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Abstract—Process digitization and integration is an increasing
need for enterprises, while cyber-attacks denote a growing threat.
Using the Business Process Model and Notation (BPMN) is
common to handle the digital and integration focus within and
across organizations. In other parts of the same companies, threat
modeling and attack graphs are used for analyzing the security
posture and resilience.

In this paper, we propose a novel approach to use attack
graph simulations on processes represented in BPMN. Our
contributions are the identification of BPMN’s attack surface,
a mapping of BPMN elements to concepts in a Meta Attack
Language (MAL)-based Domain-Specific Language (DSL), called
coreLang, and a prototype to demonstrate our approach in a
case study using a real-world invoice integration process. The
study shows that non-invasively enriching BPMN instances with
cybersecurity analysis through attack graphs is possible without
much human expert input. The resulting insights into potential
vulnerabilities could be beneficial for the process modelers.

Index Terms—Attack Simulations, BPMN, Integration Pro-
cesses, Meta-Attack Language, Threat Modeling

I. INTRODUCTION

In a highly connected world, in which enterprises get more
and more intertwined with each other, digitization drives the
change of our society, which enables innovation, increased
connectivity, improved productivity, and more accessible infor-
mation [13]. Many organizations move their applications into
the cloud, integrate them within the organization and across
different organizations [25]. To facilitate the related internal
and inter-organizational business and application integration
processes, many organizations use the Business Process Model
and Notation (BPMN) [23], [24], [26]. At the same time,
we perceive a significant growth of cyber-attacks [12], [20].
A potential approach to address these security threats is an
assessment of integrated (business) processes from a cyber
security perspective.

Different ways to enrich the standardized BPMN with new
concepts that reflect various security aspects already exist
(e.g., [16], [19], [22], [28], [34]). However, if organizations
have a large set of productive processes, adding supplementary
information is often an unfeasible effort. Moreover, those
processes are often created by business experts and process con-
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sultants, who regularly have no security expertise. Even when
assuming that process-aware runtime systems are routinely
assessed regarding potential security threats, scenario-specific
configurations, and design decisions (e. g., selection of server or
library versions) could make instantiated processes vulnerable
to attacks. Finding all possible vulnerabilities and avoiding
exploits is extremely difficult for process modelers and project
consultants. At the same time, exploits could have a huge
impact across overlapping or connected processes, and thus
endanger larger parts of a business.

For example, the BPMN-based integration process in Ex. 1
exhibits several points of attack that might not be obvious
during its scenario-specific instantiation.

Example 1. Figure 1 shows a simplified version of an invoicing
integration process for Italian companies. An ERP system
sends invoices to the integration process, which 1 preserves
information like the transfer mode, as well as relevant identifiers
like IdentityCode (data exchange not shown), and then signs the
invoice itself. In 2 a Sistema di Interscambio (SdI)' compliant
message is prepared and the signed invoice is cached, before
storing it for further reference. Message headers required by
SdI are set and 3 either sent to a test or production endpoint,
else discarded, depending on its mode. The response message is
enriched with information preserved from the original message
4 , stored for reference and then 5 a compliant response
message for the ERP system is prepared. [ |

Starting with the data transfer from the ERP system to the
integration process in the form of a message, the remote call is
conducted over public networks to a scenario-specific endpoint
configuration (e. g., HTTPS server). Such configurations are
prone to security vulnerabilities @, potentially leading to
an exploit & of the integration process runtime. Similarly,
subsequent script steps allow for user-defined source code
that could exploit vulnerabilities of the script engines, and
consequently the integration runtime. Service tasks accessing
an associated, global data store (not shown), as well as remote
calls to the SdI endpoints could lead to attacks on the connected
database, remote server endpoints, respectively. Finally, the

ISdI is an Ttalian platform for issuing, transmitting, and saving invoices.
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Fig. 1. SAP CPI eDocuments Italy invoicing integration process (simplified from [30]) with non-mandatory, explanatory vulnerabilities and exploits

user-defined conditions in the exclusive gateway could exploit
weaknesses in the used parser.

We aim to develop a solution that allows to assess the
security state of BPMN processes without the need to edit the
process models. To perform such a security assessment, one
has to solve the challenging tasks of identifying vulnerabilities,
understanding security-relevant parts, and determining potential
attacks [21]. The use of attack simulations based on system
architecture models have been proposed for addressing these
challenges, (e. g., [5], [11]). These approaches have in common
that they rely on a static implementation of the used meta-
model. Therefore, the use of the Meta Attack Language (MAL)
[14] was proposed. MAL is a framework to create domain-
specific languages (DSLs) that defines the generic attack logic
codified in languages such as coreLang [15] or powerLang [9].

To assess the security state of business or integration pro-
cesses, we map BPMN to coreLang (a DSL representing general
IT concepts) [15]. Based on this mapping, we automatically
transform the concrete process instances into attack models that
can be simulated in an attack simulation tool called securiCAD
[5]. As a consequence, our approach is fully model-driven
and incorporates implementation details, but does not include
implicit knowledge (e. g., hidden in ERP systems). We refer to
process mining [32] for generating models and providing the
needed implementation details of processes without an explicit
process model. Subsequently, we elaborate more detailed on
our applied research method:

Methodology In this work, we design an artefact that provides
a security assessment for information systems. Accordingly,
we rely on the principle of Design Science Research (DSR)
[10]. To decide which concrete implementation of DSR we
apply, we follow Venable et al. [33], who sketch a decision

support that helps to choose the best fitting approach. As we
are focusing on just one organization at the moment, we opt
for Action Design Research (ADR) [31], which is comprised
of four stages, which are illustrated subsequently.

Stage 1: Problem Formulation We face the challenge
of large repositories of business and application integration
processes between different organizations. To reduce the risk
of unwanted compromise of the connected systems, we want to
assess the actual security state within these processes. Usually,
one would scan the systems and perform an automated vulner-
ability analysis, which is not possible because the processes
cover systems of different organizations and vulnerabilities
could be introduced in scenario-specific configurations.

Due to the size of the repository, it is also not feasible
to follow other approaches that extend BPMN with security
related concepts, because it would be too much effort and the
process owners might lack the needed security knowledge.

To sum up, we face following challenges in our research:

o A large set that hinders (a) a manual security assessment
and (b) the reuse of solutions that expect complementing
the documented processes.

« The processes involve different organizations and scenario-
specific configurations. Hence, conventional network scans
are not an option.

o The process owners might have insufficient security
background / knowledge.

From these challenges, we deduct the following objectives:

(i) Processes: The solution should be able to assess the
security of processes notated with BPMN.

(i) Automatic: The assessment should be automatic (i.e., to
account for a potentially high number of processes).



(iii) Non-Invasive: The solution should not demand changes
to the existing process documentation.

(iv) Simulation: The solution should simulate different ap-
plications that are hidden behind interfaces.

Stage 2: Building, Intervention, and Evaluation In stage
2, we follow an IT-dominant approach. On the one hand, we
have a team of researchers who develop the artefact presented
in Sect. IV, while a practitioner continuously provides his
feedback on the artefact. The end-users are representatives
of the industrial partner developing the processes and others
responsible for the security.

Stage 3: Reflection and Learning While in stage 2 a
specific solution for a certain problem is developed, stage 3
focuses on the continuous interchange between the researchers
and the practitioners. Therefore, we have set up regular
meetings in which the recent developments were discussed and
mirrored against the industrial partner’s reality.

Stage 4: Formalization of Learning The outcomes of stage
2 denote the following contributions of this work:

« a BPMN process security classification (focus on process
and inter-process, but not conversations),

« a mapping for automated translation of BPMN to core-
Lang, which covers 53.8 % of relevant? BPMN concepts
and 73.3 % the coreLang concepts,

« and a prototype for attack simulations.

Outline We set our approach into context to related work in
Sect. II and give sufficient background in Sect. III, before we
specify a mapping of BPMN to coreLang in Sect. IV. We
evaluate the mapping in Sect. V and conclude in Sect. VL.

II. RELATED WORK

In this section, we discuss related work in the intersection
of BPMN and security in the context of our objectives (i)—
(iv), summarized in Tab. I. Essentially, we found that (a)
most of the current approaches require meta-model extensions
that add a considerable number of security-related BPMN
components, of which many are (b) excessively verbose, and
thus difficult to manage (e. g., [22], [28], [34]) or fail to express
security concepts in a format that is fully comprehensible to
business experts, others propose only a theoretical or descriptive
extension (e. g., [17], [19]).

Threat modeling A threat profile security framework was
proposed as a BPMN extension by Zareen et al. [34]. The
authors leveraged the extension mechanism provided in BPMN
2.0 to model threat-based security requirements and introduced
several graphical components for BPMN diagrams.

Meland et al. [19] related the concept of threat modeling
to the concept of business process modeling, presenting four
different ways for threat specification at designing-time within
BPMN. In particular, they discuss the pros and cons of threat
representation as error events, escalation events, annotations,
and through meta-model extensions.

2We solely focus on process artifacts (i. e., no collaboration artifacts and
only those choreography artifacts that are used within processes) and within a
process we do not consider visual concepts like grouping or comments.

TABLE I
BPMN2MAL IN THE CONTEXT OF RELATED WORK

Literature / | Processes Automatic Non-Invasive  Attack simula-
objective (cf. (1)) (cf. (i1)) (cf. (iii) tion (cf. (iv))
Threat mod- 7] Q) Q)

eling

Security ] Q) (&} Q)
modeling

Goal mod- ) Q) Q) Q)

eling

BPMN2MAL| (6] o )

s: supported, €: partially supported, §: not supported, _: n/a

The found threat modeling approach target objective (i), but
do not fulfill objectives (ii—iv)).

Security modeling Rodriguez et al. [27] propose a non-
compliant BPMN meta-model extension including predefined
set of high-level cybersecurity requirements (e.g., privacy,
integrity) into BPMN process diagrams (mainly pool, message
flow, data object and activity), enabling business analysts to
express their security needs. The approach was studied for
a healthcare process. Similarly, Miille et al. [22] specify a
constraint language to formulate security attached via text
annotations expressing high-level security requirements. Con-
sequently, the diagrams become complex and expert-oriented,
and thus business experts could find it hard to understand.
Sang et al. [29] also extended the BPMN meta-model with
new security elements, which can be also represented within
the BPMN diagrams.

A meta-model extension introduced by Brucker et al. [1] with
regards to privacy requirements like access control, separation
of duties, binding of duty, and need to know. Beyond the
SecureBPMN language, the authors propose a tool to model
the security concepts during the modeling phase and also to
enforce them at runtime. Cherdantseva et al. [3] extended
BPMN to include Information Assurance & Security (IAS)
requirements (incl. vulnerabilities, threats, and risks). Most
notably, the work enriches BPMN data-related elements like
Data Object as IAS Asset and Message Flow as Vulnerability
or Risk.

Chergui et al. [4] proposed a BPMN meta-model extension
based on the security requirements derived from the cybersecu-
rity ontology [19]. The extension is fully BPMN compliant and,
in contrast to the other works, leverages the BPMN meta-model
extension mechanism introduced in BPMN version 2.0. Also,
a web tool was proposed to facilitate collaboration between
business and security experts and provided an XML schema
extension for integration with the existing BPMN modeler
tools.

Maines et al. [16] introduced a comprehensive cybersecurity
ontology for specifying security requirements within BPMN,
identifying a total of 79 security concepts. It was later
extended [17] to represent the BPMN security requirements in
a third dimension. However, the extension is described only
theoretically.

The security modeling approaches target objective (i) and



partially support (iii), but violate objectives (ii) and (iv).
Security goal modeling Salitri et al. [28] proposed a frame-
work to express security requirements in terms of BPMN
annotations, called SecBPMN. SecBPMN allows for the
description of system information, whereas the security policies
are defined through SecBPMN-Q, a query language for BPMN.
The annotated security requirements are derived from the
Reference Model of Information Assurance and Security [2]
and include accountability, auditability, authenticity, availability,
confidentiality, integrity, non-repudiation, and privacy.

The goal modeling approach targets objective (i), but does
not fulfill objectives (ii-iv)).
BPMN2MAL We focus on a non-invasive modeling of BPMN-
based processes without additional security artefacts in BPMN.
Instead BPMN2MAL strives to automatically map and conduct
attack simulations on existing BPMN diagrams and their
runtime configurations (e. g., remote endpoint interfaces and
operations, or scripts and engine configurations).

III. BACKGROUND

In this section, we give an introduction to MAL, which is
the framework in which corelLang is created. coreLang
serves as goal for our mapping from BPMN as it is a general
representation of IT-dependent systems [15].

A. Meta Attack Language

MAL is a language framework that combines probabilistic
attack and defense graphs with object-oriented modeling. It can
be used for creating Domain-Specific Languages (DSLs). Such
a language defines what information is required and specifies
the generic attack logic about the domain studied. We refer to
the original paper [14] for a detailed overview of MAL.

To create a MAL-based language, the first thing is to
identify all relevant assets and their associations within a
particular domain. Each asset can contain multiple attack steps,
representing real threats. One compromised attack step can
lead to (represented by ”->”") a next attack step, where each
attack step is of the type OR (represented by ”|”) or AND
(represented by ”&”). OR indicates that an attacker can work
on this attack step as soon as one of its parent attack steps is
compromised, while AND indicates that all its parent attack
steps must be compromised for an attacker to reach this step.
An asset may also feature defenses (represented by “#7). The
sum of attack paths is the attack/defense graph used for the
attack simulation. Also, assets can inherit from each other,
which means that an inherited asset inherits all attack steps and
defenses of its parent asset (unless explicitly stated otherwise).

In Listing 1, we present a short example of a MAL-
based DSL. It contains four modeled assets, the attack step
connections, and the connections between assets. In Line 7,
the connect attack step is of type OR, while in Line 15 is
an AND attack step. The -> symbol denotes the connected
next attack step. Thus, a phish on the User leads to obtain
on the associated Password, and finally to authenticate
on the associated Application. In Lines 28 to 32, the
associations between the assets are defined.

category System {
asset Connection {
| access
—> app.connect

asset Application {
| connect
—> access
authenticate
—> access
guessPwd
—> guessedPwd
guessedPwd [Exp(0.02)]
—> authenticate
& access
}
asset User {
| attemptPhishing
—> phish
| phish [Exp(0.1)]
—> pwds.obtain

asset Password extends Data {
| obtain
—> app.authenticate

}

associations {
Connection[con] * <- Acc —> #* [app] Application
Application[app] 1 <- Cred —> * [pwds]Password
User[user] 1 <- Cred —> = [pwds]Password

}

Listing 1: Example MAL Code

B. coreLang

As illustrated before, MAL provides the basics to create
a threat modeling language from scratch. However, many
languages created with MAL share a common set of concepts.
To reduce unnecessary redundant work, coreLang [15] was
developed. coreLang is comprised of predefined assets that
appeared in different languages created with MAL. Thus, this
coreLang can serve as starting point to model more domain
specific languages or even act as a rudimentary language to
model simple environments [8].

Fig. 2 presents the overall structure of coreLang. For core-
Lang, we have identified six different main categories: system,
vulnerability, user, IAM (Identity and Access Management),
data resources, and networking. Following, we discuss the
concepts of coreLang, that we will use later on for our mapping.
For more details, we refer to the original publication [15].

Often, attackers gather initial access to a system by exploiting
human factors, represented in our case by the concept of User.
These User interact with Application through one or
several Identity, which codifies the access rights that the
user has. To secure the use of the Identity, Credentials
can be applied, which are classically stored as Data and, thus,
can be for example encrypted.

Usually, Data is managed by an Application, which
represent the main concept used in the following. An
Application can run another Application, which can
be used to model for example an operation system executing
a software. Moreover, Application can communicate with
each other via a Connection where they exchange Data.

In an Application, common attack steps are codified.

O 00N W AW —
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However, if the end-user of coreLang is aware of a certain
Vulnerability, which is not included in the common
attack steps, they can use the concept of Vulnerability
and Exploit to add it to a certain Application.

IV. BPMN ATTACK SURFACE AND MAPPING TO CORELANG

Hitherto, we have presented MAL and coreLang, which
are thought to serve as means for the security analysis. Next,
we will elaborate on possible elements of BPMN that can be
facilitated as attack surface. Then, the identified surfaces are
mapped to coreLang.

A. Attack surface of BPMN

Concepts like vulnerabilities and exploits as part of cyber
security attacks captured by MAL and coreLang are crucial
to be assessed in BPMN. We subsequently assess elements of
BPMN that can be facilitated as attack surface due to their
inherited properties (cf. Tab. II). We consider configuration
properties like conditions, expressions, scripts, service calls, and
data flow as points of attack. We do not further consider control
flow elements as these are managed by the process engine and
do not provide an attack surface by themselves. Moreover, we
assume that the process engine as central component is security
checked.

The first property of BPMN we shed light on are conditions.
A condition is some kind of threshold that — if it crossed
— triggers a certain behavior in the process. As thresholds
are usually defined by the user, these can be manipulated by
the attacker. Alternatively, it is also possible that the attacker
changes the input for the condition to (not) trigger it intently.
E.g., Start Condition is such an event as a process starts
if a certain condition is fulfilled, which could have been
manipulated by an attacker. Another example is a Conditional
Sequence Flow, as those include a condition check before
continuing, which can be manipulated by an attacker to cause
undesired behavior of the process.

Similar to conditions are expressions, which can be more
elaborated and are interpreted. Thus, expressions provide a

TABLE II
RELEVANT BPMN ELEMENTS FOR CYBERSECURITY ATTACKS

BPMN Sub

Condition
Expression
Service Call

Script
Collab. / Proc.

Data object
Data Store
Message
Participant /
Process

<€ € | Data Flow

<

Pool, Lane

Sub-Process
Event Sub-Process
Start

Message Start v
Start Timer v
Start Error

Start Compensation
Start Parallel

Start Escalation
Start Condition v
Start Signal
Start Multiple
End

Message End v v
End Error

Cancel End

End Compensation
End Signal

End Multiple
Terminate End
User Task

Script Task
Service Task

Send Task
Receive Task
Manual Task
Business Rule Task v
Call Activity
Exclusive
Event-based
Inclusive
Parallel
Complex v
standard / default

A

Event

Activity

L K<< K

Gateway

Sequence
Flow
conditional v
Association
Message v v
Flow

gateway for attackers to manipulate a process to their demands.
e.g., a Business Rule Task is defined by a complex expression
that evaluates a set of input parameters and takes a decision
based on this input (e. g., by a business rule engine). An attacker
can either make changes to the input parameters or — if they
want to create more permanent changes — manipulate the
expressions themselves, and thus exploiting the business rule
engine. Further, there are Start Timer, which can contain an
expression that regulates when a process is triggered. Here,
an attacker could manipulate the starting time to initiate the
process more often/seldom as expected.

One main task of information systems is to process data.



Accordingly, this data is also of interest for attackers, who
might want to get access to this data or even to manipulate it.
The latter can cause severe issues for the process, as important
decisions can be taken based on this data. Therefore, data
related elements such as Data object or Message need special
consideration in the security analysis.

Scripts are a powerful tool for developers to easily adopt
requested functionality without the need for compiling new
versions of programs. This made them very popular among
process designers to alter processes to meet the customers’
desires. However, a Script Task can serve also as attack surface,
as the script might be prone to manipulations or the interpreter
behind the script has unsolved vulnerabilities.

It is essential for integration processes to provide collabo-
ration mechanisms. As those mechanisms are responsible for
organizing the entire process, they need to be in contact with all
related elements of the process. Consequently, mechanisms of
collaboration are of tremendous interest for an attacker, as the
mechanisms can bring the attacker in the position to take over
the entire process. Classically, these mechanisms are presented
by a Participant or a Pool. Alternatively, a (Sub)Process can
also be such a means. If an attacker receives access to the
application behind the orchestration, they will be in a good
position to attack other related activities.

Finally, there are service calls, in which activities are
performed outside of the integration process. As the services
elaborating on the call can even be outside of the organization
or desire human interaction, they are prone to be exploited by
an attacker. For example, a User Task could be exploited by
tricking employees to perform not-safe actions. Considering
a Service Task, the service can run a outdated server version
that will easily allow the attacker to take it over and use it as
a starting point to penetrate the process.

For the later, we do not consider those BPMN elements
in Tab. II, that did not receive a ¢, as relevant for our
mapping. Either they model a process related behavior that is
not of relevance for a static threat model (e. g., Sequence Flow)
or we consider them as already implicitly included in other
elements. An example for the latter is the gateway. An attacker
could exploit it by manipulating its input parameters. However,
the behavior of gateways is managed by the collaboration
mechanisms and, thus, represent no additional threat to be
considered for our attack simulations.

B. BPMN to coreLang Mapping

Before, we have determined the relevant elements of BPMN
to be mapped to corelLang. Our mapping relies mainly on
three mapping rules, that can be summarized as follows:

1) Data related BPMN elements will be mapped to Data.

2) Elements that require user interaction are mapped to User,
Identity (the digital representation of the user), and
Credentials.

3) Elements that can be configured or programmed by the
process designer, are mapped to Application and
Connection, where the latter illustrates the commu-
nication between several Application.

TABLE 111
MAPPING FROM BPMN TO corRELANG

@ = o
8 > .S )
BPMN Sub g _% g 2 @ g
) < | O
Collaboration Participant ~ / v |V
Process
Sub-Process v | Vv
Event Sub- v | Vv
Process
Event Message Start v
Start Timer v | Vv
Start Condition v | Vv
Message End v
Activity User Task v | Vv Vv
Script Task v | Vv
Service Task v | Vv
Send Task v | Vv
Receive Task v | Vv
Manual Task v | Vv |V
Business Rule v | Vv
Task
Call Activity v |V
Data Data object v
Data Store v | Vv
Message v
Connecting Sequence Flow v |V
(conditional)
Message Flow v |V

However, these rules have exceptions, which we will discuss
in the following.

In Tab. III, we present our mapping for the collaboration
aspects of BPMN to coreLang. Our general interpretation
of Processes is that they orchestrate the overall happening.
Therefore, a tool is needed taking over this task such as a
process engine. Based on this observation, we map Process
and Sub-Process to an Application.

As MAL-based languages do not have a focus on the process
flow but on the static connection between the different assets,
there is generally no counterpart for the different events of
BPMN in coreLang. However, there are some exceptions: If
the event is related to a message (i. e., Message Start or Message
End), then there is obviously a communication possible. This
communication relates to an exchange of information, which
can be manipulated. Therefore, we map Message Start and
Message End to Data. Further, there are Start Timer and
Start Condition that are triggered by an Application that
continuously evaluates the underlying conditions.

Next, we discuss the mapping from activities to coreLang.
Firstly, BPMN defines User Task, where a human is expected
to interact with the process. These interactions are a classic
attack surface and, thus, we map User Task to User in
corelLang. Secondly, there are automated activities, such as
Script Task or Service Task. We map both to Application,
because a Script Task needs an engine (i.e., Application)
executing a script, while a Service Task classically abstracts an
interaction with e. g., a web-service, which are also executed
by an Application.



Regarding the related Connection, we need to differen-
tiate between synchronous and asynchronous calls. Basically,
there is one Connection for synchronous calls, because the
communication is initiated once. In contrast, there are two
Connection for asynchronous calls, as communication gets
initiated twice. Accordingly, Send Task and Receive Task have
one Connection, while Service Task, Message Start, and
Message End have one Connection.

BPMN is a process-oriented language. Hence, it provides
gateways that describe branching points of the process. In
contrast, MAL-based languages codify the static connection
between the different assets. Consequently, there is no equiva-
lent in coreLang and just the general connections between
the linked activities are transferred.

Often, integration processes cope with data by transferring
or transforming it. Moreover, to achieve access to data is often
the ultimate goal of attackers. In BPMN this concept is modeled
by Data object and Message. As there is no differentiation in
coreLang, both are mapped to Data. If a Data object is
stored outside of the process, then this is modeled by means of a
Data Store, which can be for example a file system or a database.
Obviously, this can be mapped to an Application (cf. Tab. III).
For the threat modeling, flows are of no greater importance
as indicated before. Nonetheless, there are exceptions in
the connecting category of BPMN that require some logic
and, thus, are mapped to Application (cf. Tab. III). In a
Conditional Sequence Flow, the Application determines
based on conditions if a communication takes place, while in
a Message Flow expressions are evaluated.

V. CASE STUDY
A. BPMN2MAL Prototype

To demonstrate our approach, we implemented a prototype’
(cf. Fig. 3), which has a process model in BPMN as central
input. To maintain objective (iii) —non-invasive—, we do not
directly elaborate on the process model, but transform the
model to a graph representation. This representation includes
the overall structure of the process and the attributes that are
necessary to perform the mapping from BPMN to corelLang.

To meet objective (iv) —simulation—, which arises from
the challenge that we do not know the concrete software
specification beyond every interface, we create different graphs
that are enriched with respective specifications. Therefore, we
provide a list of configurations for each included BPMN
element that contains the possibly used libraries and the
expected versions. This list is then used to crawl the NIST
NVD* for known vulnerabilities of these possible solutions
(e.g., Apache web server or nginx) and compute the time-to-
compromise following McQueen et al. [18]. This information is
added to the graph representation and additionally, the different
solutions are combined. In other words, we prepare different
graphs that to some degree contain e. g., Apache web server,
while other graphs contain nginx or a combination of both.

3BPMN2MAL prototype and mapping example for process from Ex. 1,
visited 6/2021: https://github.com/dritter-hd/bpmn2mal
4NVD NIST, visited 6/2021: https://nvd.nist.gov/
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Fig. 3. Prototype Architecture

These different graphs are then transformed into securiCAD
models [5] that are instances of coreLang [15] following the
mapping described in Sect. IV. This is extending previous work
[7], which focused on automatically creating MAL languages,
while here we are creating concrete instances of such languages.
For each of the graphs, several simulations are performed
giving the simulated attacker different attack surfaces (cf.
Sect. IV-A). Then, the results of the different simulations should
get aggregated and returned back to the graph representation
to finally visualize the critical activities in the process model.

B. Motivating example (revisited): Italy invoicing

With Fig. 1, we introduced an example invoicing integration
process. Facilitating the mapping presented in Sect. IV, we
translate this integration process to the threat model presented
in Fig. 4. To not clutter Fig. 1, it does not contain explicit data
objects and related associations, which usually would be in-
cluded. Accordingly, the respective coreLang representation
does not contain explicit Data S either.

For greater clarity, Fig. 4 contains only a subset of the
possible vulnerabilities @ and exploits & More concretely,
just those that are needed to enable the attacker to write the
data transmitted to SdI-Production, which is symbolized by the
star on Data S. The top of the threat model describes the
communication between the ERP-System and the Integration
System. In the lower left part, the different Script Task and
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Fig. 4. Threat model representation of Fig. 1

Service Task take place, which mainly process the document.
The lower right part describes the communication with the SdI
for the test and the productive system.

Next, we discuss a penetration, where an attacker can
perform a Man-In-The-Middle (MITM) attack on the request
(i.e., Data @) sent from ERP-System (i.e., Application
E2l) to Integration System (i.e., Application E&)) via a
Connection "4, e. g., because an older version of encryption
is used. This enables the attacker to inject code into a
component used by the process engine (CVE-2021-23337)°. As
this vulnerability allows to execute arbitrary code, the attacker
can alter the data sent to the Service Task communicating
with SdI. If this Service Task is run by a miss-configured
Apache Tomcat (CVE-2020—1938)6, the attacker is again able
to execute their desired code. Hence, it is possible to write
on the related data sent to SdI and the attacker reached their
goal.

Now, we are able to perform the attack simulation in
securiCAD [5] to analyze what path the attacker takes through
the process and determine possible countermeasures (cf. Fig. 5).
The analysis shows that the actual design of the process can
be considered as secure, as the described attacker achieves a
success rate of 8% after 100 days of penetrating the system.

Nonetheless, some room for improvement was identified. To

SLodash vulnerability used in Camunda, visited 6/2021: https:/nvd.nist.gov/
vuln/detail/CVE-2021-23337

6 Apache Tomcat vulnerability, visited 6/2021: https://nvd.nist.gov/vuln/detail/
CVE-2021-25329

stop the attacker early, one can require that data transmissions
are just accepted if the sender is properly authenticated, thus
MITM would not be possible anymore. Another option, which
would stop the attacker later, would be to patch the vulnerable
applications. Then, these would not be exploitable anymore
(at least for exploits related to these specific vulnerabilities).

C. Discussion

To reflect on our mapping decisions, we discussed them with
an experienced threat modeler, who is also familiar with the
concepts of coreLang. We explained the integration process
in Fig. 1 and showcased the resulting threat model in Fig. 4.
Overall, the expert agreed with our decisions. However, he
raised some points that we discuss next.

In our mapping, we opted to map every Script Task to a single
Application, because we assumed that every script could
contain a vulnerability that might not be present in other scripts.
Alternatively, one could group Script Task by the underlying
technology, e.g., javascript, groovy, python, etc. Then, the
focus would be more on the assumption that the vulnerability
can be found in those technologies. Lastly, one could argue that
there is no need for an explicit modeling of scripts since those
are executed by the process engine. Discussing these three
possibilities, we concluded that the first solution is the better
one, as it contains information which scripts are corrupted, the
data exchange between them is more obvious, and it is closer
to the original process model.

Another point brought up was to split up the Process /
Participant into several Applications that represent the
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Fig. 5. Visualization of the attack path to reach Data.Write sent to SdI-Production

different functionalities. In our case, this would result in
splitting the Integration System into two endpoints to receive the
request and to send the response, and a component managing
the process execution. However, we neglect this additional
differentiation, as we do not see any added value and more
elements would be presented in the final model.

Taking a closer look at the attack simulations presented
before, we recognize that for a successful penetration of the
process, the Integration System is crucial. To reach the other
parts of the process, the easiest and shortest way usually
facilitates this central component. This observation can be
generalized for all integration processes that make use of
a process engine. Thus, we can conclude that the security
engineers should put emphasis on that component.

Another observation is related to the positioning of the at-
tacker. In our example, the attacker can perform a MITM on the
request. However, there are further attacks like eavesdropping,
that could result in different outcomes of what is accessible to
the attacker and what is not. Moreover, the attacker could be
(theoretically) placed on each and every element of the process.
However, the necessity of attacker placement is caused by the
design of MAL itself, which could include an indicator, which
assets and which attacks are the most likely attack surfaces.

This complexity is further increased by performing simula-
tions for different configurations of the assets (i.e., a Service
Task can either be executed by an Apache or an nginx http

server). Each possible combination increases the number of
needed simulations exponentially. Consequently, a solution
is needed that reduces this number. One approach could be
to restrict the possible configurations to realistic ones. For
example, one can assume that within one organization (i.e.,
Farticipant / Pool), it is very likely that only one kind of a
certain application for one purpose is deployed and only the
versions might differ on a certain interval. Another possible
assumption is to rely on usage statics of certain applications
(e. g., http server) and to solely consider those that are used to
a certain degree.

One aspect that can be improved in future is the fact that all
our integration processes at hand only contain a subset of the
possible BPMN elements. Especially, the integration processes
are completely automatized and, hence, there is no interaction
with humans expected. But the users of information systems
are often used as attack surface to gain access to those systems.
Moreover, human related security properties can differentiate
significantly among organizations — and even in sub-entities
of organizations. This cannot be codified in a static language
such as coreLang. Therefore, an approach is needed that
assess the security behavior in organizations (e.g., [6]) and
includes this information into the performed attack simulations.

VI. CONCLUSION

To conclude our work, we revisit our objectives (i)—(iv).
Objective (i) focused on the ability to assess the security of



processes represented in BPMN. To achieve this objective, we
created a mapping from BPMN to coreLang, which enables
us to analyze the security of the respective process.

Objective (ii) suggested an automatic security assessment.
We partly satisfy this objective in the current proposal. In our
solution, the BPMN model is translated automatically to the
format needed, however the simulations need to be manually
started as securiCAD is missing a command interface at the
moment. This would allow us to automatize this part as well.
An alternative could be to use robotic process automation tools
to automate the user interaction. Additionally, we cannot import
the findings back to the original process model yet.

We have accomplished objectives (iii) and (iv). For objective
(iii), we simply take the process model and enrich a graph
representation of it with the needed security information, thus,
no changes to the original model are necessary. For objective
(iv), we use the information from the CVE databases to simulate
different applications where we are not able to gain deeper
knowledge of their characteristics.

A potential next step could be a user study, in which the
attack simulation results are reviewed and categorized. It would
be interesting to see how easy the findings are to fix. We assume
that some findings would be; 1) a quick fix that can just be
implemented without any further analysis, 2) doable but with
some constraints and perhaps a more in-depth assessment, and
3) nearly impossible to do anything about without large efforts.

Further, we believe that an interesting study would be to
analyze a set of old process implementations, review what
security-related changes these processes have gone through
and re-analyze the same processes in their new state. This, in
order to see if our suggested approach did pick up issues that
were fixed and also examine why other issues haven’t been
mitigated yet.

Acknowledgements We thank Rafael Liidtke, Erik Henriksson,
and Klas Engberg for implementation support, and Joar
Jacobsson for valuable discussions on the BPMN to MAL
mapping. This project has received funding from the Swedish
Energy Agency.

REFERENCES

[11 A. D. Brucker, I. Hang, G. Liickemeyer, and R. Ruparel. SecureBPMN:
Modeling and enforcing access control requirements in business processes.
In SACMAT, pages 123-126, 2012.

[2] Y. Cherdantseva and J. Hilton. A reference model of information
assurance & security. In ARES, pages 546-555. IEEE, 2013.

[3] Y. Cherdantseva, J. Hilton, and O. Rana. Towards secureBPMN-aligning
BPMN with the information assurance and security domain. In BPMN,
pages 107-115. Springer, 2012.

[4] M. E. A. Chergui and S. M. Benslimane. Towards a BPMN security
extension for the visualization of cyber security requirements. IJTD,
11(2):1-17, 2020.

[5] M. Ekstedt, P. Johnson, R. Lagerstrom, D. Gorton, J. Nydrén, and
K. Shahzad. securiCAD by foreseeti: A CAD tool for enterprise cyber
security management. In EDOCW, pages 152-155. IEEE, 2015.

[6] A. Georgiadou, S. Mouzakitis, K. Bounas, and D. Askounis. A cyber-
security culture framework for assessing organization readiness. Journal
of Computer Information Systems, 0(0):1-11, 2020.

[7]1 S. Hacks, A. Hacks, S. Katsikeas, B. Klaer, and R. Lagerstrom. Creating
meta attack language instances using archimate: Applied to electric power
and energy system cases. In EDOC, pages 88-97, 2019.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23

[t

[24]

[25]

[26]

(271

(28]

[29]
(30]
[31]
[32]

[33

—

(34]

S. Hacks and S. Katsikeas. Towards an ecosystem of domain specific
languages for threat modeling. In M. La Rosa, S. Sadiq, and E. Teniente,
editors, Advanced Information Systems Engineering, pages 3—18, Cham,
2021. Springer International Publishing.

S. Hacks, S. Katsikeas, E. Ling, R. Lagerstrom, and M. Ekstedt.
powerlang: a probabilistic attack simulation language for the power
domain. Energy Informatics, 3(1), 2020.

A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in
information systems research. MIS quarterly, 28(1):75-105, 2004.

H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt. PQCySeMoL:
Predictive, probabilistic cyber security modeling language. 7DSC,
12(6):626-639, 2015.

J. Jang-Jaccard and S. Nepal. A survey of emerging threats in
cybersecurity. J. Comput. Syst. Sci, 80(5):973-993, 2014.

T. Jeske, M. Wiirfels, F. Lennings, M.-A. Weber, and S. Stowasser.
Achievements and opportunities of digitalization in productivity manage-
ment. In AHFE, pages 17-24. Springer, 2020.

P. Johnson, R. Lagerstrom, and M. Ekstedt. A meta language for threat
modeling and attack simulations. In ARES, page 38. ACM, 2018.

S. Katsikeas, S. Hacks, P. Johnson, M. Ekstedt, R. Lagerstrom, J. Jacob-
sson, M. Wiillstedt, and P. Eliasson. An attack simulation language for
the it domain. In H. Eades III and O. Gadyatskaya, editors, GraMSec,
pages 67-86. Springer, 2020.

C. L. Maines, D. Llewellyn-Jones, S. Tang, and B. Zhou. A cyber security
ontology for BPMN-security extensions. In CIT, pages 1756-1763. IEEE,
2015.

C. L. Maines, B. Zhou, S. Tang, and Q. Shi. Adding a third dimension
to BPMN as a means of representing cyber security requirements. In
DeSE, pages 105-110. IEEE, 2016.

M. A. McQueen, W. F. Boyer, M. A. Flynn, and G. A. Beitel. Time-to-
compromise model for cyber risk reduction estimation. In D. Gollmann,
F. Massacci, and A. Yautsiukhin, editors, Quality of Protection, pages
49-64. Springer, 2006.

P. H. Meland and E. A. Gj®re. Representing threats in BPMN 2.0. In
ARES, pages 542-550. IEEE, 2012.

N. R. Mosteanu. Challenges for organizational structure and design as
a result of digitalization and cybersecurity. In CBER, pages 278-286,
2020.

I. Morikawa and Y. Yamaoka. Threat tree templates to ease difficulties
in threat modeling. In NBiS, pages 673-678, Sep. 2011.

J. Miille, S. von Stackelberg, and K. Bohm. A security language for
BPMN process models. KIT, Fakultit fiir Informatik, 2011.

D. Ritter. Experiences with business process model and notation for
modeling integration patterns. In J. Cabot and J. Rubin, editors, ECMFA,
volume 8569, pages 254-266. Springer, 2014.

D. Ritter and M. Holzleitner. Integration adapter modeling. In
J. Zdravkovic, M. Kirikova, and P. Johannesson, editors, CAiSE, volume
9097, pages 468—482. Springer, 2015.

D. Ritter, N. May, and S. Rinderle-Ma. Patterns for emerging application
integration scenarios: A survey. Inf. Syst., 67:36-57, 2017.

D. Ritter and J. Sosulski. Exception handling in message-based integration
systems and modeling using BPMN. Int. J. Cooperative Inf. Syst.,
25(2):1650004:1-1650004:38, 2016.

A. Rodriguez, E. Ferndndez-Medina, and M. Piattini. A BPMN extension
for the modeling of security requirements in business processes. /[EICE
Trans. Inf. Syst., 90-D(4):745-752, 2007.

M. Salnitri, F. Dalpiaz, and P. Giorgini. Modeling and verifying security
policies in business processes. In BPMDS/EMMSAD, pages 200-214.
Springer, 2014.

K. S. Sang and B. Zhou. BPMN security extensions for healthcare
process. In CIT, pages 2340-2345. 1IEEE, 2015.

SAP SE. Prepackaged cloud integration content. https://cloudintegration.
hana.ondemand.com/, 2021.

M. K. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren. Action
design research. MIS Quarterly, 35(1):37-56, 2011.

W. Van Der Aalst. Process mining. Communications of the ACM,
55(8):76-83, 2012.

J. Venable, J. Pries-Heje, and R. Baskerville. Choosing a design science
research methodology. In ACIS. University of Tasmania, 2017.

S. Zareen, A. Akram, and S. Ahmad Khan. Security requirements engi-
neering framework with BPMN 2.0. 2 extension model for development
of information systems. Applied Sciences, 10(14):4981, 2020.



