
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS,
STOCKHOLM, SWEDEN 2021

Evaluating
template­based
automatic program
repair in industry
Gunnar Applelid

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Evaluating template-based
automatic program repair in
industry

GUNNAR APPLELID

Master’s Programme, Software Engineering of Distributed
Systems, 120 credits
Date: August 30, 2021

Supervisor: Martin Monperrus
Examiner: Benoit Baudry

School of Electrical Engineering and Computer Science
Host company: Saab AB
Swedish title: Utvärdering av mallbaserad automatisk
programreparation inom industrin

Abstract

Automatic Program Repair (APR) is a field that has gained much at­

tention in recent years. The idea of automatically fixing bugs could

save time and money for companies. Template Based Automatic Pro­

gram Repair is an area within APR that uses fix templates for generat­

ing patches and a test suite for evaluating them. However, there exists

many various tools and datasets, and the concept has not widely been

evaluated at companies or tried in production. Critique of current re­

search is that the bug datasets are gathered from only a few projects,

are sparsely updated and are not representative of real­world projects.

This thesis evaluates, TBar, Template based automatic program repair

tool for Java on a large open­source bug dataset Bears and a small com­

pany dataset. Further, TBar is modified to kBar to be used for exper­

iments. The results show that kBar presents Plausible patches to 35%

(19/54) of the selected bugs and 13% (7/54) of them is Correct. Finally,

a prototype were implemented at Saab, waiting for the developers to

submit the first real­world bug to fix.

i

Abstract

Automatisk programreparation (APR) är ett område som har fått my­

cket uppmärksamhet under senare år. Att reparera buggar automatiskt

kan spara både tid och pengar för företag. Mallbaserad automatisk pro­

gramreparation är ett område inom APR som använder färdiga mal­

lar för att laga buggar och tester för att utvärdera dem. Men det finns

många olika verktyg ochdataset och konceptet har inte blivit storskaligt

utvärderat på företag eller testat i produktion. Kritik av nuvarande

forskning är att dataset med buggar är insamlade från ett fåtal projekt,

sällan uppdaterade och inte representerar verkliga projekt. Det här

arbetet utvärderar, TBar, ett mallbaserat automatiskt programrepara­

tionsverktyg för Java på ett stort open­source bug dataset Bears och

ett litet dataset från företaget. Vidare modifieras TBar till kBar för att

användas i experiment. Resultaten visar att kBar presenterar möjliga

lagningar till 35% (19/54) av de utvalda buggarna och 13% (7/54) av

demär korrekta. Slutligen implementerades enprototyphos Saab, som

är redo för att utvecklarna ska skicka in den första buggen att repar­

era.

ii

Acknowledgements

I would like to thank my Examiner Professor Benoit Baudry and Su­

pervisor Professor Martin Monperrus for introducing me to Automatic

Program Repair and many other interesting concepts in their DevOps

course at KTH 2020.

I would also like to thank Martin Monperrus for providing interesting

literature, tools, feedback, good advice and ideas which serve as a base

for the work in this thesis.

Furthermore, Iwould like to thankmy Industrial supervisorOlleNordin

at Saab, who has spent a large amount of time helping with answering

crucial questions for the company integration and experiments.

Finally, I would like to thank my girlfriend Caroline and children Vera

and Valter for supporting me during these five years of hard work at

KTH and enduring my absence.

Stockholm, June 2021,

Gunnar Applelid

iii

Contents

1 Introduction 1
1.1 Problem . 2

1.2 Stakeholders . 2

1.3 Research Questions . 3

1.4 Contributions . 4

1.5 Outline . 5

2 Background 6
2.1 Automatic Program Repair 6

2.2 Datasets for Program Repair 11

2.3 Continuous Integration 14

3 Related work on Automatic program repair tools 17
3.1 Template­based Automatic Program Repair 17

3.2 Sketches, Hooks and Bytecode Mutation 29

3.3 Other Abstract Syntax Tree Based Repair Tools 33

3.4 Repair Tools with Machine learning 37

4 Technical contribution 44
4.1 Design of TBar . 44

4.2 Extensions of TBar in kBar 49

5 Experimental Research Methodology 54
5.1 RQ1: What is the effectiveness of template­based auto­

matic program repair on different bug datasets? 54

5.2 RQ2: What are the characteristics of the generatedpatches

by kBar? . 58

5.3 RQ3: How could template­based automatic program re­

pair be integrated into the existing CI pipelines used at

Saab? . 59

iv

6 Experimental Results 59
6.1 RQ1: What is the effectiveness of template­Based Auto­

matic Program Repair on different bug datasets? 59

6.2 RQ2: What are the characteristics of the generatedpatches

by kBar? . 75

6.3 RQ3: How could template­based automatic program re­

pair be integrated into the existing CI pipelines used at

Saab? . 86

6.4 Discussion of Results . 89

7 Discussion 91
7.1 Benefits, Ethics and Sustainability 91

7.2 Threats to Validity . 91

7.3 Future Work . 92

7.4 Template­based Repair Tools in the Industry 93

8 Conclusion 95

References 96

v

1 Introduction

Automatic Program Repair (APR) [1] is an area within Computer Sci­

ence that automatically repairs software bugs. It does exist tools for

locating the bug location, which is commonly used. However, the ac­

tual repair is still mainly conducted by the developer [2]. APR aims to

automate and fill the gap between automatic bug location and manual

bug fix. There existmany different APR tools with different approaches

such asmachine learning, template­based and static analysis. Further­

more, some research shows that 50% of the developers’ time is done

bug fixing [3].

Two of the areas [4] in Automatic Program Repair are Generate and

Validate and Test­suite based Automatic ProgramRepair, which is one

of the most common approaches for Automatic Repair [5]. They try

to produce software patches that make failing tests pass. However,

there is no guarantee that the actual bug is fixed by passing the tests,

but it could instead introduce new errors not covered by the test cases.

Therefore,manual inspection of the generatedpatches could beneeded.

TBar, Template Based Automatic ProgramRepair tool [6] is a Java tool

that leverages test­suite based repair together with the approach of fix

templates. A fix template is a predefined modification of the code ac­

cording to specific rules, such as inserting a null check before a buggy

statement or updating or removing a conditional expression. Further,

it combines fix templates from other APR­tools, making it a suitable

representative of template­based Automatic Program Repair in gen­

eral. The overall goal of this thesis is to evaluate the effectiveness of

TBar in an industrial context.

1

1.1 Problem

The problem is that there is a lack of evaluation of Automatic Program

Repair, and many of the current tools have been evaluated on a few

open­source bugdatasets andnot beenused in production. Many of the

evaluations domainly focus on the repair algorithms and not the entire

chain of APR. According to Monperrus et al., it is necessary to “study

the design and implementation of an end­to­end repair toolchain that

is amenable to the mainstream development practices” [5], to show

the actual value of APR in industry.

Some attempts to use APR tools have been tried out at Facebook, and

Ubisoft has made attempts to identify templates of risky commits [7].

However, there is no large­scale usage of template based­repair tools in

the industry. Also, according to Liu et al. [6], the area of template based

approaches show promising results on research bug datasets such as

Defects4j, but there is a lack of presentation of the contributions of the

individual templates on the datasets. They highlight the need of evalu­

ation onmore bug datasets such as Bears. Therefore, the overall goal of

this thesis is to provide an evaluation of the usage of Template­Based

Automatic Program Repair in an Industrial context.

1.2 Stakeholders

This master’s thesis has been done at Saab within the department of

Surveillance, Combat Systems & C4I Solutions Järfälla, Stockholm.

Saab [8] is a Swedish defence company that was founded in 1937 to

supply the Swedish air force with aircraft. Their goal is to supply the

global market with products and services for the military defence area

and civil security. They have over 17000 employees worldwide and

product segments of Air, Land, Naval and Security. The department is

developing combat systems and solutions for naval platforms such as

2

combat boats, patrol boats, frigates, aircraft carriers and submarines.

The development process leverages DevOps and Continuous Delivery,

and in order to shorten the release cycles, there is an interest to evalu­

ate techniques for Automatic program repair.

TheSaabbugdataset is a collection of 14 bugs from twodifferent projects

within the department Surveillance. The author of this thesis manu­

ally collected the bugs according to specific criteria described in sec­

tion 5.1.2. Two of the criteria are that it is supposed to be a bug that

has occurred in production in real life and that it is reproducible with

the latest project versionwith a verified git commit. The collection took

several weeks, and many potential bugs were discarded due to the cri­

teria.

1.3 Research Questions

In order to provide a sound and thorough assessment of Template­

based automatic programrepair in a real­world industrial context, there

is a need to investigate different angles of the tools and the environ­

ment. There is also a need to investigate how the tool itself is im­

plemented to gain technical understanding. This investigation should

gain insight to what extent the tool should be modified for the indus­

trial context. Nevertheless, to gain this knowledge, industrial domain

knowledge is needed as well. Before implementing the tool in a real­

world scenario, it should be evaluated on real­world bug datasets to get

information about the behaviour and performance to serve as a knowl­

edge base. The research questions contain both Quantitative andQual­

itative methods [9], as the answers are given both with numbers and

statistics, but also with a deeper analysis and answering of the ques­

tions. Therefore, the following research questions are suggested:

3

RQ1: What is the effectiveness of template­based automatic program

repair on different bug datasets? This research question will provide

an extensive and detailed evaluation of TBar on different bug datasets

such asBears andSaabbugdataset. The evaluationwill not only present

the number of bugs fixed but performance evaluation as well. This re­

search question should serve as a base for the understanding of the be­

haviour of TBar and if it is suitable for use in an industrial context.

RQ2: What are the characteristics of the generated patches by TBar?

The research question will provide a further understanding of the ac­

tual patches that TBar generates. A detailed evaluation of plausible and

correct patches, overfitting, and the behaviour of fix templates.

RQ3: How could template­based automatic program repair be in­

tegrated into the existing CI pipelines used at Saab? With the re­

ceived knowledge of the industrial context and CI pipelines, this re­

search question will answer how Template­Based Automatic Program

Repair can be integrated into Saab’s existing environment. Hopefully,

with at least one working solution, which could be used outside the

scope of the thesis.

1.4 Contributions

• The design and implementation of kBar, an extended version of

TBar suitable for standalone usage, and with other datasets than

Defects4j.

• The industrial evaluation of kBar at Saab, on 14 inhouse bugs.

• The evaluation of kBar on the Bears bug dataset.

4

1.5 Outline

The rest of this thesis is structured as follows, chapter 2 contains a back­

ground of Automatic program repair, bug datasets used in research and

examples fromContinuous integration in a large scale industry project.

Chapter 3 contains Related work on Automatic program repair tools

and a description of them. Chapter 4 contains a detailed description of

the tools and implementation of TBar and the modifications in kBar.

Chapter 5 describes the experimental researchmethodology of this the­

sis and chapter 6 the results of the experiments. Finally, chapter 7 con­

tains discussions, future work, threats to validity and chapter 8 a con­

clusion.

5

2 Background

This section will provide a background of Automatic Program Repair,

Datasets for program repair and an example of Continuous Integration

in the industry.

2.1 Automatic Program Repair

Automatic Program Repair (APR) [10] is a field that has gained much

attention in recent years. The idea of repairing software bugs auto­

matically, could save both time andmoney for software developers and

companies. In the bibliography [1] by Martin Monperrus, one defini­

tion of Automatic ProgramRepair is described as ”Automatic program

repair is the transformation of an unacceptable behaviour of a pro­

gram execution into an acceptable one according to a specification”

[1]. A test suite decides the specification, and the result of executing

the tests decides if the behaviour is acceptable. It is also essential to

see if the repair does not cause new bugs to appear. The two main ar­

eas are presented as behavioural repair and runtime repair.

Behavioural repair ­ is used in this thesis and modifies the source code

or binary code, both online or offline. The typical examples of online re­

pair are within the IDE or Continuous Integration. The offline variants

are repair attempts on software that are already used in production.

One of the subjects that are mentioned in Behavioral repair is ”repair

templates”, also called repair strategy, fix schema [1] but also fix pat­

tern or fix template [6]. A simple example of a repair template could be

inserting a null pointer checker. Multiple templates used together are

called repair models [1].

Test­suite based repair is one of the areas in behavioural repair, and

one of the first attempts of this wasmade already in the 1990s. The idea

6

of a program with at least one failing test case, the bug patch should

make all test cases pass. Examples of approaches are modifying the

Abstract Syntax Tree, where nodes are replaced with another node,

arithmetic operators are replaced with operators from the same class

or using repair templates [1].

Runtime repair ­ or state repair changes the execution state of a pro­

gram. Some examples of this could be ”changing the input, the heap,

the stack or the environment” [1]. Input modification tries to change

the input that fails the software, andEnvironment perturbation changes

the memory or scheduling. More approaches mentioned are restarting

the software, creating checkpoints and going back to them, having al­

ternative program versions, reconfiguration by replacing services and

other approaches such as creating objects to avoid null pointer excep­

tions [1].

2.1.1 Fault Localization in Automatic program repair

One crucial part of Automatic Program Repair is Fault Localization,

which locates the error location in the code to provide it to the APR

system. Fault Localization is conducted with the help of the software

tests and could generate suspicious localizations at both file, method

or line level. If the wrong line is selected, the APR tool could generate

a plausible patch to a location with no bugs. Spectrum­based Fault Lo­

calization calculates a ranking metric and uses the ”execution traces of

test cases to calculate the likelihood (based on suspiciousness scores)

of programentities to be faulty” [11]. TheOchiai rankingmetric is ”one

of the most effective techniques in localizing the root cause of faults in

object­oriented programs” [11], and the suspiciousness score is calcu­

lated with the help of the number of failed test cases and passed test

cases [11].

7

Fault Localization investigation in kPar

Many new APR systems are presented and are using the same datasets.

However, they are not using the same setup of Fault Localization. There­

fore, Kiu et al. [11] investigates the different Fault Localization con­

figurations in Automatic Program Repair together with the Defects4j

benchmark. This is done by comparing performance and providing

more understanding and real­world usefulness of Fault Localization

in Automatic Program Repair. The investigation was conducted with

kPar, a Java implementation of the PAR [6], described in Section 3.1.4.

Many APR tools use the workflow of Fault Localization, Patch candi­

date generation and Patch validation. However, manyAPR approaches

use different approaches for Patch candidate generation but similar

methods for Fault Localization and patch validation. It is often con­

ducted with test suites with GZoltar [12] as a testing framework and

Ochai spectrum­based Fault Localization [13]. Patches could be con­

sidered valid when the tests pass, but the issue of overfitting patches

is discussed, where non ”semantically correct” patches pass the tests.

Therefore, the terminology of plausible patches that pass the tests and

correct patches equivalent to the original patch is presented [11].

The authors [11] highlight the importance that the Fault Localization

techniques are considered when comparing different APR tools. One

examplementioned is that SimFix and ACSwere comparedwith differ­

ent versions of the same Fault Localization tool without discussing the

version’s impact. Also, some comparisons are assuming Perfect Fault

Localization, where the buggy code location is provided. The boost in

performance of these assumptions should be consideredwhen compar­

ing with other tools. Therefore, the authors investigate different Fault

Localization techniques, which bugs that could actually be located in

Defects4j and how performance is affected by Fault Localization.

8

Experiments

The experiments was conducted with kPar, with six repair templates.

Two different versions of GZoltar was used and different ranking met­

rics [11] such as Tarantula, Ochiai, DStar2, Barinel, Opt2, Muse and

Jaccard. The results show that GZoltar version 1.6.0 finds 58 more

bugs than GZoltar version 0.1.1, with the Line granularity level. Fur­

ther, the ranking of Top­1 positions and Top­10 positions of different

ranking metrics shows that Ochai performs well, and the results are

similar. There is also a correlation between correctly fixed bugs and

correct localization.

An in­depth investigation of APR tools jKali [10], jMutRepair [10],

HDRepair [14], Nopol [15], ACS [16], ELIXIR [3], JAID [17], ssFix [18],

CapGen [19], SketchFix [20], FixMiner [21], LSRepair [22] and Sim­

Fix [23] and Fault Localization was done. The results show that some

of the APR tools report fixes for bugs, at line level, that their setup of

Fault Localization and ranking metric does not correspond to. Some

of the reasons for this could be improved versions of Fault Localiza­

tion, assumptions that the faulty methods are known, and the usage of

method level granularity. However, SketchFix, JAID and ELIXIR fixes

some bugs which do not correspond to the configuration, which could

be caused by a bug in the APR tool.

Further investigations by the authors [11] show that the test cases in

Defects4j are not enough because changes in non­buggy code locations

could lead to all test cases passing. When adjusting the results and only

focusing on localizable bugs, the ranking of correctness of APR tools is

adjusted, and the top five are FixMiner, CapGen, SketchFix, ACS and

Elixir on Defects4j. Finally, kPar itself was evaluated with a three­hour

repair timeout on the Defects4J dataset, and it did correctly repair 36

bugs.

9

Conclusions

The authors [11] drawn conclusions were that creators of APR tools

should clearly state the protocol of Fault Localization and desirable

come together with some standard. Alleged State­of­the­art tools must

”qualify the performance gain” of their tool. There should be a distinct

line, in research, between the Patch generation and Repair pipeline.

Patch generation should use Perfect Fault Localization in the Repair

pipeline. Normal Fault Localization should be used in order to prepare

for a real­world scenario. Also, some tools focus on the context around

the suspicious statement, heuristics and more which should be clearly

stated.

2.1.2 Compile­time

A problem with the generate­and validate repair techniques presented

withinTemplate­based automatic program repair is the number of gen­

erated patches. The patch candidates are generated from a fix tem­

plate, compiled and validated against a test suit. This process could

take an extensive amount of time for certain projects, as the compila­

tion of some projects could take up to one minute together with thou­

sands of patch candidates. In the worst case, this could lead to many

days for the repair process to go through all candidates [20].

2.1.3 Comparing Automatic program repair tools

There are many different techniques mentioned within automatic pro­

gram repair, some closely related to template­based repair described

in chapter 3. But there is difficulty deciding which of them are the best

performing as they perform differently in execution time, number of

patches, correct patches andmore. Also, they are sometimes evaluated

on different bug datasets with a non­equivalent setup as described in

10

Section 2.1.1 Fault Localization. Before TBar, SimFix was the best per­

forming tool [6] on the Defects4j dataset. According to the evaluation

in section 2.1.1 by amanual review, FixMiner, CapGen, SketchFix, ACS,

and Elixir perform better than SimFix. So it is difficult to decide which

tool is the best and there should be more extensive and identical eval­

uations conducted.

One of the new emerging techniques is Astor [24][10] which is used in

research and facilitates equal comparisons and combines several state­

of­the­art generate­and­validate repair techniques. Astor is a Java re­

pair framework, which is based on repair approaches such as jGenprog

jKali, jMutRepair, DeepRepair, Cardumen and 3Sfix. The framework is

publicly available, and researchers are encouraged to use it for ”setting

up comparative evaluations and for exploring the design space for

automatic program repair in Java” [24]. Astor facilitates the imple­

mentation of new program repair approaches and to extend the exist­

ing ones. It has shown promising results on the Defects4J bug dataset,

where it repairs more bugs thanmany other repair systems and 11 bugs

that have never been repaired by another APR system.

2.2 Datasets for Program Repair

The publicly available bug datasets are a key ingredient in the research

of Automatic ProgramRepair. With high­quality datasets, it is possible

to compare and evaluate different tools for Automatic Program Repair

and Fault Localization. Some of the considered datasets for this re­

search are described in this section.

2.2.1 Defects4j

The Defects4j [25] Java bug dataset with, when the work of TBar was

started, 395 bugs, consists of bugs and developer fixes and has been

11

widely used in research. There were 101 bugs that had been correctly

fixed, and SimFix was the leading APR tool with 34 correct fixes [6].

The first version of Defects4j consisted of 357 bugs collected from five

different real­world projects [26]. In addition to the actual bug and

the developer fix, there is also a test suite that clearly demonstrates the

bug, and the requirement is that at least one test case should fail on the

bug, and it should succeed with the fix. The creators have provided a

”high­level interface” to ease the process of compile, test, and down­

load the bugs [26]. The approach of Defects4j is not to include other

code changes such as refactoring and modifications, but only the bug

itself. The following requirements were used when collecting the bugs

of Defects4j:

• The bug is related to source code, where the bug commit is strictly

labelled as a bug fix, not related to the build system, configuration

or tests.

• The bug is reproducible, where at least one test fails and passes

with and without the bug and can also run with the project build

system and Java 7 runtime environment with OpenJDK.

• The bug is isolated; it does not include other changes than the

bug itself.

Some of the projects initially collected were JFreeChart, Closure Com­

piler, Commons Math, Joda­Time and Commons Lang. The more cur­

rent version of 2.0.0 consists of even more bugs and contains 835 bugs

from 17 different projects, including Java 8 [27].

2.2.2 Bugs.jar

The large­scale dataset of Bugs.jar [28] contained 1158 bugs from8 dif­

ferent Java open­source projects and was developed by the creators of

Elixir [3]. One of the reasons for creating Bugs.jar was that, at the time,

12

there existed many diverse bug datasets for C, but Defects4j was the

only major one for Java. Also, the projects in Defects4j were not con­

sidered to be diverse enough. One main criteria was that the Bugs.jar

dataset should not contain bugs from Defects4j. Others were that the

projects should be large and active, there should be no test cases with

randombehaviour for reproducibility. Also, the selectedprojects should

have good development practices. The specific requirements when col­

lecting the bugs from the projects were that:

• the buggy source code was available

• a description and a report of the considered bug

• a test suite that generates one failing test case with the bug and

at least one passing test case.

• the patch from the developers does make all tests pass.

• the selected project should represent a typical Java project

2.2.3 Codeflaws

Codeflaws [29] is an extensive Bug dataset for C with 3902 defects and

collected from over 7000 projects with 39 specific classes of bugs. One

of the reasons for creating Codeflaws was that the existing bug datasets

did not consider the classes of the bugs, also called defect classes. The

authors propose a set of criteria for evaluation of the bug datasets for

automatic program repair comparisons, which has been used in Code­

flaws. There are five criteria:

• C1: High diversity of the defects

• C2: A large number of defects

• C3: A large number of programs

• C4: Programs that are algorithmically Complex

13

• C5: A large test suite

Over 10000 web pages were crawled, and 5544 bugs were collected,

which further were manually reviewed and removed. The dataset and

all scripts are available for future experiments for other researchers.

2.2.4 Bears

Bears [30] is a project which aim was to collect a large amount of Java

bugs for APR studies. It was developed as an answer to the problems

of existing benchmarks such as Defects4J or Bugs.jar. Some of the

problems mentioned are that the bugs are collected from only a few

projects, are sparsely updated and are not representative of real­world

projects. BEARS uses Continuous Integration to identify bugs from

open­source projects from GitHub and consists of 251 bugs from 72

different projects.

2.3 Continuous Integration

At Saab, the host company of this thesis, a study was conducted in

a large­scale industry project by Mårtensson et al. [31] to determine

which factors were affecting the developers when delivering code in

Continuous Integration. Therefore the conclusions and the gained knowl­

edge are important in the specific industrial context. The authorsmen­

tion that a time­consuming build process should be avoided, as the de­

velopers could forget their implemented changes. One suggestion is

that the build process should not take more than ten minutes, includ­

ing testing. A long build and integration time could lead to increasing

costs with a longer feedback loop.

14

Background

The study was conducted at a company developing a fighter aircraft be­

fore and after a new build system was introduced. The introduction of

the new system took around sixmonths up to three years, depending on

the team. The pre­study did show that the old build system was slow,

up to several hours, and all teams could not deliver software within one

three­week sprint. The old build system was very complex and con­

sisted of computers with customized hardware, partition communica­

tion was handled in specific time slots, and all processes needed to fol­

low execution deadlines, i.e. hard real­time systems. The build system

was considered the reason for not delivering software more continu­

ously. The problems mentioned were a lack of transparency, problems

with dependencies, andmerge conflicts. Also, the developers had trou­

ble understanding the build process, and it was referred to as ”magic”.

The entire system was rebuilt even with minor modifications, and a

lot of manual steps were needed, which led to many build failures and

merge conflicts.

New build system

A new build system was developed to let all teams deliver software

within one sprint, provide more transparency, and handle dependen­

cies in amore predeterminedway. The testingwas included in the build

system and no longer seen as a separate part. Only the affected parts of

the system were rebuilt, and separate makefiles for each module were

removed.

After the integration of the new build system, findings were that if a

developer finds the system complicated, he or she will deliver less fre­

quently. If the developers deliver less frequently, this will also lead to

more problems due to unfamiliarity. Also, the less frequent delivery

could lead to longer integration time, as more software from other de­

15

velopers may be needed to be rebuilt. Also, when encountering inte­

gration problems, the new system could be considered as problematic

as the old one.

However, the authors argue that the build system should not be seen as

the single motivation factor for developers to deliver more frequently.

Other factors as salaries and working conditions should also be consid­

ered. Introducing the new build­system should be considered a success

as it is no longer considered themain bottleneck but instead one of sev­

eral factors affecting the delivery process. Future work of conducting

studies at multiple companies is suggested and also investigate differ­

ences in technical and cultural factors.

16

3 Relatedwork onAutomatic program repair

tools

As many Automatic program repair tools use or are closely related to

repair templates, this section will go through some of them. Many of

the tools are mentioned in the papers of ”Template­Based Automated

Program Repair tool” [6] and from the “The Living Review on Auto­

mated Program Repair” [32].

3.1 Template­based Automatic Program Repair

In template­based automatic program repair, there are many different

approaches using sketches, hooks and bytecode mutation. Other ap­

proaches are the use ofMachine learning and probabilisticmodels, col­

lecting templates from GitHub or Stack Overflow, manually collected

fix templates and the leverage of Abstract Syntax Trees. Many of them

are described in the rest of section 3. In this section, the TBar tool is

described.

The description of the TBar tool will bemore extensive than other tools,

as it is the main focus and is investigated in this thesis. Also, FlexiRe­

pair, which is built on the idea of template­based program repair but

targets the limitations of TBar, such as limited real­world usability, is

described. Further, the API repair benchmark is described as it is a

large­scaleAPR study, includingTBar andBears. It will also go through

another template­based approach (PAR) and its critique, as it has been

widely referenced in research and alleged a better result than another

well­known tool GenProg. Finally, SOFix is described, as it tries to tar­

get the limitations of few fix templates in APRbymining StackOverflow

for new templates.

17

3.1.1 Template­based automated program repair tool, TBar

TBar [6] is a ”Template­BasedAutomated ProgramRepair tool” based

on 15 different categories of fix templates. Examples of templates could

be inserting a null check before a buggy statement, updating or remov­

ing a conditional expression or moving a buggy statement to another

position. TBar is originally evaluated with the Defects4J [25] dataset,

including buggy Java programs and fixes.

TBar was created to gain more knowledge of fix templates, fault local­

ization and donor code retrieval. The authors conducted a survey of

existing fix templates used by other tools and tried to summarize them

in a presentable manner. The effectiveness of the templates is investi­

gated, and howwell they do generate patches. Also, the impact of Fault

localization on repair effectiveness is investigated, as Perfect Fault Lo­

calization, where the bug location is known and Normal Fault Local­

ization, where it is calculated with a probability.

The fix templates of TBar were manually collected from conferences,

journals, a program repair website and literature related to Automatic

Program Repair. The considered tools were focused on Java and were

based on fix templates or closely related, i.e. using code change tem­

plates or rules. The selected tools were PAR, jMutRepair, NPEfix, Gen­

esis, S3, ELIXIR, SketchFix, SOFix, FixMiner, REVISAR, AVATAR,

HDRepair, ssFix, CapGen and SimFix andwere released between 2009

to 2018. Some of the templates were also derived from previous work

of manually gathering templates and mining static analysis violations.

The authors manually inspected over 500 fix templates which resulted

in choosing 35 Code Change Templates, gathered into 15 categories

of fix templates shown in Table 3.1. The majority of fix templates do

change a single statement, and a few can change multiple statements.

The workflow of TBar is as following:

18

Template Name Description
Template
id

Insert Cast Checker
Insert a instanceof check before a statement containing a
unchecked cast expression

FP1

Insert Null Pointer
Checker

Insert a null check before a statement. FP2

Insert Range
Checker

Insert a range check for an access of an array or collection. FP3

Insert Missed State­
ment

Insert a missing statement before, after or surrounding a
statement. Statements are method invocation with an expres­
sion, return, try/catch or if.

FP4

Mutate Class In­
stance Creation

Replace a class instance creation with a super.clone() method
invocation.

FP5

Mutate Conditional
Expression

Mutate conditional expressions that return true or false by up­
dating it, remove one condition or inserting a condition.

FP6

Mutate Data Type
Replace the data type in a variable declaration or cast expres­
sion with another.

FP7

Mutate Integer Divi­
sion Operation

Mutates an integer division expression to return a float value. FP8

Mutate Literal Ex­
pression

Mutates a boolean, number or string to another relevant literal
or corresponding expression.

FP9

Mutate Method In­
vocation Expression

Mutates a method invocation expression by:
1) Replace the method name with another method with com­
patible return type and parameter types.
2) Replace at least one method argument with another com­
patible data type.
3) Remove arguments if the method has suitable overridden
methods.

FP10

Mutate Operators

Mutate an operation expression by:
1) Replace one operator with another from the same
class.
2) Change the priority of arithmetic operators.

3) Replace instanceof with inequality operators.

FP11

Mutate Return
Statement

Replace the expression in a return statement with a compati­
ble expression.

FP12

Mutate Variable Replace a variable with a compatible variable or expression. FP13
Move Statement Move a statement to a new position. FP14
Remove Buggy
Statement

Removes a statement or the entire method. FP15

Table 3.1: The details of Fix templates used in TBar [6].

Fault Localization ­ To find suspicious code locations where a repair at­

tempt can be made, TBar needs to use Fault Localization.The GZoltar

framework automates each program’s testing, together with the Ochai

ranking metric, to provide a ranked list of suspicious code locations. It

does exist other methods for Fault Localization. Also, there are com­

plementary techniques to improve further the fault localization results

used in SimFix and ssFix.

Fix Template Selection ­ The list of suspicious code locations are iter­

ated sequentially. TBar tries to match a fix template with each state­

19

ment in the list. This is done by traversing each node of the Abstract

Syntax Tree (AST) of the suspicious statement and comparing it with

the fix templates AST. If a fix template matches with a node, the tem­

plate will be used for patch generation. Further, one statement can

be matched with multiple templates when iterating through the child

nodes.

Patch generation and Validation ­ The code is changed according to the

matched fix templates and run against the test suit. The donor code for

the templates is collected from the same file as the buggy project, and

potential patches are ordered by the donor code’s distance in the Ab­

stract Syntax Tree. If all tests pass, a patch is considered plausible, and

no more patches are generated for this bug. Other approaches do con­

tinue generating patches, but TBar tries to be suitable for a real­world

Automatic Program Repair scenario. Finally, if the patch is validated

as semantically equivalent to the patch of the bug dataset, it is consid­

ered correct. If a program contains multiple bugs and a patch candi­

date does pass a subset of the failing tests, it is considered a plausible

sub­patch. TBar do then continue to evaluate more candidates until

all patches are validated, the three­hour repair timeout is reached, or a

plausible patch is found.

3.1.1.1 Evaluation

The evaluation of TBarwas conducted on theDefects4j Java bugdataset

with 395 bugs, consisting of bugs and developer fixes, because of its

wide use in research. When the study was conducted, 101 bugs had

been correctly fixed, and SimFix was the leading APR tool with 34 cor­

rect fixes.

TBar is first evaluated with Perfect Fault Localization, where the buggy

20

positions are known, to assess the contribution of fix templates. The

measurements show that most of the bugs are correctly fixed by only

one template, and a few bugs could be fixed bymultiple templates. The

templates Insert Range Checker, Insert Missed Statement with try/­

catch, Mutate Class Instance Creation and Mutate Operators with in­

stanceof to equality could not generate one plausible patch. The most

common Change action was Update, Change granularity was Expres­

sion, and Change spread was Single line.

The conclusions drawn is that many fix templates can generate plausi­

ble patches. Further, it is crucial to choose a fix template that does not

stop the execution with a plausible patch, where the correct one can

be found with another template. The results show that TBar generates

74 correct and 101 plausibly fixed patches with Perfect Fault Localiza­

tion. The plausible patches were manually examined in order to find

the correct ones.

Further, TBarwas evaluated in a real­world scenariowithNormal Fault

Localization. This resulted in 81 plausible patches, of which 43 were

considered correct. The impact of Fault Localization led to some of

the patches being plausible but in the incorrect position. This result

outperforms other APR­tools such as SimFix that correctly fixes 34

bugs. The probability of generating plausible patches to be correct is

lower than other tools such as CapGen, 84%, where TBar performs

53.1%. However, the lowest performing tool of jKali shows 4.5% prob­

ability.

3.1.1.3 Conclusion

Further improvements to TBar [6] could be collecting more fix tem­

plates, as some bugs cannot be repaired with the existing ones. Also,

the search­space could be increased in order to find more donor code

21

and the right ingredients to the dictionary to produce more patches.

This could be done both from the current project or other projects.

However, the large search­space must be iterated in an effective way

in order to save time. There is also a problem with choosing the wrong

donor code, which could produce a plausible but not correct patch. The

fix­templates must be prioritized and ordered in a way that the correct

patch is found first.

The authors have demonstrated that many fix templates do contribute

to fixing more bugs in APR. However, it does come with side effects

as plausible fixes on the incorrect position. More work in the area is

suggested, such as research in a database for fix templates, repair pre­

cision, fault localization, donor code retrieval and search optimization.

The work is considered to be adaptable to other languages due to the

use of Abstract Syntax Trees. Further, the tool should be evaluated

on larger bug datasets such as Bears. TBar, and its promising results,

should be seen as a baseline tool for helping other researchers to create

even better approaches for Automatic Program Repair.

3.1.2 FlexiRepair

Theneed to ”express fix templates in a standardand reusablemanner”

[7] resulted in the development of FlexiRepair [7], which is a repair

framework that uses generic or equivalent terms of semantic patches.

The idea is to explore the concept of generic patches and mentioned as

fix templates in this work: a ”specification of transformation rules that

can be given as a input to Coccinelle” [7], Coccinelle is a code trans­

formation tool that is included in the Linux kernel developer toolbox.

FlexiRepair is built on the idea of template­based program repair but

targets the limitations in current tools such as TBar as lack of support

of adaption, extensions and real­world usability. The usage of Coc­

cinelle sends a strong signal that it is ready to be used in the industry.

22

The individual user should have control over patch generation steps.

The authors investigate where the repair transforms should be mined,

how the fix templates should be inferred, and how the patches should

be generated. The FlexiRepair pipeline is built on the steps of Miner,

FlexiRepair, Inferrer and Generator.

Miner evaluates how similar the supplied patches are and creates clus­

ters. The clustering is conducted with the help of Abstract Syntax Tree

edit scripts to identify similar code changes. FlexiRepair uses the clus­

ters to let the user decide how many code transformations should be

used in the patch generation. Inferrer creates fix templates, generic

patches from the clusters and makes them available for inspection and

modification. This is done by finding the similarity in code fragments

and control flows within the identified similar patches. Generator does

create the actual patches for the buggy program by matching fix tem­

plates with the buggy code. The Coccinelle engine takes a generic patch

and source code as input, matching the code locations with patches.

This process should have an advantage over other approaches as it does

not need specific bug localization tools with line localization of bugs;

file­level is enough. Also, the generated patches aremore likely to com­

pile.

Theuser can easily decidewhich code source should beusedwithFlexiRe­

pair for the mining of fix templates. The authors decided to use repos­

itories manually and systematically collected from sources like GitHub

and build activities in Travis. The dataset finally consisted of 351 repos­

itories where the major ones have over 50 000 commits.

FlexiRepairwas evaluated on the IntroClass andCodeFlawsbugdatasets

and did show a similar result on the IntroClass dataset and a signifi­

cantly lower result onCodeflaws than other repair state­of­the­art tools

such as GenProg. However, the authors do not aim to outperform cur­

23

rent state­of­the­art tools, but FlexiRepair should demonstrate the po­

tential in generic patches.

3.1.3 API repair

There are few evaluations of TBar and Bears conducted in research.

However, a Large­scale study was conducted, APIREPBENCH [33],

withmultiple tools and amixture of datasets, includingTBar andBears.

However, the combination of TBar and Bears was not investigated and

chosen tomatch. Instead, there were results of time for TBar presented

and fixed bugs from Bears dataset with other tools.

APIREPBENCH was created to be the first large­scale study on API­

based Automatic Program Repair, where 14 different Java repair tools

based on test­suites were evaluated on bugs with APImisusages. Some

of the selected tools were TBar, SIMFix, NPEFix, Avatar, NPEFIX and

Astor. API misusages could be a missing method call sequence such as

”java.io.InputStream.close” or missing an if condition for null check.

The importance of automatic tools for API misusages is highlighted

since the documentation of APIs is often not good enough to avoidmis­

usages.

The authors did create their own benchmark APIREPBENCH for API

misuse bugs and were collected from BEARS, Bugs.jar and MUBench

bug datasets. The criteria for selecting bugs were that they should be

Java­related, documented, publicly available, have an available test­

suite, buildable, contain API misuse and be under active development.

The collection from Bears.jar and Bears were done with MUBench as

an inspiration, and in total, 101 buggy project revisions were collected,

and 89 of them were unique. An execution framework was set up and

called APIARTy and configured to work with the different Java repair

tools. The experiments were conducted with Avatar, TBar and SIMFix

24

on 12 bugs, not includingBears andBugs.jar, and the remaining 11 tools

on all of the 89 bugs. The repair timeout on Avatar, TBar and Simfix

was set to 4 hours, and all tests took 36 days to run. The results show

that when summarizing all tools, they generate patches for 25 of all 89

bugs. There are 1015 repair attempts made, and 80 of them generates

patches, where 52 is plausible, and 20 are semantically correct. The

median and average time of all repair attempts were 240 and 166,19

minutes of Avatar, TBar and Simfix, where TBar did show values of 240

and 203,5 minutes. In contrast, the 11 other tools did show a median

of 3,87 and an average of 30,79 minutes, whereas the DynaMoth did

show the lowest result with 2.08 and 21.61 minutes.

The reasons for not generating patches are discussed. It could be that

the repair tools are not designed to handle the specific bug, i.e. im­

porting an API or bugs that are located in multiple locations. The fault

localization could be incorrect, and the specific bug position is not de­

tected, and more precise fault localization is suggested. Also, a higher

repair timeout value could increase the number of patches. The con­

figuration of projects with dependencies and compilation errors could

also be a source to failure, and 90 repair attempts failed due to these

reasons. Finally, other reasons such as exceptions in GZoltar fault lo­

calization, OutOfMemoryErrors, processes that hang, and these do oc­

cur in 175 repair attempts.

3.1.4 Another template­based approach, PAR

Pattern­based Automatic program Repair (PAR) [34] was created in

order to target the limitations of approaches such as GenProg, which

”relies on random programmutations such as statement addition, re­

placement, and removal” [34]. The limitations are that the random

behaviour could generate fixes that are not accepted by developers and

completely wrong, even though they pass the tests.

25

The authors of PARmanually generated ten fix templates from over 60

thousand fixes from open source projects. The process of generating

templates was done by using a ”graph­based model for object usage”

to find semantic differences between the nodes before and after the fix.

The patcheswith corresponding differenceswere grouped together. Fi­

nally, the groups were manually inspected to find the actual fix tem­

plates to use in PAR. The fix templates replace parameters, replace

methods, add and remove parameters, replace expressions, add and

remove expressions, check for null pointers, initialize objects, check

range, check the size of collections and check class­casting. These fix

templates could be connected to around30%of the collectedpatches.

The workflow of PAR starts with Fault localization, where suspicious

code locations are found and ranked with the help of the test suite. Fix

template and patch candidate generation, where suitable fix templates

are found by comparing the AST­tree of the code and then applied. The

Patch Evaluation is done by a fitness function that compares different

versions of the program with including the help of the number of pass­

ing test cases.

PARwas evaluated on over 100 bugs from open source projects such as

Apache log4j, Rhino and AspectJ. The evaluation was manually done

by students and developers, with the question if they would accept the

fix. On the same dataset PAR created 27 patches and GenProg only

16.

3.1.4.1 Critique to PAR and Fix acceptability

In the paper, A Critical Review of Automatic Patch Generation Learned

from Human­Written Patches: Essay on the Problem Statement and

the Evaluation of Automatic Software Repair [35]. There is a respectful

critique given to the PAR approach by Monperrus et. al. . One exam­

26

ple mentioned is the lack of information about the defect classes PAR

is supposed to address. A defect class could be null pointer exceptions,

changing a method call and more. There is no clear principle of the se­

lection of fix templates. A major contribution to the field of APR could

be providing templates for common defect classes, but not for uncom­

mon ones. Further, the conclusion that PAR generates more fixes than

GenProg is negligible since it is unclear if they target the same defect

classes. Also, the evaluation done by students and developers is con­

sidered weak, as some bugs would need extensive domain knowledge

of the environment to be considered acceptable or not.

Evaluation criteria of Automatic Program Repair such as Understand­

ability, Correctness and Completeness is discussed. The criteria should

be handled differently in a Fully Automatic System, which repairs bugs

without human interaction, and Recommendation Systems, where a

human conducts the repair.

Understandability ­ In the automatic system, a generated patch does

not need to be fully documented as the patch is generated to fix the bug

without human interaction. On the other hand, the recommendation

system needs to be understandable by the human that is supposed to

implement it.

Correctness ­ In order to be an automatic system, it needs to generate

a correct patch. However, the recommendation system could present

a partially correct patch that the human could modify and then ap­

ply.

Completeness ­ Which is similar to Correctness, where a patch should

be totally complete in the automatic system. Even an incomplete patch

with a sketch could give the developer insights to produce a patch in

the recommendation system.

27

Further, Fix Acceptability is discussed, and it is difficult to decide if

one fix is better than another. If an Automatic Program Repair tool

produces x==2 and x<=2 as patches and both pass the tests, it could be

challenging to decide which one is the better.

3.1.5 SOFix

SOFix [36] was created as further refining of Automatic Program Re­

pair with fix templates. The authors describe the critique and limita­

tions of real­world usability of current automatic program repair ap­

proaches with few fix templates. They highlight the fact that the suc­

cessful and well worked out approach PAR only generates ten fix tem­

plates. Also, better methods of fault localization are desirable due to

the relationship between fault ranking and repair time.

With SOFix, the authors try to mine more fix templates from Stack

Overflow to leverage the large community and codebase. However,

there are challenges when collecting data from a large dataset of 30

million posts and choosing the correct code, with small­scale granular­

ity at the variable level. As a response to the challenges, only Stack

overflow threads with bugs and correct patches were chosen. Stack

overflow posts are stored in XML format, and only the question and

accepted answer were collected. Further, an Abstract Syntax Tree was

used to help mine templates from the differences between the modifi­

cation and original code.

The mining resulted in 136 templates, which generated 13 repair tem­

plates after manual evaluation, of which two were completely new in

APR. The following Templates was derived:

• BinaryOperator Replacer: replace operators in an if, for or while

statement.

• Variable Replacer: Changes one or several many equal variables

28

to another of the same type.

• Type Replacer: Modifies the type in a local variable declaration.

• Arguments Adder, Mover, Replacer and Remover: adds, moves,

replaces or removes variables in a method call.

• Invocation Replacer: change a method call to another with com­

patible arguments.

• BinaryOperator Inversion: changes the priority of two connected

operators.

• Variable to invocation: changes a method call within a variable

read by another similar method.

• Return Statement Adder: Inserts a return statement.

• Statement Remover: Deletes a statement.

• If Checker Adder: Inserts an if statement for checking null point­

ers.

SOFix was evaluated on the Defects4J dataset, where it successfully

repaired 23 bugs.

3.2 Sketches, Hooks and Bytecode Mutation

3.2.1 NPEFix

Therewas considered a lack of programrepair techniques focusing specif­

ically on null pointer exceptions. Therefore, the NPEFix [37] technique

is proposed, which has nine repair strategies or fix templates for han­

dling null pointer exceptions. The main idea that separates NPEfix

from other template­based approaches is that it does find values for

patches during runtime. The implementation uses metaprogramming

or code transformation in order to apply all repair strategies.

29

The two main approaches are replacing the null value and avoiding

the execution of the specific code. In more detail, the repair strate­

gies based on null replacement could be as follows, Reuse: a variable is

replaced with another global variable or replace the null variable with­

out changing it, i.e. with an if/else statement. Creation: a new global

or local object is created. The repair strategies of avoiding execution

are: Line skipping, where a value is checked to be not null with an if

statement in order to skip the line otherwise. Return Null, New Object

or Variable: if a method should return a value null, another variable or

a New Object is returned if a null check is true. Vanille return: Similar

to Return Null, but if a null check is true, a ”return;” is returned.

A simple Template Based version of NPE, TemplateNPE is presented,

which follows the structure of ordinary template base repair. It uses

source code transformation to go through all possible templates for

patches. The drawbacks are that the search space is not as large as the

metaprogramming version, and it generates one compiled file for each

patch.The metaprogramming version, NPEfix, uses hooks, a boolean

that is not activated by default. A hook controls the modification of the

code without creating new files for each template. The phases of NPE­

fix, are the generation of the metaprogram, compilation and running

the failing test cases with different alternatives with hooks.

The results show that the NPEfix version finds 68 more patches than

the TemplateNPE version on a bug dataset; however, the TemplateNPE

is faster in most cases. The evaluation was done on 16 real­world bugs

with null pointer exceptions.

3.2.2 SKETCHFIX

SKETCHFIX [20] was introduced to avoid the time­consuming com­

pilation and testing of generate­and­validate repair techniques. The

30

solution presented here was to avoid the repeat of compilation and to

insert ”sketches” instead. One sketch is possible to correspond to thou­

sands of patch candidates. With the help of a test suite, ”holes” are cre­

ated in the suspicious code locations. Further, a sketch engine is used

to fill in the holes with sketches which is suitable for the corresponding

code. Minor code modifications or ones that are closer to the origi­

nal code are prioritized, and changes are done at the Abstract Syntax

Tree node level. This is done in order to make the human developer

more likely to accept the modification. The patches are generated dur­

ing runtime, and when it ”encounters runtime exceptions or test fail­

ures, it backtracks immediately and fetches for the next choice”. When

a generated program passes all tests, it is considered as repair for the

buggy program.

On the JFreeChart project, it would take 15 days to test all patch can­

didates with ordinary compilations; SKETCHFIX finds a solution with

one compilation in 40 seconds. On the Defects4j benchmark, it finds

19 correct and seven plausible fixes of the 357 with an average of 23

minutes, 9 minutes for sketch generation.

3.2.3 PraPR

PraPR (Practical Program Repair) [38] is an Automatic Program Re­

pair tool developed to investigate bytecode mutation in APR. A simple

bytecode mutator is changing a > b to a < b. Currently, there has been

no APR research focusing only on bytecode mutation. Due to the JVM

bytecodemutation, PraPRdoes not need to compile to validate patches,

which is an advantage against many other APR techniques. PraPR is

up to 26 times faster than another tool CapGen, on the same dataset.

On one bug, PraPR validated almost 36 thousand patches in one hour.

Other benefits of modifying at the JVM­level are that the tool could be

used to generate fixes for other JVM­based languages such as Kotlin,

31

Scala and Groovy.

PraPR ”supports Maven­based Java and Kotlin projects with JUnit,

or TestNG, test suites” [38] and uses the Ochai framework for fault lo­

calization. It generates patch candidates for all suspicious localizations

and validates with the tests. Further, it does check if a generated patch

is covered by the failing tests. If the control shows that it is not cov­

ered, the patch will not be considered. Only the passing tests covering

the patched location are checked to save more time and finally gener­

ate a Plausible patch. PraPR uses the mutators of the state­of­the­art

mutation engine PIT and further extends some of them with more al­

ternatives, such as replacing > with = . The mutators are:

• Arithmetic Operator: replace an arithmetic operator such as + to

* and more operators as deletion, which is conducted by remov­

ing operands from the JVM stack.

• Conditional: replace conditional operators such as < and !=.

• DereferenceGuard: tries to preventNullPointerExceptions by re­

turning default values, values of local variables, values of compat­

ible fields and more.

• MethodGuard: adds a check to amethod to avoidNullPointerEx­

ceptions.

• Pre/Post Condition: addsNullPointerChecks for objects andmethod

returns.

• Field Name: mutates field access instructions by selecting an­

other field with the same type, such as static or public.

• Method name: selects another method.

• Argument list: selects a method with the same name but with

different parameters.

32

• Local Variable: replaces a variable with another local variable.

• Accessor: replaces read andwrite access to fields in order to avoid

race conditions in concurrent programs.

• Case Braker: tries to fix a missing break or return statements in

switch­case statements.

PraPRwas evaluated on theDefects4j dataset, and the results show that

with the basic bytecode mutators, it produced correct fixes for 18 bugs,

andwith extendedmutators it generated 43. The authors alsomotivate

the plausible patch candidates of PraPR to support developers in fixing

the bug manually.

3.3 Other Abstract Syntax TreeBasedRepair Tools

Many of the described tools in section 3 includes Abstract Syntax Trees.

Genesis andAvatar and FixMiner are other tools which gathers fix tem­

plates and generates templates with the help of AST.

3.3.1 Avatar

Avatar [39] is an Automatic Program Repair system that uses fix tem­

plates from static bug detection tools to generate patches. ”Static anal­

ysis tools help developers check for common programming errors in

software systems. The targeted errors include syntactic defects, secu­

rity vulnerabilities, performance issues, and bad programming prac­

tices. These tools are qualified as “static” because they do not require

dynamic execution traces to find bugs” [39]. The reason for using

static tools are the challenges in collecting bug fixes from repositories

in order to create fix templates. Some challengesmentioned are finding

varying bugs and excluding irrelevant bug fixes.

Also, the dangers of using test suites to decide both bug localization and

33

if a patch is correct are discussed. This is due to the varying quality of

test cases, as a poorly written test case could lead to the generating of

patches that seem to be correct but introduce new errors instead. By

using bugs fixed by static analysis violations, Avatar aims to get more

consistent fix templates. Static analysis tools could have a hard time

finding other bugs in, e.g. Defects4j dataset. However, their derived

fix templates could be useful in Automatic Program Repair.

The Avatar project does not gather fix templates itself but uses 13 fix

templates from different projects. However, the process of mining fix

templates is donewith the first step ofDataCollection fromopen source

projects. This is done by running static detection tools on each revision

of a program and collecting fixes related to the violations. The second

step of Data Preprocessing is done with the help of Abstract Syntax

Trees or Git diffs to generate edit scripts. Finally, the Fix Template

Mining is done by gathering scripts similar to each other and generat­

ing a fix template.

Avatar itself consists of Fault LocalizationwithGZoltar andOchai rank­

ing metric, followed by Fix template matching with an Abstract Syn­

tax Tree. Patch Generation is done by applying the actions from the

fix templates. Finally, the patch is validated with a test suite. Avatar

was evaluated on the Defects4j bug dataset and generated 34 correct

patches, some of which had never been fixed before.

3.3.2 FixMiner

FixMiner [21] is a systematic approach of automaticallymining fix tem­

plates to use inAutomatic ProgramRepairwith an ”iterative and three­

fold clustering strategy, to discover relevant fix templates automat­

ically from atomic changes within real­world developer fixes” [21].

Further, it uses ”Rich Edit Script which is a specialized tree data struc­

34

ture of the edit scripts that captures theAST­level context of code changes.

To infer templates, FixMiner leverages identical trees, which are com­

puted based on the following information encoded in Rich Edit Scripts

for each round of the iteration: abstract syntax tree, edit actions tree,

and code context tree.” [21].

The idea is that it should be usablewith other patch generation systems,

and the authors mined fix templates from over 11 thousand patches

from different Java open source projects. The top 50 fix templates of

FixMiner were compared to the templates in TBar, and 16 templates

were compatible.

The results show that FixMiner, with 31 fix templates integrated with

PAR, PARFixminer, did create correct fixes for 26 bugs in theDefects4J

dataset, where six had never been fixed before. The correctness of the

plausible patches was 81% which could be compared to around 60% of

Elixir and SimFix.

3.3.3 Genesis

Genesis [32][40] is another APR system that uses repair schemas and

Abstract SyntaxTree to generate newpatches. It ”workswith hundreds

to over a thousand candidate transforms to obtain productive search

spaces generated by tens to over a hundred selected transforms —

manymore transforms than any previous generate and validate sys­

tem”. ”In comparison with previous manually developed transforms,

the Genesis transforms are more numerous, more diverse, and target

a wider range of defects more precisely and tractably” [40] .

Genesiswas compared toPARandgenerated correct patches on adataset

of Null Pointer Exceptions, Out of bounds and Class cast bugs collected

from 356 open source applications. The results show that Genesis gen­

erates correct patches to 21 of 49 defects and PAR only 11.

35

3.3.4 DevReplay

DevReplay [41] is a Static analysis tool that is developed to fix source

code violations in general and check specific conventions of the current

project. DevReplay is described as ”generate code change templates by

mining the code change history, and we recommend changes using

the matched templates. Using DevReplay, developers can automat­

ically detect and fix project/API­specific problems in the code editor

and code review.” [41]. There is no need for test cases, as in traditional

Template Based Repair tools, and it does create fix templates from pre­

vious git commits and targets one line changes. The tool is easy to use

and generates a string as a suggested patch but does not check if new

errors are created. The algorithm is inspired by Elixir, Avatar, PAR

and other APR and static analysis tools. Typical examples of usages

are ”maintaining source code consistency” and ”language migrations

fixes”.

The general workflow of DevReplay is Extracting, Matching, Prioritize,

and Suggestion. Extracting code change templates is conducted by cre­

ating an Abstract Syntax Trees of previous git commit history of one

month. The ASTs are created from different git versions of the code,

as pre­changed and changed. Further, a changing template is created

from different versions with the help of TextMate. TextMate is a syntax

suitable for auto­complete in programming editors or writing change

templates. The Matching of a template with code contents is done by

comparing the source code and generated change templates and saving

all matching templates for the next step. Further, the step of Prioritize

templates by changing the date is done by ordering templates, as the

correct one is more likely to appear closer in time. Finally, the Sugges­

tion of patches is done by a command line user interface,code editor

plugin or GitHub code review bot.

36

The difference between DevReplay and other tools, such as FixMiner,

is that it does also consider non­buggy code when creating change tem­

plates. DevReplaywas evaluated on twoCbenchmarkdata sets of Code­

Flaws and IntroClass and compared to state­of­the­art tools of Angelix,

CVC4, Enum and Semfix. However, it is not evaluated on a large bug

dataset such as Defects4j. The results show that DevReplay does repair

more bugs than the state­of­the­art tools, and its proposed real­world

open­source patches were accepted by 80%.

3.4 Repair Tools with Machine learning

As Machine learning is an emerging technology within Artificial Intel­

ligence, this section will go through some APR tools that leverage ma­

chine learning techniques.

3.4.1 R­hero

Techniques based on machine learning are showing promising results

on different bug datasets. A new interesting technique is called R­

Hero [42], which makes use of Continual Learning and analyzes and

collects commits from Continuous Integration, which makes a build

pass. These commits are single­line changes and could both be a bug

fix or other changes. The changes in the commits are used as training

data to amachine learningmodel, which generates suggestions for new

patches from buggy code. The repair in R­hero is conducted by mon­

itoring the Continuous Integration and checking out a failing build.

Further, the Fault Localization process generates possible faulty loca­

tions, and the machine learning model generates one or many patches

that makes the build pass. The generated patches are checked with an

Overfitting detection system (ODS) based on a probabilisticmodel with

supervised learning to avoid overfitting. When a suitable patch is de­

37

tected, a pull request is created to the corresponding GitHub project

with a description of the patch and build failure.

The current state of R­hero is that it collected 550000 commits that

have been used for training the machine learning model. Further, it

has been evaluated on 44002 failing builds. However, to evaluate if

R­hero did fix the bug, the final evaluation had to be conducted man­

ually. The results show that it has already submitted a correct patch to

an open­source variant of the AlphaGo Zero project, which the devel­

opers accepted. It has also been evaluated on the CodRep4 bug dataset

with around 4000bugs, producing over 600 correct patches. However,

some limitations are that R­hero does focus on one­line bug fixes, it

has not yet produced fixes for a large amount of continuous integration

builds and themachine learningmodel could forget previously learned

fixes. R­hero should be seen as a ”milestone in showing that develop­

ers and bots can cooperate fruitfully to produce high­quality, reliable

software systems” [42] and hopefully lead as an inspiration to future

contributions with APR bots based on Continuous Learning.

3.4.2 Elixir

Elixir: Effective Object­Oriented Program Repair [3], was developed

to respond to the fact that most program repair tools were developed

for non­object­oriented programming languages such as C and sparse

or no utilization of method calls. In an object­oriented language as

Java, it is common to use method calls to objects, and one study con­

ducted by the authors [3], did show that up to 57% of the statements in

a program of some projects weremethod calls. Also, around 77% of the

one­line bug fixes changed or inserted code in a method call. A similar

study, conducted by the authors [3], did show that analyzed C code only

had around 33% method calls. The authors discuss that other APR­

techniques, such as PAR, change the method calls but only replace the

38

call with code from the same method. The reason for this is the large

search space for exploring candidates outside the method.

Elixir uses method calls extensively and tries to leverage ”local vari­

ables, fields and constants” [3] to generate more patches. In order to

reduce the search space of patch candidates, a machine learningmodel

is used to assess the generated patches. Elixir consists of four differ­

ent parts: Bug localization, Generation of Candidate Patches, Rank­

ing and Selection, and Validation. Bug localization is conducted using

theOchai bug localization framework and collecting statements to rank

suspicious code locations. Generation of Candidate Patches uses eight

different Program Transformation Schemas which are:

• Widening type: replaces variable type in a declaration such as an

int to double.

• Changing expression in Return Statement: replace a return ex­

pression with a compatible type

• Checking Null Pointer: adds an if guard to an object reference to

avoid null object access,

• Checking Array Range and Collection Size: adds an if guard to

check that accesses are within a valid range,

• Changing Infix Boolean Operator: Changes a boolean operator

such as a > b to a < b and other variants.

• Loosening and Tightening Boolean Expression: removes or adds

predicates in an if condition or return statement.

• ChangingMethod Call: replace object references with other com­

patible expressions, replacing method name, replacing method

arguments with compatible types, replacing the entire method

with anoverloadedor synthesizedmethod call, which corresponds

39

to a sort of adapter class for a given replacement class [43],

• Insertion of aMethod Invocation: Synthesizes amethod callwhich

is inserted as an expression or statement.

So, ”ELIXIR extracts all the local variables and literals in scope, fields

in the same class, and all the public fields in other classes that are rel­

evant to the buggy class” [3] and these items serve as a base for patch

generation. The patches are generated according to the transformation

schemas, where the ones with method calls usually result in the most

considerable amount of candidates. The Ranking and Selection of Can­

didate Patches are conducted by logistic regression. This commonma­

chine learning technique uses the program context and bug report to

generate a probability score of the selected patch candidate.

The results of the evaluation of Elixir shows that it generates more

correct patches than other state­of­the­art approaches such as PAR.

On the Defects4J and Bugs.jar datasets, it correctly fixes 26 and 22

patches, respectively.

3.4.3 Cardumen mode of Astor

The Cardumen [44]mode of Astor is a generate­and­validate repair ap­

proach which mines templates from the code which is being repaired.

This approach of generating new templates from the buggy code and

inserting variables during repair is unique. A probability model is used

to order and speed up iteration through the generated patch candi­

dates.

The first step of Cardumen is to reduce the search space of code by

using GZoltar Fault Localization to find and calculate values for sus­

picious code locations. The code localizations above a specific value

is chosen and ordered. Modification points are code identified in the

Fault Localization that could be suitable for repair. The Cardumen ap­

40

proach of code Modification is flexible in which code element it could

change. The specific code has a code type with a corresponding root

node in an AST tree. Further, the modification specifically considers

the return types of code elements such as Integers or Booleans. The

creation of modification points is done by filtering the AST nodes and

creates one point per node. In the example: ”(a > b) && ((d − e) > 3),

Cardumen creates four modification points: one for reference to the

whole Boolean expression, the other for the Boolean expression (a >

b), the third one for a Boolean expression (d − e) > 3, and the last one

for the Integer expression (d − e).” [44]. When a list of Modification

points is gathered, the actual template is created by traversing the AST

and replacing variables with a placeholder. In the following example,

a > b will be transformed to int1 > int2.

The repair process is conducted by selecting a random modification

point with the calculated suspicious value from Fault Localization. A

list of compatible templates is generated with the help of a compatibil­

ity filter and location filter. The compatibility filter chooses templates

with the same return type as the original code, and the location filter

does select templates from the same file, files in the package or from all

statements. In this way, the search space could be reduced, and a tem­

plate is then selected with random weighted selection. The template

is then instantiated, and this could result in thousands of different in­

stances. To reduce the number of instances, a probabilistic model on

the variable number of occurrences is used to calculate the probability

of variables appearing together in a statement. Also, a localness prob­

ability value is added to the model and instances with high probability

are chosen. Finally, one instance is selected with weighted random se­

lection and inserted to the modification point. The modified program

is then evaluated with the help of the test­suite.

The results of Astor­Cardumen repair shows that it generates almost

41

9000 plausible patches on 77 bugs of the Defects4j dataset, which is

more than any other repair system. It can generate patches at different

locations in a bug and does so in over 50% of the plausible patches.

Also, eight new patches which have never been identified before were

created. The generated patches were made publically available to the

community of Automatic Program Repair for further research.

3.4.4 RITE a type error reporting tool

One problemwith programming languages that uses ”Hindley­Milner”

style is the compiler’s complicated error messages. To ease the inter­

pretation process, attempts have been made to locate the error, but

there is a lack of support for the repair tools. Sakkas et al. introduce

RITE [45], ”a type error reporting tool”, for the programming language

OCaml. The used repair strategy is called Analytic ProgramRepair and

uses supervised learning instead of manually collected templates used

by many other APR tools.

It extracts potential repair templates from a training dataset, predicts

suitable templates by training amulti­class classifier and finally creates

and ranks patches with the help of the templates. The tool is suitable

for type errors, as the repair space, in general, is large for these errors,

and the goal ”is to use historical data of how programmers have fixed

similar errors in their programs to automatically and rapidly guide

novices to come up with candidate solutions” [45].

RITE does represent fixes usingGeneric Abstract Syntax Trees (GAST),

which collects data from Abstract Syntax Trees, but removes informa­

tion at a specific depth and then replaces it with holes. This will give

”information about a fix’s structure rather than the specific changes

in variables and functions” [45] and one example mentioned is when

var [a * var b] becomes [_ binary operator _].

42

The dataset of fixes was gathered from programs fixed by students, and

especially the interaction traces was utilized. A special compiler gath­

ers traces in all the students’ sequence of fixes. It checks the differences

in their Abstract Syntax Trees, finally creating a fix label: ”the small­

est sub­tree that changed between the correct and ill­typed attempt of

the program”. Fix templates are selected by using the GAST to iden­

tify the most general fix templates by their similarity. To create pre­

dictions of error location and which fix template to use, two different

machine learning approaches of Binary classification and Supervised

Multi­Class Classification are used. Further, candidates are created for

the generated error locations, and a ranked list is returned to the user.

Also, RITE does not only support single line errors but multiple loca­

tion errors as well by combining their score.

The solution is evaluated on 4500 OCaml programs, from a program­

ming course, with errors. When using three repair templates, RITE

chooses the correct template in 69% of the cases and 80% when in­

creasing to six templates. The repair time is up to 20 seconds in 70%

of the cases, and in a user study, RITE shows better results than the

state­of­the­art tool SEMINAL [46].

43

4 Technical contribution

This section will describe the original implementation of TBar and the

modifications that were made in kBar.

Figure 4.1: A simplified and generic flowchart of the original imple­
mentation of TBar.

4.1 Design of TBar

The original implementation of TBar consisting of over 12 000 lines of

code was closely integrated into the Defects4j bug dataset. The inte­

gration is shown in Figure 4.1 and described in this chapter.

44

4.1.1 Initialization, build and test project

The user selects the desirable project in the command line, and TBar

initializes the needed project information from Defects4j. Project in­

formation includes Suspicious code locations, Java classpaths, Java

source and test folder, Project location and more. The buggy project is

then checked out with git and compiled with the Defects4j default com­

piler. Further, the tests of the buggy project are executed with the De­

fects4j default test command, and the failure or error tests are counted

and collected. The tests are needed in the future step of Patch valida­

tion.

4.1.2 Patch generation and Fix template selection

Suspicious code locations and Context information

TBar reads the suspicious code positions from a pre­generated text file

by the suspected line number in the .java file shown in Figure 4.2, pro­

vided by the GZoltar framework.

org.apache.commons.lang3.ClassUtils@903
org.apache.commons.lang3.ClassUtils@904
org.apache.commons.lang3.ClassUtils@905
org.apache.commons.lang3.ClassUtils@906

Figure 4.2: Pre­generated text file from the GZoltar framework with
suspicious code locations.

45

if (parser.hasNext(4)) {
position.setNetwork(new Network(CellTower.from(

parser.nextInt(), parser.nextInt(),
parser.nextInt(16), parser.nextInt(16),
parser.nextInt())));

}

Figure 4.3: The entire if statement identified as the Suspicious code
node by TBar, where the the original bug Bears­98 is marked in red.

25 = IfStatement
32 = MethodInvocation
42 = SimpleName
34 = NumberLiteral

Figure 4.4: Gathered Context Information from the Suspicious code
node in Figure 4.3, with corresponding Integers.

The java files with the suspicious code are then parsed into a List of

suspicious code nodes show in Figure 4.3. Context Information, shown

in Figure 4.4, is then gathered and corresponds to an Integer matched

with IfStatements, MethodInvocations and more, which is used by the

fix templates.

Matching with Fix templates

The Context Information of each node is iterated through and com­

pared to each fix template. If a fix template matches the Context Infor­

mation of the suspicious code node, the template is used for the gener­

ation and validation of patches. In the example in Figure 4.5, the Fix

Template ConditionalExpressionMutatormatcheswith the Context In­

formation IfStatement and generates 12 Patch Candidates.

Dictionary of fix ingredients

A Dictionary of fix ingredients is created to serve the fix templates with

ingredients for Patch Generation, where examples are shown in Fig­

46

- if (parser.hasNext(4)) {
+ if ((parser.hasNext(4)) || (parser.hasNext())) {
+ if ((parser.hasNext(4)) && (parser.hasNext())) {

Figure 4.5: Bug Bears­98 , two of the 12 generated Patch Candidates
when Context Information number 25 IfStatement is matched with fix
template ConditionalExpressionMutator.

ure 4.6. In detail, a Dictionary in TBar is a class containing multiple

HashMaps where a key corresponds to the classpath and the values

of Variables, Dependencies, Methods or Superclasses. The Dictionary

is generated from the .java file where the bug is located to reduce the

search space. However, there would be minor required changes in the

code to expand the search space. The Dictionary also contains helper

methods for the fix templates to get access to the desired values.

Fields with variables:
PRIVATE Pattern PATTERN
PRIVATE Pattern PATTERN_ITEM
PRIVATE Pattern PATTERN_OLD

Imported dependencies:
org.traccar.protocol.NavigilFrameDecoder
org.traccar.protocol.H02FrameDecoder
org.traccar.protocol.SkypatrolProtocolDecoder

.

.

Methods:
GoSafeProtocolDecoder
decodePosition
decode

Superclasses:
org.traccar.BaseProtocolDecoder

Figure 4.6: Examples of the 338 Dictionary ingredients for Bears­98
bug.

47

4.1.3 Patch validation and Run all tests

The validation of the generated patches is conducted by executing only

the failing tests from the step of ”Run all tests”, this is done by first com­

piling only themodified.java file. Then if the compile succeeds, only the

individual failing test is executed with java, and finally, if the test suc­

ceeds, all tests are rerun. The idea of avoiding the execution of all tests

saves time. If all tests pass and no new failures are generated, TBar

generates the message “Succeeded to fix bug” and a plausible patch is

presented, as shown in Figure 4.7.

--- a/src/org/traccar/protocol/GoSafeProtocolDecoder.java
+++ b/src/org/traccar/protocol/GoSafeProtocolDecoder.java

-156,7 +156,7 public class GoSafeProtocolDecoder extends
BaseProtocolDecoder {

position.set(Position.KEY_HDOP, parser.next());
- if (parser.hasNext(4)) {
+ if ((parser.hasNext(4)) || (parser.hasNext())) {

position.setNetwork(new Network(CellTower.from(
parser.nextInt(), parser.nextInt(),

parser.nextInt(16),
parser.nextInt(16),
parser.nextInt())));

}

TBar: Finish off fixing === Succeeded to fix bug Bears-98

Figure 4.7: The output of TBar when “Succeeded to fix bug” and a plau­
sible patch is presented.

48

4.2 Extensions of TBar in kBar

As a response to the close integration with the Defects4J bug dataset

and using TBar with other projects, TBar was modified into a stan­

dalone version kBar ­ “kungliga TBar” as shown in Figure 4.8. This was

done in the scope of this thesis in order to use the tool for experiments.

Someparts of the close integration in TBarwere that the Fault Localiza­

tionprocess inTBar had already been conducted and stored in text files,

which was read by TBar. It was not integrated into the workflow and

the Fault Localization needed to be executed before TBar. Further, the

compilation of projects and running of all tests were only adapted for

the Defects4j dataset. The classpaths and dependencies were also pre­

pared for Defects4j and the interpretation of tests results. The general

modifications are available online 1. A short description of the company

specific modifications of kBar are described in Section 6.3.

4.2.1 Domain knowledge

In order to configure kBar for different projects, there is a need for do­

main knowledge about the project and its context. The setup process

does assume knowledge of classpaths, dependencies, class folders, java

src folders, test folders and some knowledge about the configuration

options in kBar and the output of the specific buggy project.

1https://github.com/gynther­k/kbar/

49

Figure 4.8: A simplified and generic flowchart of the modified version
of kBar ­ “kungliga TBar”.

4.2.2 Modifications and arguments

Modifications were done in order to remove the hardcoded paths and

specific Defects4j bug dataset configurations, and as a result of these

50

modifications, the following parts to kBar were added.

Project Information

The arguments of ”bug data path”, ”bug id” and ”defects4j project”

folder were the original input arguments to TBar. In the work of this

thesis, other arguments as the ”Java src/test .class and .java” folders

were added, for java to be able to compile and run the individual test

cases and the buggy code. Also, the argument of ”Additional classpath

file” for other specific classpaths needed by the project is read from a

file, separated by a colon, if known beforehand. Another argument of

”Dependencies” folder was added, which corresponds to the root folder

that should be scanned for .jar files and its subfolders for dependencies

not covered by the ”Additional classpath file”. The ”Project configura­

tion” argument decides if kBar should be run with maven or java test

and compile commands specific for the Defects4j dataset or with the

Bears default maven and java commands. The Bears java and maven

arguments are easily modified in the code to make TBar easily adapted

to other bug datasets or company­specific projects. This modification

is especially useful as all companies or projects do not usemaven or the

same java version as defects4j or Bears datasets.

Read tests

The ”Read tests” argument decides how the failing test output should

be read by TBar, as the output of the complete package and class name

is needed for test and patch validation. Originally the interpretation

of test output was adapted for the Defects4j specific test and compile

outputs. The output of failing test cases can differ in different versions

of maven or other company­specific java build and test tools.

Git configuration and Maven

The ”Git Enable/Disable” alternative decides if the git checkout and

the presentation of the patch should be done with or without git. There

51

could be specific reasons for this, in some instances, if a buggy project

folder is copied without git or other scenarios. Finally, the ”Maven

path” argument decides if the defaultmaven version in the systemshould

be used or another folder with maven, which could be useful when re­

producing experiments.

Measurements and shell output

For the experiments, a ”Measurements” argument provides an alterna­

tive to deciding what parts of TBar to measure, such as Fault Localiza­

tion, the entire workflow or no measurements. The original version

of TBar did show important outputs as generated patch candidates,

patch process and result. However, there was no output of the java

and maven or project­specific compile and test procedure, and there­

fore the ”Shell/Test output” option was added. It could be important

to see the output of some tests or the compile procedure to find out if

missing dependencies or classpaths should be added.

4.2.3 Fault Localization

As the original version of TBar did not have Fault Localization imple­

mented in the workflow, GZoltar Fault Localization was implemented

in kBar, which is described in section 2.1.1 Fault Localization. This

was done after the step of “Run all tests” to be able to collect the fail­

ing tests to GZoltar. In order to make the usage of GZoltar realistic

in a custom scenario in the industry, the GZoltar Command Line In­

terface was used. There are other suitable alternatives, such as the

GZoltar maven plugin; however, it was discarded as there is no guar­

antee of the use of maven in an industry or open­source project. There

are two modes implemented All and Fail, to get alternatives to predict

the most accurate Fault Location. All, GZoltar will run all tests in the

entire project. Fail, if maven or company build tool finds a failure in

52

org.springframework.data.mapping.model.ExampleTest, GZoltar will

run tests in org.springframework.data.mapping.model.* to limit the scope.

4.2.4 Other modifications

Othermodificationswere adding a rerun of failing tests to theDefects4j

dataset alternative, as some of the tests in projects of Defects4j could

act as ”flaky tests”, which fails sometimes but passes if re­executed.

This was previously handled by ignoring the flaky tests with a ”Fake

Failed Test Cases” text file. Flaky tests should be considered in a real­

world scenario, as the correct patch could be falsely discarded. Another

modification was that the interpretation of shell output from the tests

was modified to use Java BufferReader1 and InputStreamReader2 in­

stead of the provided ReadShellProcess from the TBar project. In this

way, some problems with projects with extensive output and getting

stuck on empty lines were avoided.

1https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
2https://docs.oracle.com/javase/7/docs/api/java/io/InputStreamReader.html

53

5 Experimental Research Methodology

This sectionwill describe the experimental ResearchMethodologywith

the protocols of Research Questions. The explanation will be in a de­

tailed level and contain descriptions such as experimental setup, bug

collection, performance evaluation, fault localization and more.

5.1 RQ1: What is the effectiveness of template­based
automatic program repair on different bug datasets?

This Research Question is answered through an extensive and detailed

evaluation of kBar on the different bug datasets from Saab described

in section 1.2, and Bears, chosen due to its ease to work with and pub­

licly availability, described in section 2.3.4. The evaluationwill not only

present the number of bugs fixed but performance evaluation as well.

The evaluation should serve as a base for the understanding of the be­

haviour of kBar and if it is suitable for use in an industrial context.

This Research Question aims to answer what is the effectiveness of

kBar, described in section 4.2, on the considered bug datasets. It is

answered by collecting suitable bugs from a set of selected criteria, de­

scribed in section 5.1.2. Then kBar is executed on the selected bugs, and

the performance and effectiveness are evaluated with specific criteria.

The result also provides further understanding to the other Research

Questions of the use of kBar in an industrial context.

5.1.1 Experimental setup

The testswere executed in parallel at theKebnekaise1 supercomputer at

HPC2N, High­Performance Computing Center North, with 432 nodes

of Node type Compute. Further, the node has an Intel Xeon E5­2690v4

1https://www.hpc2n.umu.se/resources/hardware/kebnekaise

54

CPU, 2x14 Cores and Memory of 128 GB/node. The test configuration

was one task per node, exclusive access to the node and 8 cores per job.

The executions at Saab were run in serial at one of the standard devel­

oper computers, accessed by only one developer and no other jobs run­

ning. The source code and test results executing on Kebnekaise were

made publicly available2. The reason for separate executions of exper­

iments is due to confidentiality reasons at Saab.

5.1.2 Bug collection

The bugs were collected from an open­source bug dataset Bears, and

the history of git commits at Saab. In order to limit the scope of poten­

tial bugs, they were collected according to a number of criteria:

Bears dataset

From the Bears dataset, the criteria for bug collection were as follow­

ing:

1. The bug is available and described at the Bears official website1.

2. The bug produces at least one failed or error test case.

3. It corresponds to a one­line bug or a bug with few lines.

Saab dataset

In order to investigate if the tool can be used at Saab, it is important that

the collected bugs correspond to real­world test failures that occurred

in production and has a verified git commit. The tool must be able to

execute with the latest version of the project and repository. At Saab,

the criteria were as follows:

1. The bug is located in the project’s history of git commits.

2https://github.com/gynther­k/TBar/tree/test­kebn/
1https://bears­bugs.github.io/bears­benchmark/

55

2. The description contains fix, test, fail, bug or is interpreted as a

bug.

3. It is corresponding to a one­line bug or a bug with few lines.

4. The bug should be able to produce at least one failed or error test

case with the latest version of the Saab project.

Also, in the company­specific bugs, tangled or mixed bugs are used.

Tangled or mixed bugs contain unrelated changes to the bug, such as

refactoring or documentation and 11% to 39% of all the fixing commits

used for mining archives are tangled [21].

5.1.3 Performance and Effectiveness evaluation

When the bugs had been collected, the kBar tool was evaluated, focus­

ing on four areas:

5.1.3.1 Patches and fixes and Fault Localization

Figure 5.1: The official Human patch of bug Defects4j C­1.

- if (dataset != null) {
+ if ((dataset != null) && (this.plot == null)) {

Figure 5.2: A Plausible patch, that passes all tests, presented by kBar
when fixing Defects4j bug C­1.

56

- if (dataset != null) {
+ if (dataset == null) {

Figure 5.3: A Correct patch, that passes all tests and is equivalent to
the official Human patch, presented by kBar when fixing Defects4j bug
C­1.

The evaluation of the effectiveness with respect to the number of fixed

bugs focused on the effectiveness of kBar itself, not on the accuracy

of Fault Localization. Therefore, the first evaluation assumed Perfect

Fault Localization, where the buggy location is provided in apre­generated

text file. The results are the number of generated patches, plausible

patches and correct patches. A Plausible patch doesmake all tests pass,

and a Correct patch does make all tests pass and is equivalent to the

original human patch. Examples of a Human official, Plausible and

Correct patch are shown in figure 5.1, 5.3 and 5.2.

The protocol of correctness analysis is followed by the author of this

thesis and is manually conducted by the following criteria:

• Plausible patch, a patch that passes all tests.

• Correct patch, a patch that passes all tests and is equivalent to

the official human patch.

Normal Fault Localization must also be considered in a real­world sce­

nario, and we investigate the accuracy of Fault Localization. This pro­

cess includes GZoltar Fault Localization and presents Fault position,

Total position, Suspicious score, time and if the Suspicious position is

detected.

5.1.3.2 Dictionary

We will investigate the size of the Dictionary of fix ingredients, de­

scribed in section 4.1.2.3, and the impact on the time and number of

generated patch candidates. TheDictionary is collected from the buggy

57

.java file and this will gain understanding to extend the search space in

the future.

5.1.3.3 Time

Time consumption of the different parts of kBar, such as Total execu­

tion time, patch generation, validation of patches and dictionary gener­

ation. This gives knowledge of which part is the most time consuming

and where we can make future improvements.

5.2 RQ2: What are the characteristics of the gener­
ated patches by kBar?

This research question provides an evaluation of the behaviour of kBar

on the selected bugs from research question 1. According to Monper­

rus et al., there is a problem with “Fix Acceptability” [35] , and it could

be challenging to decide if one patch is better than another if they both

do pass the tests. In order to determine whether a patch is correct,

there could be extensive knowledge needed about the project and its be­

haviour. Ideally, the original developers review the patches. However,

in this Research Question, the details and usefulness of some patches

are evaluated with the arbitrary knowledge of the author of this the­

sis.

In order to limit the scope, only three patches or bugs of each class

of Correct, Plausible and Failed are selected and examined in detail.

Due to confidentiality reasons, no Saab bugs are chosen, but only bugs

from the Bears bug dataset. Bugs with interesting behaviour are man­

ually selected by the author of this thesis, which clearly demonstrates

the characteristics of kBar. Their behaviour is investigated, and the

possible reasons for not fixing the actual bug. The Research Question

provides a further understanding of the actual patches that kBar gen­

erates, and a detailed evaluation of the behaviour of the considered fix

58

templates and suggestions for improvements.

5.3 RQ3: How could template­based automatic pro­
gram repair be integrated into the existingCI pipelines
used at Saab?

ThisResearchQuestion aims to answer howaprototype of the kBar tool

can be integrated into the existing Continuous Integration pipelines

at Saab. This is necessary, as the default version of TBar is not con­

figured to be used in production as other tools, i.e. Repairnator [5].

The answer to the question focuses on a general point of view of the

integration rather than a detailed description. The answer contains

at least one working solution and suggestions for future integrations.

Therefore, the evaluation of the implementation is considered a proof

of concept and serves as a base for future and more extensive evalua­

tions of Automatic program repair tools in the production environment

at Saab.

6 Experimental Results

This section will describe the results of the experiments with answers

to the protocols of Research Questions. The results will be presented

in a detailed level as described in section 5.

6.1 RQ1: What is the effectiveness of template­Based
Automatic ProgramRepair on different bug datasets?

59

Table 6.1: kBar results on the 54 collected bugs, with the template that produces a Plausible or
Correct patch in bold. The numbers corresponding to each Fix Template are the number of
generated Patch Candidates, an empty cell equals a non­matching of fix template. A Correct
patch is markedC, Plausible patchP and patches which break the tests with ­ . Dictionary size
is the total number of fix ingredients generated for the bug.

Bug­Id

F
P
2
N
u
ll
P
o
in
te
r
C
h
e
ck
e
r

F
P
3
R
a
n
g
e
C
h
e
ck
e
r

F
P
4
S
ta
te
m
e
n
t
In
se
rt
e
r

F
P
6
C
o
n
d
it
io
n
a
l
E
x
p
re
ss
io
n
M
u
ta
to
r

F
P
7
D
a
ta
T
yp
e
R
e
p
la
ce
r

F
P
8
M
u
ta
te
In
te
g
e
r
D
iv
is
io
n
O
p
e
ra
ti
o
n

F
P
9
L
it
e
ra
l
E
x
p
re
ss
io
n
M
u
ta
to
r

F
P
10

M
e
th
o
d
In
v
o
ca
ti
o
n
M
u
ta
to
r

F
P
11
O
p
e
ra
to
r
M
u
ta
to
r

F
P
12

R
e
tu
rn

S
ta
te
m
e
n
t
M
u
ta
to
r

F
P
13

V
a
ri
a
b
le
R
e
p
la
ce
r

F
P
14

S
ta
te
m
e
n
t
M
o
v
e
r

F
P
15

S
ta
te
m
e
n
t
R
e
m
o
v
e
r

T
o
ta
l
P
a
tc
h
C
a
n
d
id
a
te
s

D
ic
ti
o
n
a
ry

S
iz
e

C
o
rr
e
ct
/P
la
u
si
b
le

Bears­2 6 0 70 0 16 4 2 4 102 1300 ­

Bears­3 5 0 6 16 0 13 0 2 42 603 ­

Bears­5 14 0 20 0 0 2 11 47 413 C

Bears­8 7 0 4 0 0 4 15 660 P

Bears­19 7 0 0 0 0 0 4 4 11 924 ­

Bears­87 12 0 0 0 0 0 1 0 14 918 ­

Bears­88 16 0 0 0 11 0 0 0 0 5 32 646 ­

Bears­95 0 0 2 2 650 P

Bears­90 2 0 0 4 0 0 1 78 10 2 97 1092 ­

Bears­98 12 12 338 P

Bears­109 17 1 3 2 0 34 20 2 79 3540 ­

Bears­121 6 0 1 7 208 P

60

Bears­125 18 0 2 0 27 47 2085 P

Bears­127 11 0 2 0 0 0 2 15 2961 P

Bears­129 0 0 0 0 0 0 0 0 1 1 3780 ­

Bears­130 0 0 0 0 0 0 1 1 3528 ­

Bears­132 0 0 0 0 0 0 0 0 1 1 4300 ­

Bears­133 5 5 387 C

Bears­136 15 0 0 0 3 4 22 2772 C

Bears­139 0 0 0 0 3 3 2080 P

Bears­144 5 0 0 5 0 0 11 234 ­

Bears­151 7 0 0 0 0 3 10 54 C

Bears­154 11 0 4 0 19 0 10 5 2 51 540 ­

Bears­160 16 0 4 788 0 0 0 14 0 6 828 2376 ­

Bears­163 9 0 2 782 0 0 0 1 0 0 3 797 1980 ­

Bears­166 7 0 0 10 0 12 2 6 37 774 ­

Bears­169 15 0 2 5 0 11 0 2 35 1232 ­

Bears­180 8 0 0 2 0 0 0 21 0 1 32 460 ­

Bears­183 11 0 0 6 0 0 4 0 1 22 666 ­

Bears­195 11 0 2 0 0 0 0 3 10 0 2 28 533 ­

Bears­184 46 0 0 0 1 2 0 4 0 1 54 190 ­

Bears­198 2 0 0 4 0 0 2 2 10 369 ­

Bears­199 2 2 77 ­

Bears­200 5 0 0 0 0 0 0 0 1 6 0 ­

Bears­202 7 0 0 21 0 28 0 2 58 1008 ­

Bears­232 0 0 0 0 0 0 5 0 4 2 11 247 ­

Bears­233 0 0 0 0 0 0 0 4 2 6 189 ­

Bears­238 24 0 1 25 125 P

Bears­249 2 0 2 0 0 2 2 8 328 ­

61

Bears­251 0 1 0 0 1 892 C

Saab1.0 36 1 37 172 P

Saab1.1 0 3 0 13 16 344 C

Saab1.2 28 1 29 172 P

Saab2.1 2 2 35 ­

Saab3 0 0 0 0 0 1 1 726 ­

Saab4 22 0 6 2 161 0 2 40 0 1 234 1400 ­

Saab5 19 0 0 31 0 0 2 52 440 ­

Saab6.1 1 1 41 ­

Saab6.2 1 1 41 ­

Saab7 4 0 16 0 1 2 0 23 6 6 58 1408 ­

Saab8 5 5 154 C

Saab9 14 0 0 0 12 5 31 1232 P

Saab10 5 0 4 0 0 0 7 0 2 18 846 ­

Saab11 8 8 43 P

Total 356 1 49 1782 0 0 6 300 47 2 381 78 80 3080 C: 7

Number P: 12

P/C 2 0 0 5 0 0 0 1 5 0 1 2 3

62

Total number of Patch candidates 3080

Average number Potential patches/bug 57

Median number of Potential patches/bug 15,5

Average size of Dictionary 972

Median size of Dictionary 603

Percent of Plausible patches of all bugs 35%

Percent of Correct patches of all bugs 13%

Table 6.2: Summarized data from Table 6.1

6.1.1 Patches and fixes

The results from Table 6.1 show that kBar generates 3080 patches on
the 54 collected bugs from the considered bug datasets. kBar finds 19
Plausible1 andCorrect2 patches and presents ”Succeeded to fix the bug”
and then stops the execution. Of these 19 patches, 7 are considered
Correct or equivalent to the original human patch, per the correctness
analysis protocol described in Section 5.1.3.1.

Table 6.2 shows that the median number of potential patches per bug
is 15,5 and that kBar generates plausible patches to 35% of the selected
bugs and 13% of them is correct.

The fix templates that generated the most Potential patches are FP6
Conditional Expression Mutator with 1782 and FP13 VariableReplacer
with 381. The fix templates that produce themost Plausible andCorrect
patches are FP6 Conditional Expression Mutator and FP11 Operator­
Mutator, both with 5. However, the fix templates of FP5 Mutate Class
Instance Creation and FP1 Insert Cast Checker are never considered
matching any of the bugs. The templates of FP8 Mutage Integer Divi­
sion Operation and FP7 Data Type Replacer are considered matching
multiple bugs, but no patches are generated.

Compared to the execution of TBar on the Defects4j bug dataset, which
generates almost 26% Plausible patches and 19% Correct of(74/101)
395bugswithPerfect Fault Localization, ourworkwith a different setup
with kBar generates 35% Plausible patches and 13% Correct patches.

1https://github.com/gynther­k/kbar/tree/main/ThesisResults/Patches/Plausible
2https://github.com/gynther­k/kbar/tree/main/ThesisResults/Patches/Correct

63

The difference in experiment setup is that in the original TBar with
Defects4j execution, the comparison is done with Perfect Fault Local­
ization and generates all possible patch candidates with all fix tem­
plates. In this thesis, when a matching fix template has found a Plau­
sible patch, the execution stops.

However, the results in the original TBar show that FP3, FP4.3, FP5,
FP7.2 and FP11.3 cannot generate any Plausible patches. This corre­
sponds to our findings, where FP5 is never considered matching and
FP7 is considered matching, but no patches are generated. FP3 is gen­
erating 1 Plausible patch in our work, and when reviewing in detail,
the FP4.3 and FP11.3 are not generating any plausible patches. In our
work, templates that generate the highest number of Potential patches
are FP6 Conditional Expression Mutator and FP13 Variable Replacer.
With TBar andDefects4j, the FP6 Conditional ExpressionMutator and
FP13VariableReplacer generate themost number of Plausible andCor­
rect patches, so it is possible that these templates also generates the
most number of Potential patches, similar to our findings. So the con­
clusion when comparing to the original TBar results, there are both
differences and similarities.

6.1.2 Dictionary size of fix ingredients

The median size of the Dictionary of fix ingredients, described in sec­
tion 4.1.2, of the fix templates is 603 items, as shown in Table 6.1 and
Table 6.2. The largest Dictionary is generated by bug Bears­132 with
4300 items. However, there is no clear correlation between increasing
Dictionary size and Total execution time, as shown in Figure 6.1. There
is also no apparent connection between an increasing Dictionary size
and the total number of Patch candidates as shown in Figure 6.2.

64

0 1000 2000 3000 4000
Dictionary Size

0

200

400

600

800

1000

1200

1400
To

ta
l t

im
e

(s
)

Dictionary Size and Total time

Figure 6.1: Correlation between Dictionary size and Total execution
time (s)

0 1000 2000 3000 4000
Dictionary Size

0

200

400

600

800

To
ta

l P
at

ch
 C

an
di

da
te

s

Dictionary Size and Total Patch Candidates

Figure 6.2: Correlation between Dictionary Size and Total Number of
Patch Candidates

65

6.1.3 Time

Table 6.3: Results of kBar (time), with Perfect Fault Localization.

Bug­Id Patch Dictionary Patch Total

generation (ms) generation (ms) validation (s) time (s)

Bears­2 12 10 84 136

Bears­3 19 15 34 63

Bears­5 127 17 43 67

Bears­8 29 21 25 52

Bears­19 109 17 8 36

Bears­87 4 12 20 88

Bears­88 5 3 30 64

Bears­95 5 29 38 128

Bears­90 9 6 125 168

Bears­98 3 18 7 100

Bears­109 101 8 77 125

Bears­121 5 11 19 57

Bears­125 64 47 86 116

Bears­127 34 10 27 62

Bears­129 23 21 1 31

Bears­130 30 14 1 31

Bears­132 24 39 1 29

Bears­133 2 11 12 41

Bears­136 29 7 35 64

Bears­139 5 19 9 42

Bears­144 2 9 8 607

Bears­151 4 4 155 368

Bears­154 13 10 62 245

Bears­160 27 18 1322 1440

Bears­163 38 22 1287 1373

Bears­166 15 3 16 183

Bears­169 6 19 51 979

66

Bears­180 6 7 48 300

Bears­183 4 10 69 330

Bears­195 6 8 54 565

Bears­184 9 6 50 215

Bears­198 9 5 10 155

Bears­199 0,4 20 9 66

Bears­200 2 0 12 229

Bears­202 5 18 69 132

Bears­232 5 6 5 13

Bears­233 2 4 4 143

Bears­238 5 10 19 26

Bears­249 22 8 5 29

Bears­251 8 82 9 25

Average 21 15 99 223

Median 9 11 26 108

Saab1.0 13 71 27 63

Saab1.1 8 47 27 69

Saab1.2 12 46 88 132

Saab2.1 1 60 22 60

Saab3 2 41 2 45

Saab4 46 36 554 597

Saab5 14 26 112 156

Saab6.1 3 2136 2 37

Saab6.2 3 25 2 42

Saab7 19 16 166 209

Saab8 4 112 17 60

Saab9 85 37 84 128

Saab10 9 31 59 202

Saab11 5 50 14 70

Average 16 195 84 134

Median 9 44 27 69

67

0 200 400 600 800 1000 1200 1400
Time (s)

0

10

20

30

40

Bu
gs

Total execution time
Saab & Bears

Figure 6.3: Histogram of kBar(time), with Perfect Fault Localization.

In the Saab environment, as shown in Table 6.3 and Figure 6.3, the median

Total Execution time is 69 seconds. The lowest Total Execution time was with

bug Saab4 in around 37 seconds and the highest in 597 seconds. The vali­

dation of patches has a median execution time of 27 seconds at Saab, which

corresponds to approximately 39 percent of the total execution time.

With the Bears bug dataset, the median Total Execution time is 108 seconds.

The lowest Total Execution time was 13 seconds with Bears­232 and the high­

est with Bears­160 in 1440 seconds. The validation of patches has a median

execution time of 26 seconds, which corresponds to around 24 percent of the

total execution time.

All results from the ”generate patch process” and ”generate dictionary time”

are executed in milliseconds with both datasets, except one Saab bug, which

consumes around 2 seconds. There are differences in themedian Total execu­

tion time of Saab and Bears experiments of 43 seconds. The reason for faster

execution time at Saab could be the hardware setup and differences in project

complexity and test coverage. At Saab, only two different projects were cho­

sen, in contrast to more than 10 different with Bears. However, the median

68

time of validation of patches is around 26 to 27 seconds in both projects and

corresponds to 24 to 39 percent of the total execution time. The results show

that the most significant time­consuming part in both environments except

for initialization, build process and first­time testing, and more is the valida­

tion of patches.

6.1.4 Fault Localization

The GZoltar Fault Localization with the alternatives all or fail did find the

correct location in 38 of the 54 bugs shown in Table 6.4. The correct positions

are located between the first and 12401 with a median position of 85 and the

top 2% of the generated suspicious positions. A lower top percentage value

is good. The suspiciousness percentage value presented by GZoltar is in the

median 6%, where 100% corresponds to most suspicious. The top percentage

and suspicious value are calculatedwith only the bugs where GZoltar finds the

faulty location, excluding the others. Finally, the median time for execution

is 7 seconds at Saab and with the Bears bug dataset.

When reviewing only theBears dataset, theGZoltar Fault Localization did find

the correct location in 32 of the 40 bugs. The correct positions are located

between 1 and 12401 with a median position of 60 and the top 2%. The suspi­

ciousness percentage value presented by GZoltar is in the median 92%.

When reviewing only the Saab dataset, the GZoltar Fault Localization did find

the correct location in 6 of the 14 bugs. The correct positions are located be­

tween 11 and 1087 with a median position of 179 and the top 8%. The suspi­

ciousness percentage value presented by GZoltar is in the median 6%.

From the results, GZoltar performs better on the Bears dataset where it finds

the correct location on 80% of the bugs where Saab only finds around 43%.

The suspicious score is in median 86% higher with Bears, and the top percent

is 2% against 8% at Saab. Also, the fail mode did not succeed on all bugs at

Saab, leading to a low suspicious score. Possible reasons for the differences

could be different test coverage between Bears and Saab, different Java ver­

sions and test environment. Also, the fail mode of kBar presents a higher

69

suspicious value, but there are too few bugs to state this clearly.

In the TBar paper, the Fault Localization accuracy is not reviewed in detail

per bug. Instead, an average value of the Fault position of the Plausible or

Correct patches of each Fix template is presented, eg. where position 1 cor­

responds to the first found suspicious code location by the Fault localization

tool. The average positions of the Correct patches are varying between 1 and

62, and the Plausible patches between 1 and 191. When they run the experi­

ments without Perfect Fault Localization and replicate a ”standard and practi­

cal APR pipeline”, the number of correct bugs is almost 40% lower than with

Perfect Fault Localization, so the Fault Localization is introducing errors as

in our work. Also, the original TBar setup was unable to find some buggy lo­

cations. The key take away point is that unfixed bugs ”are generally more

poorly localized than correctly fixed bugs” [6].

70

Table 6.4: Results of kBar with respect to Fault Localization.

Bug­Id Fault Total Mode Top percent (%) Time (s) Suspicious

position position score

Bears­2 2035 21690 fail 9% 18 17%

Bears­3 4186 20059 fail 21% 6 17%

Bears­5 12401 18126 fail 68% 7 0%

Bears­8 ­ ­ fail ­ 13 ­

Bears­19 28 18819 fail 0,1% 7 38%

Bears­87 1 591 fail 0,2% 2 100%

Bears­88 169 835 fail 20% 3 32%

Bears­95 44 1759 fail 3% 10 9%

Bears­90 94 1629 fail 6% 9 4%

Bears­98 108 12711 fail 0,8% 5 100%

Bears­109 18 13796 fail 0,1% 7 100%

Bears­121 1 14780 fail 0% 7 100%

Bears­125 338 15486 fail 2% 7 100%

Bears­127 24 15594 fail 0,2% 7 100%

Bears­129 22 15734 fail 0,1% 7 100%

Bears­130 32 15742 fail 0,2% 8 100%

Bears­132 169 16305 fail 1% 8 100%

Bears­133 8 16450 fail 0,05% 7 100%

Bears­136 22 16568 fail 0,1% 8 100%

Bears­139 262 16962 fail 2% 8 100%

Bears­144 ­ ­ fail ­ ­ ­

Bears­151 9 26 fail 35% 2 100%

Bears­154 148 342 fail 43% 3 29%

Bears­160 208 2177 fail 10% 5 8%

Bears­163 191 2068 fail 9% 4 4%

Bears­166 31 330 fail 9% 1 71%

Bears­169 ­ ­ fail ­ ­ ­

71

Bears­180 ­ ­ fail ­ ­ ­

Bears­183 ­ ­ fail ­ ­ ­

Bears­195 ­ ­ fail ­ ­ ­

Bears­184 ­ ­ fail ­ ­ ­

Bears­198 13 852 fail 2% 3 100%

Bears­199 ­ ­ fail ­ 8 ­

Bears­200 1 410 fail 0,2% 13 100%

Bears­202 75 3046 fail 2% 2 71%

Bears­232 4 204 fail 2% 1 71%

Bears­233 76 125 fail 61% 1 100%

Bears­238 22 101 fail 22% 1 63%

Bears­249 117 1523 fail 8% 12 83%

Bears­251 313 12571 fail 2% 7 22%

Average 662 8669 11% 6 67%

Median 60 7809 2% 7 92%

Saab1.0 145 2149 fail 7% 7 13%

Saab1.1 11 2149 fail 1% 6 34%

Saab1.2 186 2149 fail 9% 6 24%

Saab2.1 ­ 3381 all ­ 7 ­

Saab3 171 3416 all 5% 7 0%

Saab4 ­ 3415 all ­ 7 ­

Saab5 ­ 3821 all ­ 8 ­

Saab6.1 ­ 3821 all ­ 7 ­

Saab6.2 ­ 3821 all ­ 7 ­

Saab7 613 1190 fail 52% 5 0%

Saab8 ­ 3821 all ­ 7 ­

Saab9 ­ 3821 all ­ 7 ­

Saab10 1087 2977 all 37% 21 0%

Saab11 ­ 1151 ­ 5 ­

72

Average 369 2934 18% 8 12%

Median 179 3398 8% 7 6%

73

6.1.5 Conclusion

Patches and fixes

The results from kBar shows that it generates Plausible patches to 35% of the
selected bugs and 13%, which is considered Correct. In total, 3080 patches
were generated to the 54 bugs, and four fix templates are never considered
matching or not generating any patches. This could be compared to the ex­
ecution of TBar on the Defects4j bug dataset, which generates almost 26%
Plausible patches and 19% Correct of 395 bugs (74/101) with Perfect Fault
Localization. However, it would be interesting to investigate execution with
all fix templates and without Perfect Fault Localization to get a more accurate
view of the behaviour of fix templates and overfitting.

Compared to the original TBar paper results, our work presents 35%Plausible
patches, which is 9% higher, and 13% Correct patches, which is 6% lower.
However, our work has a less advantageous setup but more realistic, where
kBar stops when finding the first Plausible patch, and the original TBar paper
executes all possible fix templates. There are also similarities in fix template
behaviour, where some templates do not generate Plausible patches. Based
on the results in our work and original TBar, we assume that FP6 Conditional
ExpressionMutator and FP13 Variable Replacer generate the highest number
of Potential patches.

Fault Localization

The Fault Localization is most accurate on the Bears dataset, where it finds
the correct location in 80% of the bugs. The median Fault Localization top
percentage of 2% and a suspicious score of 6% show that the top percentage
would be a better value to cut the fault positions and limit the scope. The
suspicious score is low and generates too many positions. Finally, the Fault
Localization is introducing errors, and our work corresponds to the take away
point from TBar paper, where ”unfixed bugs are generally more poorly local­
ized than correctly fixed bugs”.
Time

The largest individual time­consumingpart of kBar is the ”Validation of patches”,
which does consume, in the median, between 39 and 24 percent of the time
when using only one buggy location with Perfect Fault Localization. This
part in kBar should be considered when running with Normal Fault Local­
ization when the number of patch candidates increases. Due to time con­
straints, only one measurement was done with Saab1.1 bug with GZoltar and
Normal Fault Localization, resulting in a total execution time of around 838
seconds(~14minutes). Of these ~14 minutes, the ”Validation of patches” took
823 seconds or 98% of the total execution time. The single measurement was

74

conducted with a bug with the Fault Location calculated in position 11. Also,
there seems to be no clear connection between the Dictionary size and Total
Execution time or Total number of patches. However, the two most common
Fix templates do not make use of the dictionary and other datasets may be­
have differently.

Theoretical assumptions

Theoretically, with themedian values from themeasurements as a base, a gen­
eral best case scenario of ”Validation of patches” with Normal Fault Location
position 1 would take 27 seconds. The median Normal Fault location of 85 is
theoretically assumed to execute in around 38 minutes(27 · 85) and a worst­
case scenario of 93 hours(27 · 12801), not following the 3 hour recommended
execution time of TBar. So, when considering the time, themost crucial factor
that should be considered is the process of “Validation of patches”.

Saab and Bears differences

When reviewing the results in detail between the Saab and Bears datasets,
there are some differences. The median Total execution time is 43 seconds
faster at Saab than with Bears. The validation of patches is still the most sig­
nificant time­consuming part in both environments, 24 to 39% of the time.
The Fault Localization is more accurate on the Bears dataset than at Saab,
with a successful location of 80% against ~43%. The suspicious score is in
median 86% higher with Bears, and the top per cent value is 2% against 8% at
Saab. So the execution is faster at Saab, but Fault Localization is less accurate
in this environment. Possible reasons for the differences could be hardware
setup, the variation of programming languages at Saab, test coverage, project
differences, test complexity, number of projects tested, Java versions and test
environment.

6.2 RQ2: What are the characteristics of the gener­
ated patches by kBar?

With the results from RQ1 as a base, the following bugs and patches were se­
lected and manually reviewed. There are three chosen classes of Correctly,
Plausible and Failed to fix bugs.

75

6.2.1 Correctly fixed bugs

Detailed review of bug Bears­5

Figure 6.4: The official Human patch of bug Bears­5

@@-374,7 +374,10 @@ public class BeanDeserializer
String propName = p.getCurrentName();
p.nextToken(); // to point to value
// creator property?

- SettableBeanProperty creatorProp = creator.findCreatorProperty(propName);
+ if (buffer.readIdProperty(propName)) {
+ continue;
+ }
+ SettableBeanProperty creatorProp = creator.findCreatorProperty(propName);

if (creatorProp != null) {
// Last creator property to set?
if (buffer.assignParameter(creatorProp,

@@-406,9 @@+409,7 public class BeanDeserializer
continue;
}
// Object Id property?

- if (buffer.readIdProperty(propName)) {
- continue;
- }
+

// regular property? needs buffering
SettableBeanProperty prop = _beanProperties.find(propName);
if (prop != null) {

Figure 6.5: The patch presented by kBar when fixing bug Bears­5.

76

During the manual assessment, the Bears­5 bug was considered to be Cor­
rectly fixed by kBar. The Human patch is shown in Figure 6.4 and the patch
presented by kBar in Figure 6.5. It was fixed by one of the Patch Candidates in
the FP14 Statement Mover fix template which generated 11 Patch Candidates
for this bug. The templates of FP2 NullPointerChecker and FP6 Conditional
Expression Mutator did present the most number of Patch Candidates. In to­
tal, 7 Fix templates were considered matching the buggy code but not all of
them resulting in a Patch Candidate. Some examples of patch candidates are
shown in Figure 6.6.

1. FP6: if ((buffer.readIdProperty(propName)) && !(ext.handlePropertyValue(p,ctxt,propName,null)))
2. FP13: if (asArrayDeserializer().readIdProperty(propName))
3. FP2: if (buffer != null)
4. FP2: if (buffer != null || buffer.readIdProperty(propName))

Figure 6.6: Examples of Patch candidates generated by kBar when fix­
ing bug Bears­5

Some of the presumed behaviour in Figure 6.6 is the added AND condition
in Example 1, which is gathered from another if condition in the same buggy
.java file. Also, the condition inExample 2 is replacedwith another compatible
expression as described in section 3.1.1 of TBar. An interesting behaviour of
the FP2 NullPointerChecker template is shown in Example 4, where a non ex­
pectedOR condition is added in the expression. Another template that should
be able to produce a patch is the FP10 MethodInvocation Mutator. The rea­
son for not creating a patch could be that kBar has a list of previously tried
patches and does not execute the generated patches from FP10. The idea of
not executing old patches saves time.

Detailed review of bug Bears­251

Figure 6.7: The official Human patch of bug Bears­251

The manual assessment of the Bears­251 bug was considered to be Correctly

77

--- a/wffweb/src/main/java/com/webfirmframework/wffweb/tag/html/AbstractHtml.java
+++ b/wffweb/src/main/java/com/webfirmframework/wffweb/tag/html/AbstractHtml.java
@@ -1113,7 +1113,7 @@ public abstract class AbstractHtml extends AbstractJsObject {

return;
}

- attributesMap = new ConcurrentHashMap<>(attributes.length);
+ attributesMap = new ConcurrentHashMap<>();

Figure 6.8: The patch presented by kBar when fixing bug Bears­251.

fixed by kBar. The Human patch is shown in Figure 6.7 and the patch pre­
sented by kBar in Figure 6.8. It was fixed by the only generated Patch Candi­
date inFP10Method InvocationMutator by removing the buggy variable.

Detailed review of bug Bears­133

Figure 6.9: The official Human patch of bug Bears­133

--- a/src/org/traccar/protocol/Jt600FrameDecoder.java
+++ b/src/org/traccar/protocol/Jt600FrameDecoder.java
@@ -37,7 +37,7 @@ public class Jt600FrameDecoder extends FrameDecoder {

if (type == '$') {
boolean longFormat = buf.getUnsignedByte(buf.readerIndex() + 1) == 0x75;
int length = buf.getUnsignedShort(buf.readerIndex() + (longFormat ? 8 : 7)) + 10;

- if (length >= buf.readableBytes()) {
+ if (length<=buf.readableBytes()) {

return buf.readBytes(length);
}

} else if (type == '(') {

Figure 6.10: The patch presented by kBar when fixing bug Bears­133.

During the manual assessment, the Bears­133 bug was considered to be Cor­
rectly fixed by kBar. The Human patch is shown in Figure 6.9, and the patch
presented by kBar in Figure 6.10. It was fixed by one of the five Patch Candi­
dates in the FP11OperatorMutator. Thiswas the only fix template considered,

78

as it was the first template executed, and some examples of patch candidates
are shown below in Figure 6.11.

FP6: if (length==buf.readableBytes()) {
FP6: if (length!=buf.readableBytes()) {
FP6: if (length<buf.readableBytes()) {
FP6: if (length<=buf.readableBytes()) {
FP6: if (length>buf.readableBytes()) {

Figure 6.11: Examples of Patch candidates generated by kBar when fix­
ing bug Bears­133

6.2.2 Plausible patches

The following discussed bugs were reported as Plausible and passed all tests
by kBar but were found to be incorrect after manual analysis.

Detailed review of bug Bears­125

Figure 6.12: The official Human patch of bug Bears­125.

--- a/src/org/traccar/protocol/Gl200TextProtocolDecoder.java
+++ b/src/org/traccar/protocol/Gl200TextProtocolDecoder.java
@@ -614,7 +614,11 @@ public class Gl200TextProtocolDecoder extends BaseProtocolDecoder {

for (int i = 1; i <= deviceCount; i++) {
index++; // id
index++; // type

- position.set(position.PREFIX_TEMP + i, short.parseShort(data[index++], 16) 0.0625);)
+ if (position == null) continue;
+ if (position.PREFIX_TEMP == null) continue;
+ if (data == null) continue;
+ if (data[index++] == null) continue;
+ position.set(position.PREFIX_TEMP + i, short.parseShort(data[index++], 16) * 0.0625);

}
}

}

Figure 6.13: The patch presented by kBar when fixing bug Bears­125.

79

During the manual assessment, the Bears­125 bug was considered to be Plau­
sible fixed by kBar. The Human patch is shown in Figure 6.12 and the patch
presented by kBar in 6.13. It was fixed by one of the Patch Candidates in the
FP2 NullPointerChecker fix template, which generated 11 Patch Candidates
for this bug. The templates of FP2 NullPointerChecker and FP13 Variable Re­
placer Mutator did present the most number of Patch Candidates. In total,
5 Fix templates were considered matching the buggy code but only three of
them resulting in a Patch Candidate. Some examples of patch candidates are
shown below in Figure 6.14.

1. FP13 position.set(Position.ALARM_DOOR + i, Short.parseShort(data[index++], 16) * 0.0625);
2. FP13 position.set(Position.ALARM_OIL_LEAK + i, Short.parseShort(data[index++], 16) * 0.0625);
3. FP13 position.set(Position.KEY_ODOMETER + i, Short.parseShort(data[index++], 16) * 0.0625);
4. FP13 position.set(Position.KEY_BLOCKED + i, Short.parseShort(data[index++], 16) * 0.0625);
5. FP2 if (Position.PREFIX_TEMP == null) Position.PREFIX_TEMP = new null();
6. FP2 if (Position.PREFIX_TEMP == null) return new Object();
7. FP2 if (data != null) {

Figure 6.14: Examples of Patch candidates generated by kBar when
fixing bug Bears­125

When manually inspecting the suggested Plausible patch in Figure 6.13, it is
clear that it does not generate a behaviour close to the human patch. It is in­
teresting to see that the correct Integer.parseInt() does exist in the samebuggy
.java file. However, the reason for it not being chosen as a suitable candidate
for the patch generation could be that kBar cannot cast it to a short.

Detailed review of bug Bears­238

Figure 6.15: The official Human patch of bug Bears­238

During themanual assessment, the Bears­238 bug was considered to be Plau­
sible fixed by kBar. The Human patch is shown in Figure 6.15 and the patch
presented by kBar in Figure 6.16. It was fixed by the only Patch Candidate
in the FP11 Operator Mutator fix templates. The template of FP6 Conditional
Expression Mutator did present the most number of Patch Candidates of 24.
In total, 3 Fix templates were considered matching the buggy code but only

80

--- a/src/main/java/com/json/ignore/JsonIgnoreFields.java
+++ b/src/main/java/com/json/ignore/JsonIgnoreFields.java
@@ -130,7 +130,7 @@ public class JsonIgnoreFields {

}

private boolean fieldAcceptable(Field field) {
- return field.getType().isPrimitive() || field.getType().isArray() || ignoredNames.contains(field.getName());
+ return field.getType().isPrimitive() && field.getType().isArray() || ignoredNames.contains(field.getName());

}

Figure 6.16: The patch presented by kBar when fixing bug Bears­238.

two of them resulting in a Patch Candidate. Some examples of patch candi­
dates are shown below in Figure 6.17.

FP6: return (field.getType().isPrimitive() || field.getType().isArray() || ignoredNames.contains(field.getName())) ||
(items.contains(field.getName()));

FP6: return (field.getType().isPrimitive() || field.getType().isArray() || ignoredNames.contains(field.getName())) &&
(items.contains(field.getName()));

FP6: return (field.getType().isPrimitive() || field.getType().isArray() || ignoredNames.contains(field.getName())) ||
!(items.contains(field.getName()));

FP6: return (field.getType().isPrimitive() || field.getType().isArray() || ignoredNames.contains(field.getName())) &&
!(items.contains(field.getName()));

FP11: return field.getType().isPrimitive() && field.getType().isArray() || ignoredNames.contains(field.getName());

Figure 6.17: Examples of Patch candidates generated by kBar when fix­
ing bug Bears­238

When manually inspecting the Patch Candidates of FP6 fix template, all can­
didates only change the last element of the Conditional Expression. Also, the
FP11 only generates one Patch candidate. One possible reason is that the con­
sidered Fix templates behave differently when handling a return statement
instead of an if statement, and this behaviour should be further investigated.
Finally, the Plausible patch presented to bug Bears­238 would probably be
considered incorrect by the human behind the official patch. But it could be
difficult to decide if the patch is not so different from the human patch, adding
&& instead of remove, and all tests pass.

81

Detailed review of bug Bears­139

Figure 6.18: The official Human patch of bug Bears­139

--- a/src/org/traccar/protocol/MeitrackProtocolDecoder.java
+++ b/src/org/traccar/protocol/MeitrackProtocolDecoder.java
@@ -259,13 +259,7 @@ public class MeitrackProtocolDecoder extends BaseProtocolDecoder {

boolean started = data[0].charAt(0) == '0';
position.set("taximeterOn", started);
position.set("taximeterStart", data[1]);

- if (!started) {
- position.set("taximeterEnd", data[2]);
- position.set("taximeterDistance", integer.parseInt(data[3]));
- position.set("taximeterFare", integer.parseInt(data[4]));
- position.set("taximeterTrip", data[5]);
- position.set("taximeterWait", data[6]);
- }
+

}

}

Figure 6.19: The patch presented by kBar when fixing bug Bears­139.

During the manual assessment, the Bears­139 bug was considered to be Plau­
sible fixed by kBar. The Human patch is shown in Figure 6.18 and the patch
presented by kBar in Figure 6.19. It was fixed by one of the Patch Candidates
in the FP15 Statement Remover which generated 3 Patch Candidates for this
bug. In total, four other Fix templates were considered matching the buggy
code but none of them resulting in a Patch Candidate. The only Patch Candi­
date of FP15 that includes code is the example below in Figure 6.20.

82

- position.set("taximeterEnd", data[2]);
- position.set("taximeterDistance", Intege r.parseInt(data[3]));
- position.set("taximeterFare", Intege r.parseInt(data[4]));
- position.set("taximeterTrip", data[5]);
- position.set("taximeterWait", data[6]);

Figure 6.20: The only Patch candidate with code, generated by kBar
when fixing bug Bears­139

As we can see in Figure 6.20, the patch candidate does remove the if state­
ment but keeps the code inside it. The presented Plausible patch that does
pass the tests does remove the entire if statement with all its content. There
are no other patch candidates generated, and the other fix templatesmay try to
match other booleans in the file with the original ”boolean started”. However,
there are no more booleans in the buggy .java file. On the other hand, many
method calls return a boolean, but they are not considered, which should be
investigated. The correct patch should be if (data.length > 2), and it does
not exist in any of the other .java files in the entire project. Although, the
if(data.length > 1) does exist in a nearby .java file, and it is possible that this
would generate amore correct patch. So it could be interesting to increase the
search space with bug Bears­139.

6.2.3 Failed to fix bugs

Detailed review of bug Bears­2

Figure 6.21: The official Human patch of bug Bears­2

During themanual assessment, the Bears­2 bugwas considered to be not fixed
by kBar, and 102 Patch Candidates were generated. The templates of FP6
Conditional Expression Mutator and FP11 Operator Mutator did present the
most number of Patch Candidates. In total, 8 Fix templates were considered
matching the buggy code but not all of them resulting in a Patch Candidate.
Some examples of patch candidates are shown in Figure 6.22.

83

FP 11 OperatorMutator:
if (raw!=String.class || raw == Object.class)
if (raw<String.class || raw == Object.class)
if (raw > String.class || raw > Object.class)

FP6 ConditionalExpressionMutator:
if ((raw == String.class || raw == Object.class) || (raw == UUID.class))
if ((raw == String.class || raw == Object.class) || (raw == Integer.class))
if ((raw == String.class || raw == Object.class) && (raw == Character.class)) {

FP2 NullpointerChecker:
if (raw == null) {

return null;
}

Figure 6.22: Examples of Patch candidates generated by kBar when
fixing bug Bears­2

We can see that both operators are changed in the if statement from the FP11
OperatorMutator. The FP6 Conditional Statement Mutator does add addi­
tional conditions such as AND (raw = Character.class). So if the correct fix
Charsequence.class would exist in the same .java file, a Correct patch would
be suggested. When manually reviewing other .java files in folders within
the project the CharSequence.class does exist, so expanding the search space
would produce the correct patch.

Detailed review of bug Bears­129

Figure 6.23: The official Human patch of bug Bears­129

During the manual assessment, the Bears­129 bug was not fixed by kBar, and
only 1 Patch Candidate was generated. Only the FP15 StatementRemover
could generate a Patch Candidate. Although a large Dictionary size of 3790
items is generated, it could not create one single Patch Candidate for the sus­
picious code shown in Figure 6.24. One reason could be that the fix templates
cannotmutate a PatternBuilder withmultiple variables as in the figure, which
could be a future improvement.

84

private static final Pattern PATTERN_INF = new PatternBuilder()
.text("+").expression("(?:RESP|BUFF):GTINF,")
.number("[0-9A-Z]{2}xxxx,") // protocol version
.number("(d{15}|x{14}),") // imei
.expression("(?:[0-9A-Z]{17},)?") // vin
.expression("(?:[^,]+)?,") // device name
.number("(xx),") // state
.expression("(?:[0-9F]{20})?,") // iccid

Figure 6.24: Full view of the code in bug Bears­129.

Detailed review of bug Bears­198

Figure 6.25: The official Human patch of bug Bears­198

During the manual assessment, the Bears­198 bug was considered to be not
fixedby kBar, andonly 10PatchCandidateswere generated. TheFP10Method
Invocation Mutator template did generate the most Plausible patches of 4
shown in Figure 6.25. So we can see that in patch number 4, 50% of the
correct human bug is located. So a future suggestion would be to combine
multiple template on the same buggy row. However, the encryptionContext
and encryptedDataKeys are of different types, List and String, therefore not
suggested by the FP13Variable Replacer. So another future suggestion to gen­
erate more patches is that the FP13 Variable Replacer should also consider
non­compatible expressions.

1: FP10: this.encryptedDataKeys = request.newBuilder();
2: FP10: this.encryptedDataKeys = request.toBuilder();
3: FP10: this.encryptedDataKeys = request.getAlgorithm();
4: FP10: this.encryptedDataKeys = request.getEncryptionContext();

Figure 6.26: Examples of Patch candidates generated by kBar when
fixing bug Bears­198

85

6.2.4 Conclusion

The Correct and Incorrect patches are easy to distinguish manually by a user
of kBar, but it could be more difficult with Plausible patches that are close
to the human patch and pass all the tests. If the human behind the original
patch is not self­assured, then the Plausible patch considered incorrect could
be Correct. Expanding the search space for dictionary ingredients could pro­
duce more correctly fixed bugs as the correct ingredients in some cases are
located in a file close to the buggy one or the same project. However, there
is no guarantee that a buggy code with thousands of dictionary items gener­
ates many patches. Suggestions for improvements and extensions in the fix
template should also be considered, such as casting variables and changing a
line at multiple places. An interesting time effective solution, which is used
in TBar, is that if multiple templates generate the same patch, only one patch
is used. It is possible that the first generated patch that does pass the test
is not the most correct one. TBar or kBar still can generate more plausible
patches with all Fix templates. Therefore, it would be interesting to introduce
the overfitting detection system(ODS) suggested in R­Hero [42] and use all
fix templates to see if more correct patches are generated.

Finally, it would be interesting to conduct amore extensive evaluation of all fix
templates and their assumed behaviour on more bugs to produce even more
insights into the fix templates and their behaviour.

6.3 RQ3: How could template­based automatic pro­
gram repair be integrated into the existingCI pipelines
used at Saab?

Two different approaches of kBar were integrated into the existing develop­
ment environment at Saab. The implementation of the kBar tool described in
Section 4.2 was used as a base. However, to be able to use kBar in the pro­
duction environment, further modifications were made. The modifications
were needed to use the company­specific build tools, read the shell output,
change kBar JUnit version, and adapt to the specific behaviour in the complex
company environment. Due to the time consuming manual configuration of
implementing kBar, it was implemented as a proof of concept in one of the
considered projects only.

Normal use cases

As a pre­study, two different use­cases were considered and investigated for
the research question. The use cases were described by one of the experienced

86

developers. One case is where the developer downloads the entire workspace,
dependencies and current project to their local computer. From the local com­
puter, the “make build” and “make test” commands are run from the com­
mand line, before submitting code to the global repository. Many of the tests
are executed here to avoid submitting code with failing tests to the global
repository. The second case is where the developer submits code changes
to the global repository and then makes use of the Continuous Integration
pipeline to execute “makebuild” and “make test” in a remote environment.

Implementations

The following implementations and modifications of kBar were implemented
at Saab. The patch proposal or Recommendation system presents a patch
suggestion to the developer but conducts no changes. The Automatic repair
system takes the first patch and inserts it into the buggy project without hu­
man interaction. Both of the alternatives share the same prerequisites.

Prerequisites:

1. Configure project­specific arguments to kBar.

2. Check if kBar already exists in the workspace.

3. If not 2, git clone kBar to project workspace.

Option 1: Command line, Recommendation system

The configuredprojectwas integratedwith kBar as aRecommendation system
in the following way:

1. Build the project (make build).

2. Run the project test command (make test).

3. kBar executes automatically ­ check if there are test errors.

4. If 3, kBar tries to repair the bug.

5. If successful, present a plausible patch as shell output formanual inser­
tion.

Option 2: Command line, Automatic repair

The configured project was integrated with kBar, as an Automatic system in
the following way:

1. Build the project (make build)

87

2. Run the project test command (make test)

3. kBar executes automatically ­ check if there are test errors.

4. If 3, kBar tries to repair the bug.

5. If successful, present a plausible patch as shell output.

6. kBar does automatically insert the plausible patch in the buggy project.

7. Rerun all tests.

Continuous Integration

Both of the two options do work by default in the Continuous Integration
workflow and are easily enabled or disabled. As the Continuous Integration
workflow is complex, there is a need to avoidmaking the integration of an Au­
tomatic Program Repair Tool add more complexity to the process. Therefore,
the Automatic repair optionwas used by default in the Continuous Integration
workflow. According to the answer of RQ1, for one bug, Saab.1.1, this would
add an additional 14 minutes of execution time. When considering the theo­
retical assumptions from RQ1, the Continuous Integration would be delayed
with 38 minutes in median considering the ”Validation of Patches”.

Conclusion

The modifications of kBar for the Saab environment should not be seen as
specific to Saab. When using Automatic Program Repair tools in a real­world
scenario, the complex environments in different companies or open­source
projects should be taken into account. The implementation of kBar does need
manual configuration for each project at the company, and one ormore devel­
opers should have knowledge of the tool and its behaviour. Therefore, kBar
was only implemented with one project, but it could be extended to other
projects as well in the future. Possible future extensions to the kBar imple­
mentation at Saab could be a more automatic behaviour with the Continuous
Integration such as Repairnator [5], a more user­friendly recommendation
system, and include kBar by default for all workspaces.

Theusefulness of a fully automatic integration toContinuous Integration could
be discussed as the patch should be manually reviewed before used in pro­
duction. Also, the time constraints of ~14 minutes and ~38 minutes for one
project do extend the recommended values. According to the study in a large­
scale industry project [31], the total time of Continuous Integration should
not exceed ten minutes, including testing. However, in a complex company
environment as the onementioned in the study, the build of the entire system
could take several hours. Then, the execution time of kBar is more accept­
able. According to one of the experienced developers at Saab, the execution

88

time of 14 minutes is acceptable for daily use and several hours during the
night.

Finally, before a large scale usage at the company, improvements should be
made to Fault Localization, patch ranking, search space, execution time, and
ease of the kBar configuration to leverage the full potential of template­based
automatic program repair. Also, other APR tools should be investigated, and
possible be combined with kBar. Nevertheless, the kBar tool is already work­
ing in Saab production and can be used to fix real­world bugs.

6.4 Discussion of Results

6.4.1 Generated patches

The results from kBar execution on the collected datasets in this thesis show
that it is comparable to the original TBar paper concerning the ratio of Plau­
sible patches and number of bugs. The original TBar paper presents a slightly
better ratio of Correct patches, which could depend on the different setup. The
setup in the TBar paper includes execution with all fix templates, and it does
not stop execution when a Plausible patch is found as in kBar. This approach
could be implemented in kBar as well, but then the execution time would in­
crease. However, with future improvements of execution time, this should be
seen as an alternative in a real­world scenario. But this raises the question
of how to integrate the solution, with all fix templates and a patch ranking
system, or a list of all Plausible patches to be chosen by the developer.

6.4.2 Search space

It is possible that increasing the search space of the Dictionary of fix ingre­
dients would lead to more Plausible and Correct patches. The current setup
of collecting fix ingredients in the same file does not correlate between Dic­
tionary size against Total execution time and the number of patches. But it is
possible that the correlation changes when expanding the search space. So an
extensive search space should be weighed against thatmany Potential patches
could be challenging to handle concerning time.

6.4.3 Plausible patches and templates

Whenmanually reviewing the Plausible patches,many of themare not close to
the human patch, but in some Potential patches that are not so far away from
the human patch. Expanding the search space to fix ingredients or slightly
modify the behaviour of the template would produce the correct patch. Also,

89

an extensive investigation of the behaviour of the fix templates should be con­
ducted to see if there are differences in the actual behaviour and described
behaviour. There are tendencies towards this in our work, but the number of
bugs was too small to clearly state this.

Some templates produce more Plausible patches than others, and the possi­
bility of adding or removing other fix templates should be investigated. But
fix templates that generate a small number of Potential patches also generate
Plausible or even Correct patches. Also, some of the templates do not seem
to generate some potential Patches at all. So removing templates should be
carefully considered.

6.4.4 Time improvements

Based on the results from Table 6.3, Figure 6.3 with Perfect Fault Localization
and the theoretical assumptions in 6.1.5, the total execution time is varying be­
tween seconds and many hours in a worst­case scenario. So, improvements
in execution time should be conducted. There are already optimizations of re­
moving duplicate patches, and similar optimizations should be investigated.
One solution could be a distributed or parallelized version of kBar of the Val­
idation of patches. This would drastically reduce the execution time in large
projects as the Validation of patches is the main bottleneck.

6.4.5 Fault Localization

In theory, the Fault Localization accuracy does present a seemingly good me­
dian value of the top 2% of the generated code locations and does find the
correct location in around 80% of the bugs with the Bears dataset. However,
this number could correspond to a median line position of 85, which means
that the execution time of Validation of patches could increase with the same
number. Also, this increases the risk of false positives, which produce a Plau­
sible patch that does pass the tests but in the wrong position. The lower accu­
racy at Saab could depend on multiple reasons such as hardware setup, test
coverage, test environment and more. Therefore more work should be done
investigating Fault Localization.

90

7 Discussion

7.1 Benefits, Ethics and Sustainability
Automatic Program Repair and Artificial Intelligence could impact the social
aspect of ethics negatively by replacing tasks carried out by humans, result­
ing in unemployment and poverty. However, the results could also be more
time for developers carrying out non­repetitive tasks such as bug fixing and
reducing stress.

The environmental aspects do show that the share of ICT products, such as
communication networks, personal computers, and data centers, increased
from 3.9% to 4.6% of the total worldwide electricity consumption between
2007 and 2012 and continues to increase [47]. The use of data centers within
Automatic Program Repair and Artificial Intelligence in industry, could in­
crease this number even more. But hopefully, intelligent algorithms and so­
lutions would decrease energy consumption instead.

Although Saab [48] produces products for military and surveillance combat
systems, their vision is ”It’s a human right to feel safe” and they aim to keep
people safe with technical systems and to increase security in the society. This
thesis should be seen as a generic evaluation of the use of Automatic Program
Repair in an industrial context.

7.2 Threats to Validity
Failed execution ­ Several bugs of the Bears dataset were discarded due to
failed execution with kBar. Some examples of failures are multiple Excep­
tions with the INRIA­Spoon project in bug Bears­27 to Bears­83, invalid git
directory with Bears­157, Bears­187 getting stuck during test execution and
Bears­224 where kBar fails to read the test output. It is possible that mod­
ifying kBar to work with these bugs and a successful execution would give a
different answer to the Research Questions.

Evaluation execution ­ Due to time constraints, the tests and executions of the
ResearchQuestions were run only once. With a strict experimental setupwith
multiple reruns, there could be different results concerning time. However,
the aim of this thesis is not at strict and exact performance evaluation. The
objective is to understand the behaviour of the tool on the considered bugs
and environment.

Datasets ­ The evaluation was only conducted with 54 bugs from two different
datasets, and a more extensive study conducted on thousands of bugs from

91

other bug datasets could present different results. This should be considered
in future research.

False Positives ­ If Normal Fault Localization would have been run on all bugs
instead of Perfect Fault Localization, possible false positives could have been
be found. Then the number of Correct patches could be lower than presented
in this thesis.

7.3 Future Work
Detailed investigation of repair templates ­ The templates in kBar shouldman­
ually be examined by comparing the code of the templates, description in TBar
paper and examples of actual patches.

Examples from section 6.2.1 are when manually reviewing bug Bears­238,
where the potential patches generated by the FP6 fix template does not change
all operators, only the last operator of a return statement. Another example is
the bug Bears­5, where a potential patch of the FP2 NullpointerChecker adds
an unexpected OR statement to a null check.

These examples may correspond to the expected behaviour of the templates,
but it is not clear from the TBar paper. Therefore, an extensive and detailed
investigation of the fix templates should be conducted. The analysis should
provide answers such as: should the FP2 fix template be extended with dif­
ferent behaviour? Is the behaviour with Bears­238 and Bears­5 reproducible
with other bugs? Are there other divergent or interesting behaviours to fix
templates and bugs?

This could lead to a better understanding of the fix templates and possible
improvements, such as modifying more operators with the FP6 Conditional
ExpressionMutator template. These are only two examples, and there should
be a large number of examples to consider.

Extension of kBar ­ Extend and further improve the kBar tool. Many of the fix
templates used in the described tools in section 3 are used in kBar today. But
there are other interesting techniques described in the section, not only fix
templates. Machine learning techniques such as logistic regression to select
patches or generating new templates from the buggy code or other sources
with supervised learning or probability models. An Overfitting detection sys­
tem(ODS) could be introduced and used to rank patches and avoid overfitting;
this assumes configuring TBar to not stop with the first patch.

A more extensive performance evaluation of APR tools at Saab ­With a larger
dataset from industry and open source projects, conduct an evaluation of the

92

effectiveness ofmany tools to gain insight into which tool(s) is adequate to use
in the Saab context.

This should be possible with the gained knowledge from conducting the work
in this thesis. There was an extensive amount of time spent to understand
the complex company environment and manual collection of bugs. Also, the
modification of TBar into kBarwas time­consuming. Therefore, amore exten­
sive performance evaluation was not possible in the scope of this thesis. This
work should serve as a base for future evaluations, and the collected bugs can
be reused, possibly with other manually created bugs. The knowledge from
the integration and configuration will make it easier to implement other APR
tools.

A performance evaluation of Fault Localization tools at Saab ­ Compare and
evaluate the effectiveness of different Fault Localization techniques such as
GZoltar, which is used in this thesis. This could lead to insights into which
tool is most accurate to use in the specific industrial context.

A distributed or parallelized implementation ­ To make kBar more effective,
the main bottleneck of Validation of patches could be distributed in a large
cluster in the cloud or parallelized on one node or a combination of both. This
would drastically improve the execution time. However, one bug is estimated
to cost 400$ [5], and the cost of a distributed solution should be weighed
against the profit.

7.4 Template­based Repair Tools in the Industry
As described in section 1.1, there have been attempts to evaluate APR tools
at Facebook [49], which automatically presents patches to null method call
bugs bymining fix templates and has presented a high accuracy on 53% of the
bugs in one experiment. Ubisoft has attempted to identify templates of risky
commits with Clever [50] to respond to the high number of false positives and
non­user­friendly recommendations of current approaches. The Ubisoft ap­
proach manages to detect risky commits with 79% precision and recommend
fixes in 66,7% of the cases within a Ubisoft experiment.

Another template­based approach of FlexiRepair [7], described in section 3.1.2,
specifically targets the limitations of TBar, such as real­world usability. It
leverages the Coccinelle code transformation tool, which is included in the
Linux kernel developer toolbox. By using Coccinelle, it sends a strong signal
that it is ready to use in the industry. However, it did only show lower or
similar repair results than other repair state­of­the art tools.

The contribution of our work differs from other work, as TBar combines a

93

variety of different types of templates from multiple tools. Therefore it is a
promoter of template­based automatic program repair in general. The inte­
gration into kBar makes it more suitable for industrial integration. Further,
the difference in our work is that it provides an extensive evaluation of both
repair efficiency and other factors such as time, Fault Localization and real­
world usability in an industrial context.

Despite the small number of bugs evaluated, the contribution of this thesis
shows that it is possible to use kBar in an industrial context andwhat improve­
ments need to be done for future and wider usage of the tool in the industry.
Without this work, it would have been difficult to know where improvements
should be made and if it kBar at all would be suitable in the industry.

94

8 Conclusion
This thesis evaluates a template­based automatic program repair tool, kBar,
within an industrial context, but also the general effectiveness. The tool presents
Plausible patches to 35% (19/54) of the selected bugs and 13% (7/54) of the
patches is Correct, comparable to the experiments with TBar and Defects4j.
The Fault accuracy is lower in the Saab environment, and more work should
be donewithFault Localization and execution time, repair templates, andpos­
sible extensions. However, a prototype of the kBar tool is integrated with one
project at Saab and can already be used to repair real­world bugs.

The key take­away point is that template­based automatic program repair al­
ready is suitable to be integrated into an industrial context, apart from the
discussed flaws. The work in this thesis has provided knowledge of effective­
ness, patches and continuous integration and should serve as a base for future
research in the area of APR.

Finally, Automatic Program Repair is a broad subject, and other tools sepa­
rately or combined should be investigated before a final industrial integration
is considered. Automatic Program repair shows a promising future, and APR
tools will probably be integrated by default at many companies within a few
years.

95

References

[1] Monperrus, Martin. “Automatic Software Repair: A Bibliogra­

phy”. In:ACMComput. Surv. 51.1 (Jan. 2018). ISSN:0360­0300.

DOI: 10.1145/3105906. URL: https://doi.org/10.1145/

3105906.

[2] Nielebock, S. “Towards API­specific automatic program repair”.

In: 2017 32nd IEEE/ACM International Conference on Auto­

mated Software Engineering (ASE). Oct. 2017, pp. 1010–1013.

DOI: 10.1109/ASE.2017.8115721.

[3] Saha, Ripon K. et al. “ELIXIR: Effective Object Oriented Pro­

gram Repair”. In: Proceedings of the 32nd IEEE/ACM Inter­

national Conference on Automated Software Engineering. ASE

2017. Urbana­Champaign, IL, USA: IEEE Press, 2017, pp. 648–

659. ISBN: 9781538626849. DOI: 10.5555/3155562.3155643.

URL: https : / / dl . acm . org / doi / pdf / 10 . 5555 / 3155562 .

3155643.

[4] Long, Fan andRinard,Martin. “AnAnalysis of the Search Spaces

for Generate and Validate Patch Generation Systems”. In: Pro­

ceedings of the 38th International Conference on Software En­

gineering. ICSE ’16. Austin, Texas: Association for Computing

Machinery, 2016, pp. 702–713. ISBN: 9781450339001.DOI: 10.

1145/2884781.2884872. URL: https://doi.org/10.1145/

2884781.2884872.

[5] Monperrus, Martin et al. “Repairnator Patches Programs Auto­

matically”. In: Ubiquity (July 2019). DOI: 10 . 1145 / 3349589.

URL: https://doi.org/10.1145/3349589.

[6] Liu, Kui et al. “TBar: RevisitingTemplate­BasedAutomatedPro­

gram Repair”. In: Proceedings of the 28th ACM SIGSOFT In­

ternational Symposium on Software Testing and Analysis. IS­

96

https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://doi.org/10.1109/ASE.2017.8115721
https://doi.org/10.5555/3155562.3155643
https://dl.acm.org/doi/pdf/10.5555/3155562.3155643
https://dl.acm.org/doi/pdf/10.5555/3155562.3155643
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/3349589
https://doi.org/10.1145/3349589

STA 2019. Beijing, China: Association for Computing Machin­

ery, 2019, pp. 31–42. ISBN: 9781450362245. DOI: 10 . 1145 /

3293882.3330577. URL: https://doi.org/10.1145/3293882.

3330577.

[7] Koyuncu, Anil et al. FlexiRepair: Transparent Program Repair

with Generic Patches. 2020. arXiv: 2011.13280 [cs.SE]. URL:

https://arxiv.org/abs/2011.13280.

[8] Saab, Company in brief. (accessedMarch 13, 2021).URL: https:

//www.saab.com/about/company-in-brief.

[9] Håkansson, Anne. Portal of Research Methods andMethodolo­

gies forResearchProjects andDegreeProjects. June 2013, pp. 67–

73. URL: http://kth.diva-portal.org/smash/record.jsf?

pid=diva2%5C%3A677684&dswid=5465.

[10] Martinez, Matias andMonperrus, Martin. “Astor: Exploring the

design space of generate­and­validate program repair beyond

GenProg”. In: vol. 151. Elsevier BV, May 2019, pp. 65–80. DOI:

10.1016/j.jss.2019.01.069. URL: http://dx.doi.org/10.

1016/j.jss.2019.01.069.

[11] Liu, K. et al. “You Cannot Fix What You Cannot Find! An In­

vestigation of Fault Localization Bias in Benchmarking Auto­

mated Program Repair Systems”. In: 2019 12th IEEE Confer­

ence on Software Testing, Validation and Verification (ICST).

2019, pp. 102–113. DOI: 10.1109/ICST.2019.00020.

[12] TheGZoltar toolset ­ Automatic Testing,DebuggingusingSpectrum­

based Fault Localization (SFL). (accessed Aug 28, 2021). URL:

http://www.gzoltar.com/.

[13] Abreu, Rui, Zoeteweij, Peter, and Gemund, Arjan J.C. van. “On

the Accuracy of Spectrum­based Fault Localization”. In: Test­

ing:Academic and Industrial ConferencePractice andResearch

97

https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577
https://arxiv.org/abs/2011.13280
https://arxiv.org/abs/2011.13280
https://www.saab.com/about/company-in-brief
https://www.saab.com/about/company-in-brief
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%5C%3A677684&dswid=5465
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%5C%3A677684&dswid=5465
https://doi.org/10.1016/j.jss.2019.01.069
http://dx.doi.org/10.1016/j.jss.2019.01.069
http://dx.doi.org/10.1016/j.jss.2019.01.069
https://doi.org/10.1109/ICST.2019.00020
http://www.gzoltar.com/

Techniques ­MUTATION (TAICPART­MUTATION2007). 2007,

pp. 89–98. DOI: 10.1109/TAIC.PART.2007.13.

[14] D Le, Xuan Bach, Lo, David, and Goues, Claire. “History Driven

Program Repair”. In: Mar. 2016. DOI: 10.1109/SANER.2016.76.

[15] Xuan, Jifeng et al. “Nopol: AutomaticRepair of Conditional State­

ment Bugs in Java Programs”. In: IEEE Transactions on Soft­

ware Engineering 43.1 (2017), pp. 34–55. DOI: 10.1109/TSE.

2016.2560811.

[16] Xiong, Yingfei et al. “Precise Condition Synthesis for Program

Repair”. In: Proceedings of the 39th International Conference

on Software Engineering. ICSE ’17. Buenos Aires, Argentina:

IEEE Press, 2017, pp. 416–426. ISBN: 9781538638682. DOI:

10.1109/ICSE.2017.45. URL: https://doi.org/10.1109/

ICSE.2017.45.

[17] Chen, Liushan, Pei, Yu, andFuria, CarloAlberto. “Contract­Based

ProgramRepair without The Contracts: AnExtended Study”. In:

IEEE Transactions on Software Engineering (2020), pp. 1–1.

DOI: 10.1109/TSE.2020.2970009.

[18] Xin, Qi and Reiss, Steven P. “Leveraging syntax­related code for

automated program repair”. In: 2017 32nd IEEE/ACM Interna­

tional Conference on Automated Software Engineering (ASE).

2017, pp. 660–670. DOI: 10.1109/ASE.2017.8115676.

[19] Wen, Ming et al. “Context­aware patch generation for better au­

tomated program repair”. In: May 2018, pp. 1–11. ISBN: 978­1­

4503­5638­1. DOI: 10.1145/3180155.3180233.

[20] Hua, Jinru et al. “Towards Practical Program Repair with On­

Demand Candidate Generation”. In: Proceedings of the 40th In­

ternational Conference onSoftwareEngineering. ICSE ’18.Gothen­

burg, Sweden:Association forComputingMachinery, 2018, pp. 12–

98

https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/TSE.2020.2970009
https://doi.org/10.1109/ASE.2017.8115676
https://doi.org/10.1145/3180155.3180233

23. ISBN: 9781450356381. DOI: 10 . 1145 / 3180155 . 3180245.

URL: https://doi.org/10.1145/3180155.3180245.

[21] Koyuncu, Anil et al. “FixMiner: Mining relevant fix patterns for

automated program repair”. In: Empirical Software Engineer­

ing 25 (May 2020). DOI: 10.1007/s10664-019-09780-z.

[22] Liu, Kui et al. “LSRepair: Live Search of Fix Ingredients for Au­

tomated Program Repair”. In: 2018 25th Asia­Pacific Software

Engineering Conference (APSEC). 2018, pp. 658–662. DOI: 10.

1109/APSEC.2018.00085.

[23] Jiang, Jiajun et al. “Shaping Program Repair Space with Exist­

ing Patches and Similar Code”. In: Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and

Analysis. ISSTA2018.Amsterdam,Netherlands: Association for

ComputingMachinery, 2018, pp. 298–309. ISBN: 9781450356992.

DOI: 10.1145/3213846.3213871. URL: https://doi.org/10.

1145/3213846.3213871.

[24] Martinez, Matias and Monperrus, Martin. “ASTOR: A Program

Repair Library for Java (Demo)”. In: Proceedings of the 25th In­

ternational Symposium on Software Testing and Analysis. IS­

STA 2016. Saarbrücken, Germany: Association for Computing

Machinery, 2016, pp. 441–444. ISBN: 9781450343909.DOI: 10.

1145/2931037.2948705. URL: https://doi.org/10.1145/

2931037.2948705.

[25] Defects4J. (accessedNovember 23, 2020).URL: https://github.

com/rjust/defects4j.

[26] Just, René, Jalali, Darioush, andErnst,Michael D. “Defects4J: A

Database of Existing Faults to Enable Controlled Testing Studies

for Java Programs”. In: Proceedings of the 2014 International

SymposiumonSoftwareTestingandAnalysis. ISSTA2014. San

99

https://doi.org/10.1145/3180155.3180245
https://doi.org/10.1145/3180155.3180245
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1109/APSEC.2018.00085
https://doi.org/10.1109/APSEC.2018.00085
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2948705
https://github.com/rjust/defects4j
https://github.com/rjust/defects4j

Jose, CA,USA:Association forComputingMachinery, 2014, pp. 437–

440. ISBN: 9781450326452. DOI: 10.1145/2610384.2628055.

URL: https://doi.org/10.1145/2610384.2628055.

[27] Gay, Gregory and Just, René. “Defects4J as a Challenge Case for

the Search­BasedSoftwareEngineeringCommunity”. In:Search­

Based Software Engineering. Ed. by Aldeida Aleti and Annibale

Panichella. Cham: Springer International Publishing, 2020, pp. 255–

261. ISBN: 978­3­030­59762­7.

[28] Saha, Ripon K. et al. “Bugs.jar: A Large­Scale, Diverse Dataset

of Real­World Java Bugs”. In: Proceedings of the 15th Interna­

tional Conference on Mining Software Repositories. MSR ’18.

Gothenburg, Sweden:Association forComputingMachinery, 2018,

pp. 10–13. ISBN: 9781450357166.DOI: 10.1145/3196398.3196473.

URL: https://doi.org/10.1145/3196398.3196473.

[29] Tan, Shin Hwei et al. “Codeflaws: a programming competition

benchmark for evaluating automated program repair tools”. In:

2017 IEEE/ACM39th International Conference onSoftwareEn­

gineering Companion (ICSE­C). 2017, pp. 180–182. DOI: 10.

1109/ICSE-C.2017.76.

[30] Madeiral, Fernanda et al. “BEARS:AnExtensible JavaBugBench­

mark for Automatic Program Repair Studies”. In: 2019 IEEE

26th International Conference on Software Analysis, Evolution

andReengineering (SANER) (Feb. 2019).DOI: 10.1109/saner.

2019.8667991. URL: http://dx.doi.org/10.1109/SANER.

2019.8667991.

[31] Mårtensson, Torvald, Hammarström, Pär, and Bosch, Jan. Con­

tinuous Integration isNotAboutBuild Systems. Aug. 2017, pp. 1–

9. DOI: 10.1109/SEAA.2017.30.

100

https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3196398.3196473
https://doi.org/10.1145/3196398.3196473
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1109/saner.2019.8667991
https://doi.org/10.1109/saner.2019.8667991
http://dx.doi.org/10.1109/SANER.2019.8667991
http://dx.doi.org/10.1109/SANER.2019.8667991
https://doi.org/10.1109/SEAA.2017.30

[32] Monperrus,Martin. “The Living Review on Automated Program

Repair”. working paper or preprint. Dec. 2020. URL: https://

hal.archives-ouvertes.fr/hal-01956501.

[33] Kechagia, Maria et al. “Evaluating Automatic Program Repair

Capabilities to Repair API Misuses”. In: IEEE Transactions on

SoftwareEngineering (2021), pp. 1–1.DOI: 10.1109/TSE.2021.

3067156.

[34] Kim,D. et al. “Automatic patch generation learned fromhuman­

writtenpatches”. In:201335th International Conference onSoft­

ware Engineering (ICSE). 2013, pp. 802–811. DOI: 10.1109/

ICSE.2013.6606626.

[35] Monperrus,Martin. “A critical reviewof “automatic patch gener­

ation learned from human­written patches”: essay on the prob­

lem statement and the evaluation of automatic software repair”.

In: Proceedings of the 36th International Conference on Soft­

wareEngineering (May2014).DOI: 10.1145/2568225.2568324.

URL: http://dx.doi.org/10.1145/2568225.2568324.

[36] Liu, X. and Zhong, H. “Mining stackoverflow for program re­

pair”. In:2018 IEEE25th International Conference onSoftware

Analysis, EvolutionandReengineering (SANER). 2018, pp. 118–

129. DOI: 10.1109/SANER.2018.8330202.

[37] Durieux, Thomas et al.DynamicPatchGeneration forNull Pointer

Exceptions using Metaprogramming. Feb. 2017, pp. 349–358.

DOI: 10.1109/SANER.2017.7884635.

[38] Ghanbari, A. and Zhang, L. “PraPR: Practical Program Repair

via BytecodeMutation”. In: 2019 34th IEEE/ACMInternational

Conference on Automated Software Engineering (ASE). 2019,

pp. 1118–1121. DOI: 10.1109/ASE.2019.00116.

101

https://hal.archives-ouvertes.fr/hal-01956501
https://hal.archives-ouvertes.fr/hal-01956501
https://doi.org/10.1109/TSE.2021.3067156
https://doi.org/10.1109/TSE.2021.3067156
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1145/2568225.2568324
http://dx.doi.org/10.1145/2568225.2568324
https://doi.org/10.1109/SANER.2018.8330202
https://doi.org/10.1109/SANER.2017.7884635
https://doi.org/10.1109/ASE.2019.00116

[39] Liu, Kui et al. “AVATAR: Fixing Semantic Bugs with Fix Patterns

of Static Analysis Violations”. In: Feb. 2019, pp. 1–12. DOI: 10.

1109/SANER.2019.8667970.

[40] Long, Fan, Amidon, Peter, and Rinard, Martin. “Automatic In­

ference of Code Transforms for Patch Generation”. In: Proceed­

ings of the 2017 11th Joint Meeting on Foundations of Software

Engineering. ESEC/FSE 2017. Paderborn, Germany: Associa­

tion forComputingMachinery, 2017, pp. 727–739. ISBN: 9781450351058.

DOI: 10.1145/3106237.3106253. URL: https://doi.org/10.

1145/3106237.3106253.

[41] Ueda, Yuki et al. “DevReplay: Automatic Repair with Editable

Fix Pattern”. In: May 2020. URL: https://arxiv.org/pdf/

2005.11040.pdf.

[42] Baudry, Benoit et al. “A Software Repair Bot based on Continual

Learning”. In: IEEESoftware (2021), pp. 0–0. ISSN: 1937­4194.

DOI: 10.1109/ms.2021.3070743. URL: http://dx.doi.org/

10.1109/ms.2021.3070743.

[43] Samak, Malavika, Kim, Deokhwan, and Rinard, Martin C. “Syn­

thesizing Replacement Classes”. In: Proc. ACMProgram. Lang.

4.POPL (Dec. 2019). DOI: 10.1145/3371120. URL: https://

doi.org/10.1145/3371120.

[44] Martinez, Matias and Monperrus, Martin. “Ultra­Large Repair

Search Space with Automatically Mined Templates: The Cardu­

menModeofAstor: 10th International Symposium, SSBSE2018,

Montpellier, France, September8­9, 2018, Proceedings”. In: Jan.

2018, pp. 65–86. ISBN: 978­3­319­99240­2. DOI: 10 . 1007 /

978-3-319-99241-9_3.

[45] Sakkas, Georgios et al. “Type Error Feedback via Analytic Pro­

gram Repair”. In: Proceedings of the 41st ACM SIGPLAN Con­

102

https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/3106237.3106253
https://arxiv.org/pdf/2005.11040.pdf
https://arxiv.org/pdf/2005.11040.pdf
https://doi.org/10.1109/ms.2021.3070743
http://dx.doi.org/10.1109/ms.2021.3070743
http://dx.doi.org/10.1109/ms.2021.3070743
https://doi.org/10.1145/3371120
https://doi.org/10.1145/3371120
https://doi.org/10.1145/3371120
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.1007/978-3-319-99241-9_3

ference on Programming Language Design and Implementa­

tion. PLDI 2020. London, UK: Association for Computing Ma­

chinery, 2020, pp. 16–30. ISBN: 9781450376136.DOI: 10.1145/

3385412.3386005. URL: https://doi.org/10.1145/3385412.

3386005.

[46] Lerner, Benjamin S. et al. “Searching for Type­Error Messages”.

In: SIGPLAN Not. 42.6 (June 2007), pp. 425–434. ISSN: 0362­

1340. DOI: 10.1145/1273442.1250783. URL: https://doi.

org/10.1145/1273442.1250783.

[47] Heddeghem, Ward et al. “Trends in worldwide ICT electricity

consumption from 2007 to 2012”. In: Computer Communica­

tions (Sept. 2014). DOI: 10.1016/j.comcom.2014.02.008.

[48] Saab, Purpose andValues. (accessedMarch 13, 2021).URL: https:

//www.saab.com/about/company- in- brief/purpose- and-

values.

[49] Getafix: How Facebook tools learn to fix bugs automatically.

(accessed June 26, 2021). URL: https : / / engineering . fb .

com/2018/11/06/developer-tools/getafix-how-facebook-

tools-learn-to-fix-bugs-automatically.

[50] Nayrolles, Mathieu and Hamou­Lhadj, Abdelwahab. “CLEVER:

Combining Code Metrics with Clone Detection for Just­in­Time

Fault Prevention and Resolution in Large Industrial Projects”.

In: 2018 IEEE/ACM 15th International Conference on Mining

Software Repositories (MSR). 2018, pp. 153–164.

103

https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1145/1273442.1250783
https://doi.org/10.1145/1273442.1250783
https://doi.org/10.1145/1273442.1250783
https://doi.org/10.1016/j.comcom.2014.02.008
https://www.saab.com/about/company-in-brief/purpose-and-values
https://www.saab.com/about/company-in-brief/purpose-and-values
https://www.saab.com/about/company-in-brief/purpose-and-values
https://engineering.fb.com/2018/11/06/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically
https://engineering.fb.com/2018/11/06/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically
https://engineering.fb.com/2018/11/06/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically

TRITA -EECS-EX-2021:697

www.kth.se

