Source Convergence

Monte Carlo criticality calculations start from an initial guess of the fission source
distribution, which contains an error that represents a deviation of the initial guess
from the fundamental mode source distribution. To understand how this error de-
cays over the criticality cycles, we can express the fission source, given by Eq. (2.8),
as a weighted sum of the eigenfunctions Sj [13, 36]:

S(n) = Fn
∑
j

ajSj =
∑
j

ajk
n
j Sj , (2.10)

where aj are used as arbitrary weighting factors. We can then arrange the eigen-
values in a descending order i.e. k0 > |k1| > |k2| > . . . and divide Eq. (2.10) by kn0
to obtain

S(n)

kn0
= a0S0 +

(
k1
k0

)n
a1S1 +

(
k2
k0

)n
a2S2 + . . . . (2.11)

Here, we can see that the power iteration will converge to a multiple of the funda-
mental mode fission source S0 when n → ∞ and k0 6= k1. Furthermore, because
1 > |k1/k0| > |k2/k0| . . ., S(n) converges to S0 as O((k1/k0)n). Therefore, the
convergence is governed by the ratio k1/k0, known as the dominance ratio. It was
shown [37], that the fission source convergence in Monte Carlo criticality calcu-
lations is indeed governed by the dominance ratio. The fission source converges
slowly when the dominance ratio is close to unity.

Since the initial source guess converges to the fundamental mode asO((k1/k0)n),
the error introduced in the initial source distribution decreases at the same rate.
Moreover, to collect reliable estimates of the results in Monte Carlo criticality cal-
culations (e.g. mean, variance, covariance, etc.), the stochastic process has to be
stationary [13]. This means that the statistical properties of the process must not
change from iteration to iteration, which is not the case during the convergence
phase of the fission source. Eventually, after a certain number of iterations, the
initial error decays to an extent where the fission source distribution may be con-
sidered to approximate the fundamental mode sufficiently well and the stochastic
process may be considered stationary. These iterations are called the inactive cycles
and are commonly excluded from the results. The results are collected during the
active cycles, i.e. the cycles when the fission source distribution can be assumed
converged and randomly fluctuating around the fundamental mode.

Selection of the appropriate number of inactive cycles is heuristic, varies from
problem to problem and is usually based on prior experience [13]. Several diagnostic
techniques were previously proposed to help the users select an appropriate number
of inactive cycles. One such technique resorts to calculating the Shannon entropy,
H, of a space-discretized fission source as [13]

H = −
M∑
i=1

Silog2(Si) , (2.12)
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Figure 2.1: Convergence of the fission source in Monte Carlo criticality calculations.

where M is the number of regions in the mesh superimposed over the problem
geometry and Si is the relative fission source strength in mesh region i, calculated
as

Si = ni
N
, (2.13)

where ni is the number of fission neutrons in region i, and N is the total number of
fission neutrons. The entropy, calculated using Eq. (2.12), can be then monitored
over the iteration cycles and the convergence of H is expected to correspond to
the convergence of the fission source. Nevertheless, the summation in Eq. (2.12)
may lead to the compensation of terms and consequently to a false indication of
convergence [13].

Fission source convergence is illustrated in Figure 2.1. Here we show the cumu-
lative fission source, i.e. the source combined over all previous simulation cycles.
The figure depicts two cases when the initial source is sampled from the uniform
and point distributions. The initial source distribution converges to the fundamen-
tal mode with increasing cycle number. The calculation was performed using the
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PWR performance benchmark model [25] and Serpent 2 reactor physics code [24].

2.4 Errors in Monte Carlo Fission Source

In the previous section, we discussed that the initial guess of a Monte Carlo fission
source introduces an error into the source distribution, which decays as O((k1/k0)n)
with an increasing number of iteration cycles. After simulating a certain number of
inactive cycles, this error may be assumed to have decayed sufficiently. Nevertheless,
the fission source is still subject to statistical error and source bias, which are
discussed further.

During each criticality cycle, i, the fission source is sampled at a finite number,
mi, of fission sites, therefore, the Monte Carlo equivalent of Eq. (2.8) includes a
statistical error term ε(i) [36, 38], i.e.

S(i+1) = 1
k(i)FS

(i) + ε(i) , (2.14)

where the statistical error in the fission source, ε(i), is of order O(1/√mi). Be-
cause the results in Monte Carlo criticality calculations are combined over n cycles
(excluding ix inactive cycles), the statistical error in the results would ideally2 de-
crease as O(1/

√
h), where h =

∑n
ix+1mi is the total number of simulated active

neutron histories. Similarly, the statistical error in the cumulative fission source,
i.e. the source combined over the cycles, decreases ideally as O(1/

√
h) after the

fundamental mode has established (the initial error has decayed).
Nevertheless, the statistical errors propagate through the iteration cycles caus-

ing the fission source to converge to a biassed distribution Ŝ0 compared to the
fundamental mode distribution S0 [36]. The difference between S0 and Ŝ0 was
shown to be O(1/m) [39]. The bias does not decay when simulating more iteration
cycles and eventually may dominate the error. The biassed distribution tends to
underestimate the fission source in the most reactive regions of the system and
overestimate the source in less reactive regions [40]. Hence, the fundamental eigen-
value, keff , estimated from the biassed source is usually smaller than the correct
one.

2.5 Methods for Accelerating Source Convergence

In the previous sections, we established that Monte Carlo criticality calculations
consist of a number of inactive and active cycles where the inactive cycles are
necessary to converge the fission source to the fundamental mode. Since no results
are collected during the inactive cycles, these cycles increase the overall computing
cost of Monte Carlo criticality calculations. Moreover, the fission source may be
subject to bias, which can corrupt the results.

2Correlations in Monte Carlo estimates of the results will be further discussed in Section 2.7.
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Various approaches were previously proposed to address these issues, such as the
super-history powering method [39], the Wielandt method [41], as well as a number
of methods driven by deterministic calculations, e.g. [42]. In this section, we will
focus on two methods that aim at accelerating the fission source convergence in
Monte Carlo criticality calculations by providing an improved guess of the fission
source distribution through the use of fission or response matrices. Subsections 2.5.1
and 2.5.2 establish the concepts of fission and response matrices, which will be
relevant in the discussion on the time-dependent methods in Chapter 3.

2.5.1 Fission Matrix Methods
The fission matrix corresponds to a space-discretized fission operator F . The k-
eigenvalue problem is discretized into N spatial regions and Eq. (2.5) or Eq. (2.7)
is integrated over the volumes, V , of each initial region j, with r0 ∈ Vj and final
region i, with r ∈ Vi. The fission source in region i can then be expressed as [33,34]

Si = 1
k

N∑
j=1

Fi,jSj , (2.15)

or, using a matrix-vector notation as

S = 1
k
FS , (2.16)

where matrix F is called the fission matrix. The elements of the fission matrix Fi,j
represent the expected number of fission neutrons born in region i due to one parent
fission neutron starting in region j. This can be formally expressed as [33,34]

Fi,j =
∫

r∈Vi

dr
∫

r0∈Vj

dr0
S(r0)
Sj

H(r0 → r) , (2.17)

with
Sj =

∫
r′∈Vj

S(r′)dr′ . (2.18)

The elements of the fission matrix can be estimated during the nth cycle of a
Monte Carlo criticality calculation as [40]

F
∗(n)
i,j = f

∗(n)
i,j /s

(n−1)
j , (2.19)

where f∗(n)
i,j is used to denote the total expected number of fission neutrons in

zone i, during cycle n produced by neutrons originating from zone j, during cycle
n− 1, and s(n−1)

j is the number fission neutrons from cycle (n− 1) in zone j. The
estimation of the matrix elements can then be combined over n simulated cycles
as [40]

F
(n)
i,j = f

(n)
i,j /t

(n−1)
j , (2.20)
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where

f
(n)
i,j =

n∑
l=1

f
∗(l)
i,j , (2.21)

t
(n−1)
j =

n∑
l=1

s
(l−1)
j . (2.22)

The fission matrix condenses valuable information about the system, which can
be used in various ways. Initially, it was assumed that the fundamental mode
eigenvector of the fission matrix would converge faster than the Monte Carlo fission
source, hence Monte Carlo fission source convergence acceleration techniques based
on the fundamental mode eigenvector of the fission matrix were proposed [43]. How-
ever, stability and convergence problems of these methods were identified [40, 44],
while the authors observed that the fission matrix becomes insensitive to errors in
the Monte Carlo fission source if a sufficiently small node size is used. Indeed, it was
shown that at the limit of small node size, the fission matrix becomes independent
on the phase-space weighting of the matrix elements [33]. Correlation of errors be-
tween the Monte Carlo fission source and the fundamental eigenvector of the fission
matrix were also studied [45], where it was concluded that the correlation reduces
when the node size is decreased.

Furthermore, the fission matrix may be used to calculate higher-order forward
and adjoint system eigenpairs [33]. Hence, the fission matrix may be used as direct
means of performing criticality analyses in so-called fission matrix-based Monte
Carlo criticality calculations [40, 46–48]. The method was later expanded to time-
dependent problems [49], which will be discussed in Section 3.3.

2.5.2 Response Matrix Methods

Similarly to the fission matrix methods, the Response Matrix Methods (RMMs)
are also based on a variant of Green’s function approach. However, here a number
of Green’s functions are defined for each sub-volume of a space-discretized system,
differently from the fission matrix methods where a single, discretized Green’s func-
tion is used to describe the entire system. Specifically, the RMMs discretize a large,
global spatial domain (such as a reactor core) to a number, N , of non-overlapping
local sub-domains (nodes) which are coupled through partial currents [50,51]. Then,
the neutron transport problem is solved by constructing the global solution from a
set of precomputed solutions to the local problems in the sub-domains. Because the
response of a node depends only on the properties of that node, the local problems
need to be solved only for the unique nodes [52], provided that the boundary con-
ditions on the node are well resolved when solving the local problems. Hence, the
RMMs were historically applied for solving problems where many of the nodes con-
stituting the global spatial domain have identical geometrical shape and material
composition [51–53].



2.5. METHODS FOR ACCELERATING SOURCE CONVERGENCE 19

Response matrix methods relate the partial currents outgoing from node i, j+
i ,

with the partial currents incoming to the node, j−i , through response kernels Ri
as [50]

j+
i (r) =

∫
Si

Ri(r′ → r)j−i (r′)dr′ , (2.23)

where the integration is carried over the entire node surface Si. Other phase-space
variables (Ω, E) will be discussed later. The discussion of the time variable is
left for Section 3.4. The response kernels Ri (i = 1, 2, ..., N) depend only on the
properties of node i, and are assumed to be known from independent solutions of
the local problems. The kernels can be calculated by applying diffusion or transport
theories [50,51,54,55], or can be sampled using the Monte Carlo method [53,56–63].

The individual nodes are then coupled together through the partial currents to
solve the global problem. If the partial currents are expressed as a column vector

J± = [j±1 , j
±
2 , ..., j

±
N ]T , (2.24)

Eq. (2.23) takes a compact form

J+ = RJ− . (2.25)

Here R is (generally) a block-diagonal global response matrix where each block
represents the kernel Ri of node i. Because each node has common boundaries
with the neighbouring nodes, the outgoing partial currents immediately become
incoming partial currents for the neighbours, or

J− = MJ+ , (2.26)

where M is the connectivity (topology) matrix that maps the outgoing currents
from a node to incoming currents of the neighbouring nodes and includes the global
domain boundary conditions. Then, combining Eqs. (2.25) and (2.26) leads to the
response matrix equations for the global domain:

J+ = RMJ+ . (2.27)

Depending on the formulation of the method, fission can be treated either im-
plicitly, using the so-called “direct” RMM, or explicitly, using the so-called “source”
RMM [50, 51, 55]. In the direct RMM formulation, the response kernels are calcu-
lated as functions of the multiplication factor, k, and, if no volumetric information
is desired, only surface to surface calculations need to be performed [57]. To solve
a criticality problem, Eq. (2.27) is written as a non-linear eigenvalue equation [55]

λJ+ = R(k)MJ+ , (2.28)

where λ is the so-called current eigenvalue that represents the global balance of
neutron currents through all nodal surfaces. If the response matrix R(k) strictly
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maintains neutron balance, the value of λ approaches unity as k approaches keff
[55].

In the source RMM formulation, separate response kernels are defined for the
surface-to-surface, surface-to-volume, volume-to-surface, and volume-to-volume re-
sponses [50,56,58,60,61,63]. The response matrix equations then take the general
form of

J+ = RssMJ+ + J+
f , (2.29)

where Rss contains surface-to-surface responses and J+
f denotes the outgoing partial

currents due to volume sources in the nodes. J+
f can be evaluated knowing the

volume-to-surface response matrix Rvs as

J+
f = RvsQ , (2.30)

where Q denotes the volume sources, which can be calculated knowing the volume-
to-volume and surface-to-volume response matrices Rvv and Rsv as

Q = RsvMJ+ + RvvQ . (2.31)

The criticality problem can then be solved using some iterative scheme based on
Eqs. (2.29) and (2.31), and scaling the volume sources by k during the iterations.

In Eq. (2.23), the integration was carried over the entire surface of the node.
Assuming each node has n neighbours (e.g. n = 6 in 3D Cartesian geometry), the
node surface Si can be partitioned to n sub-surfaces (faces), Si,k (k = 1, 2, ..., n).
Then, each block of matrix R, Ri, becomes a n × n matrix, where each element
describes the outgoing current response (on n faces), due to incoming currents (on
n faces). The vectors J± then consist of sub-vectors, which contain the partial
currents on each face of the node, j±i,k.

Furthermore, to determine the response kernels in a limited number of local cal-
culations for the unique nodes, these calculations need to consider the dependence
of the local domain boundary conditions on all phase-space variables, as Eq. (2.23)
takes the form of

j+
i (r,Ω, E) =

∫∫∫
Ri(r′,Ω′, E′ → r,Ω, E)j−i (r′,Ω′, E′)dr′dΩ′dE′ . (2.32)

The dependence of the local currents (and volume quantities when such are consid-
ered) on the phase-space variables r, Ω, and E is then resolved by projection onto
various finite sub-spaces represented by an orthogonal basis, defined on each face
of the node (or over the node volume) [50,54,55]. For example, continuous [53,62]
or discrete [54,55] polynomials, or segmentation of space and angle [56,58,60] were
previously used together with a multi-group representation of the energy depen-
dence.

Assuming that the phase-space w = (r,Ω, E) can be represented by a basis
Pl(w), and the expansion is truncated at some order L, the partial currents can be
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expanded as [55]

j±i,k(wi,k) ≈
L∑
l=0

j±i,k,lPl(wi,k) , (2.33)

where j±i,k,l denote the expansion coefficients. The partial currents are then repre-
sented by the expansion coefficients and the global current vector J± becomes of size
N×n×(L+1) [50]. The response kernels are expressed using the same basis and each
block of the global response matrix R becomes of size [(L+ 1)n]× [(L+ 1)n] [50],
where the block elements rk,li,k′,l′ characterize the l-th order outgoing current re-
sponse on surface k due to an incoming l′-th order current on surface k′, of node
i [55].

The accuracy of the approximation and the required computing effort depends
on the selected basis functions and expansion orders. Weiss and Lindahl [50] used
Legendre polynomials up to the 4-th order to represent the spatial variables and
argued that the 1-st order expansion is sufficient for practical problems. Forget [57]
used continuous Legendre polynomials in an attempt to represent the phase-space
(r,Ω); various combinations of expansion orders were tested using a multi-group
energy representation and the author concluded that the low order expansions give
accurate results for 2D problems, but not for 3D problems. In the recent publica-
tions on the COMET method [53,62], the authors used a tensor product of Legendre
and Chebyshev polynomials, where Legendre polynomials were used for the spatial
variables (in 2D) and the azimuthal angle, and the Chebyshev polynomials were
used for the cosine of the polar angle; the authors then argued that expansions up
to 4-th order in space and up to 2-nd order in angle with a multi-group energy
representation were sufficient for a wide variety of reactors, while a direct extension
of the method to the continuous energy variable would require more than 1000-th
expansion order and thus is impractical.

In a recent publication, Leppänen [64] proposed using the response matrix
method for accelerating the fission source convergence in Monte Carlo criticality
calculations. The proposed approach is similar to the fission matrix acceleration
methods; the response kernels for all nodes in the system are simultaneously esti-
mated during several cycles of a Monte Carlo criticality calculation and an improved
guess of the fission source distribution is obtained by solving the response matrix
equations. Such a procedure is then repeated a number of times. Compared to
the fission matrix methods where each node is coupled to all other nodes in the
system, the RMMs offer better scaling, because each node is coupled only to the
neighbouring nodes. Moreover, differently from the previously discussed RMMs
that perform a number of local calculations to obtain the response kernels for the
unique nodes, Leppänen suggested directly calculating the response kernels for the
entire system using the global angular flux. This way, the author avoided using
expansions to represent the local phase-space dependence, which greatly simplified
the formulation of the response matrix equations.
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2.6 Optimization of Neutron Population Size

In the previous two sections, we discussed two fission source convergence acceler-
ation methods that aim to obtain an improved estimate of the fission source dis-
tribution through the use of fission or response matrices. Scoring the information
necessary to provide the improved estimate may, in some cases, be as computa-
tionally expensive as the simulation with no acceleration, because the number of
neutrons simulated during one cycle (the neutron population size) may need to be
significantly increased. Hence, these methods may indeed reduce the number of in-
active cycles required to obtain a converged fission source, but may not necessarily
reduce the overall computing cost of a Monte Carlo criticality calculation.

Monte Carlo criticality calculations are commonly conducted by simulating a
number of source iteration cycles using a fixed number of source neutrons during
each cycle. The computing cost of such calculations is directly proportional to the
selected number of neutrons and iteration cycles, i.e. the total number of simulated
neutron histories, h. Hence, the calculation efficiency can be expressed in terms of
the figure-of-merit, FOM , defined through h as

FOM = 1
ε2h

, (2.34)

where ε is the error in the results. A more efficient calculation thus can be achieved
by either lowering the error (using methods described before) without significantly
increasing the computing cost (without simulating more neutrons) or reducing the
computing cost (by simulating fewer neutrons) necessary for achieving the same
error value.

In Section 2.4, we discussed that the error in Monte Carlo criticality calculation
results can be decomposed into three components: the initial error of O((k1/k0)n),
the error caused by the bias of O(1/m), and the statistical error of O(1/

√
h).

Selecting a small neutron population size could lower the computing cost of Monte
Carlo criticality calculations; however, a considerable bias could be introduced in
the fission source this way. While the initial error and the statistical error decay
over the simulation cycles, the bias does not decay and eventually may dominate
the total error. Therefore, a large neutron population size is commonly preferred
to assure that the results are not affected by the source bias [65]. On the other
hand, a large population size increases the computing time of a single cycle, thus
limiting the number of cycles that can be simulated in a certain computing time.
Tuttelberg and Dufek [66] recognised this as a population size optimization problem
and proposed a methodology to optimize the batch size in Monte Carlo criticality
calculations.

In subsequent research [67], the authors suggested increasing the population
size throughout the simulation cycles. This way, at any cycle in the simulation, the
neutron population size is kept small enough for efficient source iteration, while at
the same time large enough for limiting the source bias. Since the initial and the
statistical errors dominate the total error at the beginning of a simulation, a large
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initial population size is unnecessary for assuring a small value of the source bias; as
the errors decay in the successive cycles, the population size is increased, preventing
the source bias from dominating the total error. The proposed algorithm divides
the calculation into stages, where at each stage the population size is increased
based on the error estimated using the fundamental mode eigenvector of a fission
matrix. The fission matrix is scored during the simulation, and the fundamental
mode eigenvector of the matrix is computed at each simulation stage.

Scoring the fission matrix and calculating the fundamental mode eigenvector
constitutes computing overhead, which may prevent an efficient application of the
method to large-scale problems, where a fine mesh resolution for the fission matrix
may be required. Then, the computing overhead associated with the on-the-fly
error estimation may reduce the overall efficiency gain. To eliminate this overhead,
in Paper I, we suggested a method for determining the neutron population size
using a simple analytical relation. The rationale for the relation comes from the
requirement of selecting the population size in a way that would limit the potential
source bias to some fraction, r, of the statistical error:

β(i)

ε(i) = r , for all i , (2.35)

where β(i) and ε(i) denote the bias and the statistical error respectively, during
cycle i. Then, we used a simple model for the source bias,

β(i) ≈ b

mi
, (2.36)

where b is a system-dependent constant, which formally denotes the magnitude of
the source bias for a given system, together with a simple model for the statistical
error,

ε(i) ≈ a√
hi
, (2.37)

where a is a system-dependent constant, which formally denotes the magnitude
of the statistical error for a given system, and hi is the total number of neutron
histories simulated prior to cycle i. Substituting Eqs. (2.36) and (2.37) into (2.35)
leads to the expression for selecting the population size during cycle i:

mi = c×
√
hi , (2.38)

where c = b/ar is a parameter to be chosen for the simulation. More details about
Eq. (2.38), including the modifications to include the initial population size m1 are
provided in Paper I. Using an analytical expression for selecting the population
size, instead of relying on the error calculated using the fundamental mode vector
of the fission matrix, we can eliminate the overhead associated with tallying the
fission matrix and computing the fundamental mode eigenvector.

We have implemented the method in the Serpent 2 code and performed test
calculations using the full-core PWR model [25]. Details of the test calculations are
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(b) Point initial fission source.

Figure 2.2: Relative error in the cumulative fission source (left) and the corre-
sponding figure-of-merit (right) compared for calculations using various fixed neu-
tron population sizes and calculations with a growing neutron population (figures
reproduced from Paper I).

provided in Paper I, while the main results of the numerical tests are summarized
in Figure 2.2. Here, two sets of calculation results are shown; using a uniform
distribution for the initial fission source, in sub-figure (a), and using an initial fission
source located at a single point in the system, in sub-figure (b). The left side of the
figure shows the relative error in the cumulative fission source, while the right side
of the figure shows the figure-of-merit for the respective sets of test calculations.
The calculations using fixed neutron population sizes, ranging from m = 102 to
m = 106, were compared with calculations using the growing neutron population
size, with the initial population of m1 = 102 and c = 1. In the cases with a fixed
neutron population ofm = 102 the fission source converged to a biassed distribution
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with an increasing number of simulated neutron histories, as seen from the relative
error curves on the left side of the figure. Using larger population sizes yielded a
lower number of iteration cycles for the same amount of simulated neutron histories
and, consequently, a less efficient decay of the relative error. Using the growing
population method, many source iterations were performed using a relatively small
neutron population size, while the gradual increase of the population prevented
the source bias from dominating the relative error with an increasing number of
simulated neutron histories.

2.7 Errors in Results from Criticality Calculations

This section summarizes the work presented in Paper II. The work was motivated
by a number of recent publications that reported the presence of neutron clusters
in Monte Carlo criticality calculations and raised concerns about their potential
effects on the results of the calculations [68–71]. It was suggested [68], that neu-
tron clustering, an example of which is shown in Figure 2.3, occurs when a small
neutron population size is selected for calculations of large, loosely-coupled systems
characterised by a large dominance ratio and may be related with the phenomenon
of cycle-to-cycle correlations of the fission sources observed in such systems. If
neutron clustering causes detrimental effects on the results, the calculation strate-
gies in Monte Carlo criticality calculations would need to prioritize large neutron
population sizes to prevent neutron clustering at the expense of a large computing
effort during the inactive cycles. We, therefore, performed a series of numerical
tests aimed at identifying possible effects of neutron clustering on the results in
Monte Carlo criticality calculations.

Before summarizing the numerical tests, it is instructive to discuss what con-
stitutes the results in Monte Carlo criticality calculations. Monte Carlo criticality
codes report the results consisting of sample means for quantities of interest, X̄,
together with the estimates of the variance of the sample means and the corre-
sponding standard deviations. The standard deviations of the sample means are
then interpreted as statistical errors of the results and are used to construct the
statistical confidence intervals. Commonly, an assumption of independent samples
is made and the variance is calculated as

Var[X̄(n)] = σ2

n
, (2.39)

where σ2 is the sample variance and n is the number of cycles over which the
samples are collected. Hence, the variance of the sample mean is expected to
decrease proportionally to the number of collected samples.

Nevertheless, it is long known that samples in Monte Carlo criticality calcula-
tions are correlated because the fission bank from one criticality cycle is used as a
fission source in a subsequent cycle [72,73]. The effects of the correlations were de-
termined to be most significant when collecting distributed tallies in systems with
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Figure 2.3: Illustration of source neutrons forming a cluster in a Monte Carlo
criticality calculation with a neutron population of m = 500, in a 400 cm long
PWR fuel pin-cell model (figure reproduced from Paper II).

large dominance ratios [37]. Then, the independence assumption becomes invalid
and Eq. (2.39) should be supplemented with a term to account for cycle-to-cycle
correlations:

Var[X̄(n)] = σ2

n
r(n) , (2.40)

where

r(n) ≡ 1 + 2
n−1∑
k=1

(
1− k

n

)
ρk . (2.41)

Here, k denotes the so-called cycle lag (the number of cycles separating the samples)
and ρk is the autocorrelation coefficient for cycle lag k. Equations (2.40) and
(2.41) come from analysing the collection of result tallies in Monte Carlo criticality
calculations as a stationary time series [74–76]. Various authors refer to Eq. (2.39)
as the “apparent” variance and Eq. (2.40) as the “real” variance.

In presence of correlations, the apparent variance would underestimate the real
variance, so the variance from the commonly used estimator in Eq. (2.39) cannot be
used to quantify the statistical error in the results. In such cases, Eq. (2.40) needs
to be used, where the correlations are quantified, for example, by storing all of the
samples and evaluating the autocorrelation coefficients during data post-processing
[74, 75], or by creating models for predicting the correlations [77]. Alternatively,
a simple way to estimate the real variance is to perform multiple independent
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√
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Monte Carlo criticality calculations using various population sizes (figures repro-
duced from Paper II).

calculations with different initial random number generator seeds and consider the
statistics of the collected independent samples.

Equation (2.40) can be further modified to include the neutron population size,
m, as [75]

Var[X̄(n)] = c

mn
r(n) , (2.42)

where c may be interpreted as the tally variance for one neutron. This modifica-
tion is based on the assumption that tally contributions from individual neutrons
during one calculation cycle are independent and identically distributed, and m is
sufficiently large for the central limit theorem to be applicable.

Equation (2.42) suggests that the variance curves obtained using different batch
sizes should only be shifted from each other by a factor m and otherwise exhibit
the same convergence trends with increasing cycle number (increasing number of
simulated neutron histories) if r(n) through ρk is independent of the neutron batch
size and the assumption used in obtaining Eq. (2.42) holds. Correspondingly, the
standard deviation (error) curves should be only shifted by a factor

√
m for the

same cycle number. On the other hand, if the dependence on the neutron batch is
significant, e.g. due to neutron clustering affecting the correlations, or failure of the
assumption used in obtaining Eq. (2.42), one should be able to identify different
variance (error) convergence trends for calculations performed using different values
of m.

Part of the results from the calculations in Paper II is shown in Figure 2.4.
Here, the left-hand side of the figure shows the relative error in the cumulative
fission source using neutron population sizes ranging from m = 500 to m = 106 in
calculations of the 400 cm long, fully reflected PWR fuel pin-cell model. Each error
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curve was obtained from 100 independent calculation replicas. The right-hand side
of the figure shows the product of the relative error and the square root of the
population size. Same error convergence trends can be observed for calculations
performed using all neutron population sizes. Moreover, the error curves obtained
for different neutron population sizes are only shifted from each other by a factor√
m since the products of the error and

√
m overlap.

Neutron clustering was reported to occur in the 400 cm long, fully reflected pin-
cell model for neutron population sizes as large as m = 104 (m in excess of 105

was suggested necessary to suppress clustering) [68, 70]. If clustering affected the
cycle-to-cycle correlations (or affected the results in some other way) then we should
observe different error convergence trends in calculations with m = 500, m = 103

and m = 104 compared to the calculations with m = 105 and m = 106. We should
then also expect the effects to be more pronounced for smaller neutron batch sizes
because the severity of clustering has been shown to be inversely proportional to
the selected batch size. Nevertheless, we observed the same trends independently
of the selected neutron batch size. All error curves in Figure 2.4 follow the theory
on the statistical error behaviour in Monte Carlo criticality calculations subject to
cycle-to-cycle correlations, as explained in [74–76].



Chapter 3

Short-Term Reactor Kinetics
Calculations

This chapter provides the context supporting Papers III and IV. First, we intro-
duce the concepts of time-dependent reactor analyses. Then, we overview the recent
developments of the Time-Dependent Monte Carlo (TDMC) and the Transient Fis-
sion Matrix (TFM) methods. Finally, we summarize the Time-Dependent Response
Matrix (TDRM) method presented in Papers III and IV. The TDMC method relies
exclusively on Monte Carlo techniques, while the TFM and the TDRM methods
apply hybrid stochastic-deterministic approaches using the information obtained
from steady-state Monte Carlo calculations.

3.1 Time-Dependent Reactor

Analyses of time-dependent reactor behaviour aim at determining the variation of
neutron population with time. As discussed in Section 1.2, the time-dependent
analyses may be carried out according to the time scales considered. Here, we will
focus on short-term reactor transient analyses, which requires considering the effects
of delayed neutrons. Such analyses deal with situations arising both in normal (e.g.
reactor start-up, shutdown, changes of power) and abnormal (e.g. reactivity excur-
sions, failure of components in the reactor cooling circuit, etc.) reactor operating
conditions [12]. Furthermore, we will focus the discussion on reactor kinetics, where
the sources of reactivity feedbacks are not considered explicitly. Explicit consid-
eration of reactivity feedback sources leads to reactor dynamics analyses. Reactor
dynamics analyses require coupling between the neutronics model and the models
that describe the sources of feedbacks, leading to a multi-physics description of the
system1.

1The reader interested in reactor multi-physics analyses is encouraged to study Ref. [1].
Refs. [8–10] discuss the recent applications of Monte Carlo methods to reactor dynamics anal-
yses.

29
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The delayed neutrons constitute a small fraction (∼ 0.2− 0.7 %) of all neutrons
emitted following a fission event and refer to the neutrons emitted after the beta
decay of some of the fission products, known as delayed neutron precursors. The
fraction of delayed neutrons is commonly denoted by β that depends on the fis-
sioning nuclide and the energy of the neutron inducing fission. Since the delayed
neutrons are emitted following the decay of delayed neutron precursors, their emis-
sion occurs after a considerable time following a fission event, ranging from less
than a second to more than a minute [14]. In contrast, the time-dependent trans-
port equation presented in Section 1.2 implies that all fission neutrons are prompt
neutrons emitted instantaneously in fission events.

The presence of delayed neutrons significantly changes the time-dependent re-
actor behaviour. To illustrate this, let us consider an increase of the neutron pop-
ulation in a thermal reactor when keff is changed to 1.0001, following the example
in Ref. [78]. The example considers the average lifetime of a neutron in such a
reactor of l ≈ 10−5 s. When the delayed neutrons are not considered, it can then
be shown that the neutron population would evolve exponentially as et/T , where
T = l/(keff−1) would be the reactor period. Then, T = 0.1 s and the initial neutron
population would increase by a factor e10 ≈ 2.2 × 104 within one second. Effec-
tive control of such a reactor would be complicated at best. The delayed neutrons
have the effect of considerably prolonging the time-scale associated with the power
changes. In the given example, when the delayed neutrons emitted following fissions
of 235U are considered, the reactor period increases from T = 0.1 s to T = 866 s.
Then, the initial neutron population increases only by a factor of e1/866 ≈ 1.00116
within one second. Hence, the presence of delayed neutrons ensures that the neu-
tron population and correspondingly the reactor power can be effectively controlled
by mechanical means, such as control rods. The latter holds if the system is so-
called delayed super-critical meaning that the neutrons contributing to the increase
of power are delayed neutrons.

For practical purposes, the delayed neutron precursors are commonly divided
into six or eight groups. The expected density of precursors in the jth group is
denoted as Cj(r, t) with a corresponding decay constant λj and the delayed neutron
fraction coming from the decay of jth group precursors denoted as βj . The rate of
change of precursor concentrations within each group can be expressed considering
balances for each group as [12]

∂Cj(r, t)
∂t

+ λjCj =∫
4π

dΩ′
∫ ∞

0
dE′βj(r, E′)ν(r, E′)Σf (r, E′, t)ψ(r,Ω′, E′, t) ,

(3.1)

where λjCj gives the decay rate of the precursors in group j and the term on the
right-hand side describes the expected rate of jth group precursor production.

The total fraction of delayed neutrons can be obtained by adding all of the
group fractions, β =

∑
j βj . Hence, out of all fission neutrons, βν neutrons will
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appear as delayed neutrons and (1−β)ν will appear as prompt neutrons. To reflect
the presence of delayed neutrons, the fission source term in the transport equation
(Eq. (1.13)) has to be modified accordingly, resulting in

1
v

∂

∂t
ψ(r,Ω, E, t) + Ω · ∇ψ(r,Ω, E, t) + Σt(r, E, t)ψ(r,Ω, E, t) =

qex(r,Ω, E, t) +
∫

4π
dΩ′

∫ ∞
0

dE′Σs(r,Ω′ → Ω, E′ → E, t)ψ(r,Ω′, E′, t)+

χp(r, E)
4π

∫
4π

dΩ′
∫ ∞

0
dE′(1− β(r, E′))ν(r, E′)Σf (r, E′, t)ψ(r,Ω′, E′, t)+

1
4π
∑
j

λjCj(r, t)χd,j(r, E) ,

(3.2)

where χ was replaced by χp and χd,j indicating different energy spectra for prompt
neutrons and delayed neutrons born in group j respectively. The various cross-
sections are now functions of time indicating possible changes.

Solving Equations (3.2) and (3.1) would yield the time behaviour of the angular
neutron flux taking into account the effect of delayed neutrons. However, a direct
numerical solution is prohibitive and various approximations to neutron transport
need to be introduced to simplify the problem as discussed in Sections 1.2 and 1.3.
Here, the problem is complicated further by the presence of two time scales for
prompt and delayed neutrons. Common deterministic approaches include flux fac-
torisation into slow and fast-varying components, such as quasi-static and improved
quasi-static methods, or resort to the point-kinetics model, combined with appro-
priate numerical techniques for resolving the two time-scales [78].

3.2 Time-Dependent Monte Carlo Method

The extension of steady-state Monte Carlo methods to time-dependent methods
is conceptually straightforward because time can be easily tracked in a Monte
Carlo simulation of a particle history. Correspondingly, the first ideas to apply
Monte Carlo methods to simulate time-dependent neutronics problems were pro-
posed multiple decades ago [79]. However, the development of Time-Dependent
Monte Carlo (TDMC) methods for reactor kinetics analyses was limited until fairly
recently when access to significant computing power required for such analyses be-
came widely available [80–82]. Currently, various implementations of Monte Carlo
reactor kinetics solvers are discussed in literature [83–91], with demonstrated suc-
cess of coupling between the Monte Carlo reactor kinetics and thermal-hydraulics
models for solving dynamics problems [8–10,92,93].

Sjenitzer and Hoogenboom [82–84] suggested that, differently from static Monte
Carlo methods, performing reactor kinetics calculations using Monte Carlo meth-
ods poses unique challenges when simulating delayed neutron emissions and emis-
sions of multiple neutrons during fission which results in the so-called fission chain
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branching. The authors explained, that the large time-scale differences between
the prompt neutron chains and delayed neutron emissions may yield prolonged
time intervals where no neutrons are simulated while waiting for a precursor to
decay, consequently causing a high variance of the results. Moreover, the authors
explained that branching of neutron chains during fission events causes a significant
spread in the neutron chain lengths which contributes to high variance of the results
as well.

High variance in TDMC simulations means that a large number of samples has
to be collected for obtaining acceptable statistical errors. This results in prohibitive
computing times, especially for large-scale problems, such as full-core transient anal-
yses. Computing times ranging from a couple of hundreds of CPU hours (for small
kinetics problems in simple geometries) to multiple thousands of CPU hours (for
problems in assembly and mini-core geometries) were reported [84, 91, 92]. Recent
studies demonstrated the feasibility of performing coupled transient calculations
using a 3D, full-core PWR model where the computing time of ∼ 1.6 × 105 CPU
hours was reported for simulating one second of the RIA transient [10]. Because of
the large computing times required, the TDMC method is primarily intended for
benchmarking less computationally expensive tools and for investigating unique re-
actor designs and concepts [83,84], while methods to reduce the required computing
effort are being pursued [84,91,94,95].

3.2.1 Tracking in Time
The TDMC calculations require explicit treatment of the time variable, in contrast
to Monte Carlo criticality calculations where the events are recorded independently
of their time of occurrence. The time variable is treated by simply assigning a time
parameter (the “internal clock”) for each transported neutron. The internal clock
is set to zero at birth and is progressively updated during the simulation as

ti = ti−1 + si√
2Ei/m

, (3.3)

where si is the i-th free path length, and Ei and m are the energy and mass of the
neutron respectively. The calculations are performed by splitting the overall calcu-
lation time into time intervals which are used for scoring the quantities of interest,
introducing feedbacks, performing population control, or adjusting other calcula-
tion parameters (e.g. weight windows) [83]. The neutron transport is simulated
interval-by-interval, where all primary and secondary neutrons within an interval
either die (through absorption and leakage) or survive by crossing the time inter-
val boundary. When a neutron crosses the time interval boundary, it is stopped
exactly at the boundary and a new path length (together with the corresponding
flight time) is sampled with (possibly) updated cross-sections.

Differently from deterministic methods, where the size of a time step can numer-
ically influence the accuracy of the calculation results, the sizes of the time intervals
in a TDMC calculation only determine the sizes of the tally bins and therefore the
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resolution of the tallied quantity, and the time resolution of feedbacks [83,91]. The
time intervals can be non-uniform, and different sets of intervals can be used for
different tasks, e.g. quantity scoring or population control [91].

3.2.2 Treatment of Delayed Neutrons

In addition to the explicit treatment of the time variable, TDMC calculations con-
sider the creation of delayed neutron precursors and emission of delayed neutrons.
The delayed neutron precursors are commonly implemented as a separate particle
type, which acts as a buffer for the neutrons that will appear at some later time in
the calculation. The creation of delayed neutron precursors and emission of delayed
neutrons can, in principle, be performed in an analog manner [86,87].

Nevertheless, Sjenitzer and Hoogenboom [82–84] suggested that the analog
treatment of delayed neutrons may introduce a large variance in the results. The au-
thors explained that the time-scale of the neutron lifetime in a reactor (from 10−7 s
in a fast reactor to 10−4 s in a thermal reactor) and the lifetime of prompt neu-
tron chains (from 10−5 s to 10−2 s respectively) are significantly different from the
time-scale of delayed neutron emission (from 10−2 s to 102 s for different precursor
groups), which may cause the calculation to experience prolonged time intervals
with no delayed neutrons being emitted to initiate new prompt neutron chains.
Consequently, the neutron population may significantly fluctuate in time, causing
large variance in the scored quantities. This may occur in Monte Carlo calculations
because the number of particles in a calculation is always limited (due to limita-
tions in CPU time and memory), while in a real system the effect is averaged out
by a very large number of delayed neutron precursors and independent concurrent
prompt neutron chains [83].

The variance caused by long time intervals between the delayed neutron emis-
sions may be reduced by treating the precursors in a non-analog way, using the
“forced precursor decay” method [83]. Several implementations of this method are
discussed in literature, where all precursor groups are combined into a single “com-
bined precursor” particle, as reported in Refs. [82–84, 91], or the forced decay is
applied for each precursor group explicitly as reported in Refs. [90, 93,96].

In the following, we will summarize the method of Sjenitzer and Hoogenboom [83],
where all precursor groups are combined into a single combined precursor, with de-
cay probability

Pc(t) =
∑
i

βi
β
λie−λi(t−t0) , (3.4)

where t0 is the time when the precursor was created and βi/β gives the normalized
fraction of delayed neutrons originating from the ith precursor group. Then, a
part of the combined precursor particle weight is forced to decay during each time
interval, ∆t. The decay time is sampled uniformly within the time interval and
the bias introduced by such procedure is compensated by adjusting the statistical
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weight of the emitted delayed neutron as

wd = wc∆t
∑
i

βi
β
λie−λi(t−t0) , (3.5)

where wc is the initial weight of the combined precursor. The energy of the emitted
delayed neutron should be sampled from the energy distribution corresponding to
the precursor group which yielded the delayed neutron. Since all precursor groups
are combined into a single combined precursor particle, the probability of sampling
a specific group changes with time. Consequently, the precursor group, i, must be
sampled at time t, according to

Pi(t) =
βi

β λie
−λi(t−t0)∑

j
βj

β λje−λj(t−t0)
. (3.6)

The forced precursor decay method ensures that a sufficient number of delayed
neutrons is present in each time interval to initiate new prompt neutron chains.
After uniformly sampling the emission time within ∆t, the weight of the emitted
delayed neutron is calculated according to Eq. (3.5) and the energy is sampled from
the distribution corresponding to the precursor group selected using Eq. (3.6). The
delayed neutron transport is then simulated within the current time interval, and
the precursor is not killed but added to the buffer of particles for the next time
interval.

Using the forced precursor decay method, the precursor population will increase
over time because all precursors are stored for the next time interval. On the
other hand, the weight of delayed neutrons emitted from the stored precursors will
decrease over time (see Eq. (3.5)). Sjenitzer and Hoogenboom [83, 84] therefore
suggested controlling the precursor population based on the “expected weight” of
a delayed neutron to be emitted in the next time interval, wn,ex, calculated as

wn,ex = wc
∆t

∫ t1+∆t

t1

∆t
∑
i

βi
β
λie−λi(t−t0)dt

= wc
∑
i

βi
β

eλit0(e−λit1 − e−λi(t1+∆t))
, (3.7)

where t1 is the start of the next time interval. Then, the population control algo-
rithms, such as the Russian roulette/splitting [83, 84] or combing [91, 97], can be
applied on the precursor population at time interval boundaries, according to the
expected weight of delayed neutrons.

According to Eq. (3.5), the weight of the emitted delayed neutrons is propor-
tional to the time interval length ∆t. Faucher et al. [91] observed that when the
time intervals chosen for the simulation are small, the weights of the emitted de-
layed neutrons will be small as well, causing them to be immediately killed by the
Russian roulette, thus defeating the purpose of the forced precursor decay method.
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To overcome this problem, Faucher et al. [91] introduced an importance scheme,
where the weights of neutrons, Wn, and precursors, Wc, are rescaled using a user-
provided importance ratio between neutrons and precursors, Ri = In,i/Ic,i, at the
start of each time interval i. The rescaling is done in a way that the physical weights
are preserved:

W ′n,i+1 = Wn,i+1In,i+1 = Wn,iIn,i ; (3.8)

W ′c,i+1 = Wc,i+1Ic,i+1 = Wc,iIc,i ; (3.9)

W ′n,i+1 +W ′c,i+1 = Wn,i+1 +Wc,i+1 = Wn,i +Wc,i . (3.10)

The meaning of the importance factors In,i and Ic,i is that one particle (neutron or
precursor respectively) represents In,i and Ic,i physical particles. The population
weights are only adjusted when the importance ratio changes from time interval to
time interval. Faucher et al. [91] reported a figure-of-merit increase by a factor 63
for a 1ms simulation of a critical system using time intervals of 20µs and a constant
importance ratio of R = 10−4.

3.2.3 Branchless Collision Kernel
Traditional variance reduction techniques used in static Monte Carlo calculations,
such as implicit capture, implicit fission, Russian roulette and splitting, can be ap-
plied in TDMC particle tracking as well. Methods implemented in the dynamic
versions of Serpent 2 and TRIPOLI-4 codes apply such techniques [85,91,96]. Nev-
ertheless, as discussed in Section 3.2, TDMC calculations undergo fission chain
branching due to the emission of multiple neutrons during a fission event. The
features of a TDMC calculation are consequently different from a Monte Carlo crit-
icality calculation, where the neutrons are simulated generation by generation and
no chains are formed.

As discussed by Sjenitzer and Hoogenboom [83, 84], fission chain branching
contributes to the fluctuation of the number of particles simulated during a time
interval. Specifically, the chain starting from a single prompt neutron may be ter-
minated after a single collision, or it may continue for many generations, producing
multiple branches with secondary neutrons. Because the results are scored on an
interval basis, the spread in the neutron chain lengths contributes to increased
variance of the results.

Attempting to overcome this feature of TDMC calculations, Sjenitzer and Hoogen-
boom [83, 84, 94] suggested a dedicated variance reduction technique using the so-
called “branchless” collision kernel. According to the technique, a neutron entering
a collision will either scatter or create a single new prompt fission neutron using
implicit fission, effectively changing the branching process into a single-branch pro-
cess. This is achieved by adjusting the statistical weight of the incoming neutron,
wn, during each collision as

w′n = wn
νpΣf + Σs

Σt
, (3.11)
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where νp is the number of prompt neutrons and Σf , Σs, and Σt are the macroscopic
fission, scattering and total cross-sections respectively. To ensure a fair game, the
probability of scattering interaction is calculated as

Ps = Σs
νpΣf + Σs

. (3.12)

When a scattering reaction is sampled, the energy and the angle of the outgo-
ing neutron are changed according to the scattering laws. Correspondingly, the
probability of fission is calculated as

Pc = νpΣf
νpΣf + Σs

, (3.13)

so that Ps+Pc = 1. When a fission reaction is sampled, the energy of the outgoing
neutron is sampled from the prompt neutron energy distribution and the angle is
sampled uniformly.

The precursors are sampled in a conventional, implicit way. At every sampled
collision, the precursors are generated with probability

Pp = wn
νdΣf

Σt
. (3.14)
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3.3 Transient Fission Matrix Method

Applying the time-dependent Monte Carlo methods for solving reactor kinetics (and
dynamics) problems bears a high computing cost. As discussed in the previous sec-
tion, the high computing cost may limit the applicability of these methods to situ-
ations where access to the required computing resources (such as high-performance
computing centres) is available and can be justified. Consequently, one may argue
that the more routine analyses could benefit from hybrid stochastic-deterministic
calculation approaches that could retain the general benefits of Monte Carlo meth-
ods at a reduced computing cost.

One such approach, called the Transient Fission Matrix (TFM) method, was
proposed by Laureau et al. [49]. The TFM method extends the stationary fission
matrix-based Monte Carlo methods, discussed in Section 2.5.1, with time depen-
dence. According to the method, the space-time behaviour of a system is described
using a set of fission and time matrices2. These matrices are pre-calculated using
stationary Monte Carlo solvers and are then used for formulating the kinetics equa-
tions for neutron and precursor populations, which are solved deterministically. The
TFM method was applied for calculating the kinetics and the kinetic parameters
of Flattop and Jezebel experimental assemblies [49], dynamic 3D calculations of
a Molten Salt Fast Reactor [101], dynamic calculations of a Sodium Fast Reactor
assembly [98–100, 102] and analyses of fast/thermal coupled configuration of the
ZEPHYR experimental reactor [103].

The TFM method relies on four variants of the fission matrix Gχp,νp , Gχp,νd
,

Gχd,νp , Gχd,νd
, and a time matrix Tχp,νp [49, 101]. Here, the different variants of

the fission matrix distinguish between the prompt and delayed neutrons according
to their spectra, χp/d, and multiplicities, νp/d. For example, the elements of the
matrix Gχd,νp

represent the expected number of prompt fission neutrons born in
region i due to one parent delayed fission neutron starting in region j. No such dis-
tinction was made when discussing the “traditional” fission matrix in Section 2.5.1.
Formally, the elements for the different variants of the fission matrix can be ex-
pressed using Eq. (2.17), after substituting χp or χd and νp or νd into Eq. (2.6).
The time matrix Tχp,νp

contains the average time between fission in region j and
fission in region i, associated with the prompt neutron transport between the two
regions.

Further, it is assumed that the time behaviour of prompt neutrons can be de-
scribed by one effective fission-to-fission time, leff , which is calculated from the
time matrix as [49,101]

leff =
N∗p(Gχp,νp

· Tχp,νp
)Np

N∗pGχp,νp
Np

, (3.15)

2The authors of Ref. [49] discuss “direct” and “fast” variants of the TFM method. Because
the majority of the analyses reported in the literature were performed using the fast TFM variant
[98–102], we further focus our discussion on this variant. The reader interested in the direct TFM
method is encouraged to study Ref. [49].
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where the dot in the (Gχp,νp
· Tχp,νp

) term denotes the matrix element-to-element
multiplication, which gives the neutron production associated to the response time
from region j to region i, Np is the eigenvector of Gχp,νp , and N∗p is the eigenvec-
tor of the transposed fission matrix GTχp,νp

. The transposed matrix describes the
backwards transport of neutrons, so the eigenvector N∗p gives the importance map.
Therefore, leff can be interpreted as the adjoint-weighted response time between
the successive prompt neutron generations [101].

Finally, the fission matrices and the effective fission-to-fission time are used to
formulate first-order balance equations for the neutron vector N [49, 101]

dN(t)
dt = Gχp,νp

N(t) 1
leff

+ Gχd,νp

∑
f

λfPf (t)− 1
leff

N(t) , (3.16)

and precursor vectors Pf [49, 101]

dPf (t)
dt = βf

β

Gχp,νd
N(t) 1

leff
+ Gχd,νd

∑
f

λfPf (t)

− λfPf (t) , (3.17)

where f is used to denote the precursor group. Equations (3.16)-(3.17) describe
the neutron balance through production due to prompt neutron-induced fissions
(first term), delayed neutron-induced fissions (second term), and prompt neutron
removal (third term). The precursor balance is expressed through production due
to prompt neutron-induced fissions (first term), delayed neutron-induced fissions
(second term), and precursor decay (third term). Here it is assumed that the
delayed neutron transport time is negligible compared to the precursor decay time.

The authors of refs. [98–102] scored the four versions of the fission matrix and
the time matrix during Monte Carlo criticality calculations. The space-time de-
pendent solution was then obtained by integrating Eqs. (3.16)-(3.17), using the
pre-calculated matrices. The matrices corresponding to the different states of the
system can be scored during separate calculations or by using the correlated sam-
pling approach during a single criticality calculation, as explained in Ref. [100]. The
pre-calculated matrices constitute a database, which can be interpolated [98–101]
for performing reactor dynamics calculations.

3.4 Time-Dependent Response Matrix Method

Another hybrid, stochastic-deterministic approach can be formulated using the re-
sponse matrix formalism. We have presented such an approach in Paper III, with
additional numerical tests and comparison with the TFM method presented in Pa-
per IV. Here, we will summarize the previous work on the time-dependent response
matrix methods and the main results presented in the papers.

While a significant amount of literature is available on stationary response ma-
trix methods [50–63], the time-dependent response matrix methods appear to be
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less mature. Only a few publications on the aspects of time dependence can be
found [104–108]. Recent publications deal with the fundamentals of time depen-
dence and solve several simplified problems. Pounders and Rahnema [106] derived
the response equations for a semi-infinite fissile slab, based on the Legendre series
expansion of the time variable. In a later publication [107], the whole phase-space
dependence was addressed. Delayed neutrons were not considered in both publica-
tions. Roberts [108] then showed the equivalence between the latter method and the
methods published nearly fifty years ago [104,105], generalized the time-dependent
method to arbitrary expansions and expansion orders, included delayed neutrons,
and demonstrated the approach on several infinite homogeneous medium problems.

The time-dependent response matrix formalism can be understood through
defining the Green’s function to the transport problem (Eq. (3.2)), defined over
a node Vi of a space-discretized system. When the global volume is decomposed
into a three-dimensional Cartesian mesh then each node Vi is bounded by six sur-
faces ∂Vik and the local transport problem can be defined as

1
v

∂ψ(r,Ω, E, t)
∂t

+ Mψ(r,Ω, E, t) = s(r,Ω, E, t)

+
6∑
k=1

n̂ik · jG(r,Ω, E, t)H(−Ω · n̂ik )δ(r− rk)

+ 1
v
ψG(r,Ω, E, 0)δ(t) with r ∈ Vi, and rk ∈ ∂Vik ,

(3.18)

where n̂ik is the outward normal of ∂Vik , H is the Heaviside step function, δ
is the Dirac’s δ-function, and the loss operator M (see Sec. 2.2) was introduced
to simplify the notation. The source terms on the right-hand side consist of the
volumetric source (first term) which includes contributions from fission, decay of
delayed neutron precursors, and external sources (if any); boundary conditions on
the six node surfaces (second term) which are driven by the global angular current
jG = ΩψG; and the global initial condition (third term).

By defining the Green’s function G to the local problem, like that given by
Eq. (3.18), the solution can be expressed for any arbitrary source S(r,Ω, E, t) as

ψ(r,Ω, E, t) =
∫

r′∈Vi

dr′
∫

4π
dΩ′

∫ ∞
0

dE′
∫ t

−∞
dt′S(r′,Ω′, E′, t′)×

G(r′,Ω′, E′, t′ → r,Ω, E, t) .
(3.19)

Consequently, the solution of Eq. (3.18) can be decomposed according to the three
source terms on the right-hand side,

ψ(r,Ω, E, t) = ψs(r,Ω, E, t) +
6∑
k=1

ψck
(r,Ω, E, t) + ψ0(r,Ω, E, t) , (3.20)

where ψs, ψck
, and ψ0 are contributions from volume sources, incident currents and

initial values respectively. Each of the contributions can be expressed by convolut-
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ing the Green’s function with the respective source term, as in Eq. (3.19). Hence,
the time-dependent response equations consist of a sum of convolution integrals for
various surface or volumetric sources with the respective time-dependent response
kernels defined through Green’s function.

The equations for outgoing partial currents on each node surface can be defined
directly from the angular flux, e.g. for surface k as

j+
ik

(r,Ω, E, t) = n̂ik ·Ω
(
ψs(r,Ω, E, t) +

6∑
k=1

ψck
(r,Ω, E, t) +ψ0(r,Ω, E, t)

)
. (3.21)

The partial currents are then used to couple the local solutions using the connec-
tivity matrix, obtaining the global solution.

Let us further consider the time variable only (other phase-space variables were
discussed in Section 2.5.2) and limit the discussion to partial currents j±3. The
generalized time-dependent response equation is then given by [105]

j+(t) =
∫ t

−∞
R(t′ → t)j−(t′)dt′ . (3.22)

Here, the kernel R(t′ → t) gives the outgoing partial currents at time t due to
a burst of incoming partial currents at time t′. The analysis is further limited
to t ∈ (0,∞) by introducing initial conditions [105–108], and assuming that the
system does not vary with time within some considered time interval τ , so that the
kernels become functions of τ = t − t′. The integrals, like in Eq. (3.22) are then
commonly treated by looking for a basis to expand the time variable combined with
other expansions for the non-temporal phase-space.

By expanding the time variable on a Legendre polynomial basis [106,107], or a
basis consisting of exponential functions [108], the authors showed that Eqs. (3.20)
and (3.21) can be reduced to a system of nodal response equations for the flux and
current moments, where the moments of ψ and j± are expressed as vectors and
the response function moments are expressed as matrices. Computing the flux and
current moments from the system gives the solution at some end time T of a time
interval over which the time expansion has been integrated. This solution can then
be used as the initial condition for calculating the next time interval with possibly
updated responses.

The response kernel in Eq. (3.22) consists of multiple components with signif-
icantly different time constants. Sicilian [104] and Pryor [105] explained that the
fast component results from prompt events, such as the transmission of un-collided
neutrons, the transmission of scattered neutrons, and escape of prompt fission neu-
trons, while the slow component results from the escape of delayed neutrons. When
the emission of the delayed neutrons is implicitly included in the response kernels,
the basis functions have to be selected adequately for capturing the different time
scales [108].

3Details regarding prompt and delayed volumetric sources are provided in Paper III
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Alternatively, Pryor [105] suggested treating the delayed neutron precursors
explicitly. Then, the prompt, Rp, and delayed, Rd, responses can be split into two
integrals as

j+(t) =
∫ t

−∞
Rp(t′ → t)j+(t′)dt′ +

∫ t

−∞
Rd(t′ → t)

∑
i

λiCi(t′)dt′ . (3.23)

Note that in this definition the prompt volumetric source is implicitly included in
the current response. The kernels Rp and Rd now have only the fast component
since the time delay of the delayed neutron emission is explicitly governed by the
precursor concentration equation, which can be defined by e.g. considering the
response form of Eq. (3.1).

In Paper III we presented a Time-Dependent Response Matrix (TDRM) method,
where the response functions are defined by explicitly considering both prompt and
delayed volumetric sources in addition to the partial currents, similarly to the ap-
proach by Prior [105]. This way, we obtained three response equations for the
prompt source, the delayed neutron precursor concentration, and the partial cur-
rents. Using such definitions, the response time-scale becomes of the order of a
neutron lifetime, so we used a simple linear dependence to treat the time vari-
able, originally proposed in Ref. [104]. We further eliminated the non-temporal
phase-space dependence by scoring the response kernels during Monte Carlo criti-
cality calculations of the entire system, similarly to the approach by Leppänen [64]
discussed in Section 2.5.2. This leads to a method similar to the TFM method
discussed in Section 3.3; the response kernels are calculated during a set of Monte
Carlo criticality calculations of the entire system and are then used to solve the
space-time dependent problem deterministically. However, instead of considering
a single, space-discretized Green’s function for the entire system, i.e. the fission
matrix, the Green’s functions in the response equations, i.e. the response kernels,
are defined for each source term and each node of the discretized system. This
way the neutron transport in a node depends only on the information from the
neighbouring nodes, differently from the fission matrix where each node is coupled
with all other nodes in the system.

Figure 3.1 shows the relative core power during a transient induced by step-wise
movement of the absorber rod cluster in a PWR-type mini-core4. The results of
the TDRM solution are superimposed over the TFM and the TDMC solutions.
All calculations were performed using an in-house, continuous energy Monte Carlo
solver that we developed for method testing. The solver contains methods for
criticality (k-eigenvalue), TDMC, TFM and TDRM calculations in arbitrary 3D
geometries, using cross-section data from .ace format libraries. During the first 2 s
of the simulation, the set of responses and the fission matrices calculated for the
critical state of the mini-core were used; then, at t = 2 s the set of responses and

4The reader is referred to Papers III and IV for details about the mini-core model and the
investigated states of the mini-core.
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Figure 3.1: Relative power evolution in a PWR-type mini-core during transient
induced by step-wise movement of the absorber rod cluster, calculated using TDMC,
TFM and TDRM methods (figure reproduced from Paper IV).

the fission matrices were step-wise changed to the ones calculated for the super-
critical state. At t = 6 s the responses and the fission matrices were again step-wise
changed to the critical set. In the TDMC calculation, the system was in a critical
state during the first 2 s of the transient, then at t = 2 s the tip of the absorber
bank was step-wise moved to the super-critical position. At t = 6 s the absorber was
returned to the critical position. All solutions display a prompt jump immediately
after the perturbation was applied, followed by exponential growth. At t = 6 s a
negative prompt jump is seen, corresponding to the system being returned to the
critical state, followed by an asymptotic approach to the new power level.

Figure 3.2 shows the TDRM and TFM solutions of the relative power distri-
bution along the axial dimension of the mini-core at several time instances during
the calculation. Initially (curve corresponding to t = 1.00 s) the shape of the curve
displays a bottom-peaked profile with the maximum at approximately 140 cm from
the bottom of the core. Following the perturbation, at t = 6.00 s, the distribution
shows a profile with the maximum at approximately 200 cm. Then, following the
return to the critical state, the profile returns to the initial shape and continues to
reduce in amplitude.
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Figure 3.2: Axial distribution of relative power in a PWR-type mini-core during
transient induced by step-wise movement of the absorber rod cluster (figures repro-
duced from Paper IV).





Chapter 4

Burnup Calculations

This chapter provides the context supporting Papers V and VI. First, we explain
how fuel depletion is modelled and how Monte Carlo methods are applied for solv-
ing burnup problems. We continue with an overview of the schemes previously
proposed for coupling between the Monte Carlo and the burnup solvers, followed
by a discussion on the stability of the coupling schemes. We then summarize the
stability tests presented in Paper V. Finally, we summarize the approach for opti-
mising Monte Carlo burnup simulations presented in Paper VI.

4.1 Fuel Depletion

In an operating reactor, materials are undergoing changes in isotopic composition
due to neutron-induced reactions and radioactive decay. Changes in the isotopic
composition of the reactor fuel determine the operational lifetime, affect the power
distribution and the stability characteristics of the core [12, 14]. Therefore, these
changes have to be considered in reactor design and safety analyses by performing
the so-called fuel burnup calculations.

Burnup calculations require extending the mathematical model for neutron
transport with a set of Bateman equations that describe the isotopic balance in
materials under neutron irradiation. Consider the average number density Nj(t) of
nuclide j, in a material volume V , e.g. a region of the fuel, defined as

Nj(t) = 1
V

∫
V

Nj(r, t)dr . (4.1)

Here, we chose such definition to eliminate the continuous spatial dependence, ac-
cording to the approach applied in Monte Carlo burnup codes where the material
compositions are calculated for a number of user-defined homogeneous material re-
gions. The rate of change of Nj(t) can be expressed by taking the balance between

45
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production and destruction rates as [18]

dNj(t)
dt =

∑
i6=j

[
[γ̄i→j σ̄f,iΦ(t) +λi→j + σ̄i→jΦ(t)]Ni(t)

]
− [λj + σ̄jΦ(t)]Nj(t) , (4.2)

where the first term on the right-hand side describes the production of nuclide
j due to fission (with microscopic cross-section σ̄f,i and yield γ̄i→j), radioactive
decay (with decay constant λi→j that describes decay of nuclide i into nuclide j),
and transmutation (with microscopic cross-section σ̄i→j), from all other nuclides, i,
present in the material, into nuclide j. The second term describes the destruction
of nuclide j due to radioactive decay (with decay constant λj) and neutron-induced
reactions, where σ̄j includes all reactions that transform nuclide j into another
nuclides.

The fission yields and cross-sections used in Eq. (4.2) are averaged parameters,
as indicated by the bars over the quantities. These parameters have to reflect the
neutron energy spectrum and are calculated as one-group homogenized values, e.g.
the term for production of nuclide j due to fission in nuclide i is [12]

γ̄i→j σ̄f,iΦ(t) = 1
V

∫
V

∫ ∞
0

γi→j(E)σf,i(E)Φ(r, E, t)dEdr . (4.3)

Defining the volume-averaged and energy-integrated scalar flux as

Φ(t) ≡ 1
V

∫
V

∫ ∞
0

Φ(r, E, t)dEdr , (4.4)

it follows from Eq. (4.3) that

γ̄i→j σ̄f,i =
∫
V

∫∞
0 γi→j(E)σf,i(E)Φ(r, E, t)dEdr∫

V

∫∞
0 Φ(r, E, t)dEdr

, (4.5)

with similar expressions found for other cross-sections in Eq. (4.2).
Equations like Eq. (4.2) can be written for every nuclide considered in a burnup

calculation. The resulting system of equations is then coupled through various
production and destruction terms. If the densities of all nuclides are collected into
a vector N(t), the system of equations can be represented by a matrix notation
as [12]

dN(t)
dt = M

(
Φ(t)

)
N(t) , (4.6)

where M(Φ(t)) is the burnup matrix that contains the parameters for each nuclide
in vector N.

Solving Eq. (4.6) requires the time-dependent neutron flux. The time depen-
dence is commonly resolved by the adiabatic approximation, motivated by the
long time scales of changes in isotopic composition compared to the time scales
for neutron transport [12]. The burnup calculation is divided into a number of
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time steps, which have to be short enough so that the flux could be assumed to
be constant within each time step. The Bateman equations are then solved using
the steady-state flux solution from a criticality calculation (see Section 2.2), where
the criticality calculation is performed assuming a known nuclide density vector.
Methods for coupling between the criticality calculations and depletion calculations
will be discussed in Sections 4.2 and 4.3.

For a time-independent neutron flux, Eq. (4.6) has a formal solution

N(t) = eM(Φ)(t−t0)N0 , (4.7)

where N0 is the nuclide density vector at t0. Hence, the solution for nuclide densi-
ties requires calculating the matrix exponential eM(Φ)(t−t0). The matrix exponential
may be calculated using various methods. The performance of a specific method
depends on the selected time step and the properties of the burnup matrix [109],
which in turn depend on the formulation of the burnup problem. Among the
methods proposed for calculating the matrix exponentials encountered in typical
burnup problems are methods using the truncated Taylor series [110], Krylov sub-
space methods [111], and the Chebyshev Rational Approximation Method (CRAM)
[109,112,113]. Alternatively, the depletion problem may be formulated by avoiding
the calculation of matrix exponential using the Transmutation Trajectory Analysis
method [114].

4.2 Burnup Coupling Schemes

In the previous section, we discussed that the homogenized one-group fluxes and
cross-sections are necessary for parametrizing the Bateman equations. In Monte
Carlo burnup calculations, Monte Carlo criticality solvers exchange this informa-
tion with fuel depletion solvers through a coupling scheme. The depletion solvers
then return the nuclide density vectors, necessary for performing Monte Carlo crit-
icality calculations. Current Monte Carlo burnup codes allow the user to choose
the coupling scheme. The most common coupling schemes are discussed further.

The simplest coupling scheme available, e.g., in OpenMC [115], Serpent 2 [24],
and many other codes, adapts the explicit (forward) Euler method1. The target
time interval is divided into a number of time steps, and the neutron flux and cross-
sections at the beginning of the time step are assumed to remain constant over the
whole step as described by Algorithm 1. The explicit Euler coupling scheme requires
only a single criticality calculation and a single evaluation of the matrix exponential
per time step. However, this scheme is only first-order accurate, which means that
the time steps need to be short enough for the beginning-of-step approximation to
be adequate.

Dividing the burnup time interval into a large number of short time steps, each
requiring a Monte Carlo criticality calculation, is typically associated with a forbid-

1Also called the “constant extrapolation scheme”, or the “beginning-of-step constant flux
approximation”.
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Algorithm 1: Explicit Euler coupling scheme
Input: N0;
for n ← 0, 1, . . . do

Φn ← Φ(Nn);
Nn+1 ← exp[M(Φn)∆tn]Nn;

end

ding computing cost. Hence, a common incentive is to reduce the required number
of Monte Carlo calculations by reducing the number of time steps while increasing
their length. This, however, needs to be compensated by a better approximation for
the flux and cross-sections. To improve the accuracy over the simple beginning-of-
step (BOS) constant extrapolation scheme, a number of predictor-corrector schemes
were proposed. These schemes seek for a better approximation of the step-averaged
neutron flux and cross-sections by calculating them at the middle-of-step (MOS) or
at the end-of-step (EOS), in addition to the BOS. The BOS flux and cross-sections
are used to calculate the MOS or EOS nuclide density vector (predictor step), a
second criticality calculation is run using this vector, and the EOS nuclide density
vector is recalculated using the averaged flux and cross-sections (corrector step).
Different variants of the predictor-corrector scheme use combinations of constant or
linear extrapolation (CE/LE) for the predictor step, and linear or quadratic interpo-
lation (LI/QI) for the corrector step. As an example, the CE/LI predictor-corrector
scheme is described by Algorithm 2. A comprehensive overview and comparison of
various predictor-corrector coupling schemes are available in Refs. [116,117].

Isotalo and Aarnio [118] proposed a further refinement to the predictor-corrector
schemes by introducing a sub-step method. According to the method, the Bateman
solutions are performed over a number of sub-steps within a time step, during both
predictor and corrector steps. This way, the solutions are obtained for a piece-wise
constant, rather than constant flux and cross-sections. The authors argued that
the use of sub-steps leads to an improved accuracy when calculating densities of

Algorithm 2: CE/LI predictor-corrector coupling scheme
Input: N0;
for n ← 0, 1, . . . do

Φn ← Φ(Nn);
N(P )
n+1 ← exp[M(Φn)∆tn]Nn;

Φ(P )
n+1 ← Φ(N(P )

n+1);
Φ(C)
n ← (Φn + Φ(P )

n+1)/2;
Nn+1 ← exp[M(Φ(C)

n )∆tn]Nn;
end
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Figure 4.1: Typical spatial instability in a reflected PWR fuel assembly burnup
calculation using the explicit Euler coupling scheme with 4 MWd/kgHM time steps.
Lighter colors indicate higher power density.

short-lived nuclides.
Josey et al. [119] proposed several higher-order coupling schemes. The authors

suggested extending the predictor-corrector schemes by adding more intermediate
steps. The authors then argued that the extended predictor-corrector schemes are
at most second-order accurate, and derived the third and fourth-order coupling
methods by applying Richardson extrapolation to the standard predictor-corrector
methods.

4.3 Stability of Burnup Coupling Schemes

So far, the discussion has focused on several explicit coupling schemes commonly
used in Monte Carlo burnup calculations. However, such schemes are known to
be conditionally stable, i.e. their stability is subject to the selection of a small
enough time step [35]. Numerical stability of the explicit Euler and predictor-
corrector schemes was previously studied by several authors [120–123]. The authors
concluded that explicit schemes may produce spatially unstable solutions for three-
dimensional thermal system models with multiple burnable materials, even when
using time steps commonly considered small in burnup calculations.

Typical spatial instability is shown in Figure 4.1. Here, we performed a burnup
calculation using a generic 17×17 PWR-type fuel assembly model, axially divided
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Algorithm 3: Stochastic-implicit Euler coupling scheme with relaxation
of the neutron flux
Input: N0;
Φ0 ← Φ(N0);
for i ← 0, 1, . . . do

N(0)
i+1 ← exp[M(Φi)∆ti]Ni;

for n ← 1, 2, . . . , c do
Φ(n)
i+1 ← Φ(N(n−1)

i+1 );
Φ̄(n)
i+1 ←

∑n
j=1 Φji+1/n;

N(n)
i+1 ← exp[M(Φ̄(n)

i+1)∆ti]Ni;
end
Ni+1 ← N(c)

i+1;
Φi+1 ← Φ̄(c)

i+1;
end

into 10 burnable material zones. The system was depleted up to 36 MWd/kgHM,
using relatively large, 4 MWd/kgHM (approx. 100 d) time steps, and the explicit
Euler coupling scheme. Reflective boundary conditions were applied on all external
surfaces of the model, hence a flat power distribution (and consequently depletion)
is expected over the time steps. However, starting from the second step, the power
distribution becomes asymmetric and oscillates over the subsequent steps. In ad-
dition to such oscillatory behaviour, diverging solutions were also reported [122].

Such numerical instabilities are facilitated by a weak neutronic coupling (large
dominance ratio) and strong feedback between the neutron flux and the nuclide
density vector [121], common in thermal systems. In a thermal spectrum, 135Xe is
the strongest neutron absorber and consequently the main feedback. It was shown
that the stability can be improved when this feedback is eliminated by forcing equi-
librium between the neutron flux and the saturated xenon distribution [124]. How-
ever, other feedbacks caused by weaker absorbing nuclides, or thermal-hydraulic
feedbacks (if such feedbacks are modelled) may destabilize conditionally stable cou-
pling schemes as well [125].

The stability problems identified with the commonly used explicit schemes re-
sulted in the development of unconditionally stable, implicit schemes. Dufek et
al. [125,126] proposed a stochastic-implicit Euler coupling scheme, where the EOS
neutron flux (or the EOS nuclide density vector) is relaxed over a number of inner
iterations, as described by Algorithm 3. Kotlyar et al. then adapted the method for
the MOS flux [127]. Later the implicit approach was implemented for higher-order
coupling schemes [128,129]. The proposed implicit schemes were shown to produce
stable solutions.

The development of methods producing stable solutions stemmed from defi-



4.4. EFFICIENCY OF MONTE CARLO BURNUP CALCULATIONS 51

0 2 4 6 8 10 12 14 16
1015

1016

Zone

N
eu

tr
o
n

fl
u
x

(c
m

−
2
s−

1
)

Step 1
Step 2
Step 4
Step 6

0 1 2 3 4 5 6 7 8
107

109

1011

1013

1015

1017

Zone

N
eu

tr
o
n

fl
u
x

(c
m

−
2
s−

1
)

Step 1
Step 2
Step 4
Step 6

Figure 4.2: Axial neutron flux distribution in GFR (left) and PWR (right) fuel
assembly models during burnup calculations with 20 MWd/kgHM steps, using a
predictor-corrector coupling scheme (figures reproduced from Paper V).

ciencies identified when performing burnup calculations using models of thermal
systems. Currently, significant research effort is focused on multiple fast reac-
tor concepts, where Monte Carlo burnup tools are applied in fuel cycle analyses,
e.g. [130, 131]. Hence, it is important to understand whether Monte Carlo burnup
solutions are subject to similar instability problems as observed in thermal sys-
tems. It is reasonable to assume that due to weaker flux-nuclide vector coupling
and lower dominance ratios of fast systems, such instabilities may not develop in
the calculations. We have explicitly tested this assumption in Paper V.

Part of the results from Paper V is shown in Figure 4.2. Here, the flux distribu-
tions over the axial length of a three-dimensional fuel assembly model are compared
for a fast system and a thermal system. Despite using a very large time-step of
20 MWd/kgHM, the flux distribution for the fast reactor assembly remained sta-
ble over the time steps, while the calculation destabilized for the thermal reactor
assembly. The results demonstrated that stable calculations can be achieved even
without taking any stabilization measures, differently from thermal systems, hence
supporting the assumptions on the lack of destabilizing effects due to weak flux-
nuclide vector coupling and lower dominance ratios in fast systems. Nevertheless,
achieving stable burnup calculations alone does not guarantee correct results when
the change in the neutron flux is not captured correctly over large time steps.

4.4 Efficiency of Monte Carlo Burnup Calculations

Commonly, using any coupling scheme, the user has to select a number of parame-
ters when running Monte Carlo burnup calculations, such as the time step length,
the neutron population and number of cycles during each criticality calculation,
and the number of inner iterations when an implicit scheme is used. The effi-
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ciency of the burnup calculation is affected by the selection of these parameters.
For example, a common practice is to set the time step at a large value, often as
large as several months, because that results in relatively few runs of the Monte
Carlo solver during the calculation. Consequently, a coupling scheme that would
adequately approximate the changes in the neutron flux over the large time steps
becomes necessary. Moreover, the calculations may become unstable if an explicit
scheme is used. On the other hand, some numerical tests suggest that computing
efficiency may be improved by shortening the length of the time steps despite the
increase in the number of Monte Carlo solver runs, because fewer neutron histories
may be simulated per time step [132].

In Paper VI we looked for an approach that would allow an informed choice
of the parameters in Monte Carlo burnup calculations while maximizing their ef-
ficiency. This approach is summarized further, together with some preliminary
results.

The efficiency of a Monte Carlo burnup calculation can be expressed in terms
of figure-of-merit (FOM), defined as

FOM = 1
ε2c∆t

, (4.8)

where c∆t is the computing cost for the desired total burnup time period ∆t (not
to be confused with the time step) as measured in terms of the real wall-clock
computing time, and ε represents the error of the Monte Carlo burnup calculation.
In the following analysis, we assume that the computing cost is a given constant,
determined by e.g. available computing resources.

For a fixed computing cost, the FOM would be maximized when the error is
minimized. Minimizing the error calls for a model that would allow expressing
the error in terms of the calculation parameters. Nevertheless, an accurate error
model is not easily attainable due to the complex nature of the noise propagation in
Monte Carlo burnup calculations [133–135]. Here, we considered a simplified error
model, where we assumed that the error of a Monte Carlo burnup calculation is a
combination of the error due to the coupling scheme and the statistical error that
depends on the total number of active neutron histories simulated during the whole
calculation, Nn. This combination can be expressed as

ε ∼ hp√
Nn

, (4.9)

where h is the time step length and p is the order of the ODE method associ-
ated with the selected coupling scheme. Here, it is necessary to stress again that
Eq. (4.9) is a highly simplified model for the convergence of Monte Carlo burnup
calculations, hence the results derived from this model should be considered as
only indicative. The model also assumes that the Monte Carlo burnup calculation
converges optimally and that it is not subject to numerical instabilities.

We then decomposed the computing cost of a burnup calculation into the cost
of the active cycles of the Monte Carlo criticality calculations and the remainder of
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the cost consisting of the depletion solutions, inactive cycles and other procedures
as

c∆t = Nncn +Nd(cd + cs) , (4.10)

where Nn is the number of active neutron histories simulated during the whole
burnup calculation, with an average computing cost per neutron history of cn;
Nd is the number of depletion solver runs, with the computing cost per deple-
tion run consisting of the cost of depletion solution, cd, and the cost needed for
loading/processing neutron cross-sections and other possible procedures repeatedly
executed at the beginning of each Monte Carlo criticality calculation, cs (further
referred to as “initialization cost”). Note that the cost of inactive cycles during
each Monte Carlo calculation is included in cs.

The time step length in Eq. (4.9) can be expressed through the total depletion
time period, ∆t, and Nd as

h = r∆t/Nd , (4.11)

where r is used to denote the number of the depletion solver runs in each time step,
e.g. r = 1 for the Explicit euler scheme, r = 2 for a CE/LI predictor-corrector
scheme, and so on.

Next, expressing Nn from Eq. (4.10) and substituting into Eq. (4.9) together
with h from Eq. (4.11) results in

ε ∼
(
r∆t
Nd

)p 1√
c∆t−(cd+cs)Nd

cn

. (4.12)

Here, the error depends on a single unknown variable Nd, as other parameters are
either determined by the chosen coupling scheme (p and r), can be measured during
the calculation (cd, cn and cs), or are determined by the user (∆t and c∆t).

Finally, we can look for a minimum for Eq. (4.12) with respect to Nd, which
leads to

(cd + cs)Nd
c∆t

= 2p
2p+ 1 . (4.13)

Interestingly, the left-hand side of Eq. (4.13) corresponds to the ratio of the deple-
tion and initialization cost to the overall computing cost of a burnup calculation.
Notice also that the number of depletion solver runs per time step, r, and the total
depletion time period ∆t cancel out in the process. The simplified model suggests
that the error is minimized when the ratio of the depletion and initialization cost
to the overall computing cost is 2/3 for p = 1 (i.e. Euler type schemes), or 4/5 for
p = 2 (i.e. predictor-corrector type schemes).

Nevertheless, because of the simplifications applied in the analysis so far, caution
should be taken when interpreting the resulting numeric values. Still, the analysis
of the simplified model suggests that the ratio of the depletion and initialization
cost to the overall computing cost of a burnup calculation may be an interesting
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Figure 4.3: Figure-of-merit as a function of depletion and initialisation cost fraction,
x, in burnup calculations performed using a simplified, diffusion-based solver with
mixed-in random noise. Shown for cd + cs values of 5 s (left) and 10 s (right).
Figures reproduced from Paper VI.

parameter to consider when looking for a way to set the calculation parameters.
We denote this ratio as

x ≡ (cd + cs)Nd
c∆t

(4.14)

and call it the “depletion and initialisation cost fraction” for short. According to
Eq. (4.14), for a given depletion an initialization cost fraction, x, the total burnup
time ∆t should be optimally split in a way that the depletion solver runs

Nd = x× c∆t
cd + cs

(4.15)

times. The total number of neutron histories to be simulated in the burnup calcu-
lation can be determined from Eq. (4.10) as

Nn = c∆t −Nd(cd + cs)
cn

, (4.16)

where Nd is given by Eq. (4.15). The value of Nn can then be used for setting
the statistics for each Monte Carlo criticality calculation. The entire algorithm for
setting the burnup calculation parameters is described in Paper VI.

Figure 4.3 shows an example of the test calculations from Paper VI. Here, the
FOM is shown as a function of the depletion and initialisation cost fraction, x.
These results were obtained using a simplified, one-group diffusion solver, with ar-
tificially mixed-in random noise. The noise was introduced by statistically sampling
the flux at each criticality cycle from the diffusion solution and then using it for
the depletion solution and as the source function in the next criticality cycle. The
depletion solver considered the burnup equations only for 235U, 238U, 239Pu, 135I
and 135Xe. The neutronics and the burnup solvers were coupled using the explicit
Euler (denoted EE in the figure), the CE/LI predictor-corrector (denoted PC) and
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Figure 4.4: Geometry of the model in test calculations performed using the Serpent
2 code. Top - x, z view, bottom - x, y view. Independent burnable materials are
marked by different colors.

the stochastic-implicit Euler based coupling schemes (denoted SIE). The simulated
system was a 350 cm wide slab with 1000 independent burnable material zones, and
the calculation error was evaluated based on the 239Pu concentration vector. The
results show a clear dependence of the FOM on the depletion and initialisation cost
fraction. Calculations with x value below approximately 0.2 and above 0.8 were
outperformed by the calculations with x values inside the interval.

The results obtained using the simplified solver suggest an optimal range for the
depletion and initialisation cost fraction that would maximize the FOM of a burnup
calculation. Nevertheless, these results do not fully reflect the peculiarities of real,
continuous energy Monte Carlo burnup calculations with large nuclide inventories
and complex propagation of statistical noise. We, therefore, investigated the FOM
dependency on the depletion and initialisation cost fraction in a set of burnup
calculations using the Serpent 2 Monte Carlo code. At the time of writing, the
analysis is limited to the explicit Euler coupling scheme.

For all Serpent 2 burnup calculations, we have defined a geometry consisting
of a row of 10 PWR-type fuel assemblies with a total of 100 independent burnable
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Figure 4.5: Figure-of-merit as a function of depletion and initialisation cost fraction,
x, in burnup calculations performed with Serpent 2 code, using the explicit Euler
coupling scheme.

material zones, shown in Figure 4.4. Reflective boundary conditions were applied
on the external surfaces of the model. The calculations were continued until 36
MWd/kgHM burnup, where the overall calculation cost (in terms of simulated neu-
tron histories) was fixed and the time step size together with the Monte Carlo
statistics per time step were adjusted to obtain various cost fractions. The error of
the calculation was evaluated according to the density vectors of various nuclides
at the end of the burnup time interval. Specifically, the error for nuclide i was
calculated as

εi = 1
N

N∑
k=1

||ni,k − ni,r||1
||ni,r||1

, (4.17)

where ni,k is the density vector of nuclide i in test calculation k, ni,r is the reference
number density of nuclide i, and subscript 1 denotes the L1 norm. Each test
calculation was repeated N = 30 times, using different random number generator
seeds. The reference number densities were obtained from a reference calculation
performed with 3.6×1010 neutron histories, using a single reflected assembly model,
with a single burnable material, and small (0.1 MWd/kgHM) time steps.

Figure 4.5 shows the results from the test calculations using the Serpent 2
code. Here, every point on the curve represents the FOM calculated using the
average error from 30 independent calculations, each performed using the same set
of parameters. The results suggest similar trends as observed in Figure 4.3; very
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large (close to 1) or very small (close to 0) values of x lead to inefficient calculations.
Interestingly, different FOM trends can be observed for different nuclides. For
instance, the optimal x values for 239Np, 239Pu, 241Pu, 149Sm and 135Xe isotopes
appear to be lower, compared other nuclides.

At this point, we can only speculate that the error for certain nuclides may
be more sensitive to the instantaneous flux error (in a Monte Carlo criticality cal-
culation), while the cumulative error (combination of the propagating flux error
and the error of the coupling scheme) may be more significant for other nuclides.
Calculations with lower x values use longer time step size with higher statistics per
criticality calculation, while the calculations with larger x use shorter time step size
and lower statistics per criticality calculation. When the x values are close to 0,
the time steps become large enough for the numerical instabilities to manifest in
the calculations. In addition, the spectral changes are not well represented using a
large time step size. This results in a poor calculation efficiency for all nuclides with
x below approximately 0.1, despite the better statistics per criticality calculation.
On the other hand, when the x value is above 0.8, the large statistical noise due to
the small cost assigned to the active cycles in the criticality calculations appears
to overwhelm the benefits of using shorter time steps. The optimum calculation
efficiency for a certain nuclide may then depend on how sensitive the concentration
of this nuclide is to the accurate resolution of the flux over the whole burnup period,
compared to the resolution of the flux during the step when the concentration is
recorded (in this case at the end of the burnup calculation).

More test calculations using realistic nuclide inventories are necessary to further
investigate these preliminary observations. Hopefully, some patterns between the
nuclide properties (e.g. half-life, cross-section spectral characteristics, etc.) and
the calculation efficiency could be observed and would help further guidance for
the selection of calculation parameters if some specific results are prioritized from
a Monte Carlo burnup calculation at the expense of less efficient resolution of other
results.





Chapter 5

Conclusions and Outlook

This thesis focused on Monte Carlo methods applied for solving criticality, kinetics
and burnup problems in reactor physics. Solution of these problems using Monte
Carlo methods historically has been associated with a forbidding computing cost.
Nevertheless, increasing performance and accessibility of computing hardware con-
tinues enabling the application of Monte Carlo methods to problems that have been
previously considered computationally intractable. On the other hand, the exist-
ing methods are being continuously improved and new methods are being proposed
while aiming at more efficient calculations. Improving the efficiency of Monte Carlo
calculations was the main motivation behind the work presented in this thesis as
well. The work resulted in three new methods and additional insights presented
in the six appended publications. It is the author’s hope that these contributions
will facilitate future developments in the ongoing quest for versatile, accurate and
efficient reactor physics calculations.

Papers I and II focus on Monte Carlo criticality calculations. The features of
such calculations were summarized in Chapter 2, where the fission source conver-
gence problem and the resulting calculation efficiency challenges were discussed.
Paper I proposes a method aimed at improving the efficiency of Monte Carlo crit-
icality calculations through control of the neutron population size. This method
builds on the previous work [66, 67] which showed that the calculation efficiency
can be improved when the population size is gradually increased, according to the
error estimated from the fundamental mode eigenvector of the fission matrix. The
method presented in Paper I eliminates the computing overhead associated with the
fission matrix operations by using a simple analytical expression for the population
size control instead. The method was tested on a set of full-core PWR criticality
calculations, where a higher figure-of-merit was observed compared to the Monte
Carlo criticality calculations with a fixed neutron population size. Nevertheless,
future research should consider tests in a larger number of representative geome-
tries, while comparing the method with other proposed approaches. The method
may also be tested for problems where data from Monte Carlo criticality calcula-
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tions are used for coupled solutions, e.g. in Monte Carlo burnup problems. Future
development of the method may focus on improving the currently used simplified
models for the source bias and the statistical error to include, e.g. the effects of the
source correlations on the statistical error.

The numerical tests presented in Paper II investigate the effects of neutron
clustering on the results of Monte Carlo criticality calculations. Here, a fully re-
flected PWR pin-cell problem was studied to determine whether selecting a small
neutron population size (which results in visible neutron clusters) leads to altered
convergence trends of tally errors. The same qualitative behaviour of the error
convergence was observed irrespective of the selected population size.

Papers III and IV focus on the use of Monte Carlo methods for reactor ki-
netics calculations. As summarized in Chapter 3, reactor kinetics and dynamics
calculations are now feasible using “pure” time-dependent Monte Carlo (TDMC)
methods for neutron transport. However, these calculations require long computing
times, with up to 1.6 × 105 CPU hours recently reported for core-level dynamics
calculations [10]. Such computing cost would limit the applicability of kinetic and
dynamic Monte Carlo methods to situations where access to the required com-
puting resources (e.g. high-performance computing centres) is available and can
be justified. For more routine analysis tasks, it may be beneficial to use Monte
Carlo methods in hybrid stochastic-deterministic calculation approaches, this way
retaining the general benefits at a reduced computing cost. Papers III and IV,
propose and demonstrate a new stochastic-deterministic time-dependent response
matrix (TDRM) method for reactor kinetics problems. The performed tests con-
stitute a set of proof-of-principle demonstrations using an in-house solver. The
solutions obtained using the new method were compared with the solutions using
the TDMC and transient fission matrix methods, showing consistent results be-
tween the three methods. Nevertheless, the proposed TDRM method needs to be
understood better, which should be the focus of future research. First, insight into
how the selection of the node size and the statistical error in the scored responses af-
fect the time-dependent solution is necessary. Next, the inaccuracies resulting from
calculating the responses during k-eigenvalue Monte Carlo criticality calculations
should be assessed. Finally, methods to sample the responses as a function of the
state variables and response parametrization with respect to the state variables are
necessary for extending the method to solving dynamics problems. To address these
questions, the TDRM method should be implemented into an established Monte
Carlo reactor physics code. This would enable rigorous benchmarking against other
methods thus facilitating the analyses.

Papers V and VI focus on Monte Carlo burnup calculations. The coupling
schemes between the Monte Carlo criticality and the burnup solvers used in such
calculations were overviewed in Chapter 4, together with the instabilities previously
identified when using explicit coupling schemes for calculations of thermal systems.
A set of stability tests is presented in Paper V where such instabilities were not
observed for calculations of fast systems thus supporting the assumption on the lack
of destabilising mechanisms in Monte Carlo burnup calculations of fast systems.
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The optimal selection of free parameters in Monte Carlo burnup calculations was
investigated in Paper VI. As an outcome of the proposed optimization approach,
we suggested that the ratio between the computing cost of the depletion solutions
(together with the initialization costs) and the overall computing cost of a burnup
calculation could be used for setting the calculation parameters. Multiple values
of this ratio were investigated in a set of preliminary test calculations, where we
observed that the calculation efficiency does depend on the computing cost ratio
and that a range of computing cost ratios may exist for optimal Monte Carlo burnup
calculations. Future research efforts should focus on continued investigation of these
observations. This may be conducted by performing sets of test calculations using
realistic nuclide inventories and representative test geometries in order to formulate
appropriate recommendations on the optimal computing cost ratios for a particular
coupling scheme and investigate possible dependencies of the optimal ratios on the
overall allocated computing cost and the size of the burnup problem.
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