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Human-Feedback Shield Synthesis for Perceived
Safety in Deep Reinforcement Learning

Daniel Marta, Christian Pek, Gaspar I. Melsión, Jana Tumova, and Iolanda Leite

Abstract—Despite the successes of deep reinforcement learning
(RL), it is still challenging to obtain safe policies. Formal verifi-
cation approaches ensure safety at all times, but usually overly
restrict the agent’s behaviors, since they assume adversarial
behavior of the environment. Instead of assuming adversarial
behavior, we suggest to focus on perceived safety instead, i.e.,
policies that avoid undesired behaviors while having a desired
level of conservativeness. To obtain policies that are perceived
as safe, we propose a shield synthesis framework with two
distinct loops: (1) an inner loop that trains policies with a set
of actions that is constrained by shields whose conservativeness
is parameterized, and (2) an outer loop that presents example
rollouts of the policy to humans and collects their feedback
to update the parameters of the shields in the inner loop.
We demonstrate our approach on a RL benchmark of Lunar
landing and a scenario in which a mobile robot navigates around
humans. For the latter, we conducted two user studies to obtain
policies that were perceived as safe. Our results indicate that
our framework converges to policies that are perceived as safe,
is robust against noisy feedback, and can query feedback for
multiple policies at the same time.

Index Terms—Safety in HRI, Human Factors and Human-in-
the-Loop, Reinforcement Learning.

I. INTRODUCTION

DEEP reinforcement learning (RL) has proven to be suc-
cessful in enabling autonomous robots to solve complex

tasks in challenging and high-dimensional, real world envi-
ronments. In RL, an agent interacts with an environment by
executing (continuous) actions in it and collecting rewards at
each time step. These experiences (tuples of states, actions and
rewards) are used to train an optimal policy that maximizes the
cumulative reward of the agent in the environment. In addition,
for many RL agents, such as the one illustrated in Fig. 1, the
trained policy needs to be safe. Broadly speaking, it needs to
avoid undesired states, or undesired state sequences.

Safety in RL has been approached from various angles; one
of them is to encode negative rewards that penalize undesired
behaviors of the system during training, or to handcraft
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Fig. 1: In social navigation tasks, safe policies need to avoid colliding with
obstacles in the environment. Yet, keeping too much safe distance to obstacles
may lead in overly conservative behavior. Determining the safe distance that
users perceive as safe requires human feedback when learning optimal RL
policies.

policies. However, reward engineering and policy tuning are
tedious tasks and often not very effective to increase safety in
a systematic way. Another (quite conservative) approach is to
limit the set of applicable actions in each state of a Markov
Decision Process when an immediate next action may lead
to catastrophic failures [1]. Shielding does so with the use of
formal methods [2], [3] and evaluates safety (i.e. satisfaction of
a formal specification) of each action in the current situation.
It allows the agent to only apply actions that are provably
safe under all circumstances. In human-in-the-loop scenarios,
the worst-case scenario corresponds to the overly conservative
assumption that a human is an adversarial agent. The resulting
policies are hence often overly conservative in real-world
settings (see Fig. 1.c) if not leading to the freezing robot
problem in [4].

In this paper, we focus on RL agents interacting with
humans, and undesired behaviors defined as those that are
not perceived safe. Instead of building shields that assume
that humans are adversarial, we consider their feedback as
a way to improve the trained policies while avoiding unde-
sired behaviors (see Fig. 1.b). We propose to parameterize
the conservativeness of shields and dynamically update these
parameters through human feedback during learning.

A. Contributions

Our approach and contributions can be summarized as
follows. We propose:

1) a parameterized shield synthesis for constraining the
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continuous action space of an RL agent with desired level
of conservativeness,

2) an outer feedback loop in which humans evaluate per-
ceived safety of trained policies, and

3) an update mechanism of the shield parameters to synthe-
size shields that reflect the humans’ safety preferences
even if the feedback is noisy.

We evaluate the effectiveness of our approach by param-
eterizing the shields in a Lunar landing benchmark scenario
and demonstrate that the parameters of the shield significantly
influence the perceived safety of trained policies. In a second
scenario with a mobile robot that needs to reach goals while
avoiding collisions with humans, we obtain trained policies
that are perceived as safe by querying human preferences in
two user studies in environments with different number of
obstacles. We demonstrate that our framework converges to the
optimal shield parameters for perceived safety even with noisy
feedback of humans (inherently subjective), while accelerating
learning during iterations.

B. Related Work

Perceived safety is a key aspect to obtain comfortable and
socially accepted Human-Robot Interaction (HRI) [5], where
robot features (e.g, embodiment, gaze, speech) and abilities
adhere to social norms. Human-aware motion planners [6]–[8]
have been studied and demonstrated to make users feel more
safe around robots [9], [10]. Larger and faster robots have
been shown to lower comfort levels in humans [11]. Others
have studied how a robot’s proxemic behavior can influence
the user experience in HRI settings [12]. Recent work has
tried to incorporate human feedback within a reward shaping
mechanism with HRI metrics such as frustration [13]. Unlike
inverse reinforcement learning and other reward function syn-
thesis approaches encoding human preferences [14]–[16], in
this paper we maintain a simple and global objective, while
preventing undesired actions.

Several frameworks address (perceived) safety in RL by
deploying human intervention (human-in-the-loop) as a central
theme. However, they differ in how extensive and qualitative
this intervention should be. In [17], the authors propose human
experts to concretely intervene on different stages of the
training loop, thus avoiding catastrophic actions. Some works
adapt actor-critic and policy gradient methods to incorporate
human feedback, since the quality of trajectories can be
evaluated through the advantage function [18]. These models
drastically reduce the quantity of required human inputs. In
addition, other frameworks are able to keep the human at
the center of the agent’s design [19], by encoding tasks in
a number of subtasks and using behavioral primitives through
shorter demonstrations. However, the human input is portrayed
as concretely selecting sets of demonstrations as primitives,
as opposed to our work which considers feedback on a small
subset of rollouts of the trained policies.

Despite these works successfully including human feedback
as a core theme of their framework, they usually query humans
extensively throughout the learning, which can be a limitation
in real world scenarios, e.g., due to the availability of humans
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Fig. 2: Proposed shield synthesis framework for perceived safety. The inner
loop trains the agent based on a provided set of shields. The outer loop
generates examples of the trained policies and queries users for their feedback.
Based on the feedback, the outer loop updates shield parameter distributions
and synthesizes a new set of shields for the inner loop.

or delays in their feedback. We aim to query humans in an
online fashion as few as possible.

The concept of shielding has been introduced by [2], where
high-level restrictions are modeled through linear temporal
logic and converted to sets of safe actions. However, previous
approaches considered static shielding strategies, either mod-
eled à priori or devoid of any iterative human-feedback. To
our knowledge, this is the first time an interactive high-level
human feedback loop is included in shielding.

II. SHIELD SYNTHESIS THROUGH USER-FEEDBACK

Shielding in RL allows designers to restrict the feasible ac-
tions of the agent in order to achieve safe behaviors according
to a given safety specification, e.g., the agent needs to keep
a certain safe distance to obstacles. These shields generate a
set of safe actions that restricts the policy to follow the safety
specification. Yet, these shields often overly restrict the action
space, leading to conservative behaviors. We suggest to 1) pa-
rameterize the conservativeness of shields, e.g., the minimum
required distance to obstacles; and 2) to determine the optimal
parameters to achieve a desired level of conservativeness for
a given task or application by incorporating human feedback.

As a result, we combine the benefits of shielding the RL
agent and having a human in the learning loop to determine
optimal parameters of shields to obtain policies that are
perceived as safe. To apply our framework to existing RL
setups, we build a feedback loop around a given RL setup that
uses shielding. Fig. 2 illustrates our proposed shield synthesis
framework for perceived safety that is divided into an inner
and an outer loop.

The inner loop of the framework contains the given RL
setup and considers a set of designer-defined shields. The
initial shield parameters may be chosen to overly restrict the
agent’s set of actions to achieve safety. The agent chooses
one of the safe actions and applies it in the environment. The
policy is trained for a pre-defined number of episodes with the
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current set of shields. The trained policy is then forwarded to
our proposed outer loop.

In our added outer loop, we generate example rollouts of
the trained policies. These examples are shown to users, e.g.,
through crowdsourcing, to get feedback on the policies with
respect to their perceived safety given the current set of shield
parameters. We use this human feedback to update internal
shield parameter distributions, which model the guess of the
optimal shield parameters. With the updated distributions in
mind, we synthesize a new set of shields with updated shield
parameters and provide it to the inner loop. Both loops
alternate until the change of shield parameter distributions
is below a pre-defined threshold. As a result, we obtain the
optimal shield parameters and policy that users perceive as
safe, since human feedback converged.

A. Parameterized shields

We consider continuous deep reinforcement learning setups
with state spaces S ⊆ Rn, n ∈ N+, and action spaces A ⊂
Rm,m ∈ N+. The overall goal of the RL agent is to determine
a policy π : S → A that maps a given state s to an action
a. The optimal policy π⋆ maximizes the expected cumulative
reward of the agent.

We model shields as functions Ψ : S × R → pow(A)
(where pow denotes the power set) that map the agent’s state
and a shield parameter θ to a set of safe actions. The set
of safe actions is obtained as Asafe(s, θ) := Ψ(s, θ) ⊆ A.
For instance, θ might encode the minimum required safe
distance to obstacles in meters and the set of safe actions Asafe

ensures that the agent adheres to the required safe distance.
Our framework can consider a set of NΨ ∈ N+ shields
Ψi, i ∈ {1, ..., NΨ}, at the same time. In this case, we obtain
the safe actions as

Asafe(s, θ) :=

NΨ⋂
i=1

Ψi(s, θi), (1)

where θ = (θ1, . . . , θ2).

B. Shield and feedback distributions

We use distinct probability distributions to model the shield
parameters and the human feedback. This choice is motivated
by the fact that users might provide uncertain feedback, since
their ratings are subjective. With separate distributions, we are
able to provide estimates independently of the uncertainty in
the other distribution. Moreover, large shifts in the human
distribution will not immediately cause large shifts in the
shield distribution, resulting in smoother parameter changes
when restricting the number of samples taken from the hu-
man distribution. The inner loop of our framework considers
the shield parameter distribution θi ∼ fθi , where fθi is a
probability distribution that models shield parameter θi. The
shield parameter distribution is used to directly synthesize new
shields Ψi, i ∈ {1, ..., NΨ} by sampling candidate parameters
θi from fθi .

The outer loop translates the user feedback for parameter i
into parameter updates using the distribution fhi

. To simplify

the notation, we consider the parameter update for a single
parameter, allowing us to omit the index i. All of the following
steps are similarly applied to all parameters θi.

The distributions, fθ and fh, are differently updated
throughout the learning phase. While fh is inferred from the
empirical data of the users’ feedback using estimators for the
mean and variance, fθ is sequentially updated using Bayesian
inference from samples generated by fh. Both fθ and fh can
be represented by any mixture model, but for simplicity and
to take advantage of closed form solutions (conjugate priors
to infer the posterior of fθ), we consider them to be Normal
distributions, i.e., fθ = N (µθ, σ

2
θ) and fh = N (µh, σ

2
h) with

means µθ, µh and variances σ2
θ , σ

2
h.

C. Mapping human feedback

In the beginning of our framework, we initialize µθ and µh

with initial guesses or given initial values. By showing users
example rollouts of the current trained policies, we acquire
feedback for the parameter θ from humans in numerical or
symbolic form. For instance, one might use the following
symbols g ∈ H = {very unsafe, . . . ,fine, . . . , very safe},
where unsafe translates into the wish of decreasing (or in-
creasing) the parameter, fine to not update the parameter,
and very unsafe the wish of increasing (or decreasing) the
parameter. Nevertheless, developers may also design other
symbols and mappings in our approach. To integrate different
symbolic representations in our approach, we introduce a
mapping function that maps the user feedback into numerical
values for updating the feedback distribution:

map(gj) =



µh − |H|σ
2 if gj = very unsafe,

...
...

µh if gj = fine,
...

...
µh + |H|σ

2 if gj = very safe.

(2)

Note that in between those symbols, one can use an arbitrary
fine resolution depending on the application. Moreover, one
can also incorporate other mapping functions in our approach.

To update the feedback distribution, we first collect a dataset
of user feedback samples D = {g1, ..., gj}, gj ∈ H, j ∈
{1, . . . , Nuser}, where Nuser ∈ N+ is the number of collected
samples. Afterwards, we update the human parameter distri-
bution fh by computing the new mean uµθ and variance uσ2

h

as estimators from D with:

uµh =
1

Nuser

Nuser∑
j=1

map(gj), (3)

uσ2
h = max

(
1

Nuser

Nuser∑
j=1

(
map(gj)− (uµ2

h)
)
, σ2

min

)
, (4)

where σ2
min is the minimum considered human uncertainty,

provided to our framework by users as a design parameter.

D. Update of the shield distribution

After acquiring the human feedback, we use the updated
human feedback distribution fh as a generative model to
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improve our inner loop shield distribution fθ that is used to
synthesize new shield parameters for the next run of the inner
loop. This improvement is done by generating a pre-defined
amount of samples from fh. Since we are exemplifying with
Normal distributions for both, we can use Bayesian updates.

Let us consider a dataset of generated samples G from the
updated human distribution fh. We are interested in estimating
the true mean µ (which is equal to the mean of fθ and fh
after convergence to the human feedback) and assume σ to be
known and small, e.g., provided by designers. The likelihood
of the true parameter distribution is given by:

p(G|µ, σ2) =

|G|∏
j=1

p(xj |µ, σ2), xj ∈ G (5)

and the Bayesian update of fθ is given by the posterior

p̂θ(µ̂θ|G, σ̂2
θ) ∝ p(G|µ, σ2)pθ(µ|µθ, σ

2
θ), (6)

where µθ and σ2
θ are the prior and µ̂θ and σ̂2

θ the posterior
means and variances. Since we are using Gaussian distribu-
tions, we can compute µ̂θ and σ̂2

θ in closed-form [20]:

σ̂2
θ =

1
n
σ + 1

σ2
θ

, (7)

µ̂θ = σ̂2
θ

(
µθ

σ2
θ

+
nx̄

σ2

)
, (8)

where n = |G| and x̄ is the mean of the samples in G.
Since querying humans for feedback might be costly (e.g.,

time-wise), our approach also allows for querying feedback on
multiple policies at the same time. These multiple policies can
be trained with different shield parameters sampled from fθi .
Given independent feedback sample datasets D1, ..., Dj , j ∈
{1, . . . , Npolicies}, obtained through different policies with
shield values sampled from fθi , we may jointly assess them as
D = D1∪D2∪...∪Dj , j ∈ {1, . . . , Npolicies}. Thus evaluating
p(G1,G2, . . . ,GNpolicies

|µ, σ2) is equivalent to p(G|µ, σ2). In
this way, designers can accelerate the convergence of our
algorithm, since we can evaluate Npolicies policies in each
outer loop.

E. Algorithm and convergence criterion

Algorithm 1 summarizes the steps of our proposed human-
feedback shield synthesis for perceived safety, that is com-
prised by two distinct loops as illustrated in Fig 2. The outer
loop, which requests feedback from humans to update shield
distribution fh, and an inner loop where policy π interacts with
the environment, restricted by a shield Ψi(s, θi) with shield
parameters sampled from fθ. We repeat both loops, gathering
feedback (outer loop) from policies generated in the inner
loop, and training with synthesised shields until convergence
(inner loop), generating new policies which require more
feedback until convergence.

To allow designers more control on the convergence of our
algorithm and the frequency of querying humans, we further
introduce three hyper-parameters β ∈ R≥0, ω ∈ N and ζ ∈ N
to denote convergence thresholds for the human feedback,
frequency of training epochs before showing a new policy

Algorithm 1: Shield synthesis for perceived safety
through human feedback

1 Input:mapping function map, divergence threshold β,
learning steps ζ, number of learning epochs ω;

2 Output: Optimal policy π⋆ that is perceived as safe;
3 t← 0;
4 fθ, fh ← initializeShieldDistributions();
5 env, st ← initializeEnvironment();
6 Π← initializePolicies();
7 converged← False;
// Outer loop

8 do
// Inner loop

9 for πi in Π do
10 θi ← sample(fθ);
11 iAsafe ← Ψ(st, θi);
12 for 1 to ζ do
13 at ← getSafeAction(πi,

iAsafe);
14 st+1, rt ← env.step(at);
15 πi ← train(πi, st, at, st+1, rt);
16 st ← st+1;
17 t← t+ 1;
18 if not converged then
19 D ← collectFeedback(πi);
20 G ← map(D);
21 fh ← fitModel(fh,G);
22 Z ← generateSamples(ufh);
23 fθ ← computePosterior(fθ,Z);
24 converged← KL(fh, fθ) ≤ β;
25 Ψ(:, θ)← generateShield(fθ);
26 while t < ω;
27 return π∗

to the user, and global training steps, respectively. To assess
whether the human and shield feedback converged, we use
the KL-divergence between the human feedback and shield
distributions as a stopping criteria (see line 24 of Alg. 1)
The threshold β describes the minimum similarity in the KL-
divergence between human feedback and shield distributions
as a stopping criteria. Note that setting a lower boundary for
the KL-divergence sets a trade-off between allowing for high-
level human feedback to be contradictory and avoiding infinite
learning loops when consensus of feedback is reached. The
parameter ζ (see line 12 of Alg. 12), functions as maximum
number of learning steps/episodes/epochs to train our policy
π before showing its rollouts as examples to humans. Finally,
ω ∈ R (see line 26 of Alg. 1) represents the number of learning
epochs of the agent’s policy π∗, commonly used in a DRL
loop. Whenever there is a change of shield parameters, the
state-action space distribution changes, possibly resulting in a
completely new policy.

III. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our human-feedback
shield synthesis for perceived safety in different deep RL
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applications. Each of our experiments focuses on different
aspects of our algorithm:

1) in Sec. III-B, we focus on analyzing the continuous gen-
eration of shields and the convergence of our algorithm;

2) in Sec. III-C, we investigate the effect of contradictory
human feedback on the convergence of our algorithm;

3) in Sec. III-E, we demonstrate how to query human
feedback for multiple policies at the same time; and

4) in Sec. III-F, we highlight the update of the shield
distribution with human feedback and how to sample new
shield parameters for the next loop of our algorithm.

For experiments 1 and 2, we use the synthetic benchmark of
safe Lunar landing, since we can control various parameters.
For the last two experiments 3 and 4, we use a social
navigation environment (similar to Fig. 1) and query real
humans in an online user study. Videos of our experiments
can be found in the media attachment of this paper.

For all experiments we use similar architectures and hyper-
parameters. Both environments are tested with PPO [21]
[22]. In the Safe Lunar Landing experiment, we use three
densely-connected neural-network layers, with {512, 256, 64}
neurons, while in the Social Navigation experiment we use
two layers with {512, 512} neurons. To adapt to a continuous
action space, both actors have a final layer at the output
corresponding to one tanh per action.

A. Safe Lunar landing - Problem setup

The safe Lunar landing environment (see Fig. 3) is a
slightly modified version of the continuous Lunar landing
problem [23] and serves as a benchmark for our framework to
demonstrate the update of shield parameters during training. In
this setup, we do not query real humans but created an artificial
population of oracles which evaluate the perceived safety of
the agent. The population contains oracles, which always give
perfect feedback in terms of perceived safety of the spaceship
until the shield distribution converges, and imperfect oracles
which give random feedback. The continuous state space is
Slunar = R8× [−1, 1] with horizontal and vertical coordinates,
speed, angular speed, and leg contacts. We consider the safety
as not over-using the main engine of the Lunar, i.e., usage
greater than 85% (which corresponds to a maximum input of
0.7) power. Therefore, we added a ninth state variable as a
warning state that indicates over-use of the main engine and

agent

main
engine

right
engine

goal region

Fig. 3: In the lunar landing example, the agent needs to land a space ship
with three engines (main, right and left) in the designated goal region without
colliding and with correct orientation of the ships’ feet.

is used by our oracle to evaluate safety. The continuous action
is a = (a1, a2)

T ∈ Alunar = [−1, 1]2, where a1 fires the
main engine, and a2 the lateral engines. A negative reward
of −0.3 is given when the agent uses the engine. We add
an additional rule to make the problem slightly harder and
showcase potential shortcomings of training without safety
constraints. A linear penalty of between [−2, 0] is given when
using the main engine action, i.e., if |a1| > 0.7, then an extra
negative reward re = −2

( |a1|−0.7
0.3

)
is provided. We trained

the agent through Open AI gym’s API [23] with parallel
environments.

B. Safe Lunar landing - Convergence of shield updates

To demonstrate the parameter update of our framework, we
use a simple shield in the safe lunar landing environment:

Ψlunar(s, θ) = [−θ, θ]× [0, 1], (9)

with the parameter θ ∈ [0, 1]. This shield constrains the use
of the main engine. The oracle receives rollouts of the policy
and evaluates the warning state. It perceives the policy as safe
if the agent does not over-use the main engine. When the
agent over-uses the main engine, it provides the feedback to
reduce engine power, otherwise to keep the policy. The oracle
is queried each training iteration, i.e., ζ = 1.

Figure 4a shows the learning curves when using no shields,
continuously updating the shield, and learning with the optimal
shield parameter from the beginning. We validated our results
by retraining with different random seeds. Our results show
that using a simple shield already significantly accelerates
learning of the agent and respects the preferences of the
artificial population. The continuously updated and optimal
shield policies converge to the same average reward.

The shield parameter update is shown in Fig. 4b. Through
the continuous feedback of the oracles, θ is lowered over
time until converging to the optimal parameter at θ ≈ 0.7
after around 300 episodes. Although the shield is constantly
updated, the agent is able to quickly learn the task. The
baseline (no shield) policy of the agent is heavily over-using
the main engine of the lunar (see Fig. 4a). In contrast, the
policy that is perceived as safe by our oracles never over-uses
the engine while successfully completing the task (landing in
the goal region) more often (see Fig. 4c).

C. Safe Lunar landing - Contradictory human feedback

Human feedback may be noisy or even contradictory. To
estimate how such feedback impacts the convergence of our
algorithm, we varied the percentage of random oracles within
our artificial population. Each oracle within the population
provides feedback regarding the engine of the spaceship from
three options, e.g, H = {underused, correctly used, overused}.
True oracles will always correctly identify when the engine is
overused, while random oracles will offer random feedback.
To assess the convergence of shield distributions, we created
four populations: (1) 10 true oracles and zero random oracles;
(2) 9 true oracles and 1 random oracle (10% randomness); (3)
7 true oracles and 3 random oracles (30% randomness); and
(4) 5 true oracles and 5 random oracles (50% randomness).
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Fig. 4: Results of the synthetic benchmark. (a) Average collected reward of the agent over 5000 episodes without shielding (black), with the proposed shield
synthesis (blue), and with the optimal shield from the start (green). The standard deviation is shown as a shaded region for each graph. (b) Update of the
shield parameter distribution’s mean over episodes. (c) Cumulative number of successful landings without and with the proposed shield synthesis.
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Fig. 5: KL-divergence between fh and fθ used as a convergence criteria to
stop asking humans for feedback
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Fig. 6: Environment of the social navigation task. The agent needs to reach
two randomly placed goals while avoiding moving humans. The agent can
detect both the obstacles and goals using nine lidar rays.

Figure 5 illustrates how the KL-divergence evolves between
fh and fθ when setting a lower boundary of β = 0.05.
The more random feedback a population provides, the more
episodes are needed for convergence. The higher margins at
the beginning for population (2) are due to a larger shift of fh,
since more oracles are agreeing to decrease the shield value.
Even when considering the unrealistic contradictory feedback
of population (4), where 50% of the feedback is random, our
algorithm still converges and only requires three times more
episodes than the perfect population (1).

D. Social navigation - Problem setup

We designed a social navigation environment and conducted
two user studies. In the environment, the agent (a mobile robot)

needs to reach two random goals while avoiding humans (see
Fig. 6). To generate safe policies, we consider the Social Force
Model [24] [25] as a starting point. In this model, obstacles are
represented as repelling directed force fields that influence the
actions of the agent. For instance, if the agent is approaching
the boundary of the force field, it will be pushed away at the
same time. Interested readers are referred to [24] for more
details.

To evaluate perceived safety, we want to estimate how
strong the force field should be, i.e., the shield parameter
encodes how much the shield considers the full interaction
force of the Social Force Model (SFM). The state space is
comprised by the agent’s position and velocity, the velocity
of other obstacles in the environment, and nine rays of a
lidar-like sensor, commonly used in navigation robots. The
agent’s actions are composed of the accelerations in x- and
y-directions, representing the driving force and a third action
proportional to the interaction force of the SFM. For each ray,
the agent detects either a goal, one of the humans or walls. The
rays are one-hot encoded in addition to the distance between
the robot and a specific element. In total, there are 9 rays
opening in a field of view (FOV) of 200o, see Fig. 6.

The agent receives a positive reward of 1 and 1.5 when
reaching the middle and final goals (generated randomly
in both halves of the room), respectively, while a collision
with an obstacle or a wall yields a negative reward of −1.
Additionally, a small negative reward of −1

5000 is given per
step. The social navigation experiment was designed from
scratch and implemented in Unity. To train our agents, we
took full advantage of the communication pipelines available
in the Unity ML-Agents API [26].

E. Social Navigation - Human feedback on multiple policies

In this experiment, we look at obtaining real human feed-
back instead of having an artificial population. In the social
navigation task, we consider shields that remove actions that
will result in a conflict with the force field of the SFM.
The shield depends on the current state of the agent and
constraints the action to not conflict with a given force field
intensity interval. The shield parameter θ ∈ [0, 1] denotes the
center of this interval, where the values 0 and 1 correspond
to no or full force field, respectively. The design parameter
χ ∈ [0,min(|0− θ|, |1− θ|)] is the width of the interval. For
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Fig. 7: Average reward of the agents with different shields over the learning
steps. The standard deviation is shown as a shaded region for each graph.

instance, for θ = 0.25 and χ = 0.25, the agents needs to
account for [θ − χ

2 , θ +
χ
2 ] of the force field at any time.

Since our approach allows designers to query feedback for
multiple policies at the same time, we sampled four initial
and distinct shield values (more details in Sec. III-F) which
are used to train four policies in parallel. We trained the
four different policies with χ = 0.25 and different shield
parameters: θ1 = 0.125, θ2 = 0.375, θ3 = 0.625, and
θ4 = 0.875 to cover the whole parameter space. Fig. 7 shows
the learning curves of the four policies.

We rendered videos of 30 randomly selected rollouts of each
policy for two different scenarios in the environment in Fig. 6:
3 and 6 moving obstacles (humans). These were divided into
a series of 6 experiments containing 20 videos each (5 per
parameter interval). 10 participants were recruited for every
series, and they could decide on how many series they want to
participate in. The participants were asked to rate the perceived
safety taking into account the robot social navigation for each
video on a 7-point Likert scale from Very Unsafe (rating 0) to
Very Safe (rating 6). This resulted in 60 participants for each
study, generating 300 data points for each shield parameter, in
each of the studies.

The study was run online using Amazon Mechanical Turk
(AMT). In total, there were 92 unique participants (59 males,
33 female and none of other gender identities). Their age
ranged from 23 to 65 years old, with a median of 34; the
majority were in or had completed college education (N=78)
and came from the US (N=71). 62 participants reported to
have never or only seen robots in media, 14 to have interacted
with one robot before, and 2 to do it on a regular basis.

The perceived safety results from the user studies can
be seen in Fig. 8 and Table I. One-way ANOVA resulted
in statistically significant results in both studies (3 obsta-
cles: F (3, 1196) = 88.01, p < .001, Fig. 8a; 6 obstacles:
F (3, 1196) = 28.71, p < .001, Fig. 8b), showing that people
have significant different perceptions of safety between the
different policies. In the case of 3 obstacles in the environment,
the trajectories from θ4 were the ones rated as the safest
(M = 4.83, SD = 1.07) and those from θ2 as the least
safe (M = 2.83, SD = 1.89). In Fig. 8a it can be observed
a notable difference between the interquartile ranges (IQR)
from the different shields, suggesting that participants agreed

TABLE I: Mean and standard deviation of the perceived safety ratings.

Safety Ratings θ1 θ2 θ3 θ4

3 obstacles Mean 3.14 2.83 4.00 4.83
SD 1.95 1.89 1.57 1.07

6 obstacles Mean 3.25 3.63 4.47 4.09
SD 1.94 1.76 1.37 1.75

more on their ratings of θ3 and θ4. This is also true for the
experiment with 6 obstacles, where θ3 presents all answers
except outliers within the upper range of the scale. Then, in
the case of 6 obstacles, the trajectories perceived as safest by
the participants were those from θ3 (M = 4.47, SD = 1.37).

Our results show that humans are able to evaluate the
perceived safety of example rollouts of four policies with
different shield parameters. Thus, we can use this information
to update our shield distribution and to determine the next four
parameter samples in the next loop of our algorithm.

F. Social Navigation - Shield distribution update

All policies converged to similar average returns, suggesting
any of them successfully accomplishes the task safely, since
collisions are heavily punished. However, the user feedback
showed that perceived safety per policy was clearly different,
and their continuous feedback improves perceived safety in
a robotic real-world social scenario. For simplicity, we con-
sidered a Normal prior fθ ∼ N (µθ = 0.5, σ2

θ = 0.15625)
over shield parameters. We sampled four different shield
parameters and used them to train the four different policies.
To prevent duplication of values when sampling, we used
a sampling mechanism based on the mean and standard
deviation, using one and three standard deviations from left
to right as pictured on Fig. 8c. Both datasets with 3 and 6
obstacles were mapped and used to update fθ with posteriors
fθ ∼ N (µθ = 0.62891, σ2

θ = 0.00041) and fθ ∼ N (µθ =
0.56001, σ2

θ = 0.00037), for 3 and 6 obstacles respectively.
This result shows that one update step of our algorithm already
significantly narrowed down the search space for the optimal
parameters. In the next loop of our algorithm, we would again
sample four new shield parameters amd acquire feedback until
the desired KL threshold β has been reached.

IV. CONCLUSIONS

This paper presents a framework to obtain RL policies
that are perceived as safe by humans, i.e., policies that avoid
undesired behaviors while having a desired level of conserva-
tiveness. The inner loop of our framework trains a policy that is
safeguarded by a set of shields that limit the action space of the
agent. The outer loop generates example rollouts of the trained
policies and collects feedback from humans. The feedback is
then used to update the parameters of the inner loop shields
to reflect human preferences. To this extent, we formulate two
distinct shield distributions, one from the human’s feedback of
policy rollouts, and another which infers the true value of these
parameters. Our algorithm provides users with control about
the convergence of the shield parameters and the frequency of
querying humans. These parameters help to overcome issues
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Fig. 8: (a) and (b) Perceived safety responses from social navigation experiments. We use a 7-point Likert scale, where 0 is ‘Very Unsafe‘ and 6 ‘Very Safe’.
(c) Prior and posterior distributions of fθ after one loop.

such as noisy feedback and querying for feedback when the
state-action space distributions change.

In various experiments with synthetic and real human feed-
back, we demonstrated that our proposed algorithm effectively
synthesizes shields to obtain policies that are perceived as safe.
We showed that the algorithm converges even if the feedback
is contradictory by adding random oracles in our synthetic
benchmark. To reduce the amount of feedback queries, we
allow designers to query feedback for multiple policies at
the same time. We demonstrated this property in a user
study of our social navigation task to obtain feedback from
real humans. Our user study shows that humans are able
to evaluate the perceived safety from visual inspection of
example rollouts and that the feedback can be used to update
the shield distribution. Our algorithm can incorporate any
sampling strategy to determine the next set of parameters for
the training of multiple policies.

For future work, we want to test our framework on ad-
ditional social environments, different shield distributions or
models, and consider other desired properties of policies, such
as social acceptance or comfort. Additionally, we would like
to explore the issue of scalability of human feedback when
capturing preferences while using our approach.
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