Data-Driven Control and Data-Poisoning attacks in Buildings: the KTH Live-In Lab case study

Alessio Russo†, Marco Molinari‡ and Alexandre Proutiere§

Abstract—This work investigates the feasibility of using input-output data-driven control techniques for building control and their susceptibility to data-poisoning techniques. The analysis is performed on a digital replica of the KTH Live-in Lab, a non-linear validated model representing one of the KTH Live-in Lab building testbeds. This work is motivated by recent trends showing a surge of interest in using data-based techniques to control cyber-physical systems. We also analyze the susceptibility of these controllers to data poisoning methods, a particular type of machine learning threat geared towards finding imperceptible attacks that can undermine the performance of the system under consideration. We consider the Virtual Reference Feedback Tuning (VRFT), a popular data-driven control technique, and show its performance on the KTH Live-In Lab digital replica. We then demonstrate how poisoning attacks can be crafted and illustrate the impact of such attacks. Numerical experiments reveal the feasibility of using data-driven control methods for finding efficient control laws. However, a subtle change in the datasets can significantly deteriorate the performance of VRFT.

I. INTRODUCTION

Recent trends have shown a surge of interest in methods that intelligently learn from the data. This trend is motivated by recent successes in using deep-learning based methods for supervised learning tasks. Similarly, data-driven control approaches, which are adaptive control methods, have gathered much attention over the last few decades [1]–[5], since they permit to directly compute a control law from experimental data gathered on the plant. Data-driven control methods avoid identifying a model for the plant, which is particularly troublesome in those cases where it is difficult to derive, from first-principles, a mathematical description of the system, thus enabling direct data-to-controller design.

In this work, we analyze the feasibility of using the Virtual Reference Feedback Tuning (VRFT) method [1], [5], [6] for temperature control in buildings. VRFT, compared to other data-driven control methods, such as those based on Willems’ lemma [4], [7], allows to specify the requirements of the closed-loop, and aims at deriving a control law that satisfies these prescribed requirements. This particular feature of VRFT, coupled with the fact that the method is straightforward to apply, makes it appealing to use in many control scenarios: from wastewater treatment [8] to unmanned aerial vehicle control [9] and control of solid oxide fuel cells [10]. Despite these advantages, the performance of VRFT is tightly coupled with the data being used. Consequently, it inherits the weaknesses of using data-based methods. For example, recently, it has been shown that a malicious agent can severely affect the performance of classifiers at test time by means of slight changes in the data used at training time [11]–[13]. A recent analysis demonstrated that data-driven control techniques are also affected by this particular attack for simple PID-like controllers [14], whilst the case where VRFT is used with non-linear controllers is left unexplored. Similar attacks, conducted at test time, have also been shown to work in the case of systems controlled by means of Reinforcement Learning [15].

Contributions. The objectives of this work are twofold: (1) we first analyze the feasibility of using VRFT for temperature control in buildings. This is validated by using a digital replica of the KTH Live-In Lab testbed [16], a model of the real building set up using IDA Indoor Climate and Energy (IDA ICE) [17], a software used to simulate buildings performance. (2) We then analyze the susceptibility of VRFT to data poisoning attacks, using the IDA ICE environment. We believe this is an important example of how data-driven control laws can be attacked. In buildings, the probability of sensors being hijacked is far from remote, and a malicious agent can use the data in several ways. This data could be used to determine the number of people present in the building or be poisoned to decrease the building’s energy efficiency. Gartner [18] predicts that through 2022 30% of all AI cyberattacks will leverage training-data poisoning, AI model theft, or adversarial samples to attack AI-powered systems. In [19], Microsoft engineers analyzed 28 companies and found out that only 3 of them have the right tools in place to secure their ML systems. This further stresses the importance of studying such problems.

Organization of the paper: §II introduces the notation, the VRFT method, and the KTH Live-in Lab Testbed, a smart residential building located at the KTH campus. In §III, the VRFT method is used to derive a controller that can control the temperature in the KTH Live-in Lab testbed’s model. Finally, in §IV, the data poisoning attack from [14] is presented and applied to the VRFT method introduced in §II.

II. BACKGROUND AND PRELIMINARIES

A. Notation

We consider discrete-time models, indexed by $t \in \mathbb{N}_0$, and we will indicate by $[N]$ the sequence of integers from 0 to N.
We denote by z the one-step forward shift operator and by H_2 the Hardy space of complex functions which are analytic in $|z| < 1$ for $z \in \mathbb{C}$. For a vector $x \in \mathbb{R}^n$ and a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, we denote by $\nabla_x f(x)$ the n-dimensional vector of partial derivatives, where each element is $\partial_x_i f(x)$ with $\partial_{x_i} = \frac{\partial}{\partial x_i}$. We will describe a linear time-invariant system in the following way for $t \in \mathbb{N}_0$:

$$
\begin{align*}
x_{t+1} &= Ax_t + Bu_t, \quad x_0 \in X_0, \quad (1) \\
y_t &= Cx_t + Du_t, \quad (2)
\end{align*}
$$

where $x_t \in \mathbb{R}^n$ is the state of the system, $u_t \in \mathbb{R}$ is the exogenous input, $y_t \in \mathbb{R}$ is a vector of measurements and X_0 is a closed-convex subset of \mathbb{R}^n. We can equivalently use transfer function notations and denote the input-output relationship using the transfer function $G : y_t = G(z)u_t$, with $G(z) = C(zI - A)^{-1}B + D$. We also denote the multiplication of two transfer functions $G(z)$ and $L(z)$ by $GL(z)$ (similarly for the sum). Finally, we will denote by $X_T = [x_0, ..., x_T]^T$ a matrix of dimensions $(T + 1) \times n$ containing a collection of state measurements of the system, for $T \in \mathbb{N}_0$. Similarly, we also define U_T and Y_T.

B. Virtual Reference Feedback Tuning

In the following, we will denote by $\mathcal{D}_N = (U_N, Y_N)$ the data available to the learner that comes from experiments on the plant, with $N > 1$. This data will be used to learn the control law, and it is usually assumed to have been taken in open-loop conditions. In VRFT [1], the design requirements are encapsulated into a reference model $M_r(z)$ that captures the desired closed-loop behavior from r_t to y_t, where $r_t \in \mathbb{R}$ is the reference signal. We assume that M_r satisfies some realizability assumptions, such as being a proper stable transfer function.

In VRFT we wish to find a controller $K_\theta(z)$, parametrized by a vector of $n_k \in \mathbb{N}$ parameters $\theta \in \mathbb{R}^{n_k}$, that reduces the distance between the reference model and the closed-loop system in the H_2 norm sense. Define $\Delta_\theta(z) = M_r(z) - [(I + GK_\theta)^{-1}GK_\theta(z)]$, then the objective function to minimize is chosen as

$$
J_{MR}(\theta) = \|M_r(z) - [(I + GK_\theta)^{-1}GK_\theta(z)]\|_2^2 \quad (3)
$$

where

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \text{Tr} \left[\Delta_\theta(e^{j\omega})\Delta_\theta^\top(e^{-j\omega}) \right] \, d\omega. \quad (4)
$$

One can immediately observe that $J_{MR}(\theta)$ is non-convex in θ. To address this difficulty, the following assumption [1], [3], [6] is often used:

Assumption 1. The sensitivity function $I - M_r(z)$ is close (in the H_2 norm sense) to the actual sensitivity function $(I + GK_\theta)^{-1}(z)$ at the minimizer $\hat{\theta}$ of (3).

This assumption allows us to instead consider the following criterion

$$
\hat{J}_{MR}(\theta) = \|M_r(z) - [(I - M_r)GK_\theta(z)]\|_2^2. \quad (5)
$$

Minimizing (5) can be cast [1] as a problem that involves minimizing the difference between the input signal u_t, injected during the experiments, and the control signal $K_\theta(z)e_t$, computed using the virtual error signal e_t. The latter is defined as $e_t = r_t - y_t = (M_r^{-1}(z) - 1)y_t$, where $r_t = M_r^{-1}(z)y_t$ is the virtual reference signal, computed using the reference model $M_r(z)$. Unfortunately, this minimization leads to a biased estimate of the minimizer if the controller for which the cost function to zero is not in the controller set. To address this problem, it is possible to introduce a filter $L(z)$ that pre-filters the data \mathcal{D}_N, as shown in [1]. Then, assuming that the data has already been pre-filtered using $L(z)$, we can introduce the criterion that is actually minimized instead of (5):

$$
J_{VR}(\theta, \mathcal{D}_N) = \frac{1}{N + 1} \sum_{t=0}^{N} \|u_t - K_\theta(z)e_t\|_2^2. \quad (6)
$$

It is possible to prove [1] that for stationary and ergodic signals $\{y_t\}$ and $\{u_t\}$ the following asymptotic result holds:

$$
lim_{N \rightarrow \infty} J_{VR}(\theta, \mathcal{D}_N) = J_{VR}(\theta), \text{ where}
$$

$$
J_{VR}(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \text{Tr} \left[\Delta_\theta(e^{j\omega})\Phi_\beta(\omega)\Delta_\theta^\top(e^{-j\omega}) \right] \, d\omega.
$$

$\Delta_\theta(z) := I - [K_\theta(I - M_r)G](z)$, with Φ_β being the power spectral density of u_t. Let K^\star denote the minimizer over all possible transfer functions $K(z)$ of $\|M_r(z) - [(I - M_r)GK(z)]\|^2_2$. If $K^\star \in \{K_\theta(z) : \theta \in \mathbb{R}^{n_k}\}$, then K^\star is also the minimizer of (6). Otherwise, one can properly choose a filter $L(z)$ to filter the experimental data so that the minimizer of (6) and (5) still coincide (refer to [1] for details). In the following we assume the control set is linearly parametrized in terms of a basis of transfer functions $\beta(z) = [\beta_1(z) \ldots \beta_{n_k}(z)]$ of dimension n_k.

Assumption 2. The control law K is represented by an LTI system $K_{\theta}(z)$ that is linearly parametrized by $\theta \in \mathbb{R}^{n_k}$, and we will write $K_\theta(z) = \beta_\top(z)\theta$, with $\beta(z)$ being a vector of linear discrete-time transfer functions of dimension n_k.

Assumption 2 includes different types of control law, such as PID, and can be relaxed to other types of models, including neural networks [5], [20].

C. KTH Live-In Lab Testbed and IDA ICE

The Live-In Lab Testbed KTH [16] (see Fig. (1)) is located in one of Einar Mattsson’s three plus-energy buildings (see Fig. (2)) in the KTH Main Campus, in Stockholm. The Testbed KTH premises feature a total of approximately 305 m² distributed over 120 m² of living space, 150 m² of technical space, and an office of 20 m². The modeled living space features four apartments; each apartment has a separate living room/bedroom and a bathroom and shares the kitchen as a common space. Space heating is provided via ventilation. The testbed, which is part of the larger Live-In Lab testbed platform, is designed to be energetically independent, with dedicated electricity generation systems through PV panels, heat generation (ground source heat pumps), and storage (electricity and heat) systems. Sensors are extensively used to monitor and control the indoor climate, to improve energy.
efficiency, study user behavior, and to improve control and fault detection strategies.

In this paper, a digital replica of the testbed that focuses on one apartment was created using the IDA ICE software [17]. IDA ICE is a state-of-the-art dynamic simulation software for energy and comfort in buildings. In order to assess the control laws that we derived, we set up a co-simulation environment that allowed IDA ICE and a Python script to communicate and exchange data through APIs available in IDA ICE.

III. VRFT METHOD AND TEMPERATURE CONTROL

In this section, we shortly describe how the VRFT method is applied to derive a controller. (1) We briefly illustrate the HVAC (Heating, ventilation, and air conditioning) architecture of the testbed; (2) outline the usage of VRFT; (3) conclude with a performance analysis of the derived controllers.

A. Method and experiments

HVAC architecture. Fig. (3) shows a model of the HVAC architecture of the Live-In Lab Testbed KTH. VRFT is applied to the ventilation control unit that regulates the amount of airflow supplied from the central Air Handling Unit (AHU) to the various apartments in the buildings. Measurements coming from the apartment include the temperature $T(t)$ and CO$_2(t)$ readings, sampled every 540 seconds (9 minutes).

Experiment setup. The first step involves designing an experiment that permits the user to gather informative data from the plant. The data is then used to compute a control law by means of VRFT. We decided to gather data from an empty apartment during winter months, in order to test temperature control. To emulate real weather conditions, we used weather data from the local station in Bromma. The simulations were conducted in open-loop, and the input data u_t was chosen to be distributed according to a Gaussian distribution $N(\mu, \sigma^2)$. Since the amount of airflow can be expressed as a percentage, the input data was clipped between 0 and 1.

However, due to this saturation effect, one needs to pay extra attention while designing the experiments. To that aim, we designed two scenarios: scenario (A), where the mean of the control law is $\mu = 0.5$ and the standard deviation is $\sigma = 1/6$; scenario (B), where the parameters are set to $\mu = 0.5$ and $\sigma = 1$. Scenario (B) represents the case where the user does not take into consideration the saturation effect. In contrast, in scenario (A) we are guaranteed that with 99% probability the control action u_t belongs to $[0, 1]$ (at the cost of having a crest factor of 3). Lastly, we considered the amount of data gathered for the training process. We decided to consider two cases: one where $N = 100$ data points are used (roughly 10 hours of data with a sampling time of 540 seconds), and the other one where $N = 1000$ data points are used (that is 150 hours of data). Finally, we generated 50 sets of simulations for each scenario to average out results.

Reference model and control law. In VRFT, the user specifies the closed-loop system’s design requirements by choosing a specific reference model $M_r(z)$. This model, together with the data gathered during the experiments, is used to derive a control law $K\theta(z)$. We opted for a simple reference model, and assumed that the closed-loop response of the system can be well represented by a second-order system. In practice, we assumed that it takes approximately one hour for the heating system in consideration to increase the temperature from 15° to 21° degrees Celsius in the apartment. Consequently, we have chosen a reference model of the type

$$M_r(z) = \frac{(1 - \lambda)^2}{z^2 - 2\lambda z + \lambda^2},$$

where $\lambda = e^{-T_s \omega_0}$ with $\omega_0 = 0.002$ [rad/s] and $T_s = 540$ [s]. Fig. (5) shows the response of $M_r(z)$ to a step signal (with amplitude 21, starting from an initial temperature of roughly 15° [C]), and its Bode plot. All the data was pre-filtered using a filter $L(z) = (1 - M_r(z))M_r(z)$ (as explained
in §II; or see [1] for more details). Finally, we chose $K_\theta(z)$ to be a PID controller, of the form

$$K_\theta(z) = \beta^T(z)\theta = \sum_{k=1}^{3} \theta_k \frac{z^{-k+2}}{\beta_k(z)}.$$

This is one of the simplest, and most widely used controller. Moreover, it has a linear structure, which makes it feasible to use with VRFT. Future work involves the analysis of more complex controllers, such as neural networks.

B. Performance validation and results

Validation of the controllers. We conducted 50 different simulations for each scenario, for a total of 200 simulations. The performance of each controller $K_{\theta(i)}(z)$, where $\theta(i)$ is the parameter vector of the i-th controller (one for each simulation, i.e., $i = 1, \ldots, 200$), was validated over a temporal period of 2 weeks (2240 data points). During those 2 weeks, the apartment was occupied by one person (according to the occupancy profile shown in Fig. (6)).

Performance criteria. The performance of a controller $K_{\theta(i)}(z)$ was evaluated on the basis of two criteria: (1) the RMSE of the temperature signal $\epsilon_{\text{RMSE}} = \sqrt{\frac{1}{T} \int_0^T (T(s) - \tau(s))^2 \text{d}s}$, where $T(t)$ is the temperature of the living room, and $\tau(t)$ is a constant reference temperature of 21°C [C]; (2) the average power spectral density of $T(t)$; $\epsilon_{\text{PSD}} = \frac{1}{1/(2T_s)} \int_0^{T/(2T_s)} S_T(f) \text{d}f$, where $1/(2T_s)$ is the Nyquist frequency and $S_T(f)$ is the power spectral density (PSD) of the temperature $T(t)$ (computed using Welch’s method).

Results and discussion. A summary of the results are shown in Fig. (4) and in Table (I). We decided to classify $K_{\theta(i)}(z)$ to be a “good” controller if the following ellipse condition $\epsilon_{\text{RMSE}}^2 + (\epsilon_{\text{PSD}})^2 \leq 1$ is satisfied. This condition guarantees that $K_{\theta(i)}(z)$ satisfies good tracking performance, and small oscillations. Overall, we found no major difference in performance by using 100 or 1000 data points for Scenario A, whilst there is a clear difference in using 100 or 1000 datapoints for scenario B. In the latter case, using fewer points may result in controllers with poor performance, as indicated by the results. Surprisingly, using 1000 datapoints for scenario B results in high performance controllers. Nonetheless, the difference with controllers found in scenario A is minimal.

![Fig. 6: Occupancy of the apartment over 2 weeks. We assumed there is only one person living in the apartment.](image)

![TABLE I: For each scenario are shown the average value and confidence level at 95% computed over 50 simulations. Percentage of good controllers indicates the proportion of controllers that falls inside the ellipse $\epsilon_{\text{RMSE}}^2 + (\epsilon_{\text{PSD}})^2 = 1$.](image)

<table>
<thead>
<tr>
<th>Scenario [N = 100]</th>
<th>VRFT Loss</th>
<th>RMSE</th>
<th>Avg PSD</th>
<th>% good controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario A</td>
<td>36 ± 01</td>
<td>13 ± 01</td>
<td>17.57 ± 2.25</td>
<td>100%</td>
</tr>
<tr>
<td>Scenario B</td>
<td>36 ± 01</td>
<td>70 ± 02</td>
<td>25.82 ± 7.45</td>
<td>85%</td>
</tr>
<tr>
<td>Scenario [N = 1000]</td>
<td>VRFT Loss</td>
<td>RMSE</td>
<td>Avg PSD</td>
<td>% good controllers</td>
</tr>
<tr>
<td>Scenario A</td>
<td>36 ± 01</td>
<td>14 ± 01</td>
<td>15.46 ± 3.48</td>
<td>100%</td>
</tr>
<tr>
<td>Scenario B</td>
<td>36 ± 01</td>
<td>70 ± 02</td>
<td>25.82 ± 7.45</td>
<td>85%</td>
</tr>
</tbody>
</table>

IV. DATA POISONING OF VRFT

In this section, we first present the data poisoning attack, introduced in [14], which inherits the main characteristics of the attack formulated in [11]. We then apply the poisoning attack to the data used in the previous section to compute VRFT, and conclude with a performance analysis of the poisoned controllers.

![Fig. 4: Results for the VRFT method. Results on the left are distributed according to the RMSE and the average PSD, computed over two weeks of data (each point is a simulation). Only scenario B, with 100 data points, yields poor performance controllers (6 of them have an RMSE that is roughly 5°C [C]). As an example, a controller from Scenario B is shown at the top right, whilst at the bottom right is shown a controller with good performance from Scenario A.](image)
A. Attack framework and setup

Attack formulation. We now assume that a malicious agent has access to the experimental data D_N, and knows the reference model $M_r(z)$ used by VRFT to identify a controller. The goal of the malicious agent is to degrade the performance of the resulting closed-loop system by subtly changing the dataset D_N.

We denote the malicious signal on the actuators by $a_u \in \mathbb{R}^m$, and respectively by $a_y \in \mathbb{R}^p$, the attack signals on the sensors at time t. The new input and output data points in the dataset at time t are, respectively, $u'_t = u_t + a_u,t$ and $y'_t = y_t + a_y,t$. We denote the corrupted dataset by $D'_N = (U'_N, Y'_N)$ where $U'_N = \left[u'_0 \quad u'_1 \quad \ldots \quad u'_N \right]^T$, and similarly $Y'_N = \left[y'_0 \quad y'_1 \quad \ldots \quad y'_N \right]^T$. We focus our attention on the attack on the model output, introduced in [14], which is casted as a bi-level optimization problem

$$\begin{align*}
\max_{U'_N, Y'_N} & \quad J_{\text{VR}}(\hat{\theta}, D'_N), \\
\text{s.t.} & \quad \hat{\theta}' = \arg \min_{\theta} J_{\text{VR}}(\theta, D'_N), \\
& \quad \|U'_N - U_N\|_2 \leq \delta_u, \quad \|Y'_N - Y_N\|_2 \leq \delta_y,
\end{align*} \tag{7}$$

where the constraints limit the amount of change applied to the dataset D_N. In a maxmin attack, the malicious agent aims at maximizing the learner’s loss. By choosing this cost function, the malicious agent is implicitly maximizing the residual error $\|M_r(z) - [(I - M_r)GK_b](z)\|_2$ (as $N \to \infty$). Despite the simplicity of this criterion, the resulting closed-loop system may remain stable, or just be slightly affected by the attack. One can formulate alternative criteria, but for the sake of simplicity, we will restrict our analysis to the maxmin attack.

Moreover, we want to highlight a few differences compared to classical data poisoning in supervised learning models. First, there is no label for the data, which implies that we cannot merely maximize the probability of classification error. Second, the problem involves two sets of data, the input U_N, and the output data Y_N. Since the dependency of the solution may depend in a complicated way on U_N and Y_N, the problem is harder.

Convexity. It can be shown that the optimization problem (7) is convex in U' for a fixed Y'. Therefore, the maximum over U', for some Y', is attained on some extremal point of the feasible set. To find the optimal attack vector on the input, one can use, for example, disciplined convex-concave programming (DCCP) [21]. However, convexity with respect to Y' does not hold. Therefore, we decided to use gradient ascent methods to compute a solution.

Algorithm and setup. Based on the previous discussion, we use Alg. (1) to approximately solve problem (7). We first perform a change of variables $A_u = U'_N - U_N$ and $A_y = Y'_N - Y_N$, and then solve the problem in the new variables (A_u, A_y). The algorithm first solves (7) in the input variable A_u using DCCP, and then in the output variable A_y using PGA (Projected Gradient Ascent). For both DCCP and PGA, we pick uniformly at random 20 initial points at every iteration. The algorithm stops whenever the increase between one iteration and the other is not greater than a fixed user-chosen value $\eta > 0$.

\begin{algorithm}
\caption{Max-min attack algorithm} \label{alg:maxmin}
\begin{algorithmic}[1]
\State δ_u, δ_y, η \Comment{ Initialize algorithm }
\State $\hat{\theta}' \leftarrow \arg \min_{\theta} J_{\text{VR}}(\theta, U'_N + A_u, Y'_N + A_y)$
\Do
\State $A_u^{(i+1)} \leftarrow$ solve (7) in A_u using DCCP
\State $A_y^{(i+1)} \leftarrow$ solve (7) in A_y (using $A_u^{(i+1)}$) with PGA
\State $\hat{\theta}'^{(i)} \leftarrow \arg \min_{\theta} J_{\text{VR}}(\theta, U'_N + A_u^{(i+1)}, Y'_N + A_y^{(i+1)})$
\State $i \leftarrow i + 1$
\While{ $J_{VR}(\hat{\theta}'^{(i)}, U'_N, Y'_N) - J_{VR}(\hat{\theta}'^{(i-1)}, U'_N, Y'_N) > \eta$ }
\EndWhile
\Return $D'_N = (U'_N + A_u^{(i)}, Y'_N + A_y^{(i)})$
\end{algorithmic}
\end{algorithm}

B. Performance and results

Setup. As in the previous section, we consider 4 configurations: Scenario A with 100/1000 data points, and similarly Scenario B. For each configuration, we chose δ_u and δ_y in (7) as $\delta_u = \varepsilon_u \|U_N\|_2$ and $\delta_y = \varepsilon_y \|U_N\|_2$, where $\varepsilon_u, \varepsilon_y$ are positive parameters in $[0, 1]$ that we used as control knobs to vary the amount of change in D_N. For simplicity, we also assumed that the data has already been pre-filtered using the filter $L(z)$.

Results. The main result is shown in Fig. (7), whilst in Fig. (8) is shown an example of poisoned dataset for Scenario A.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig8.png}
\caption{Example of poisoned (pre-filtered) data for scenario A with 1000 data points, and ($\varepsilon_u, \varepsilon_y$) = (0.1, 0.2).}
\end{figure}

Due to the large number of simulations performed, we decided to summarize results and show the average value for each configuration in Fig. (7). This means that each point in the two left plots of Fig. (7) represents the average across 50 simulations (on top of each point are written the values of $\varepsilon_u, \varepsilon_y$). The average values for the unpoisoned case are also shown, which can be used as reference values to understand the attack’s impact. As expected, from the plots, one can immediately perceive that Scenario B is more susceptible
to the attack. However, Scenario A, for a large number of data points, is also significantly affected by the attack, while using a low number of data points seems to improve robustness. Unfortunately, as depicted in Fig. (8), minimal changes lead to a substantial performance degradation, as shown in the bottom right plot in Fig. (7). These results stress the importance of designing experiments properly, and make sure that the gathered data is secured.

V. CONCLUSION

In this work, we have shown the feasibility of VRFT, an input-output data-driven method, for comfort control in buildings, namely temperature control, and analyzed the impact of the maximin data poisoning attack. VRFT has been validated on a digital replica of the KTH Live-In Lab, modeled using IDA-ICE, showing good performance and small tracking error. We then analyzed the impact of data poisoning attacks, which revealed that small changes in the dataset could disrupt the controller’s performance. Results also indicated that smaller datasets are more robust to data poisoning attacks, while datasets naively constructed are more susceptible to the attack, resulting in substantial performance degradation. This stresses the importance of securing the data used to derive the control law.

ACKNOWLEDGEMENTS

This work was supported by the Swedish Foundation for Strategic Research through the CLAS project (grant RIT17-0046).

REFERENCES

