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Abstract
Metabolite-level regulation of enzyme activity is important for coping with environmental
shifts. Recently developed proteomics methodologies allow for mapping of post-translational
interactions, including metabolite-protein interactions, that may be relevant for quickly
regulating pathway activity. While feedback and feedforward regulation in glycolysis has
been investigated, there is relatively little study of metabolite-level regulation in the Calvin
cycle, particularly in bacteria. Here, we applied limited proteolysis small molecule mapping
(LiP-SMap) to identify metabolite-protein interactions in four Calvin-cycle harboring bacteria,
including two cyanobacteria and two chemolithoautotrophs. We identified widespread protein
interactions with the metabolites GAP, ATP, and AcCoA in all strains. Some species-specific
interactions were also observed, such as sugar phosphates in Cupravidus necator and
glyoxylate in Synechocystis sp. PCC 6803. We screened some metabolites with LiP
interactions for their effects on kinetics of the enzymes F/SBPase and transketolase, two
enzymatic steps of the Calvin cycle. For both Synechocystis and Cupriavidus F/SBPase,
GAP showed an activating effect that may be part of feed-forward regulation in the Calvin
cycle. While we verified multiple enzyme inhibitors on transketolase, the effect on kinetics
was often small. Incorporation of F/SBPase and transketolase regulations into a kinetic
metabolic model of Synechocystis central metabolism resulted in a general decreased
stability of the network, and altered flux control coefficients of transketolase as well as other
reactions. The LiP-SMap methodology is promising for uncovering new modes of metabolic
regulation, but will benefit from improved peptide quantification and higher peptide coverage
of enzymes, as known interactions are often not detected for low-coverage proteins.  .
Furthermore, not all LiP interactions appear to be relevant for catalysis, as 4/8
(transketolase) and 5/6 (F/SBPase) of the tested LiP effectors had an effect in in vitro
assays.
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Introduction
Interaction proteomics coupled with mass spectrometry is emerging as a powerful tool for
identifying proteome-wide post-translational regulations (Mateus et al., 2021). Limited
proteolysis (LiP) and thermal proteome profiling (TPP) detect changes in protein
conformation or melting temperature that occur when a protein undergoes conformational
change or binds to other proteins, metabolites, or metal ions, without reliance on
immuno-based enrichment or crosslinking. The techniques have provided insights into gene
regulation in diverse biological systems. Thermal proteome profiling, which infers
post-translational regulation through co-variance of proteins’ melting temperatures, was
developed to identify specific and secondary drug interactions in the proteome of
mammalian cell models (Savitski et al., 2014; Tan et al., 2018). Variations of the technique
have also been applied to microbes. Thermal melting curves of the E. coli proteome during
the stationary phase showed that approximately 40 proteins had differential thermal stability
compared to during exponential growth, and many of these were enzymes whose usage was
expected to be altered in stationary phase (Mateus et al., 2018). The thermal stability of
many proteins in cyanobacteria were shown to be altered in the day-night cycle, and these
were coordinated by the circadian clock protein in response to energy status (Pattanayak et
al. 2020). Thermal proteome profiling has also been used for metabolic engineering. Li et al.
identified squalene synthase in S. cerevisiae as an essential enzyme with low thermal
stability. Replacing it with an ortholog from a thermophilic yeast increased the survivable
growth temperature of S. cerevisiae (Li et al., 2021).

Limited proteolysis  is based on a protein’s susceptibility to proteinase K digestion, which
can be tracked proteome-wide using mass spectrometry. The digestion pattern of a protein
may change due to a change in protein conformation which may be caused by biophysical
interactions or post-translational modifications. Limited proteolysis performed on the
proteome of yeast grown on ethanol showed that hundreds of proteins had different
digestion patterns when compared to sugar-grown cells, indicating post-translational
regulation during substrate shifts (Feng et al., 2014b). A variant of the limited proteolysis
technique is to perform the proteinase K digestion of the extracted proteome in the presence
of an added metabolite. In LiP-SMap (limited proteolysis-small molecule mapping), primary
interactions of proteins with metabolites, or secondary effects such as protein-protein
complexation, are revealed by comparison of digestion patterns with or without the added
effector (Piazza et al. 2018). Protein-metabolite interactions are critical for adapting
metabolic flux to changing conditions (Zampieri et al., 2019). To demonstrate and benchmark
the LiP-SMap technique, Piazza et al. treated yeast and E. coli extracts with metabolites and
monitored changes in the LiP digestion patterns (Piazza et al., 2018). Hundreds of
metabolite-protein interactions were detected that were not previously known, and in many
cases the altered peptides could be mapped near the enzyme active site. Among multiple
sugar phosphates with widespread interactions in E. coli central metabolism, FBP was
validated to alter the binding affinity of G6PDH for its substrate G6P.

A relatively unexplored application area for interaction proteomics is the Calvin cycle,
present in diverse bacteria as well as eukaryotic algae and plants. The bacterial Calvin cycle
is of biotechnological interest as cyanobacteria and chemolithoautotrophic bacteria have
been modified to produce biochemicals from carbon dioxide using sunlight, electricity, or
hydrogen as reducing power (Koch et al., 2020; Krieg et al., 2018; Liu et al., 2019; Müller et
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al., 2013). An understanding of metabolite-level regulation of Calvin cycle enzymes, or
central metabolic pathways where the Calvin cycle is enmeshed, could inform future
metabolic engineering strategies. The Calvin cycle is autocatalytic, so that fixed carbon must
be partitioned out of the cycle for anabolism, but also retained in order to regenerate the
carbon dioxide fixation substrate ribulose 1,5-bisphosphate. The cycle is susceptible to
instability at branch points where intermediates are drained, and the possible relative
substrate affinities of cycle enzymes and branching enzymes are constrained (Barenholz et
al., 2017; Janasch et al., 2019). Modulation of enzyme kinetic parameters (KM, Ki, kcat), such
as by allosteric or competitive effectors, would thus be expected to affect cycle stability.
While regulation of the Calvin cycle enzymes in plants has been extensively studied (Martin
et al., 2000; Michelet et al., 2013; Raines, 2003), the Calvin cycle in bacteria is less
characterized, particularly with respect to potential post-translational regulation. In light of the
widespread distribution of the bacterial Calvin cycle, regulation may be different across
species.

The freshwater cyanobacterium Synechocystis sp. PCC 6803 is a model for studying
photosynthesis, particularly because it can also metabolize glucose, allowing for knockout of
genes essential for autotrophy (Shen and Vermaas, 1994). Synechococcus elongatus PCC
7942 is an obligate photoautotroph, and a model strain for studying the circadian rhythm
(Cohen and Golden, 2015). It was found that Synechocystis contains a larger number of
isoenzymes than Synechococcus, which may be related to its metabolic versatility (Beck et
al., 2012; Jablonsky et al., 2016). There is evidence of post-translational regulation in the
Calvin cycle among cyanobacteria. For example, when metabolites are “drained” from the
Calvin cycle, e.g. by sucrose formation and secretion in Synechococcus or ethanol synthesis
in Synechocystis, the rate of CO2 fixation by the cycle increases to replenish the depleted
metabolites (Abramson et al., 2016; Kopka et al., 2017), with little concomitant protein
upregulation (Borirak et al., 2015). A quantitative proteomics study found that the levels of
central carbon enzymes were relatively stable over a range of growth rates when cells were
Ci-limited (Jahn et al., 2018; Zavřel et al., 2019). Further, comparisons of the transcriptomic
response of these two cyanobacteria during changes in inorganic Ci suggest that
Synechocystis responds primarily through biochemical regulation of enzyme fluxes, while
Synechococcus responds at the transcriptional level (Klähn et al., 2015; Schwarz et al.,
2011). Thus, central carbon metabolism in these two strains may be regulated differently,
with respect to potential metabolite inhibition or activation of enzymes.

A recent search of bacterial genomes found that the Calvin cycle was present in 6-8% of
non-cyanobacterial genomes (Asplund-Samuelsson and Hudson, 2021). Microbes with
genomes encoding the Calvin cycle may have a growth advantage in environments poor in
organic substrates due to improved cofactor recycling, or in environments with mixed or
fluctuating carbon sources (Jahn et al., 2021; McKinlay and Harwood, 2010). Nevertheless,
knowledge of Calvin cycle regulation in chemolithoautotrophs is limited. Cupriavidus necator
and Hydrogenophaga pseudoflava are chemolithoautotrophic betaproteobacteria in the order
Burkholderiales. Cupriavidus acquired the Calvin cycle on a megaplasmid, where genes
encoding all cycle enzymes are clustered as an operon under control of the CbbR
transcriptional regulator. The ccb operon is duplicated on the chromosome (Kusian and
Bowien, 1997; Pohlmann et al., 2006). The Calvin cycle of Hydrogenophaga is similarly
clustered on the chromosome (Grenz et al., 2019; Meyer and Schlegel, 1978). To date, most
study on regulation of Calvin cycle activity in chemolithoautotrophs has focused on

3

https://paperpile.com/c/77m3CA/fK3a+YrE7+OOXq+7bvF
https://paperpile.com/c/77m3CA/80LP+eJ0t
https://paperpile.com/c/77m3CA/80LP+eJ0t
https://paperpile.com/c/77m3CA/5wRq+SlWQ+kWXI
https://paperpile.com/c/77m3CA/5wRq+SlWQ+kWXI
https://paperpile.com/c/77m3CA/zbKg
https://paperpile.com/c/77m3CA/AQIi
https://paperpile.com/c/77m3CA/CXDa+ThHD
https://paperpile.com/c/77m3CA/CXDa+ThHD
https://paperpile.com/c/77m3CA/mjtg+BcIL
https://paperpile.com/c/77m3CA/FdxP
https://paperpile.com/c/77m3CA/keFm+w1UY
https://paperpile.com/c/77m3CA/89EE+RbrU
https://paperpile.com/c/77m3CA/89EE+RbrU
https://paperpile.com/c/77m3CA/lwBU
https://paperpile.com/c/77m3CA/EYsu+AkXo
https://paperpile.com/c/77m3CA/bIZO+U103
https://paperpile.com/c/77m3CA/bIZO+U103
https://paperpile.com/c/77m3CA/dxXH+Ldms


transcriptional regulation, where the transcriptional activator of the Calvin cycle operator
CbbR has multiple effectors, including pathway intermediates and energy metabolites, that
may be species dependent (Bowien and Kusian, 2002; Dangel and Tabita, 2015).

Here, we applied the LiP-SMap technique to uncover new allosteric or competitive
interactions among central carbon metabolism in four bacterial strains containing the Calvin
cycle, Synechocystis sp. PCC 6803, Synechococcus PCC 7942, Cupriavidus necator
(formerly Ralstonia eutropha), and Hydrogenophaga pseudoflava. We screened metabolites
against proteome extracts and found widespread interactions with GAP, ATP, and
acetyl-CoA. We validated several interactions in vitro and found that the LiP-SMap technique
generally reveals interactions that affect catalytic activity, though the effects are often small.

Results

Analysis of proteomics datasets
The LiP-SMap protocol was applied to the four microbes with the general protocol optimized
by Piazza et al., with minor modifications (Piazza et al., 2018). Synechocystis and
Synechococcus were cultivated photoautotrophically in an incubator with elevated CO2 and
constant light. Cupriavidus was cultivated on formate to induce expression of Calvin cycle
genes (Jahn et al., 2021), and Hydrogenophaga was grown chemolithoautotrophically on a
H2, CO2, O2 gas mixture in sealed serum bottles. Extracted proteomes were first filtered and
resuspended in a buffer containing 1 mM MgCl2. After addition of metabolite, extracts were
digested partially by proteinase K, followed by full digestion with a mixture of LysC and
trypsin. The resultant peptide mixture was then run on LC-MS (Material and Methods).

We typically detected 8,000-15,000 peptides from the MS runs of bacterial samples (Figure
S1). As the sensitivity of detecting a protein-metabolite interaction with LiP-SMap is heavily
dependent on the number of peptides detected from each protein, a low peptide coverage
will result in missing potential interactions. Coverage of Calvin cycle enzymes was generally
high, averaging 17 peptides per enzyme (minimum 5, maximum 40), with sequence
coverage of approximately 50% (Figure 1). To demonstrate the sensitivity of LiP to protein
structure, we first tested the effect of added DTT (Dithiothreitol, a reductant) and DTNB
(5,5′-dithiobis-2-nitrobenzoic acid, an oxidizing agent) on the extracted proteome of
Synechocystis. Addition of DTT to 1 mM, a concentration chosen to induce specific redox
effects in extracts (Alliegro 2000), resulted in altered peptides from 21 proteins, a small
number that indicates that the Synechocystis proteome when extracted and filtered is likely
in a reduced state. By contrast, addition of DTNB to 50 µM, a concentration shown to
completely inhibit cyanobacteria Prk in vitro( Kobayashi et al. 2003), altered peptides from
129 proteins, including Prk and Rubisco (Figure S2, Dataset S1). These results indicate that
LiP can detect the changes in protein structure mediated by reducing and oxidizing agents,
and that the cyanobacteria extracts are in a reduced state. To gauge the immediate
reproducibility of the LiP method, we compared the results of adding example metabolites
(AccoA and ATP) to Cupriavidus extracts that were prepared from the same cultivation but
run in different MS batches. The agreement in significant interacting proteins (q < 0.01)
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between replicates was several times higher than expected by random chance, though the q
value correlation between replicates was not higher than 0.52 and a significant fraction of the
interactions were not reproducible (Spearman R; Figure S3). These results encapsulate
variations in proteome extraction, Proteinase K digestion and trypsin digestion, as well as
potential batch effects of different MS runs.

Figure 1. Representative peptide coverage plots showing peptides for Calvin cycle
enzymes in Synechocystis and Cupriavidus from the LiP-SMap method. Peptide
coverage of Calvin cycle proteins averaged 50%. Peptides showing a significant change in
abundance in presence of added metabolites GAP and AcCoA are highlighted in color, while
other detected peptides for each protein are grey. For high concentration tests, 5 mM GAP
or 10 mM AcCoA was added. For low concentration tests, 0.5 mM GAP or 1 mM AcCoA was
added.

Interactions of selected metabolites with Calvin cycle and surrounding
enzymes
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We selected 25 metabolites to screen for interactions with cell extracts of Synechocystis,
Synechocococcus, Cupriavidus, and Hydrogenophaga. For each metabolite, we chose two
concentrations, typically 1 mM and 10 mM (Tables S1 and S2). The two metabolite
concentrations were intended to mimic the spikes in metabolite levels that occur during
environmental shifts, which may require rapid regulation of enzyme activity (Jaiswal and
Wangikar, 2020; Lempp et al., 2019; Mettler et al., 2014; Werner et al., 2019). For each
metabolite screen, LiP was performed in quadruplicate, alongside a control (added buffer) on
the same MS plate (Dataset S2). Not all 25 metabolites were tested in all species
(Synechocystis 25, Synechococcus 21, Cupriavidus 23, Hydrogenophaga 8). There were
many more detected interactions from metabolites added at the high concentrations than at
the low concentrations. The majority (typically > 80%) of interactions seen in the
low-concentration treatment were also observed in the high concentration treatment, adding
confidence to interactions observed from both treatments (Figure S4), We did not observe
strong dose effects from the added metabolites (Figure S5). The log2FC of affected peptides
when treated with the low metabolite concentration was similar to the log2FC seen when a
high metabolite concentration was used, though ATP and GTP interactions were exceptions.
This general insensitivity to concentration could indicate that most metabolite-protein binding
events are already saturated at the low concentration (typically 1 mM). As expected, proteins
that had more total mapped peptides also showed more metabolite interactions, across all
tested metabolites and strains (Figure S6).

We extracted a list of all proteins affected by any metabolite for each strain and grouped
them according to KEGG orthology groups (KOGs), including only orthology groups present
in all four strains (Figure S7; Dataset S3). For the high metabolite concentrations, the PCA
clustering analysis interactions showed that some metabolite-KOG interactions clustered
together for all strains, as exemplified by citrate and AMP, which may indicate common
mechanisms of action (Figure 2). For GAP, a metabolite with 150+ interactions in all four
strains, the photoautotrophs clustered apart from the chemolithoautotrophs, suggesting that
GAP-based regulation may be specific for a certain bacteria lifestyle. Other trends may
indicate the presence of different metabolic capabilities. For example, G6P and KDPG,
intermediates in glycolysis, showed significantly more interactions in Cupriavidus than in the
photoautotrophs (KDPG was not tested in Hydrogenophaga). However, we note that the
discrimation axes are relatively weak; with PC1 41% and PC2 7%. For the low metabolite
concentrations, the number of interactions was significantly fewer, and the separation
between strains was significantly weaker (Figure S8).
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Figure 2. Similarity of ortholog interaction patterns, high added metabolite
concentration. Principal components were calculated from the presence or absence of
interaction with each of 477 orthologs (see Materials and Methods). All data points shown
here are from the same principal component analysis, but split per organism (A) or
metabolite (B) to reduce overplotting. Percentages indicate the fraction of the total variance
captured by the principal components.

We next examined interactions of metabolites with enzymes in the Calvin cycle, as well as
enzymes in the major pathways that siphon carbon out of the cycle (Figure 3, high
concentrations; Figure S9, low concentrations). Calvin cycle enzymes in these four
microbes are phylogenetically diverse, though the cyanobacteria enzymes are more closely
related to each other than to the chemolithoautotroph orthologs (Figure S10). Common
LiP-SMap interactions among all four microbes could indicate evolutionary conservation
important to the Calvin cycle. Interactions with ATP and GAP were widespread in all four
microbes, and AcCoA interactions were prominent in all strains, though less so in
Synechococcus. AcCoA is a predicted cofactor for lysine post-translational acetylation in
vivo, mediated by acyltransferases, but has also been shown to acylate lysines
non-enzymatically in vitro (Wagner and Payne, 2013). GAP has not previously been shown
to be a cofactor for protein acylation, but glyceraldehyde has been shown to form Schiff
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adducts with lysine residues in vitro (Acharya and Manning, 1980; Acharya and Sussman,
1983). We therefore compared the AcCoA- and GAP-sensitive proteins that we detected in
Synechocystis with published datasets for the Synechocystis acetylome and propionylome
(Mo et al., 2015; Yang et al., 2019). Compared to proteins affected by other metabolites, the
proteins detected as AcCoA-sensitive in LiP-SMap were more likely to include proteins that
were acetylated in the reference literature (75% of 355 acetylated proteins at high AcCoA
treatment) and the proteins detected as GAP-sensitive in LiP-SMap were more likely to
include proteins that were propionylated in the reference literature (87% of 65 propionylated
at high GAP treatment; Figure S11). LiP-SMap may therefore be detecting acylation that
occurs during AcCoA or GAP treatment of cell extracts. ATP also showed many interactions
and may act via a general mechanism. In addition to its role in metabolic reactions, ATP may
cause secondary interactions due to its Mg2+ chelating effect (log10K = 4.1 for ATP binding
Mg2+ (Pecoraro et al., 1984)). The number of ATP interactions in Synechocystis extracts was
negatively correlated with MgCl2 concentration in the LiP buffer (Figure S12). ATP treatment
caused changes in many ribosome-derived peptides, indicating structural changes in the
ribosome; a similar result was reported from LiP-SMap of ATP-treated E. coli extracts
(Piazza et al., 2018). A recent TPP study of E. coli extracts treated with different ATP
concentrations found that at low ATP levels (<500 µM), ATP interacts mostly with enzymes
that use it as substrate or effector, but at higher concentrations ATP affects many
protein-protein interactions (Sridharan et al., 2019). Some metabolite interactions were
nearly exclusive to the photoautotrophs. For example, glyoxylate, a photorespiratory
intermediate, showed extensive interactions in Synechocystis, even at low concentrations,
and some “sink” reactions such as glucose-phosphate mutase (GPM) and ADP-glucose
pyrophosphorylase (AGPase), steps in glycogen synthesis, had significantly more
interactions in Synechocystis and Synechococcus. Cupriavidus enzymes were particularly
sensitive to added phospho-sugars, such as KDPG, RuBP, and G6P.
3-Deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS), an enzyme that reacts
with E4P in the shikimate synthesis pathway, showed interactions with several metabolites
primarily in Cupriavidus, at both high and low concentrations. In summary, while there were
some interactions observed in all strains, primarily GAP, AcCoA, and ATP, most metabolites
showed species specific interactions.
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Figure 3. Interactions of Calvin cycle enzymes and selected central carbon
metabolism enzymes with metabolites, high added metabolite concentration.
Interactions between metabolites (columns) at high concentration and enzymes (rows)
identified by KEGG EC number annotation are shown for each organism by tiles filled with
the corresponding color. A blank tile indicates that the interaction was not detected, while
missing protein data is explained by a symbol. A cross indicates that the particular condition
was not measured, a circle indicates that no proteins were detected, and a square indicates
that there was no such enzyme in the corresponding genome. AGPase, ADP-glucose
synthase (EC 2.7.7.27); DAHPS, 3-Deoxy-D-arabinoheptulosonate 7-phosphate synthase
(EC 2.5.1.54); dPGM, 2,3-diphosphoglycerate-dependent phosphoglycerate mutase (EC
5.4.2.11); ENO, Enolase (EC 4.2.1.11); FBA, Fructose-bisphosphate aldolase (EC 4.1.2.13);
FBPase, Fructose-1,6-bisphosphatase (EC 3.1.3.11); G6PDH, Zwf (EC 1.1.1.49); GAPDH,
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12, 1.2.1.13, 1.2.1.59); GPM,
Phosphoglucomutase (EC 5.4.2.2); iPGM, 2,3-diphosphoglycerate-independent
phosphoglycerate mutase (EC 5.4.2.12); PGI, Phosphoglucoisomerase (EC 5.3.1.9); PGK,
Phosphoglycerate kinase (EC 2.7.2.3); PRK, Phosphoribulokinase (EC 2.7.1.19); PYK,
Pyruvate kinase (EC 2.7.1.40); RPE, Ribulose-phosphate 3-epimerase (EC 5.1.3.1); RPI,
Ribose 5-phosphate isomerase (EC 5.3.1.6); RPPK, Ribose-5-phosphate
pyrophosphokinase (EC 2.7.6.1); Rubisco, Ribulose-bisphosphate carboxylase (EC
4.1.1.39); SBPase, Sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37); SerA,
Phosphoglycerate dehydrogenase (EC 1.1.1.95); TAL, Transaldolase (EC 2.2.1.2); TKT,
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Transketolase (EC 2.2.1.1); TPI, Triose-phosphate isomerase (EC 5.3.1.1). Similar plot for
low metabolite concentrations in Figure S9.

Validation of metabolite interactions and effect on enzyme activity
An interaction of an enzyme with a metabolite as revealed by LiP-SMap does not necessarily
mean that the metabolite interacts directly, or that catalytic activity is affected. To explore
whether LiP-SMap hits to enzymes tended to affect catalytic activity, we purified and
screened F/SBPase and transketolase from Synechocystis (syn-F/SBPase fbpI, syn-TKT
tktA) and Cupriavidus (cn-F/SBPase cbbFp, cn-TKT cbbTp). F/SBPase is a target for
altering Calvin cycle flux in cyanobacteria as it has been predicted by metabolic modeling to
have some control over the overall rate of CO2 fixation (Janasch et al., 2019; Pettersson and
Ryde-Pettersson, 1989a) and overexpression of F/SBPase has been shown to have a
positive effect on autotrophic growth (De Porcellinis et al., 2018; Liang and Lindblad, 2016;
Yu King Hing et al., 2019). F/SBPase activity is also important for other industrial microbes.
In methylotrophic bacteria, the regeneration arm of the RuMP pathway requires a F/SBPase
enzyme (Stolzenberger et al., 2013), and overexpression of the E. coli F/SBPase glpX
increased methanol assimilation in an E. coli strain engineered to contain the RuMP pathway
(Woolston et al., 2018). Transketolase catalyses the transfer of a two-carbon ketol group to
an aldehyde and has a central role in both the Calvin cycle and the pentose phosphate
pathway. The transketolase of E. coli has been studied extensively, and has been shown to
form a dimer and exhibit considerable cooperativity between monomers (Wilkinson and
Dalby, 2020). The transketolases of Synechocystis and Cupravidus have not been
characterized previously.

Five of the LiP-SMap detected metabolites for syn-F/SBPase and cn-F/SBPase were
screened for their effects on kinetics by in vitro assays, as well as for direct binding by
thermal shift assay (melting temperature determination; Table 1, Table S3). The previously
known allosteric inhibitor AMP was also included although AMP did not show a LiP
interaction in either enzyme. Due to the strong impact that AMP effector has on
syn-F/SBPase activity (IC50 value of 34 µM (Feng et al., 2014a)), even residual amounts of
AMP effector present in the lysate samples after proteome washing may impact the protein’s
conformation and thus mask it from additional conformational change upon incubation with
externally added AMP.  This notion is supported by the observation that AMP did show
interaction with the Synechococcus PCC 7942 F/SBPase, for which the AMP inhibitory effect
is reported to be  weaker (Cotton et al., 2015; Tamoi et al., 1998). In accordance with the
literature, addition of 0.25 mM AMP completely inhibited syn-F/SBPase activity (the effect on
cn-F/SBPase was not measured) and increased the thermal stability of both enzymes,
indicating a direct conformational change induced by the metabolite (Figure S13). Addition
of 0.5 mM GAP stimulated syn-F/SBPase and cn-F/SBPase activity by reducing the
KM-value, Figure 4). GAP also caused a thermal shift of the syn-F/SBPase enzyme at
multiple Mg2+ concentrations, indicating that the LiP and kinetic effect is caused by a direct
conformational change mediated by  GAP, and that the effect is likely not due to
sequestration of the required Mg2+ cofactor from the enzyme  (Figure S14). In contrast, no
thermal shift was  observed upon adding GAP to cn-F/SBPase. Addition of 3 mM NADPH
reduced the maximum turnover rate of both syn-F/SBPase and cn-F/SBPase, but inhibition
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was not significant at substrate concentrations below KM. The thermal stability increased
slightly for both enzymes upon NADPH addition, again indicating a conformational change
mediated directly by an interaction with the metabolite (change in Tm = 1-2 °C, Figure S15).
The similar kinetic effects observed for NADPH, GAP and AMP suggest evolutionary
conservation, as syn-F/SBPase (class II) and cn-F/SBPase (class I) have similar folds but
little sequence similarity (Brown et al., 2009; Feng et al., 2014a).

Addition of AcCoA did not significantly alter the kinetics of syn-F/SBPase (Figure 4), though
the interaction was detected by the LiP assay. Added AcCoA induced a small but statistically
significant change in Tm. However, the melting temperature shift may be due to the Li+

counterion in the AcCoA salt used in that assay, which may displace the Mg2+ cofactor in the
enzyme active site (Ganapathy et al., 2015). We confirmed Li+ sensitivity of syn-F/SBPase,
and saw that the Tm effect of the added Li-AcCoA was indeed dependent on Mg2+

concentration. The Tm increased at high Mg2+ concentration and decreased at lower Mg2+

concentration, potentially due to a mixed effect of Li+ interaction and Mg2+ chelation by
AcCoA (Maloney and Dennis, 1977; Martell and Smith, 2013). Finally, addition of the
LiP-altering metabolite citrate at 5 mM increased the KM-value of syn-F/SBPase, which is
consistent with the reported sensitivity of Mycobacterium F/SBPase to citrate, and the
presence of citrate in the crystal structure of Mycobacterium F/SBPase (Wolf et al., 2018).
However, thermal shift assays indicated that the inhibitory effect of citrate was likely due to
chelation of Mg2+ from the active site of F/SBPase (Figure S16), as described above for
Li-AcCoA. The affinity of citrate for Mg2+ reported in literature is considerably higher than that
of the other effectors (log10K for Mg2+ binding: citrate 3.4, AcCoA 2.9, NADPH 2.6, GAP 1.8
(Maloney and Dennis, 1977; Martell and Smith, 2013)). Chelation of Mg2+ ions is likely to
have wide-spread effects throughout metabolism since many enzymes require on Mg2+ for
structural integrity as well as cofactor for catalysis.

In summary, the F/SBPase LiP results were often translated into altered Tm or altered
kinetics, for two F/SBPases with dissimilar sequences.

Table 1: Validation of LiP-sensitive metabolites for effect on F/SBPase

n.t. = Not tested; n.c. = No significant change,
* Mg2+ chelation
** Lithium AcCoA salt was used, Mg2+-correlated effect
*** No activity detected
**** Tm change 1-2 °C
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Figure 4. Kinetic effect of selected effector metabolites on Synechocystis TKT and
F/SBPase kinetics. For transketolase assays, the varied substrate was R5P, with
Erythrulose in excess. For F/SBPase assays, the varied substrate was FBP. For
experimental details, see Materials and Methods. Y-axis unit is absorbance per minute. The
F/SBPase assay y-axis unit is μM/s. Kinetic plots for all added metabolites in Figures
S17-S19.

Besides showing an interaction on the general protein level, the LiP data indicated  that GAP
and NADPH cause conformational changes in syn F/SBPase at sites  that are distal to  the
AMP allosteric site (Figure 5). To test whether the GAP activation and NADPH inhibition
mechanisms are distinct from the AMP allostery, we created a single residue exchange
variant of syn-F/SBPase  (R194H) at a position that is located at the enzyme surface in in a
β-sheet connecting the substrate binding site to the AMP-binding site and that was not
included in any of the metabolite LiP-hits for this enzyme. This mutant lost AMP sensitivity,
but retained sensitivity to both GAP activation and NADPH inhibition (Figure S20).
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Figure 5. Structure of Synechocystis F/SBPase showing peptide coverage and
affected peptides from LiP-SMap. Top left: F/SBPase assembles as a homotetramer
(PDB-ID: 3RPL (Feng et al., 2014a)). The substrate FBP (shown as blue sticks) is
coordinated by active site residues as well as Mg2+ ions (red spheres), and  AMP allosteric
inhibitor molecules at the central interface of the tetramer  are shown as yellow sticks. Top
right: monomeric view colored according to different structural elements, showing interaction
with FBP and the AMP-molecules at two adjacent interfaces with other monomers. Bottom:
Monomeric view as shown in top right panel with peptides that were not detected in any
condition shown as dark-gray ribbon. Peptides affected by the indicated metabolites (high
added concentration) are outlined as opaque ribbon in individual panels;

The transketolases from Synechocystis and Cupriavidus were screened in vitro against all
metabolites that showed a LiP interaction with the enzyme in any of the four species (Table
2). The most prominent effect was AMP, which significantly reduced activity of both syn-TKT
and cn-TKT enzymes. While ATP and ADP inhibition of transketolases have been shown
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(Markert et al., 2014), inhibition by AMP has not been reported. Many of the other
LiP-sensitive metabolites had small but statistically significant effects on kinetic parameters
(Figure 4, Supplementary Table 4). However, only a single metabolite (G6P) affected the
Tm of either transketolase. Taking together data from the two transketolases, we found that of
twelve metabolites showing interaction in LiP, six had an effect on enzyme kinetics in the in
vitro assay, and of eight metabolites not showing interaction in LiP, four had an effect on
kinetics in the in vitro assay.

Table 2: Validation of metabolites for transketolase

n.t. = Not tested; n.c. = No significant change

Predicted effects of enzyme-metabolite interactions on stability and flux
control in Synechocystis
To evaluate the effect of regulatory interactions on flux control, they must be viewed in the
context of the metabolic network. The regulations identified and assayed for syn-F/SBPase
and syn-TKT were incorporated into a kinetic model of the central metabolism of
Synechocystis. As a basis, the kinetic model structure for the Calvin cycle in Synechocystis
from a previous study (Janasch et al., 2019) was expanded to cover adjacent parts of
metabolism including the regulatory metabolites (Figure 6A). Four model variants were
designed: two models with LiP-SMap regulatory interactions added to the F/SBPase reaction
or TKT1/2 reactions (models “F/SBPase” and “TKT” respectively), one model with
regulations on both enzymes simultaneously (model “Both”), and one model with none of the
newly discovered interactions added (model “Base”). For the analysis of the dynamics of the
metabolic states, i.e. stability and distribution of flux control, and the influence of the added
regulations, an ensemble modelling approach was employed. In brief, steady-state flux
through each reaction was calculated and concentrations for each metabolite were randomly
sampled, cumulatively defining the metabolic state of the system. Then, sets of kinetic
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parameters (Vmax, Ki, Km) for each reaction were randomly sampled so that the steady-state
flux was achieved, allowing the evaluation of the dynamics of the model around the
steady-state. Repeating the metabolite and parameter sampling resulted in an ensemble of
kinetic models and consequently a probabilistic overview of the dynamics. The resulting
concentrations from the metabolite sampling are shown in Figure S21.

As a first analysis step, the stability associated with metabolite concentrations was
compared for the four model variants. Here, stability refers to the ability of the system to
return to its metabolic state upon an infinitesimal small perturbation of the metabolite
concentrations. All model variants were less stable than the original model of the Calvin
cycle. Generated parameter sets in the “Base” model had a median stability of 38% over all
metabolomes (min 11%, max 58%), compared to 67% for the original Calvin cycle model
(min 25%, max 93% (Janasch et al., 2019)). The lower stability was not surprising as
expanding the system out from the intrinsically stable Calvin cycle provides more potential
for components to influence stability. The addition of regulation on F/SBPase increased
stability slightly (model “F/SBPase” median: 40%, min: 11%, max: 60%), while addition of
regulation to TKT1/2 reduced stability strongly (model “TKT” median: 26%, min: 0.6%, max:
46.5%). When adding regulations to both enzymes, interactions on F/SBPase slightly
compensated for the decreased stability caused by regulation on TKT1/2, but the latter
dominated the trend (model “Both” median: 26%, min: 0.4%, max: 48%). This observed
reduction in stability upon additional biochemical regulation is contradictory to previous
findings (Grimbs et al., 2007; Murabito et al., 2014), but has been reported before for Calvin
cycle regulation in chloroplasts (Pettersson and Ryde-Pettersson, 1989b).

The sampling of thermodynamically feasible metabolomes and the subsequent analysis of
the dynamics around the steady-state allows for the association of metabolite concentrations
with trends in stability. In Figure 6 B concentrations associated with most or fewest stable
states for each model variant are shown (see Figure S22 for all metabolites). The width of
the distributions resembles the thermodynamically feasible concentration range for the
corresponding metabolites. Higher concentrations of the Rubisco-substrate RuBP are linked
to instability in all four current variants, albeit less pronounced than in the original analysis of
the isolated Calvin cycle. An association with instability was also found for high
concentrations of S7P, while the two products of the TKT2 reaction R5P and X5P showed
instability for low concentrations. Low concentrations of E4P and S17P tended towards
stability. The metabolite distributions and their stability association have to be interpreted
with care, as the results are of rather exploratory nature due to the broad concentration
ranges (Asplund-Samuelsson et al., 2018), and describe the dynamic behavior of the system
at the individual concentrations.

The trends in the distributions for more or fewer stable states were generally similar between
all model variants, though the TKT regulation did have an effect. Significant differences
between the distributions leading to most stable parameter sets between the “Base” model
and the “TKT” and “Both” variants were verified by statistical testing (Kolmogorov-Smirnov
test, p < 0.05, Figure S23). For the “TKT” and “Both” model variants, the distributions for
metabolite concentrations associated with stability and instability became more similar for
RuBP and E4P, indicating that the effect of these metabolites on system stability are
reduced. In contrast, the distributions became more separated for R5P and X5P, indicating
that these metabolites have an increased influence over system stability when regulation to
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TKT is added to the model. Surprisingly, the concentrations of the regulators GAP and AMP,
identified by LiP-Smap and verified by kinetic assay, did not appear to affect stability in any
model.

Fully parameterized kinetic models enable the quantification of flux control using metabolic
control analysis (MCA), resulting in flux control coefficients (FCCs) for each reaction (Figure
6C, Figure S24 for all FCCs). Generally, the supply of ATP and NADPH via the light
reactions (lumped as reactions ATPSyn and NADPase, respectively), and phosphate
showed a positive effect on most fluxes, emphasizing their importance on autotrophic
metabolism. Furthermore, PRK, the enzyme producing the Rubisco-substrate RuBP, had a
positive influence on many reactions, while Rubisco showed positive flux control only over
reactions downstream of the Calvin cycle towards the TCA cycle. Flux control for an enzyme
was often local, only over other enzymes in the pathway or subnetwork, such as within
reactions of the photorespiration (RubisO, PGP, GLCO) and the phosphoketolase shunt
reactions (XFPK1/2, PTA) which influenced mainly each other (Supplementary Figure 24).

ALD and FBPase were among the most affected reactions, as their steady-state fluxes were
set relatively low based on fluxomics analyses (Gopalakrishnan et al., 2018), causing
relatively large FCCs even upon small perturbations as the FCC quantification is based on
relative changes. Studies overexpressing Calvin cycle enzymes showed positive effects on
growth rate for TKT, F/SBPase and FBA/ALD (Liang and Lindblad, 2016), which was partly
represented in the trends of the FCCs, for example by SBPase exerting positive flux control
over many reactions. Comparing the trends in flux control between the four models revealed
generally similar behavior between them, with the F/SBPase variant showing some
distinctions. The additional regulation on F/SBPase increased the magnitude of FCCs in
many cases, for example the positive control of ATPSyn over many reactions.
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Figure 6. Regulations on F/SBPase and TKT in the context of metabolism.
A) Schematic overview of the modelled metabolism showing all included biochemical
regulations. Bold: Interactions identified from LiP-SMap and verified as having regulatory
effect, as well as AMP interaction. Red: inhibition, Green: activation. B) Shift in tendency of
metabolite concentrations in their association with stability between the model variants.
Purple and orange distributions refer to the concentrations with most (top 10%) and fewest
(bottom 10%) stable parameter sets, respectively. C) Median flux control coefficients (FCCs)
and median absolute deviation (MAD) over the whole model ensemble for all four model
variants.
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Discussion

In this study we were interested primarily in using LiP-SMap to reveal new metabolite-level
regulation of enzymes within the Calvin cycle and central carbon metabolism. Previously,
inference of allosteric interaction in microbial metabolism has been done through analysis of
time-resolved metabolite and proteomics datasets (Lempp et al., 2019; Link et al., 2013),
fitting of multi-omics steady-state data (Hackett et al., 2016; Nishiguchi et al., 2020), or
through co-elution of proteins and metabolites from a chromatography column (Li et al.,
2010; Veyel et al., 2018). By quantification of individual peptides, the LiP-SMap method can
provide insight into the binding mode of metabolites to a protein, which is an extra level of
information compared to inference methods. However, there are some limitations of the
method compared to other interaction proteomics. The peptide coverage in our data is only
moderate. The coverage achieved is the result of a tradeoff between the quantity of
screened samples and the sample preparation and analysis time. For example, it is possible
to increase protein coverage by chromatographic fractionation of peptide mixtures, though
this will considerably increase the required mass spectrometry resources. Quantification of
the effect of added metabolite over a broader concentration range can also increase
confidence in a particular interaction (Piazza et al., 2020). It is also possible that we will miss
metabolite-protein interactions that are relevant for growth conditions other than
photoautotrophy. It has been shown by complementary proteomics methods that widespread
formation of protein complexes occur in cyanobacteria cultivated in the dark (Guerreiro et al.,
2016; Pattanayak GK, Liao Y, Wallace EWJ, Budnik B, Drummond DA, Rust MJ, 2020). The
LiP method could potentially also detect changes in protein complexation, as well as protein
susceptibility to metabolite interactions.

Our results also show validation of LiP-Smap interactions with multiple methods are needed
to deduce mechanism. Based on LiP-SMap, kinetic assays, and melting temperature
analysis performed at higher MgCl2 concentrations, we propose that most observed LiP
interactions with citrate and ATP are due to Mg2+ chelation. The widespread interactions of
AcCoA and GAP may be due to acetylation or propionylation occurring in the LiP mixture,
where potential acylases are present, based on overlap between the interacting proteins and
these PTMs mapped in Synechocystis. The cofactor for such propionylation in bacteria is
presumed to be propionyl-CoA, not aldehydes (Sun et al., 2016). However, it has been
shown that Schiff-base adducts between primary amines and glyceraldehyde can form
non-enzymatically in vitro, at similar conditions used in our LiP and F/SBPase kinetic assays
(Acharya and Manning, 1980), though stable formation of Schiff bases between aldehydes
and lysine residues appears to require a reducing compound such as borohydride that was
not present in our assay, although DTT was added (Natsch et al., 2012). Additionally, a
lysine nearby to the GAP-affected peptide of fbpI (K156) was recently shown to be
propionylated in vivo in Synechocystis, and the mutant enzyme K156R, presumably
insensitive to propionylation showed reduced catalytic activity (Yang et al., 2019). We did not
test if F/SBPase becomes propionylated by GAP in our in vitro assay. Further study on the
mechanism of the GAP activation of F/SBPase is thus warranted.

The potential for secondary effects through catalytic conversion of an added metabolite
during Lip-SMap is likely low. Since the proteome is filtered before treatment with a
metabolite, the required cofactors for most eventual catalytic reactions are missing.
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However, for reactions not requiring a cofactor, conversion of the metabolite could occur. We
estimate that most central carbon metabolism enzymes would be present at similar
concentrations as used for in vitro assays, so that metabolite conversion could occur if
cofactors are not needed. For example syn-TKT was used at 3 µg/mL in the in-vitro assays,
where 0.25 mM of substrate was converted after 8 minutes. Syn-TKT is present in the LiP
mixture at 5-10 µg/mL, estimated from its reported fraction of the total cyanobacteria
proteome (Jahn et al., 2018).

The discovery of potential regulatory interactions with methods such as LiP-SMap has
potential to enhance predictions of metabolic models. Biochemical regulations are important
for capturing dynamic behavior, and integration of new regulation has helped to explain
growth behavior and flux control in well studied organisms such as E. coli (Christodoulou et
al., 2019; Millard et al., 2021). Integrating the regulations identified in the present study into
the steady-state kinetic model revealed only a limited effect on flux control, which could be
attributed to the nature of the model, as it models slight perturbations around a steady state.
The controlling effect of such biochemical regulations is probably relevant during adaptation
for changing environments, which is difficult to cover with a single physiological steady-state.
Nonetheless, testing the effect of the regulatory interactions on F/SBPase and TKT revealed
a reduction of overall stability when regulation was added to TKT. While metabolic feedback
regulation has generally been linked to increased stability as shown computationally (Grimbs
et al., 2007; Murabito et al., 2014) and experimentally (Christodoulou et al., 2019; Sander et
al., 2019) in some metabolic systems, a computational study considering the effect of
competitive inhibition on Calvin cycle enzymes showed contradictory results. In their work,
Pettersson and Ryde-Pettersson (Pettersson and Ryde-Pettersson, 1989b) found these
inhibitions to exert insignificant flux control and to reduce stability of the Calvin cycle. Here,
the reduction in stability caused by the TKT regulation could point towards more narrow
metabolite distributions necessary for other metabolic functions outside of the modelled
network.

The modeling results reported here come with some important caveats. The lack of exact
data describing the metabolic state required the computational sampling of metabolite
concentrations, which albeit thermodynamically feasible, were broadly distributed and
thereby covered potentially unphysiological values. While dynamic metabolite data in
cyanobacteria were reported for shifting environments such as light/dark (Werner et al.,
2019) or changes in production capability (Kopka et al., 2017), steady-state metabolomics
data in combination with other physiological parameters, such as protein expression and
abundance, would reveal the extent of regulatory interactions and potential other
compensatory mechanisms (Gerosa et al., 2015; Hackett et al., 2016). The sparse
availability of actual kinetic enzyme data, beyond F/SBPase and TKT, is another challenging
aspect. Reproducing the in-vivo environment of an enzyme, including all known and
potentially unknown cofactors and modifications, for in vitro measurements is challenging.
The parameterization approach employed here, e.g. sampling of the saturation states of the
individual enzymes’ active sites, finds values describing the steady-state fluxes, but could
result in unrealistically low or high values when combined. Additional physiological data,
such as absolute protein abundances or metabolite concentrations, would constrain the
allowable ranges of the kinetic parameters and thereby reduce the sampling space closer to
the in vivo values (Saa and Nielsen, 2016).

19

https://paperpile.com/c/77m3CA/keFm
https://paperpile.com/c/77m3CA/A5O1+1q0P
https://paperpile.com/c/77m3CA/A5O1+1q0P
https://paperpile.com/c/77m3CA/CQoG+tsd2
https://paperpile.com/c/77m3CA/CQoG+tsd2
https://paperpile.com/c/77m3CA/7phu+A5O1
https://paperpile.com/c/77m3CA/7phu+A5O1
https://paperpile.com/c/77m3CA/iwcV
https://paperpile.com/c/77m3CA/lic0
https://paperpile.com/c/77m3CA/lic0
https://paperpile.com/c/77m3CA/BcIL
https://paperpile.com/c/77m3CA/Cv9p+i2Gf
https://paperpile.com/c/77m3CA/kIny


The extent of metabolite-protein interactions at low added metabolite concentrations (0.5 -1
mM) was significantly less than at high concentrations (5-10 mM). This suggests that
metabolite control of enzyme activity is probably not prevalent at steady state metabolite
concentrations, which are likely lower than 1 mM, but rather becomes relevant when
metabolite levels fluctuate or spike. The inhibition of F/SBPase by AMP has been reported
previously, though its role in Calvin cycle regulation is not clear. AMP levels have been
shown to increase above Ki, AMP during the first 30 minutes of carbon limitation, which would
be expected to inactivate FBPase and the Calvin cycle (Selim et al., 2018).
Post-translational inactivation of F/SBPase could facilitate a rapid downregulation of the
Calvin cycle in the early response to carbon limitation, and enable the mobilization of
glycogen via the pentose phosphate pathway towards TCA cycle intermediates.
Replenishment of TCA cycle intermediates is important for sustained amino acid synthesis,
and to balance nitrogen uptake through elevated 2-oxoglutarate levels (Eisenhut et al.,
2008). The increase in Km of F/SBPase in presence of NADPH would reduce the enzyme
activity response to accumulated FBP levels, which may be beneficial under conditions when
NADPH is high, e.g. during nitrogen limitation when Calvin cycle flux is downregulated and
F6P is used for glycogen synthesis rather than regeneration of RuBP. It is possible that
NADPH inhibition also affects the kinetics for SBP dephosphorylation, which could be
relevant for redirecting and regulating carbon flux towards glycogen during nutrient stress.

Activation of F/SBPase by GAP has not been reported previously. Such feed-forward
activation may work to prevent GAP accumulation and increase Calvin cycle activity under
CO2 replete conditions, conceptually similar to feed forward activation of pyruvate kinase by
fructose bisphosphate in E. coli and red blood cells (Kochanowski et al., 2013; Schuster and
Holzhütter, 1995). To date there has been little experimental exploration of
metabolite-mediated feedback or feedforward regulation on the Calvin cycle. It was recently
shown that photorespiratory metabolite 2PG acts as a feedback inhibitor of the Calvin cycle
in Arabidopsis thaliana by inhibiting TIM and SBPase at sub-millimolar concentrations.
Crucially, this was found to be metabolically relevant, as a forced increase of 2PG by graded
anti-sense regulation of 2-phosphoglycolate phosphatase (PGLP1) reduced photosynthetic
yield, CO2 fixation, and plant growth, while an overexpression of PGLP1 increased growth
(Flügel et al., 2017). In the context of such works, LiP-SMap will aid in finding new
regulators.
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Materials and methods

Cultivations and harvest

Cupriavidus necator strain DSMZ 428 was grown in Ralstonia Minimal Media (RMM) with
100 mM HEPES pH 7.5 under chemostat conditions in a Photon Systems Instruments
Multi-Cultivator MC-1000 OD. Each reactor tube was set up to a volume of 55 mL, OD600
0.05 and 3.5 g/L fructose. Once growth ceased, an inlet feed of 0.01 - 0.05 mL/min of 8 g/L
formic acid in RMM with 100 mM HEPES pH 7.5 was initiated. Cultivations were kept
running until a stable OD600 had been observed for at least 5 doubling times.

Hydrogenophaga pseudoflava strain DSMZ 1084 were grown at 30 °C and 200 RPM in
sealed flasks of ~135 mL containing ~25 mL DSMZ media 133 and ~110 mL of gas (70% H2,
15% CO2 and 15% O2) at 1 bar overpressure. Cultivations were started from overnight
cultures on 1.5 g/L acetate and harvested during exponential growth at OD600 ~1.0.

Synechocystis sp. PCC6803 (gift from Klaas Hellingwerf, University Amsterdam) &
Synechococcus elongates PCC7942 (from Pasteur Culture Collection, France) were grown
in BG-11 media at 1% CO2 and a light intensity of ~70 µmol·s-1·m-2 in 500 mL flasks
containing 100 mL liquid until an OD730 of ~1.0.

For each microbe, four biological replicate cultivations were performed, and immediately
before harvest the replicates were pooled. Cells were harvested by centrifugation and
washed three times with cold lysis buffer before being resuspended in a small amount of
lysis buffer, snap frozen in liquid nitrogen, and stored as aliquots in -80 °C. The
cyanobacteria were exposed to light at ~ 400 µmol·s-1·m-2 for 5 minutes prior to snap
freezing.

Proteome extraction

Frozen aliquots were thawed on ice and lysed mechanically through bead beating by a
FastPrep-24 5G lysis machine over six cycles of 45 seconds at 6.5 m/s with 30 seconds on
ice between cycles. The lysate was spun down and the supernatant was run through a Zeba
Spin Desalting Column. Protein concentration in the desalted lysate was evaluated using a
Bradford assay. The samples were kept at 4 °C throughout the procedure.

Limited proteolysis

For every experiment three sample groups were created, one with no added metabolite and
two with different concentrations of metabolite specified in Table S1. Each sample group
was prepared as four technical replicates with 1 µg/µL extracted protein. Proteinase K was
simultaneously added to all samples at a 1:100 protease to protein ratio and incubated at 25
°C for exactly 10 minutes before immediate denaturation.

Complete digestion

The protein mix was incubated at 96 °C for 3 min prior to treatment with 5% Sodium
Deoxycholate and 10 mM DTT and another 10 min at 96 °C after. The samples were then
alkylated by 10 mM Iodoacetamide at RT for 30 min in the dark, after which proteases LysC
and trypsin were applied at a 1:100 protease to protein ratio and incubated at 37 °C and 400
RPM in a thermocycler for 3 and 16 hours, respectively. Digestion was halted by addition of
formic acid to reduce pH below 2 which caused sodium deoxycholate to precipitate. Samples
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were then centrifuged at 14,000g for 10 min after which the supernatant was removed and
stored at -20 °C.

Peptide purification

Pipette tips packed with six layers of C18 matrix discs (20-200 µL; Empore SPE Discs) were
activated with acetonitrile and equilibrated with 0.1% formic acid prior to being loaded with
thawed peptide mixes. The matrix was then washed twice with one loading volume of 0.1%
formic acid before being eluted with a mixture of 4:1 ratio of acetonitrile to 0.1% formic acid.
The eluate was stored at -20 °C until analysis by LC/MS.

LC/MS analysis

Analysis was performed on a Q-exactive HF Hybrid Quadrupole-Orbitrap Mass
Spectrometer coupled with an UltiMate 3000 RSLCnano System with an EASY-Spray ion
source. 2 μL of each sample was loaded onto a C18 Acclaim PepMap 100 trap column (75
μm x 2 cm, 3 μm, 100 Å) with a flow rate of 7 μL per min, using 3% acetonitrile, 0.1% formic
acid and 96.9% water as solvent. The samples were then separated on ES802 EASY-Spray
PepMap RSLC C18 Column (75 μm x 25 cm, 2 μm, 100Å) with a flow rate of 3.6 μL per
minute for 40 minutes using a linear gradient from 1% to 32% with 95% acetonitrile, 0.1%
formic acid and 4.9% water as secondary solvent. After separation MS analysis was
performed using one full scan (resolution 30,000 at 200 m/z, mass range 300 –
1200 m/z) followed by 30 MS2 DIA scans (resolution 30,000 at 200 m/z, mass range 350 –
1000 m/z) with an isolation window of 10 m/z. Precursor ion fragmentation was performed
with high-energy collision-induced dissociation at an NCE of 26. The maximum injection
times for the MS1 and MS2 were 105 ms and 55 ms respectively, and the automatic gain
control was set to 3·106 and 1·106 respectively. The EncyclopeDIA and Prosit workflows
were used to generate a predicted library from a fasta file of the appropriate organisms
UniProt proteome set (C. necator: UP000008210, Synechocystis sp. PCC 6803:
UP000001425, Synechococcus elongatus sp. PCC 7942: UP000002717, H. pseudoflava:
UP000293912) against which an EncyclopeDIA search was performed to generate a list of
detected peptides.

Data analysis

Peptides detected in at least three replicates in every sample group were tested for
differential peptide abundance using the MSstats package (version 3.18.5) in R (version
3.6.3). For every peptide in each metabolite concentration comparison MSstats estimated
fold changes and p-values adjusted for multiple hypothesis testing (Benjamini-Hochberg
method) with a significance threshold of 0.01. A protein was considered to interact with a
metabolite supplied at low or high concentration if at least one peptide showed significant
interaction. General data and quality assessment statistics and visualizations were
generated by the pipeline available at https://github.com/Asplund-Samuelsson/lipsmap,
implemented in R version 4.1.1 with Tidyverse version 1.3.1.

Ortholog annotations
In order to compare metabolite-protein interaction patterns between organisms, it was
necessary to determine orthologous genes. Ortholog labels from the eggNOG database
were downloaded from UniProt (https://www.uniprot.org/) on 14 June 2021 for each protein
in the four organisms. Version 5.0 of eggNOG was used except for proteins Q31NB2
(ENOG4108VFZ), Q31RK3 (ENOG4105KVS), and Q31RK2 (ENOG4105HKE) in
Synechococcus, which were annotated with eggNOG version 4.1. Only the 481 orthologs
found in all organisms were considered. The number of interacting proteins were counted for
each ortholog and metabolite concentration, in each organism. Furthermore, ortholog counts
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were summarized into the 20 functional categories each represented by a single letter, e.g.
“A” for “RNA processing and modification.”

Principal component analysis of interactions with orthologs
The metabolite-protein interaction patterns of orthologs were compared between metabolites
and organisms using R. The interaction per ortholog was first classified binarily so that the
interaction was 1 (one) if there was at least one interaction for the ortholog in a particular
combination of organism, metabolite, and concentration. Otherwise the interaction was
classified as 0 (zero). Orthologs without interactions were filtered out. A matrix with rows
representing organism and metabolite, and columns containing the binary interaction
classification of each ortholog, was subjected to principal component analysis (PCA; function
prcomp). The first two principal components were then plotted in order to visualize how
similar different organisms and metabolites were in terms of interaction with the full set of
orthologous genes. The PCA was performed separately for low and high metabolite
concentrations.

Clustered heatmap of interactions with orthologs
The metabolite-protein interaction patterns of orthologs, summarized per ortholog functional
category, were further inspected through visualization with a heatmap with clustered rows
and columns. The ortholog interaction counts were normalized to indicate the fraction of
interacting orthologs within each combination of functional category, organism, metabolite,
and concentration. These fractions were then used to calculate Euclidean distance (function
vegdist from library vegan) followed by clustering (ward.D2 method in function hclust), which
determined the order of functional categories (heatmap rows), and metabolites and
concentrations (heatmap columns). Organisms contributed both to row and column
clustering. Finally, the ortholog interaction fractions were plotted as heatmaps, using row and
column orders as described, with dendrograms clarifying the clustering (function ggtree from
library ggtree).

Phylogenetic analysis
We wanted to compare evolutionary relationships of Calvin cycle proteins to their interaction
patterns in the different organisms, prompting a phylogenetic analysis. Sequences for Calvin
cycle KEGG orthologs (KO) in module M00165, supplemented with transaldolase (K00616
and K13810), triose-phosphate isomerase (K01803), and ribulose-phosphate epimerase
(K01783), were downloaded from UniProt on 14 October 2021. Each set of KO sequences
were reduced in number with cd-hit version 4.8.1 (Fu et al., 2012; Li and Godzik, 2006) by
selecting the highest percent identity setting between 50% (-c 0.5) and 100% (-c 1), in 5%
steps, that resulted in fewer than 1 000 representative sequences. For each KO set, we
added any missing corresponding protein sequences in the four organisms studied here.
Sequences were aligned using mafft version 7.453 at default settings (Katoh and Standley,
2013). The alignments were then used to construct phylogenetic trees with FastTree version
2.1.11 Double precision at default settings (Price et al., 2010). NCBI taxonomy data
downloaded on 8 October 2021 was used to identify organism groups. Trees were plotted
using phytools and ggtree in R in order to visualize the phylogenetic distribution of
sequences and metabolite interactions for the four organisms under study.

Ortholog analysis code is available at https://github.com/Asplund-Samuelsson/lipsmap.

Cloning and transformation

The tktA gene in PCC6803 and the cbbTP gene in C. necator were PCR amplified using the
primer pairs tktAF+tktAR and cbbTpF+cbbTpR respectively. The backbone pET-28a(+) was
linearized using the primer pair pETF+peTR after which the constructs were assembled
through Gibson assembly. The products were verified by sequencing and transformed into E.
coli BL21 by heat shock.
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tktAF: 5′-CCATTTGCTGTCCACCAGACAGTGAGGAGTTTTAAGCTTGG-3′
tktAR: 5′-CCGCGCGGCAGCCATATGAACATTATGGTCGTTGCTACCC-3′
cbbTpF: 5′-CCATTTGCTGTCCACCAGATCAAGCGTCCTCCAGCAG-3′
cbbTpR: 5′-CCGCGCGGCAGCCATATGGAGATGAACGCACCCGAACG-3′
pETF: 5′-CATATGGCTGCCGCGCGG-3′
pETR: 5′-CTGGTGGACAGCAAATGGGTCG-3′

Production and purification of recombinant F/SBPase and TKT

The mutants were cultivated in 2YT media at 37 °C and 200 RPM until OD 0.4-0.6 after
which overexpression was induced by 1 mM IPTG. The tktA gene was incubated at 37 °C for
8h after induction, whereas the cbbTP gene was incubated at 18 °C for 24 hours. Cells were
harvested by centrifugation at 4 °C and stored at -20 °C. Frozen pellets were resuspended in
3-5 mL of B-PER and incubated on a rocking table for ~30 min before centrifugation at 4,000
g. The soluble fraction was loaded onto an HisTrap Fast Flow Cytiva column (1 mL) and
washed with wash buffer (50 mM Tris-HCl, 300 mM NaCl, 20 mM imidazole, pH 7.5) prior to
elution with elution buffer (50 mM Tris-HCl, 300 mM NaCl, 500 mM imidazole, pH 7.5).
Fractions containing transketolase were combined and the buffer was exchanged to storage
buffer (50 mM Tris-HCl, pH 7.5) using a HiTrap Cytiva desalting column. The purified protein
was quantified by Bradford assay and stored at -80 °C in aliquots.

Enzyme kinetic validation of TKT metabolite interactions

Transketolase was characterized following (Brilisauer et al., 2019). The conversion of
D-ribose-5-phosphate and L-erythrulose to sedoheptulose-7-phosphate and glycolaldehyde
was measured through the consumption of NADH by alcohol dehydrogenase when reducing
glycolaldehyde to ethylene glycol. Initially, the kinetics were calculated from measurements
of reaction rates at 12 different substrate concentrations (0, 100, 200, 300, 400, 500, 600,
800, 1000, 2000, 4000, 8000 µM) in quadruplicate. Subsequently, relative comparisons of
enzyme kinetics were made as calculated from 8 different substrate concentrations (0, 100,
200, 500, 750, 1000, 2000 and 4000 µM) with and without 1 mM added metabolite. The
tested metabolites were 2OG, 2PG, ATP, AMP, G6P, Citrate, Glyoxylate, Malate, NADP and
DHAP. The reaction mix contained 100 mM glycylglycine buffer pH 7.5, 5 mM MgCl, 2 mM
thiamine pyrophosphate, 0.5 mM NADH, 100 mM L-erythrulose, 10 U ADH, 2.875 µg/mL
transketolase and D-ribose-5-phosphate to a final volume of 100 µL. Absorption was
measured at 340 nm twice per minute over 30 minutes starting immediately after addition of
D-ribose-5-phosphate.

Enzyme kinetic validation of F/SBPase metabolite interactions

In vitro enzyme activity assays were conducted to validate the kinetic effect of F/SBPase
metabolite interactions detected by LiP-SMap. To determine metabolite-induced changes in
enzyme kinetic parameters, reaction rates were measured at eight different substrate
concentrations (0, 30, 55, 80, 110, 150, 220, 300 µM) in the presence and absence of a
metabolite (+M and -M). Tested metabolites were GAP, NADPH, AMP, AcCoA, and citrate
(0.5, 3, 0.25, 2, and 5 mM, respectively). The conversion rate of fructose-1-6-bisphosphate
to fructose-6-phosphate was determined from the release of inorganic phosphate over time,
using a Malachite Green (MG) assay adapted from (Vardakou et al., 2014). MG dye stock
(1.55 g/L Malachite Green oxalate salt, 3 M H2SO4) was used to prepare a fresh phosphate
colorimetric development solution prior to each experiment (400 µL MG dye stock, 125 µL
ammonium molybdate (60 mM), 10 µL Tween-20 (11% v/v)). The development solution was
filtered through a 0.2 µm syringe filter and kept in the dark. Development plates were
prepared by mixing 36 µL development solution with 100 µL reaction buffer (50 mM Tris-Hcl,
15 mM MgCl2, 10 mM DTT) lacking DTT. Enzyme solutions for +M and -M conditions were
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prepared in separate 8-tube PCR strips (VWR #732-1521 or low-protein binding) by mixing
25 µL reaction buffer (+M/-M) with 25 µL purified enzyme constituted in -M reaction buffer.
The two strips were pre-incubated at 30 ºC for 12 minutes in a thermocycler together with
two additional PCR strips which contained substrate at eight different concentrations in -M
reaction buffer. Reactions were initiated by quickly mixing 50 µL substrate with the enzyme
mixture in one of the reaction strips, using a multipipette ([F/SBPase]Final=0.42 ng/µL). A
sample of 20 µL was immediately transferred to a development plate before incubating the
reaction strip at 30 °C. The initiation procedure was repeated for the second reaction strip
with a two minute delay. Samples were collected after 10, 20, and 30 minutes. Each
sampling event was followed by an addition of 7.5 µL sodium citrate (34% w/v) to stabilize
the color of the development solution. Triplicate series of phosphate standards (0-100 µM)
were added to the development plate as a reference. The plate was incubated for 20
minutes in the dark before measuring the absorbance at 620 nm in a plate reader. The
experiment was replicated twice. To quantify the amount of phosphate, the background
absorbance measured at time zero was first subtracted from raw absorbance
measurements. Phosphate standard series were then used to convert absorbances to
phosphate concentrations. Outliers and phosphate concentrations that were lower than 10
µM (sensitivity threshold), or that exceeded 60% of the initial substrate concentration
(10-minute time points were always kept nonetheless), were removed. Reaction rates were
calculated as the change in phosphate concentration over time using linear regression. To
determine kinetic parameters, reaction rates and substrate concentrations were fit to the Hill
equation using non-linear regression. A parameter change was considered statistically
significant for p < 0.05 (Student’s t-test).

Melting point measurements

The samples were drawn up into capillaries and inserted in a Prometheus NT.48 nanoDSF
machine set to 95% excitation power that assayed the stability of the sample while
increasing the temperature from 20 °C to 95 °C at a rate of 1 °C per minute. Transketolase
samples were prepared in 50 mM Tris-HCl pH 7.5 with 5 mM MgCl2, 2 mM TPP, 200 ng/µL
enzyme and 1 mM of metabolite. In addition, samples with and without 2 mM TPP and 10
mM DTT were also run to assay the effect of the cofactor and reductive power on protein
stability. F/SBPase samples were prepared in 50 mM Tris-HCl pH 8 with 15 mM MgCl2, 10
mM DTT and varying concentrations of metabolite (Table 1). Additional samples with 5 mM
citrate were run while varying MgCl2 concentrations were run to investigate if the observed
effects were due to magnesium chelation.

Kinetic metabolic model

Model structure
The kinetic model for Synechocystis central carbon metabolism was based on a previous
model (Janasch et al., 2019), and expanded to cover the reactions of photorespiration,
oxidative pentose phosphate (OPP) pathway, anaplerotic reactions around acetyl-CoA and
pyruvate, as well as the TCA cycle with its forked nature. The final model contained 53
reactions connecting 57 metabolites (41 internal). Sink reactions were formulated as
irreversible Michaelis-Menten-type equations. Supply reactions followed mass action
kinetics. Four model variants were created: One base model, including only the regulatory
interactions in the previous version (Janasch et al., 2019), two models with interactions on
F/SBPase (AMP, GAP, NADPH, CIT) and TKT1/2 (AMP, ATP, CIT, GLX, RuBP), respectively,
and one model including all regulations.

Metabolic flux distribution
The steady-state flux distribution was obtained using a genome-scale metabolic model
(GEM) of Synechocystis (Sarkar et al., 2019). All flux simulations were performed in Matlab
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R2020b using the Gurobi Optimizer version 9.1.1. First, the GEM was modified by allowing
reversibility of the conversion of NADPH to NADH and replacing the two individual reactions
corresponding to Rubisco carboxylase and oxygenase by a single Rubisco reaction
representing 97% carboxylase and 3% oxygenase activity as implemented in a previous
network reconstruction (Knoop et al., 2013). Flux were constrained by ranges taken from
Gopalakrishan et al., 2018 (Gopalakrishnan et al., 2018), bicarbonate uptake was
constrained to a maximum of 3.7 mmol·gDW-1·h-1 (Nogales et al., 2012). Maximizing autotrophic
growth was set as the objective function and fluxes were sampled using the
randomSampling function of the RAVEN Toolbox 2 version 2.4.3 (Wang et al., 2018) allowing
for 95% of the optimized objective value. Fluxes were manually curated to adjust the
genome-scale flux distribution to the small-scale kinetic model structure and transformed into
mM/min by multiplying with a cellular density of 434.78 g/L (E. coli, (Bennett et al., 2008)).

Metabolite concentrations
Due to the uncertainty associated with published metabolomics datasets, potential
thermodynamically feasible metabolite concentrations describing the metabolic state were
randomly sampled, as performed similarly before (Janasch et al., 2019). Metabolite
concentration ranges identified via NET analysis (Asplund-Samuelsson et al., 2018) were
adjusted to the present model structure and used as constraints for the sampling. To cover
the whole feasible solution space efficiently, a hit-and-run algorithm was employed. Starting
from a feasible metabolite concentration set (fMCS), the algorithm randomly selects a
direction and feasible step length to move through the logarithmic solution space, creating
fMCSs with each step. MDF (Noor et al., 2014) analysis followed by thermodynamic
variability analysis (Janasch et al., 2021 manuscript) was used to identify 83 fMCSs as
starting points for the random sampling. For each initial fMCS, five runs were performed with
each 1·106 steps, of which each 1000th step was recorded resulting in ~415000 fMCSs. Pool
sizes for the supply reactions were sampled in a range between 1.1x to 5x around their
corresponding metabolite concentrations, simulating fast supply (pool size close to
metabolite concentration) and slow supply, respectively. For practical reasons 5000 fMCSs
were randomly selected to form a representative overview of the thermodynamically feasible
concentrations of the analyzed metabolic state to be used in the subsequent parameter
sampling.

Parameter Sampling
Rate equations were generally parameterized around the corresponding metabolite
concentrations by sampling the range of 0.01x to 100x metabolite concentration in
logarithmic space for Km values, corresponding to 99% to 1% active site saturation, as
performed previously (Janasch et al., 2019). Inhibition constants Ki for the regulations
identified by LiP-SMap were sampled in a narrower range of 0.2x to 5x around the
metabolite concentrations used for the enzyme assays. For F/SBPase 50 µM, 3 mM and 5
mM were used for AMP, NADPH and CIT, respectively. For TKT, all interaction constants
were sampled around 1 mM. For the activation of F/SBPase by GAP, Km could maximally be
reduced by 75%. Hill coefficients for FBPase and TKT1/2 were sampled between 1 and 2,
while for SBPase the range was between 1 and 4, following the observed difference
between FBPase and SBPase reactions identified in (Feng et al., 2014a). Vmax values were
calculated back from metabolite concentrations, sampled kinetic constants and the
steady-state flux distribution. For each of the 5000 fMCSs, 1000 parameter samplings were
performed, resulting in an ensemble of 5 million kinetic steady-state models to be analyzed
for stability and metabolic control.

Metabolic control analysis
The dynamic behavior of the models was analyzed by linearizing them around their
steady-state as performed previously (Janasch et al., 2019; Murabito et al., 2014), based on
(Reder, 1990), by forming the Jacobian matrix. The stability of each model in the ensemble
was evaluated by calculating the eigenvalues of the Jacobian matrix, where positive
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eigenvalues cause instability. Flux control coefficients were calculated for all stable
parameter sets based on elasticities and concentration control coefficients as described in
(Janasch et al., 2019). The models and all code required to perform the kinetic modelling
analysis is available at https://github.com/MJanasch/KX_Kinetics.
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Figure S1. Number of detected peptides in every LiP-SMap experiment.



Figure S2. Log2 fold change and significance of detected proteins upon reduction and
oxidation of the proteome. DTT and DTNB were used on the proteome of Synechocystis sp.
PCC6803 as reductive and oxidative agents, respectively and compared to an untreated
proteome. Each protein detected in both treated and untreated samples are represented by one
dot with significantly (q < 0.01) changed proteins in red.



Figure S3. Correlation of minimum q value (A) and agreement of interaction classification
(B) between repeated experiments. First, correlation between experiments was assessed (A).
The minimum q value for peptides in each protein was correlated (Spearman method) for



proteins detected in both of two consecutive experiments (“early” and “later”) using high and low
concentration of acetyl-CoA (AcCoA) and high concentration of ATP. Logarithmic scales are
used to display the minimum q values of each protein (points). Correlation was performed for all
proteins and for proteins within the top 25% based on detected peptide count. Proteins were
classified as interacting if having at least one peptide with a q value lower than the cutoff
(x-axis). Second, agreement between experiments was assessed (B). Protein-metabolite
interaction classification between two consecutive experiments, using high and low
concentration of acetyl-CoA (AcCoA) and high concentration of ATP, was evaluated as agreeing
on interaction (“Yes”; both experiments passed the q value cutoff), disagreeing (“Split”; only one
experiment passed the q value cutoff), or agreeing on no interaction (“No”; neither experiment
passed the q value cutoff). The number of proteins within each class of interaction (y-axis) is
displayed as bars labeled by the percentage of proteins within each group of three bars (unless
< 10%). The frequency of proteins classified as interacting or not was calculated within each
experiment and then used to calculate the expected frequency of agreement classes (“Yes”,
“Split”, or “No”) if those were overlapping just by random (circles). Note that ideally two
experiments would be in total agreement (no “Split” proteins). Agreement was evaluated for all
proteins and for proteins within the top 25% based on detected peptide count.



Figure S4. Persistence of low concentration interactions in high concentration. Opaque
bars indicate the fraction of low concentration interactions that were detected both in the low
concentration and high concentration experiments, while transparent bars indicate interactions
that were only detected in the low concentration experiments. Metabolites are ordered by the
total number of interactions. Metabolites without low concentration interactions are excluded.



Figure S5. Correlation of log2(fold change) of peptides detected in low and high
concentration. Spearman correlation was used to quantify agreement in peptide fold change
between low and high concentration experiments. Colored points show peptides that were not
significant in any concentration, while black points show peptides significant in both
concentrations.



Figure S6. Number of peptides detected per metabolite-interacting protein compared to
non-interacting proteins. Proteins were classified as not having interaction or having
interaction with the tested metabolites, i.e. “Interaction FALSE” and “Interaction TRUE”.
Interaction means that at least one peptide was significantly changed in abundance in presence
of the metabolite (q < 0.01). The y-axis indicates the number of peptides detected per protein
summarized as box plots. The plots are split by high and low concentration of the interacting
metabolite (columns) and by organism (rows).



Figure S7. Fraction interacting orthologs within functional groups in each organism. If at
least one sequence per ortholog family interacted with a metabolite at low (L) or high (H)
concentration (heatmap columns), that ortholog was considered to be interacting. Interactions
were then summarized per functional group (heatmap rows) and normalized by the total number
of orthologs in that group. Dendrograms illustrate the clustering patterns of rows and columns
based on Euclidean distance and the Ward.D2 algorithm. Interaction fractions in all four
organisms contributed both to rows and columns. A cross indicates that the particular condition
was not measured.



Figure S8. Similarity of ortholog interaction patterns (low concentration). Principal
components were calculated from the presence or absence of interaction with each of 321
orthologs (see Materials and Methods). All data points shown here are from the same principal
component analysis, but split per organism (A) or metabolite (B) to reduce overplotting.
Percentages indicate the fraction of the total variance captured by the principal components.



Figure S9. Interactions of Calvin cycle enzymes and selected central carbon metabolism enzymes
with metabolites (low concentration). Interactions between metabolites (columns) at low concentration
and enzymes (rows) identified by KEGG EC number annotation are shown for each organism by tiles
filled with the corresponding color. A blank tile indicates that the interaction was not detected, while
missing protein data is explained by a symbol. A cross indicates that the particular condition was not
measured, a circle indicates that no proteins were detected, and a square indicates that there was no
such enzyme in the corresponding genome. AGPase, ADP-glucose synthase (EC 2.7.7.27); DAHPS,
DAHP synthase (EC 2.5.1.54); dPGM, 2,3-diphosphoglycerate-dependent phosphoglycerate mutase (EC
5.4.2.11); ENO, Enolase (EC 4.2.1.11); FBA, Fructose-bisphosphate aldolase (EC 4.1.2.13); FBPase,
Fructose-1,6-bisphosphatase (EC 3.1.3.11); G6PDH, Zwf (EC 1.1.1.49); GAPDH, Glyceraldehyde
3-phosphate dehydrogenase (EC 1.2.1.12, 1.2.1.13, 1.2.1.59); GPM, Phosphoglucomutase (EC 5.4.2.2);
iPGM, 2,3-diphosphoglycerate-independent phosphoglycerate mutase (EC 5.4.2.12); PGI,
Phosphoglucoisomerase (EC 5.3.1.9); PGK, Phosphoglycerate kinase (EC 2.7.2.3); PRK,
Phosphoribulokinase (EC 2.7.1.19); PYK, Pyruvate kinase (EC 2.7.1.40); RPE, Ribulose-phosphate
3-epimerase (EC 5.1.3.1); RPI, Ribose 5-phosphate isomerase (EC 5.3.1.6); RPPK, Ribose-5-phosphate
pyrophosphokinase (EC 2.7.6.1); Rubisco, Ribulose-bisphosphate carboxylase (EC 4.1.1.39); SBPase,
Sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37); SerA, Phosphoglycerate dehydrogenase (EC
1.1.1.95); TAL, Transaldolase (EC 2.2.1.2); TKT, Transketolase (EC 2.2.1.1); TPI, Triose-phosphate
isomerase (EC 5.3.1.1).



<Separate PDF file>

Figure S10. Phylogenetic trees of Calvin cycle enzymes labeled with detected
protein-metabolite interactions. Each tree is based on fewer than 1 000 representative
sequences and all sequences from the four organisms in this study, which belong to KEGG
ortholog (KO) families catalyzing steps in the Calvin cycle (see Materials and Methods). The ring
indicates organism group; Kingdom for eukaryotes, and phylum for bacteria and archaea,
except for Proteobacteria, which are divided into classes. Organism groups that were too small
to warrant their own color were grouped into the “Other” categories. Each tree is titled with the
KO ID, gene names, enzyme names, and Enzyme Commission number. Sequences from the
four organisms in this study are indicated by symbols and text with an organism-specific color.
These sequences show additional information in the text boxes; The top text line indicates the
UniProt ID, the gene name, and the locus ID (in parentheses). The bottom text line indicates all
metabolites with which the enzyme has at least one significantly interacting peptide at low or
high concentration. Scale bars indicate substitutions per site.



Figure S11. Comparison between protein-metabolite interactions and acetylated or propionylated
proteins in Synechocystis. Proteins in Synechocystis were divided into modified (opaque stacked bars
on the left) and unmodified (transparent stacked bars on the right) categories based on post-translational
acetylation (Mo et al. 2015) or propionylation (Yang, Huang, and Ge 2019). Labels indicate the fraction
(%) metabolite-interacting proteins in each stack of bars. The fractions of modified and unmodified
proteins that also interacted with high or low concentration acetyl-CoA (AcCoA), ATP, citrate (Cit),
glyceraldehyde 3-phosphate (GAP), NADPH, or ribulose 1,5-bisphosphate (RuBP) were compared with
Fisher’s exact test, revealing significant overlaps (p < 0.01) where panels have a solid frame. A dashed
frame indicates no significant overlap between post-translational modification and protein-metabolite
interaction.

https://paperpile.com/c/EX5fF3/EKhr
https://paperpile.com/c/EX5fF3/aHZg


Figure S12. Log2 fold change and significance of detected proteins in presence of  2mM
ATP at different Mg2+ concentrations. The extracted proteome of Synechocystis sp. PCC6803
was treated with 2 mM ATP and either 1 or 3 mM MgCl2 and compared to a sample without ATP
but with the same concentration MgCl2. Each protein detected in both treated and untreated
samples are represented by one dot with significantly (q < 0.01) changed proteins in red. The
effect of ATP treatment is mitigated by an increased MgCl2 concentration.



Figure S13. AMP effect on thermal stability of Synechocystis (6083) and Cupriavidus
(H16) F/SBPase. Curves indicate denaturation of F/SBPase over a temperature gradient of  1
°C/min. Y-axis shows the change in the ratio of protein autofluorescence  350 nm/330 nm), and
minimum values indicate the melting temperature (Tm) at which half of the enzymes are
denatured.



Figure S14. Glyceraldehyde-3-phosphate (GAP) effect on thermal stability of
Synechocystis F/SBPase at different Mg2+ concentrations. Curves indicate denaturation of
F/SBPase over a  temperature gradient of 1 °C/min. Y-axis shows the change in the ratio of
protein auto fluorescence  (350 nm/330 nm), and minimum values indicate the melting
temperature (Tm) at which half of the enzymes are denatured.



Figure S15. NADPH effect on thermal stability of Synechocystis (6803) and Cupriavidus
(H16) F/SBPase. Curves indicate denaturation of F/SBPase over a temperature  gradient of 1
°C/min. Y-axis shows the change in the ratio of protein auto- fluorescence (350 nm/330 nm),
and minimum values indicate the melting temperature (Tm) at which half of the enzymes are
denatured.



Figure S16. Citrate effect on thermal stability of Synechocystis F/SBPase at different Mg2+

concentrations. Curves indicate denaturation of F/SBPase over a  temperature gradient of 1
°C/min. Y-axis shows the change in the ratio of protein auto- fluorescence (350 nm/330 nm),
and minimum values indicate the melting temperature (Tm) at which half of the enzymes are
denatured. Addition of 5 mM citrate results in a Tm shift that corresponds to a ~1:1 chelation of
Mg2+.



Figure S17. Kinetic profiles of C. necator transketolase with added metabolites. Each
kinetic profile was characterized by calculating reaction rates for eight different substrate
concentrations in triplicates. A new untreated enzyme control was run in parallel with each
treated sample. No standard curves were used and as such the reaction rate was never
quantified.



Figure S18. Kinetic profiles of Synechocystis sp. PCC6803 transketolase with added
metabolites. Each kinetic profile was characterized by calculating reaction rates for eight
different substrate concentrations in triplicates. A new untreated enzyme control was run in
parallel with each treated sample. No standard curves were used and as such the reaction rate
was never quantified.



Figure S19. Kinetic profiles of the F/SBPases with added metabolites. Each kinetic profile
was characterized by calculating reaction rates for eight different substrate concentrations in
triplicates. A new untreated enzyme control was run in parallel with each treated sample.



    

Figure S20. Kinetic analysis of the F/SBPase R194H from Synechocystis. The enzyme is
AMP insensitive, but retains sensitivity to GAP and NADPH., consistent with binding sites of
GAP and NADPH as detected by LiP being distinct from AMP.
 



Figure S21. Distributions of metabolite concentrations of the 5000 fMCSs created by
random sampling. Metabolite concentrations were randomly sampled via a hit-and-run
approach as described in the method section, resulting in 5000 thermodynamically feasible
metabolite concentration sets.



Figure S22. Tendency of metabolite concentrations to be associated with more or fewer
stable states. Metabolite concentration distributions corresponding to the top and bottom 10%
number of stable states for all four model variants (“Base”, “FSBPase”, “TKT”, “Both”). The
narrow concentration ranges for CIT and 2OG taken from (Asplund-Samuelsson, Janasch, and
Hudson 2018) make the corresponding plots look line-like.

https://paperpile.com/c/EX5fF3/AlSr
https://paperpile.com/c/EX5fF3/AlSr


Figure S23. Statistically testing the differences in metabolite concentration distributions
with most stable states between the model variants. The metabolite concentrations leading
to most stable states (top 10%) were tested for statistically significant differences in their
distributions between the four model variants (“Base”, “FSBPase”, “TKT”, “Both”) using a
two-sided Kolmogorov-Smirnov test, significance at p < 0.05.



Figure S24. Flux control coefficients for all reactions in the model. Median FCCs and MAD
values were calculated over all stable parameter sets for all four model variants as described in
the methods section.



Table S1. Chosen concentrations (mM) for every used metabolite and boundary values found in literature.
The metabolite concentrations chosen for the LiP-SMap experiments in mM, the highest and lowest concentration found in literature,
in mM (Table S2), and the highest and lowest concentrations allowed in the thermodynamically constrained model of
Asplund-Samuelsson et al. 2018. In addition to the values shown below, several other reports have shown that metabolite
concentrations can vary stongly across different conditions (Lempp et al. 2019; Marcus, Harel, and Kaplan 1983). As such we
decided to use similarly high concentrations for our experiments to make sure few metabolite affectors were missed.

https://paperpile.com/c/EX5fF3/gkHc+Be0W


Table S2. All metabolite concentrations found across 7 metabolomics studies in mM.
Absolute metabolite concentrations found in literature. All values obtained from articles studying cyanobacteria were converted from
μmol per gram cell dry weight to millimolar. This was done by calculating the amount of cell volume per gram dry weight from the
values reported by Zavřel et al. for a growth rate of 0.05 h-1 (Zavřel et al. 2019). The cell volume was calculated from the cell diameter
and multiplied by the cell count per liter culture to obtain the total cell volume per liter culture. This was then divided by the dry weight
per liter cell culture, giving the amount of cell volume per dry weight.

References: (Bennett et al. 2009; Nishiguchi et al. 2019; Yoshikawa et al. 2013; Shastri and Morgan 2007; Hasunuma et al. 2013;
Dempo et al. 2014; Takahashi, Uchimiya, and Hihara 2008)

https://paperpile.com/c/EX5fF3/Io6c
https://paperpile.com/c/EX5fF3/jirK+65Rf+eKbE+TwL0+vb4i+UISY+YwTZ
https://paperpile.com/c/EX5fF3/jirK+65Rf+eKbE+TwL0+vb4i+UISY+YwTZ


Table S3. Changes in fructose/sedoheptulose bisphosphatase kinetic parameters in the
presence of metabolites. The changes in kinetic parameters are presented as percentages of
the parameters of the untreated control sample, with statistically significant changes outlined in
blue.



Table S4. Changes in transketolase kinetic parameters in the presence of metabolites.
The changes in kinetic parameters are presented as percentages of the parameters of the
untreated control sample, with statistically significant changes outlined in blue.
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