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Fundamental Limits-Achieving Polar Code Designs
for Biometric Identification and Authentication

Linghui Zhou, Student Member, IEEE, Tobias J. Oechtering, Senior Member, IEEE,
and Mikael Skoglund, Fellow, IEEE.

Abstract—In this work, we present polar code designs that
offer a provably optimal solution for biometric identification and
authentication systems under noisy enrollment for certain sources
and observation channels. We consider a discrete memoryless
biometric source and discrete symmetric memoryless observation
channels. It is shown that the proposed polar code designs achieve
the fundamental limits with privacy and secrecy constraints.
Depending on how the secret keys are extracted and whether the
privacy leakage rate should be close to zero, we consider four
related setups, which are (i) the generated secret key system, (ii)
the chosen secret key system, (iii) the generated secret key system
with zero leakage, and (iv) the chosen secret key system with zero
leakage. For the first two setups, (i) and (ii), the privacy level is
characterized by the privacy leakage rate. For the last two setups
(iii) and (iv), private keys are additionally employed to achieve
close to zero privacy leakage rate. In setups (i) and (iii), it is
assumed that the secret keys are generated, i.e., extracted from
biometric information. While in setups (ii) and (iv), secret keys
provided to the system are chosen uniformly at random from
some trustful source. This work provides the first examples of
fundamental limits-achieving code designs for identification and
authentication. Moreover, since the code designs are based on
polar codes and many existing works study low-complexity and
short block-length polar coding, the proposed code designs in this
work provide the code design structure and a framework for the
application of biometric identification and authentication.

Index Terms—Biometrics, identification systems, noisy enroll-
ment, polar codes, privacy, strong secrecy.

I. INTRODUCTION

With recent developments of biometric recognition technol-
ogy, biometrics is increasingly used in various applications.
Two common application areas are biometric authentication
and identification, which offer several advantages. For ex-
ample, biometric features are stable, e.g. the face or finger-
print features are always carried by an individual and they
do not change over a period of time. Moreover, biometric
authentication and identification require the person to be
present at the time of authentication and identification, which
is a stringent requirement and helps ensure security. Due
to the advantages of employing biometrics in identification
and authentication systems, they are more and more used in
various smart technology and devices. However, biometric data
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need to be carefully protected since biometrics is permanently
associated with an individual so that a breach would have
severe consequences.

A biometric identification and authentication system can be
modeled as follows. Consider a biometric identification and
authentication system in Fig. 1 with MI = 2NRI users. In the
enrollment phase, each user i ∈ [1 : MI ] presents its biometric
sequence XN (i) to the system and is enrolled through a noisy
channel. The system maps the noisy enrollment X̃N (i) to
the helper data J(i) ∈ [1 : 2NRJ ], which is stored in a
public helper database and later used for identification. In
the meantime, the system produces a secret key S(i) from
the set [1 : 2NRS ], which is stored securely and later used
for authentication of the identified user. In the identification
and authentication phase, an unknown but previously enrolled
user W ∈ [1 : MI ] tries to access the system. The biometric
sequence of the user is observed via a noisy channel, and
a noisy observation Y N is obtained. The system uses the
observation Y N and the public helper database {J(i)}MI

i=1 to
identify the user as Ŵ . The system also outputs an estimated
secret key Ŝ. If an authentication procedure is required, the
system compares the estimated secret key Ŝ with the stored
secret key S(Ŵ ) of the guessed user Ŵ . If they are the same,
i.e., Ŝ = S(Ŵ ), the user is authenticated successfully, e.g.,
granted access to the system.

A usage scenario of the system described above is the
biometric identification and authentication in a closed working
area, i.e., the users in the working area are all enrolled in the
system. Due to security reasons, the working area is divided
into different sections and only certain users have access to
each section. In such a system, the helper data are stored
publicly, e.g. in the central cloud. The secret key of each user
is stored in the corresponding section locally or handed to the
user, e.g. stored on a card or token. When a user tries to access
a section, the local system in that section uses the observation
and the public helper database to identify the user identity.
Furthermore, the local system estimates the corresponding
secret key. If the guessed user belongs to the system and the
estimated secret key matches the true one stored in the local
system, the user is granted access to that section.

As the use of biometric data brings convenience, it also
invokes privacy and secrecy issues if the biometric information
and the secret keys are compromised. Since the identification
and authentication are based on biometrics and the extracted
secret keys, compromised biometric data and secret keys can
lead to unauthorized access to the system. Hence, the fol-
lowing attack model regarding secrecy and privacy aspects is



included in the design. We assume that the attacker has access
to the public database but no access to the secure database
which stores the secret keys used for authentication. The
attacker is interested in inferring information about the secret
keys and the biometrics. We do not consider the sophisticated
attack where an attacker creates and stores its own enrollment
data. We require that the amount of information leaked about
the secret key from the public helper database, which is the
secrecy leakage, is negligible. We also characterize the amount
of information leaked about the biometrics from the public
helper database, which is the privacy leakage. Additionally,
the use of the public helper database avoids storing the raw
biometric information directly, which helps to achieve a more
efficient design in storage. Therefore, the use of a helper
database helps to minimize security and privacy risks.

Biometric systems for authentication and identification have
been studied from various perspectives in the literature, among
which characterizing the fundamental limits is an important
aspect. By characterizing the fundamental limits, the opti-
mality performance of a biometric system can be assessed
from a systematic information-theoretic perspective. The ca-
pacity of biometric identification systems, which relates to
the maximal number of users that can be reliably identified,
is firstly characterized in [1]. Taking search complexity into
consideration, hierarchical identification is studied in [2]–
[5]. The fundamental limits of biometric systems considering
privacy and secrecy aspects in various scenarios are studied
in [5]–[11]. The problem of the hypothesis testing of the
identification problem and deciding whether the observation
belongs to the system is investigated in [12], where it has
been shown that the codes for an identification system aiming
at identifying only the previous enrolled users can be also
utilized for deciding if the user belongs to the system. In [13],
fundamental limits and relations of identification problems
have been studied in general, including uncertainty models.
Additional to the aforementioned aspects, multi-factor authen-
tication is studied to improve the security and usability of an
authentication system. Combining two authentication factors,
the authentication method studied in [14] is shown to perform
better in security and usability. Based on extended chaotic-
maps for mobile lightweight devices, a practical and provably
secure three-factor authentication protocol that balances secu-
rity and utility better is studied in [15]. In [16], three typical
biometric encryption approaches, including fuzzy vault, fuzzy
commitment, and fuzzy extractor are unified to achieve three-
factor authentication without privacy leakage.

Considering the optimal performance of a biometric system,
the fundamental limits studied in the literature do provide in-
sights on designing and analyzing biometric systems, but most
of the analysis is based on the concept of typical sequences
and cannot be implemented directly. Practical schemes of
biometric identification that achieve fundamental limits, to
the best of our knowledge, have not been studied before. In
this work, we propose polar code designs that are provably
optimal. We consider the setup studied [10] and [11], in
which both secrecy and privacy aspects are characterized in
a biometric identification and authentication system. In [10],
the identification and authentication are based on biometrics.

Though applying external keys is less convenient compared to
using biometrics only, it helps to preserve the privacy of the
biometric system. In [11], both biometrics and external private
keys are used to satisfy a more stringent privacy constraint.

Information-theoretic security and privacy, which aim at
providing practical code designs to the aforementioned prob-
lems, is of high interest. Polar codes, as firstly studied by
Arikan in [17], are the first codes that provably achieve the
capacity of binary symmetric memoryless channels with effi-
cient encoding and decoding operations. Due to the capacity-
achieving performance of polar codes, the concepts have been
quickly extended so that polar codes have been developed
for many applications. Polar codes have been generalized to
asymmetric channels in [18] and arbitrary alphabets in [19]. It
is shown in [20] that channel polarization can be generalized
to source polarization, which achieves the compression bound
in Shannon’s lossless source coding theorem. By additionally
considering side information at the eavesdropper, polar codes
for secure Wyner-Ziv coding are studied in [21]. Polar coding
for the wiretap channel with a shared secret key is studied in
[22]. Polar coding schemes for secure transmission and key
agreement are studied in [23]. Secret-key capacity-achieving
polar code schemes based on a sequential strategy are studied
in [24]. Code constructions based on polar codes for biometric
secrecy systems are studied in [25]. Secret key generation
over biased physical unclonable functions with polar codes is
studied in [26]. In this work, we consider biometric-based se-
cret key generation using polar codes. We additionally include
the identification problem and study the polar code design.
Further, low-complexity polar coding schemes are currently
intensively studied, see for instance in [27]–[29], which are
important next development steps for the practical application
of polar codes.

This work aims at developing fundamental limits-achieving
polar code designs for the following setups: (i) the generated
secret key system; (ii) the chosen secret key system; (iii)
the generated secret key system with zero leakage; (iv) the
chosen secret key system with zero leakage. Setups (i) and
(iii) consider the case that secret keys are extracted from the
biometrics. In setups (ii) and (iv), secret keys are assumed to
be produced from some trustful source uniformly at random.
For setups (i) and (ii), the identification and authentication are
based on the biometrics only, which are studied in [10]. For
setups (iii) and (iv), private keys are additionally included and
a more stringent privacy leakage requirement can be satisfied,
which are studied in [11]. For all the above four setups, we
consider the binary case and symmetric memoryless channels.

The main contributions of this work are listed as follows:

• Fundamental limits-achieving designs that involve both
identification and authentication are proposed.

• Strong secrecy is achieved for free with the proposed
designs.

The rest of the paper is organized as follows. Section II
gives the problem formulations of the four setups. Section III
presents the proposed polar code designs for the four setups.
In Section IV, we summarize this paper.
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Fig. 1: Model of a generated secret key system. Note that the
authentication step is not depicted in the figure. During an
authentication procedure, the system compares the estimated
secret key Ŝ with the stored secret key S(Ŵ ) in the secure
database of the guessed user Ŵ .

Notations: The set {1, 2, ...,M} is denoted with [1 : M ].
For n ∈ N+ and N

∆
= 2n, let GN

∆
=

[
1 0
1 1

]⊗n
BN denote

the source polarization transformation defined in [20], where
“⊗n” denotes the nth Kronecker power and BN denotes the
“bit-reversal” permutation matrix [17]. The matrix BN can be
interpreted as a bit-reversal operator: if vN1 = uN

1 BN , then
vb1...bn = ubn...b1 . We denote the variational distance and the
Kullback-Leibler divergence by V(·, ·) and D(·||·), i.e.,

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
, (1)

V(p, q) =
1

2
||p− q||1. (2)

Let h2(p) denote the binary entropy function h2(p) =
−p log2 p− (1− p) log2(1− p). Let ⊕ and ⊖ denote modulo
addition and subtraction, which in our binary case are the XOR
operation. Let V N [A]←− a denote assignment of vector a on
coefficients of V N with indices in A. For a set A ∆

= {aj}|A|
j=1,

define UN [A](w) = (Ua1
(w), Ua2

(w), ..., Ua|A|(w)). For a set
A or a random variable (RV) A, we use |A| and |A| to denote
the size of them, respectively.

II. PROBLEM FORMULATION

In this section, we describe the problem formulation.

A. Enrollment Noise

Assume that there are MI users in the system with indices
{1, 2, ...,MI}. We further assume that the biometric sequence
xN (w) for each user w ∈ [1 : MI ] is identically independently
distributed (i.i.d.) according to the probability mass function
(p.m.f.) QX(·) on a finite alphabet X . In the enrollment
phase, for each user w ∈ [1 : MI ], the biometric sequence
xN (w) is observed via a noisy discrete memoryless enroll-
ment channel QX̃|X(·), which generates a noisy enrollment
sequence x̃N (w). The enrollment channel QX̃|X(·) is a model
to incorporate the noisy measurement or other noise.

B. Generated Secret Key System

Consider a generated secret key system depicted in Fig. 1.
In the enrollment phase, the enrollment mapping e(·) maps
x̃N (w) to helper data j(w) ∈ [1 : MJ ] and secret key s(w) ∈
[1 : MS ], i.e.,

(j(w), s(w)) = e(x̃N (w)), (3)

where j(w) and s(w) are stored in a public helper database
and a secure database at the location w, respectively.

In the identification phase, an unknown user w with bio-
metric source sequence xN (w) is observed via a discrete
memoryless channel QY |X(·) and an noisy observation yN

is generated. The observed user’s index w is assumed to be a
realization of RV W that is uniformly distributed on [1 : MI ].
The identification mapping d(·, ·) uses yN and {j(i)}MI

i=1 to
guess the user index denoted as ŵ and estimate the secret key
denoted as ŝ, i.e.,

(ŵ, ŝ) = d(yN , {j(i)}MI
i=1). (4)

During an authentication procedure, the system compares the
estimated secret key ŝ with the stored secret key s(ŵ) of the
guessed user ŵ. If they are the same, i.e., ŝ = s(ŵ), the user
is authenticated successfully.

The achievability of a rate tuple in a generated secret key
system is defined as follows.

Definition 1: A rate tuple (RI , RS , RL, RJ) ∈ R4
+ of the

identification rate, the secret key rate, the privacy leakage rate,
and the helper data rate is achievable in a generated secret key
system if for all δ > 0 there exists some N0(δ) ≥ 1 such that
for all N ≥ N0(δ) there exists enrollment and identification
mappings such that the following conditions are satisfied

Pr{(Ŵ , Ŝ) ̸= (W,S(W ))} ≤ δ, (5)
H(S(W )) + δ ≥ logMS ≥ N(RS − δ), (6)
logMI ≥ N(RI − δ), (7)

I(S(W ); {J(i)}MI
i=1) ≤ δ, (8)

I(XN (W ); {J(i)}MI
i=1) ≤ N(RL + δ), (9)

logMJ ≤ N(RJ + δ). (10)

Let Rg denote the capacity region that contains all achievable
rate tuples (RI , RS , RL, RJ) in a generated secret key system.

Note that (8) ensures that strong secrecy holds, while [10]
requires weak secrecy only. Since strong secrecy implies weak
secrecy, by proving the achievability of strong secrecy, we have
also shown that weak secrecy can be achieved.

Equations (8) and (9) describe the secrecy preservation and
privacy preservation requirements against an attacker that has
access to the public database, respectively: (8) requires that
the secrecy leakage is sufficiently small such that the attacker
can only infer a negligible amount of information about the
secret key from the public helper database; (9) requires that
the privacy leakage rate is bounded by the privacy leakage rate
RL such that the attacker cannot infer more than the amount
N(RL+ δ) of information about the biometric sequence from
the public helper database.



Theorem 1 ( [10]): The capacity region of a generated secret
key system with weak secrecy is given by

Rg = {(RI , RS , RL, RJ) : RI +RS ≤ I(U ;Y ),

RL ≥ I(U ;X)− I(U ;Y ) +RI ,

RJ ≥ I(U ; X̃)− I(U ;Y ) +RI ,

for somePUXX̃Y = QXQX̃|XQY |XPU |X̃}. (11)

From Theorem 1, we see that the capacity region of the
generated secret keys system involves a test channel PU |X̃ and
the corresponding auxiliary RV U . We also see that, given
a test channel, the minimal achievable privacy leakage rate
relates to the mutual information I(U ;X) while the minimal
achievable helper data rate relates to I(U ; X̃). This difference
can be interpreted as that the privacy leakage is characterized
with respect to the original biometric source instead of the
noisy version of it. Therefore, the original biometric source
RV X is involved when characterizing RL. While for the
helper data, they are generated based on the noisy enrollment
of the biometric sequence, and hence X̃ is involved in the
characterization of RJ .

According to (6) in Definition 1, we obtain that given a
secret key rate RS , the maximal entropy of the secret key is
H(S(W )) = N(RS − δ), where δ > 0 is a sufficiently small
number. Moreover, from (11), we obtain that the maximal
secret key rate that can be achieved is RS = I(U ;Y ) by
setting RI = 0 and U is a RV satisfying U − X̃ − X − Y .
By setting U = X̃ , the maximal achievable secret key rate
is RS = I(X̃;Y ). Consequently, the maximal entropy of the
secret key is H(S(W )) = N(I(X̃;Y ) − δ), which directly
relates to the entropy of the noisy biometrics. As investigated
in the literature, biometrics-based secret keys give higher
entropy than other authentication factors. For instance, it is
shown that the entropy of biometric EEG feature is at best
83 bits [30]; human face template is at best 75 bits [31];
human voice is 18-30 bits [32]. However, the entropy of other
authentication methods, e.g. PINs and passwords are much
smaller than the entropy of biometric features. For example,
it is shown that entropy of human chosen 4-digit PINs is 8.41
bits and 6-digit PINs 13.21 bits [33]; human chosen passwords
is 20-22 bits [34]. Therefore, biometrics-based authentication
is considered more secure than other authentication factors.
Experimenting with actual biometric data and analyzing the
actual entropies can be an interesting next research step.

C. Chosen Secret Key System

A chosen secret key system is illustrated in Fig. 2. For
each user w ∈ [1 : MI ], the secret key s(w) is generated
uniformly at random from [1 : MS ] and independent of both
the biometric sequences and the private keys. In the enrollment
phase, the enrollment mapping e(·) decides on the helper data
j(w) ∈ [1 : MJ ] using x̃N (w) and s(w), i.e.,

j(w) = e(x̃N (w), s(w)), (12)

where j(w) and s(w) are stored in a public helper database
and a secure database at the location w, respectively.

The identification and authentication procedures are similar
to that of the generated secret key system. After an unknown
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Fig. 2: Model of a chosen secret key system.

user w, which is a realization of a RV W uniformly distributed
on [1 : MI ], is observed, and noisy observation yN is gener-
ated, the identification mapping d(·, ·) uses yN and {j(i)}MI

i=1

to guess the user index denoted as ŵ and estimate the secret
key denoted as ŝ, i.e.,

(ŵ, ŝ) = d(yN , {j(i)}MI
i=1). (13)

During authentication, the system operates the same authenti-
cation procedure as in the generated secret key system.

The achievability of a rate tuple in a chosen secret key
system is defined as follows.

Definition 2: A rate tuple (RI , RS , RL, RJ) ∈ R4
+ of the

identification rate, the secret key rate, the privacy leakage rate,
and the helper data rate is achievable in a chosen secret key
system if for all δ > 0 there exists some N0(δ) ≥ 1 such that
for all N ≥ N0(δ) there exists enrollment and identification
mappings such that the conditions in (5), (7), (8), (9), (10),
and

logMS ≥ N(RS − δ) (14)

are satisfied. We use Rc to denote the capacity region that
contains all achievable rate tuples (RI , RS , RL, RJ) in a
chosen secret key system.

As before, (8) ensures that strong secrecy holds, while [10]
requires weak secrecy only.

Theorem 2 ( [10]): The capacity region of a chosen secret
key system with weak secrecy is given by

Rc = {(RI , RS , RL, RJ) : RI +RS ≤ I(U ;Y ),

RL ≥ I(U ;X)− I(U ;Y ) +RI ,

RJ ≥ I(U ; X̃),

for somePUXX̃Y = QXQX̃|XQY |XPU |X̃}. (15)

D. Generated Secret Key System with Zero Leakage

A generated secret key system with zero leakage is depicted
in Fig. 3. Compared to the generated secret key system in Fig.
1, a private key p(w) is additionally provided for each user
w ∈ [1 : MI ]. We assume that the private key is uniformly
distributed on [1 : MP ] and independent of the user index and
the biometric information. The private key is also later used
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Fig. 3: Model of a generated secret key system with zero
leakage.

for identification and authentication. In the enrollment phase,
the enrollment mapping e(·) maps x̃N (w) and p(w) onto the
helper data j(w) ∈ [1 : MJ ] and secret key s(w) ∈ [1 : MS ],
i.e.,

(j(w), s(w)) = e(x̃N (w), p(w)), (16)

where j(w) and s(w) are stored in a public helper database
and a secure database at the location w, respectively.

In the identification phase, an unknown user w, which is a
realization of a RV W uniformly distributed on [1 : MI ], is
observed via the observation channel and the noisy observation
yN is generated. The user provides its own private key p(w)
to the system. Then the identification mapping d(·, ·, ·) uses
yN , p(w), and {j(i)}MI

i=1 to guess the user index denoted as
ŵ and estimate the secret key denoted as ŝ, i.e.,

(ŵ, ŝ) = d(yN , p(w), {j(i)}MI
i=1). (17)

During authentication, the system operates the same authenti-
cation procedure as in the generated secret key system.

The achievability of a rate tuple in a generated secret key
system with zero leakage is defined as follows.

Definition 3: A rate tuple (RI , RS , RP , RJ) ∈ R4
+ of the

identification rate, the secret key rate, the private key rate, and
the helper data rate is achievable in a generated secret key
system with zero leakage if for all δ > 0 there exists some
N0(δ) ≥ 1 such that for all N ≥ N0(δ) there exists enrollment
and identification mappings such that the conditions in (5), (6),
(7), (8), (10), and

logMP ≤ N(RP + δ), (18)

I(XN (W ); {J(i)}MI
i=1) ≤ δ (19)

are satisfied. We use R0
g to denote the capacity region that

contains all achievable rate tuples (RI , RS , RP , RJ) in a
generated secret key system with zero leakage.

Again, note that (8) ensures that strong secrecy holds, while
[11] requires weak secrecy only.

Theorem 3 ( [11]): The capacity region of a generated secret
key system with weak measures and zero leakage is given by

R0
g = {(RI , RS , RP , RJ) : RI +RS ≤ RP + I(U ;Y ),
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Fig. 4: Model of a chosen secret key system with zero leakage.

RP ≥ I(U ;X)− I(U ;Y ) +RI ,

RJ ≥ I(U ; X̃)− I(U ;Y ) +RI ,

for somePUXX̃Y = QXQX̃|XQY |XPU |X̃}. (20)

E. Chosen Secret Key System with Zero Leakage

A chosen secret key system with zero leakage is depicted
in Fig. 4. For each user w ∈ [1 : MI ], the secret key
s(w) is generated uniformly at random from [1 : MS ] and
independent of both the biometric sequences and the private
keys. A private key p(w) is additionally provided for each user,
which is uniformly distributed on [1 : MP ] and independent
of the user index, the biometric sequences and the chosen
secret keys. The private key is also later used for identification
and authentication. In the enrollment phase, the enrollment
mapping e(·) maps x̃N (w), p(w), and s(w) onto the helper
data j(w) ∈ [1 : MJ ], i.e.,

j(w) = e(x̃N (w), p(w), s(w)), (21)

where j(w) and s(w) are stored in a public helper database
and a secure database at the location w, respectively.

In the identification phase, an unknown user w, which is
a realization of a RV W uniformly distributed on [1 : MI ],
is observed via the observation channel and noisy observation
yN is generated. In the meantime, the user provides its own
private key p(w) to the system. The identification mapping
d(·, ·, ·) uses yN , p(w), and {j(i)}MI

i=1 to guess the user index
denoted as ŵ and estimate the secret key denoted as ŝ, i.e.,

(ŵ, ŝ) = d(yN , p(w), {j(i)}MI
i=1). (22)

During authentication, the system operates the same authenti-
cation procedure as in the generated secret key system.

The achievability of a rate tuple in a chosen secret key
system with zero leakage is defined as follows.

Definition 4: A rate tuple (RI , RS , RP , RJ) ∈ R4
+ of the

identification rate, the secret key rate, the private key rate,
and the helper data rate is achievable in a chosen secret key
system with zero leakage if for all δ > 0 there exists some
N0(δ) ≥ 1 such that for all N ≥ N0(δ) there exists enrollment
and identification mappings such that the conditions in (5),
(7), (8), (10), (14), (18), (19) are satisfied. Let R0

c denote



VU |X̃
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VU |Y
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IJ IS F

Fig. 5: An illustration of the subset structure of the index
sets VU |X̃ , VU |X , VU |Y , VU , HU , F , IS , and IJ . The line
represents the indices, which are not ordered from 1 to N .

the capacity region that contains all achievable rate tuples
(RI , RS , RP , RJ) in a chosen secret key system with zero
leakage.

As before, we require strong secrecy, which is a more
stringent secrecy constraint than that in [11].

Theorem 4 ( [11]): The capacity region of a chosen secret
key system with weak measures and zero leakage is given by

R0
c = {(RI , RS , RP , RJ) : RI +RS ≤ RP + I(U ;Y ),

RP ≥ I(U ;X)− I(U ;Y ) +RI ,

RJ ≥ I(U ; X̃)− I(U ;Y ) +RI +RS ,

for somePUXX̃Y = QXQX̃|XQY |XPU |X̃}. (23)

III. POLAR CODE DESIGN

In this section, we present polar code designs that achieve
the fundamental limits1 given in Theorems 1, 2, 3, and 4.

A. Polar Code Design for Generated Secret Key System

Codebook Generation: Let block length N
∆
= 2n, where

n ∈ N+. Introduce auxiliary RVs U and V . Since we
consider the binary case with memoryless symmetric channels
in this work, both U and V are assumed to be binary. Fix
an auxiliary p.m.f. PU |X̃

2, which results in a joint p.m.f.
PUXX̃Y = PU |X̃QX̃|XQY |XQX . Fix a sufficiently small
ϵ > 0. Assume that there are MI = 2NRI users. For each
user w ∈ [1 : MI ], generate a vector uN (w):

uN (w) ∼
N∏
i=1

PU |X̃(ui(w)|x̃i(w)). (24)

Denote vN (w) as the polar-code transformed vector, i.e.,

vN (w) = uN (w)GN . (25)

For δN
∆
= 2−Nβ

with an arbitrary but fixed β ∈ (0, 1/2),
define the following sets on [1 : N ]:

HU
∆
= {i : H(V i|V i−1) ≥ δN}, (26)

1Since polar codes are designed for block length N = 2n with n ∈ N+,
we formally do not provide codes for any block length, but still for infinitely
many block lengths, which corresponds to achievability in the optimistic sense.

2The distribution PU|X̃ is the so called test channel. It is the designing
freedom, i.e., any PU|X̃ such that the Markov chain U − X̃ −X − Y holds
will result in a polar code with the corresponding performances as stated in
Theorems 5, 6, 7, and 8. The test channel can be chosen according to the
desired capacity of the system, e.g. how many users can be enrolled and how
long the secret key can be.

VU
∆
= {i : H(V i|V i−1) ≥ 1− δN} ⊂ HU , (27)

VU |Y
∆
= {i : H(V i|V i−1, Y N ) ≥ 1− δN} ⊂ VU , (28)

VU |X
∆
= {i : H(V i|V i−1, XN ) ≥ 1− δN} ⊂ VU |Y , (29)

VU |X̃
∆
= {i : H(V i|V i−1, X̃N ) ≥ 1− δN} ⊂ VU |X , (30)

where Y N ∼
∏N

i=1 QY |X(yi|xi(w)) and the inclusions
VU |X̃ ⊂ VU |X ⊂ VU |Y are due to the Markov chain
(U, V ) − X̃ − X − Y . We pick a rate pair (RI , RS) such
that

N(RI +RS + 2ϵ) = |VU\VU |Y |. (31)

Next we define the following sets.
Definition 5: Let F be a subset of VU\VU |Y such that

|F| = Nϵ, (32)

H(V i|V i−1, Y N ) ≥ H(V j |V j−1, Y N ), (33)

hold for all i ∈ F and any j ∈ VU\(VU |Y ∪ F). That is, F
includes the indices in VU\VU |Y with the largest conditional
entropy. Let IS be any subset of VU\(VU |Y ∪ F) with size
NRS . Let IJ denote VU\(VU |Y ∪F∪IS) with size satisfying

|IJ | = |VU\VU |Y | −N(ϵ+RS) = N(RI + ϵ). (34)

The sets defined above have been illustrated in Fig. 5.
The above index sets of vN (w) can be interpreted as

follows: (a) HU is the index set of not sufficiently close to
zero entropy given the previous bits; (b) VU is the high entropy
index set given the previous bits; (c) VU |Y is the high entropy
index set given the previous bits and Y N ; (d) VU |X is the high
entropy index set given the previous bits and XN ; (e) VU |X̃
is the high entropy index set given the previous bits and X̃N ;
(f) F is a small set to ensure the source polar coding works;
(g) the bits in the sequence vN (w) related to indices in IJ
and IS are used for generating the helper data and the secret
key, respectively.

Enrollment: The enrollment procedure is given in Algo-
rithm 1. The system first constructs a source representation
ṽN (w) of x̃N (w) for each user w ∈ [1 : MI ]. The system
uses part of the bits in the sequence ṽN (w) to generate the
helper data j(w) and the secret key s(w), where the helper
data j(w) consists two parts, i.e., j1(w) and j2(w).

Identification and Authentication: The identification and
authentication procedure is given in Algorithm 2. After observ-
ing yN generated by an unknown user, the system iteratively
constructs an estimate v̂N (ŵ) of ṽN (ŵ) for all ŵ ∈ [1 : MI ]
using the first part j1(ŵ) of the public helper data and the
vector a defined in Algorithm 1. The iterative operation is
based on the successive cancellation decoder as described
in [20] by successively calculating the likelihood ratio for
bit-wise decoding. That is, the bit v̂i is decoded based on
(yN , v̂i−1) and then the bit v̂i+1 is decoded based on (yN , v̂i).
With the estimated sequence v̂N (ŵ), the system compares
v̂N (ŵ) with the second part j2(ŵ) of the public helper data.
If they match, i.e., j2(ŵ) = v̂N [IJ ](ŵ), the system outputs
the guessed user index ŵ and the estimated secret key ŝ.
Otherwise, the system continues comparing with the next user
when ŵ < MI or reports an error when ŵ = MI .



pṼ j(w)|Ṽ j−1(w), X̃N (w)(ṽ
j(w)|ṽj−1(w), x̃N (w)) =

{
pV j(w)|V j−1(w), X̃N (w)(ṽ

j(w)|ṽj−1(w), x̃N (w)), if j ∈ HU\VU |X̃
pV j(w)|V j−1(w)(ṽ

j(w)|ṽj−1(w)), if j ∈ Hc
U

(35)

Algorithm 1 Enrollment of the Generated Secret Key System
Input: Biometric sequence x̃N (w) for each user w ∈ [1 :

MI ]; a rate pair (RI , RS), the sets F , IS , and IJ defined
in Definition 5; vector a, which is a realization of a binary
uniformly distributed RV of size |VU |X̃ |.

Output: Secret key s(w) and helper data j(w) for all
users w ∈ [1 : MI ].

1: for w = 1 : MI do
2: ṽN [VU |X̃ ](w)← a

3: Given x̃N (w), successively draw the remaining bits of
ṽN (w) according to (35).

4: j1(w)← ṽN [(VU |Y \VU |X̃) ∪ F ](w)
5: j2(w)← ṽN [IJ ](w)
6: s(w)← ṽN [IS ](w)
7: Store j(w) = (j1(w), j2(w)) and s(w) in the public

and secure databases at location w, respectively.
8: return {j(w)}MI

w=1, {s(w)}
MI
w=1

Algorithm 2 Identification and Authentication of the Gener-
ated Secret Key System

Input: Observation sequence yN ; the public helper
database {j(w)}MI

w=1; the vector a and sets F , IS , and IJ
from Algorithm 1.

Output: Guessed user index ŵ and estimated secret key
ŝ.

1: ŵ ← 0
2: do
3: ŵ ← ŵ + 1
4: v̂N [VU |X̃ ](ŵ)← a

5: v̂N [(VU |Y \VU |X̃) ∪ F ](ŵ)← j1(ŵ)

6: Given yN and v̂N [VU |Y ∪ F ](ŵ), obtain an estimate
v̂N (ŵ) of ṽN (ŵ) with successive cancellation decoder of
[20].

7: while v̂N [IJ ](ŵ) ̸= j2(ŵ) and ŵ ≤MI

8: if v̂N [IJ ](ŵ) = j2(ŵ) then
9: return ŵ, ŝ← v̂N [IS ](ŵ)

10: else
11: return error

The performance of the algorithms is ensured as follows.
Theorem 5: In a generated secret key system, any rate tuple

(RI , RS , RL, RJ) ∈ Rg can be achieved by the polar code
design in Algorithm 1 and Algorithm 2, whose complexity is
O(MIN logN).

Proof: See Appendix A-A.

B. Polar Code Design for Chosen Secret Key System

The enrollment algorithm is given in Algorithm 3, which
extends Algorithm 1 with a masking procedure. The authen-
tication and identification algorithm is given in Algorithm 4.

Algorithm 3 Enrollment of the Chosen Secret Key System
Input: Biometric sequence x̃N (w) for each user w ∈ [1 :

MI ]; a rate pair (RI , RS) and the sets F , IS , and IJ defined in
Definition 5; chosen secret keys {s(w)}MI

w=1; vector a, which
is a realization of uniformly distributed RV of size |VU |X̃ |.

Output: Secret key s(w) and helper data j(w) for each
user w ∈ [1 : MI ].

1: for w = 1 : MI do
2: ṽN [VU |X̃ ](w)← a

3: Given x̃N (w), successively draw the remaining bits of
ṽN (w) according to (35).

4: j1(w)← ṽN [(VU |Y \VU |X̃) ∪ F ](w)
5: j2(w)← ṽN [IJ ](w)
6: j3(w)← s(w)⊕ ṽN [IS ](w)
7: Store j(w) = (j1(w), j2(w), j3(w)) and s(w) in the

public and secure databases at location w, respectively.
8: return {j(w)}MI

w=1, {s(w)}
MI
w=1

Algorithm 4 Identification and Authentication of the Chosen
Secret Key System

Input: Observation sequence yN ; the public helper
database {j(w)}MI

w=1; the vector a and sets F , IS , and IJ
from Algorithm 3.

Output: Guessed user index ŵ and estimated secret key
ŝ.

1: ŵ ← 0
2: do
3: ŵ ← ŵ + 1
4: v̂N [VU |X̃ ](ŵ)← a

5: v̂N [(VU |Y \VU |X̃) ∪ F ](ŵ)← j1(ŵ)

6: Given Y N and v̂N [VU |Y ∪ F ](ŵ), obtain an estimate
v̂N (ŵ) of ṽN (ŵ) with successive cancellation decoder of
[20].

7: while v̂N [IJ ](ŵ) ̸= j2(ŵ) and ŵ ≤MI

8: if v̂N [IJ ](ŵ) = j2(ŵ) then
9: return ŵ, ŝ← j3(ŵ)⊖ v̂N [IS ](ŵ)

10: else
11: return error

The performance of the algorithms is ensured as follows.

Theorem 6: In a chosen secret key system, any rate tuple
(RI , RS , RL, RJ) ∈ Rc can be achieved by the polar code
design in Algorithm 3 and Algorithm 4, whose complexity is
O(MIN logN).

Proof: See Appendix A-B.



Algorithm 5 Enrollment of the Generated Secret Key System
with Zero Leakage

Input: Biometric sequence x̃N (w) for each user w ∈ [1 :
MI ]; a rate pair (RI , RS) and the sets F and I defined in Defi-
nition 6; the private key p(w) = (p1(w), p2(w), p3(w)), where
p1(w) ∈ [1 : 2|(VU|Y \VU|X)∪F|], p2(w) ∈ [1 : 2N(RI+ϵ)], and
p3(w) ∈ [1 : 2N(RP−RI−ϵ)−|(VU|Y \VU|X)∪F|]; vector a, which
is a realization of uniformly distributed over |VU |X̃ |.

Output: Secret key s(w) and helper data j(w) for each
user w ∈ [1 : MI ].

1: for w = 1 : MI do
2: ṽN [VU |X̃ ](w)← a

3: Given x̃N (w), successively draw the remaining bits of
ṽN (w) according to (35).

4: j11(w)← ṽN [(VU |Y \VU |X) ∪ F ](w)⊕ p1(w)
5: j12(w)← ṽN [VU |X\VU |X̃ ](w)
6: j2(w)← p2(w)
7: s(w)← ṽN [VU\VU |X ](w), p3(w))
8: Store j(w) = (j11(w), j12(w), j2(w)) and s(w) in the

public and secure databases at location w, respectively.
9: return {j(w)}MI

w=1, {s(w)}
MI
w=1

C. Polar Code Design for Generated Secret Key System with
Zero Leakage

Pick a rate triple (RI , RS , RP ) satisfying

NRP ≥ |VU |Y \VU |X |+N(RI + 2ϵ), (36)
N(RI +RS + 2ϵ) = NRP + |VU\VU |Y |. (37)

Similar to Definition 5, we define a set F as follows.
Definition 6: Let F be a subset of VU\VU |Y such that (32)

and (33) hold for any i ∈ F and any j ∈ VU\(VU |Y ∪ F).
That is, F includes the indices with the largest conditional
entropy.

The enrollment algorithm is given in Algorithm 5, which
extends Algorithm 1 by including the private key with three
purposes: (i) masking part of the helper data to ensure close
to zero private leakage rate; (ii) constructing public helper
data to identify more users; (iii) generating a longer secret
key to increase the secret key rate. The authentication and
identification algorithm is given in Algorithm 6.

The performance of the algorithms is ensured as follows.
Theorem 7: In a generated secret key system with zero leak-

age, any rate tuple (RI , RS , RP , RJ) ∈ R0
g can be achieved

by the polar code design in Algorithm 5 and Algorithm 6,
whose complexity is O(N logN).

Proof: See Appendix A-C.

D. Polar Code Design for Chosen Secret Key System with Zero
Leakage

The polar code design of the chosen secret key system
with zero leakage is a similar extension of the chosen secret
key system as done for the generated secret key system in
Sec III-B. The enrollment algorithm is given in Algorithm
7. The authentication and identification algorithm is given in
Algorithm 8.

Algorithm 6 Identification and Authentication of the Gener-
ated Secret Key System with Zero Leakage

Input: Observation sequence yN ; the private key p =
(p1, p2, p3) of the observed user; the public helper database
{j(w)}MI

w=1; the vector a and sets F and I from enrollment.
Output: Guessed user index ŵ and estimated secret key

ŝ.
1: ŵ ← 0
2: do
3: ŵ ← ŵ + 1
4: while p2 ̸= j2(ŵ) and ŵ ≤MI

5: if p2 = j2(ŵ) then
6: v̂N [VU |X̃ ](ŵ)← a

7: v̂N [(VU |Y \VU |X) ∪ F ](ŵ)← j11(ŵ)⊖ p1
8: v̂N [VU |X\VU |X̃ ](ŵ)← j12(ŵ)

9: Given yN and v̂N [VU |Y ∪ F ](ŵ), obtain an estimate
v̂N (ŵ) of ṽN (ŵ) with successive cancellation decoder of
[20].

10: return ŵ, ŝ←
(
v̂N [VU\VU |X ](ŵ), p3

)
11: else
12: return error

Algorithm 7 Enrollment of the Chosen Secret Key System
with Zero Leakage

Input: Biometric sequence x̃N (w) and the secret key
s(w) for each user w ∈ [1 : MI ]; a rate pair (RI , RS)
and the sets F and I defined in Definition 6; the private
key p(w) = (p1(w), p2(w), p3(w)), where p1(w) ∈ [1 :
2|(VU|Y \VU|X)∪F|], p2(w) ∈ [1 : 2N(RI+ϵ)], and p3(w) ∈
[1 : 2N(RP−RI−ϵ)−|(VU|Y \VU|X)∪F|)]; vector a, which is a
realization of uniformly distributed over |VU |X̃ |.

Output: Helper data j(w) for each user w ∈ [1 : MI ].
1: for w = 1 : MI do
2: ṽN [VU |X̃ ](w)← a

3: Given x̃N (w), successively draw the remaining bits of
ṽN (w) according to (35).

4: j11(w)← ṽN [(VU |Y \VU |X) ∪ F ](w)⊕ p1(w)
5: j12(w)← ṽN [VU |X\VU |X̃ ](w)
6: j2(w)← p2(w)
7: j3(w)← s(w)⊕

(
ṽN [VU\VU |X ](w), p3(w)

)
8: Store j(w) = (j11(w), j12(w), j2(w), j3(w)) and s(w)

in the public and secure databases at location w, respec-
tively.

9: return {j(w)}MI
w=1, {s(w)}

MI
w=1

The performance of the algorithms is ensured as follows.
Theorem 8: In a chosen secret key system with zero leakage,

any rate tuple (RI , RS , RP , RJ) ∈ R0
c can be achieved by

the polar code design in Algorithm 7 and Algorithm 8, whose
complexity is O(N logN).

Proof: See Appendix A-D.

IV. CONCLUSION

In this work, we show that polar codes can be developed for
implementation in the considered biometric identification and



Algorithm 8 Identification and Authentication of the Chosen
Secret Key System with Zero Leakage

Input: Observation sequence yN ; the private key p =
(p1, p2, p3) of the observed user; the public helper database
{j(w)}MI

w=1; the vector a and sets F and, I from enrollment.
Output: Guessed user index ŵ and estimated secret key

ŝ.
1: ŵ ← 0
2: do
3: ŵ ← ŵ + 1
4: while p2 ̸= j2(ŵ) and ŵ ≤MI

5: if p2 = j2(ŵ) then
6: v̂N [VU |X̃ ](ŵ)← a

7: v̂N [(VU |Y \VU |X) ∪ F ](ŵ)← j11(ŵ)⊖ p1
8: v̂N [VU |X\VU |X̃ ](ŵ)← j12(ŵ)

9: Given yN and v̂N [VU |Y ∪ F ](ŵ), obtain an estimate
v̂N (ŵ) of ṽN (ŵ) with successive cancellation decoder of
[20].

10: return ŵ, ŝ← j3(ŵ)⊖
(
v̂N [VU\VU |X ](ŵ), p3

)
11: else
12: return error

authentication systems. Source polarization is implemented
on biometrics to extract helper data and secret keys. Four
different but closely related setups are studied depending on
the secret key generation method and the privacy preservation
requirement, which analogies in the setup are also reflected
in the polar code design. The algorithms of the chosen secret
key system extend that of the generated secret key system
by including a masking procedure. The systems with zero
leakage additionally include private keys to ensure close to
zero leakage. As the polar coding principle has been shown
to achieve the fundamental bounds for various setups, our
work shows that they can be also developed for this setting.
Moreover, the proposed code designs not only achieve op-
timal performance but also satisfy a more stringent secrecy
preservation requirement, which is achieved for free. This
ensures that proposed code designs result in better protection
of secrecy. Recently, several methods and approaches have
been developed for the design of low-complexity polar coding
schemes that outperform state-of-the-art performance. Given
those large ongoing research efforts to develop low-complexity
polar coding schemes, one can expect that several of those
ideas can be transferred to this problem as well, which is
a direction to develop the technology further. For this, the
polar code designs developed in this work will serve as
the basic polar coding principles enabling the design and
implementation of efficient low-complexity polar codes for
identification and authentication.

Lastly, it is worth mentioning that our code designs achieve
optimal performance asymptotically. This is due to the fact that
the capacity-achieving performance of polar codes holds for
sufficiently long sequence length. Moreover, for simplicity, we
consider the binary case of the code design. Fortunately, there
is a large amount of work going on for constructing practical
polar codes that perform well for short block-lengths and non-

binary codes, see e.g. [35]–[37]. Thus although the length
of biometric sequences is finite and non-binary in real-life
scenarios, with the development of more advanced techniques
of constructing short block-length and non-binary polar codes,
our work can be developed further to design efficient biometric
systems.

APPENDIX A
PROOF OF THEOREMS

A. Proof of Theorem 5

a) Rate Analysis: From (31), we have that

N(RI +RS) = |VU\VU |Y | − 2Nϵ

(a)
= |VU | − |VU |Y | − 2Nϵ, (38)

where (a) holds because VU |Y ⊂ VU .
By [24, Lemma 1], we obtain that

lim
N→∞

|VU |
N

= H(U). (39)

By [20, Theorem 1], we obtain that

lim
N→∞

|VU |Y |
N

= H(U |Y ). (40)

Combining (38), (39), and (40), we have that

lim
N→∞

RI +RS = I(U ;Y )− 2ϵ. (41)

The helper data rate RJ is

RJ =
|J(W )|

N
=
|VU |Y \VU |X̃ |+ |F|+ |IJ |

N

(a)
=
|VU |Y | − |VU |X̃ |+N(RI + 2ϵ)

N
, (42)

where (a) follows from VU |X̃ ⊂ VU |Y and (34).
By [20, Theorem 1], we obtain that

lim
N→∞

|VU |X̃ |
N

= H(U |X̃). (43)

Combining (40), (42), and (43), we have that

lim
N→∞

RJ = I(U ; X̃)− I(U ;Y ) +RI + 2ϵ. (44)

b) Error Events Analysis: Assume that user W is ob-
served. Let J(W ) = (J1(W ), J2(W )) and S(W ) denote the
actual helper data and the secret key of user W . Define the
following error events

E1 = {V̂ N [IJ ](W ) ̸= J2(W )},
E2 = {∃ŵ ̸= W : V̂ N [IJ ](ŵ) = J2(ŵ),

V̂ N [IS ](ŵ) = S(W )},
E3 = {V̂ N [IJ ](W ) = J2(W ), V̂ N [IS ](W ) ̸= S(W )},
E4 = {∃ŵ ̸= W : V̂ N [IJ ](ŵ) = J2(ŵ),

V̂ N [IS ](ŵ) ̸= S(W )}. (45)

The first two events are identification error events that the
correct user is not identified: E1 denotes the case that the true
user does not satisfy the equality condition in the comparison
procedure; E2 denotes the case that there exists another user



that satisfies the equality condition and the estimated secret
key matches the true one. The third and fourth error events
are the authentication errors that the estimated secret key does
not match the true one: E3 denotes the case that the guessed
user ŵ is the same as the true one but the estimated secret key
does not match the true secret key S(W ); E4 denotes the case
that neither the guessed user index nor the estimated secret
key is the same as the true helper data index and the secret
key of the observed user. The identification and authentication
are reliable if and only if none of the above events happen.
We define the error event

E = {(Ŵ , Ŝ) ̸= (W,S(W ))} (46)

and it holds that

E ⊂ E1 ∪ E2 ∪ E3 ∪ E4. (47)

Before proceeding with bounding the probability of E , we
include the following lemmas.

Lemma 1: Assume that user w is observed, then it holds
that

Pr{V̂ N (w) ̸= Ṽ N (w)} N→∞−−−−→ 0. (48)

Proof: See Appendix B-A.
Lemma 2: For any w ∈ [1 : MI ], Ṽ N (w) resulting from

Algorithm 1 has a joint p.m.f. pX̃N (w)Ṽ N (w) with X̃N (w)
such that

D(pX̃N (w)V N (w)||pX̃N (W )Ṽ N (w)) ≤ NδN . (49)

Hence, by Pinsker’s inequality [38, p. 44], we have

V(pX̃N (w)V N (w), pX̃N (w)Ṽ N (w)) ≤
√
2 ln 2

√
NδN . (50)

Consequently, we obtain that

D(pV N (w)||pṼ N (w)) ≤ NδN , (51)

V(pV N (w), pṼ N (w)) ≤
√
2 ln 2

√
NδN . (52)

Proof: See Appendix B-B.
Lemma 3: For any user w ∈ [1 : MI ] and any i ∈ VU , it

holds that

H(Ṽi(w)|Ṽ i−1(w))
N→∞−−−−→ 1.

Proof: See Appendix B-C.
In the following, due to symmetry and without loss of gen-

erality, assume that W = 1. Now we consider the probability
of E1 ∪ E3|W = 1 as follows

Pr{E1 ∪ E3|W = 1}
= Pr{(V̂ N [IJ ](1), V̂ N [IS ](1)) ̸= (J2(1), S(1))|W = 1}
= Pr{V̂ N [IJ ∪ IS ](1) ̸= Ṽ N [IJ ∪ IS ](1)|W = 1}
N→∞−−−−→ 0, (53)

where the last step follows from Lemma 1.
In the following, let a1, a2, ..., a|IJ | denotes the elements

of the set IJ such that a1 < a2 < ... < a|IJ |. Let IiJ =
{a1, a2, ..., ai}. The probability of E2 ∪ E4|W = 1 can be
bounded as follows

Pr{E2 ∪ E4|W = 1}

=Pr{∃ŵ ̸= 1 : V̂ N [IJ ](ŵ) = J2(ŵ)|W = 1}

≤
∑
ŵ ̸=1

Pr{V̂ N [IJ ](ŵ) = J2(ŵ)|W = 1}

=
∑
ŵ ̸=1

Pr{∀i ∈ IJ : V̂i(ŵ) = Ṽi(ŵ)|W = 1}

=
∑
ŵ ̸=1

|IJ |∏
i=1

Pr{V̂ai
(ŵ) = Ṽai

(ŵ)|W = 1,

V̂ ai−1 [Ii−1
J ](ŵ) = Ṽ ai−1 [Ii−1

J ](ŵ)}. (54)

To bound the probability above, we firstly consider the fol-
lowing conditional entropy. For ŵ ̸= 1, we obtain that

H(V̂ai(ŵ)⊕ Ṽai(ŵ)|
V̂ ai−1 [Ii−1

J ](ŵ) = Ṽ ai−1 [Ii−1
J ](ŵ),W = 1)

(a)

≥ H(V̂ai
(ŵ)⊕ Ṽai

(ŵ)|V̂ ai−1(ŵ) = Ṽ ai−1(ŵ),W = 1)

(a)

≥ H(V̂ai(ŵ)⊕ Ṽai(ŵ)|V̂ ai(ŵ), Ṽ ai−1(ŵ), Y N ,W = 1)

= H(Ṽai
(ŵ)|V̂ ai(ŵ), Ṽ ai−1(ŵ), Y N ,W = 1)

(b)
= H(Ṽai

(ŵ)|Ṽ ai−1(ŵ), Y N ,W = 1)

(c)
= H(Ṽai

(ŵ)|Ṽ ai−1(ŵ))

(a)

≥ H(Ṽai
(ŵ)|Ṽ ai−1(ŵ))

(d)→ 1, (55)

as N → ∞; where (a) holds since conditioning re-
duces entropy; (b) holds because V̂ ai(ŵ) is a function of
(Ṽ ai−1(ŵ), Y N ) due to the successive cancellation operation;
(c) holds because Y N is the observation of user W and thus
is independent of (XN (ŵ), Ṽ N (ŵ)) for ŵ ̸= 1; (d) follows
from Lemma 3. Since V̂ai

(ŵ)⊕ Ṽai
(ŵ) is binary, (55) implies

that for any ϵ′ > 0 and sufficiently large N , we have

Pr{V̂ai
(ŵ)⊕ Ṽai

(ŵ) = 0|W = 1,

V̂ ai−1 [Ii−1
J ](ŵ) = Ṽ ai−1 [Ii−1

J ](ŵ)} < 1

2
+ ϵ′. (56)

Now we consider ϵ′ ∈ (0, 2
ϵ

RI+ϵ −1
2 ) for the fixed ϵ > 0.

Combining (54) and (56), we obtain that

Pr{E2 ∪ E4|W = 1} ≤
∑
ŵ ̸=1

|IJ |∏
i=1

(
1

2
+ ϵ′) = 2NRI (

1

2
+ ϵ′)|IJ |

(a)
= 2NRI (

1

2
+ ϵ′)N(RI+ϵ) =

(1 + 2ϵ′)N(RI+ϵ)

2Nϵ

=
( (1 + 2ϵ′)(RI+ϵ)

2ϵ

)N (b)−−→ 0, (57)

as N → ∞; where (a) follows from (34); (b) follows from
(1+2ϵ′)(RI+ϵ)

2ϵ < 1 since ϵ′ < 2
ϵ

RI+ϵ −1
2 .

Combining (53) and (57), we can conclude that

Pr{E} → 0, (58)

when N → ∞. Therefore, we can conclude that there exists
a suitable codebook C = C such that (58) holds.



c) Uniformity of Secret Keys: We include the following
lemmas to show the uniformity of secret keys. Let D denote
VU\VU |X̃ for simplicity.

Lemma 4: Let 1-dim distribution qU|D| denote a uniform
distribution over [1 : 2|D|]. For any user w ∈ [1 : MI ], the
value of the vector Ṽ N [D](w) is close to uniformly distributed,
i.e.,

V(pṼ N [D](w)), qU|D|) ≤ 2
√
2 ln 2

√
NδN . (59)

Proof: See Appendix B-D.
Lemma 5: For any user w ∈ [1 : MI ], it holds that

|D| −H(Ṽ N [D](w)) ≤ δ, (60)

where δ → 0 as N → ∞. Consequently, for any subset DS

of D, we have that

|DS | −H(Ṽ N [DS ](w)) ≤ δ, (61)

I(Ṽ N [DS ](w); Ṽ
N [D\DS ](w)) ≤ δ. (62)

Taking the subset as DS = IS or DS = IJ , we obtain that

|IS | −H(Ṽ N [IS ](w)) ≤ δ, (63)

I(Ṽ N [(VU |Y \VU |X̃) ∪ F ∪ IJ ](w); Ṽ N [IS ](w)) ≤ δ. (64)

Proof: See Appendix B-E.
Due to (63), the secret key for each user is close to uniform

as required in (6). Now we consider the following

H(S(W )|C = C) =

MI∑
w=1

Pr(W = w)H(S(w)|C = C)

(a)

≥
MI∑
w=1

Pr(W = w)|S(w)| − δ = |S(W )| − δ, (65)

where δ → 0 as N →∞; (a) holds due to (63) in Lemma 5.
Therefore, S(W ) is close to uniform as required in (6).

d) Secrecy Analysis: It holds that

I(S(W ); {J(i)}MI
i=1|C = C)

(a)
= I(S(W ); J1(W ), J2(W )|C = C)

=

MI∑
w=1

Pr(W = w)I(S(w); J1(w), J2(w)|C = C)

=

MI∑
w=1

I(Ṽ N [IS ](w); Ṽ N [(VU |Y \VU |X̃) ∪ IJ ](w)|C = C)

MI

(b)

≤ δ (66)

where δ → 0 as N → ∞; (a) follows from the fact that the
secret key of user W is independent of the helper data of the
other users; (b) follows from (64) in Lemma 5.

e) Privacy Analysis: Before proceeding with the privacy
leakage analysis, we include the following lemmas.

Lemma 6: For any w ∈ [1 : MI ], Ṽ N (w) resulting from
Algorithm 1 has a joint p.m.f. pXN (w)Ṽ N (w) with XN (w)
such that

D(pXN (w)V N (w)||pXN (W )Ṽ N (w)) ≤ NδN . (67)

Hence, by Pinsker’s inequality [38, p. 44], we have

V(pXN (w)V N (w), pXN (w)Ṽ N (w)) ≤
√
2 ln 2

√
NδN . (68)

Proof: See Appendix B-F.
Lemma 7: It holds that

I(Ṽ N [VU |X ](W );XN (W )|C = C) ≤ δ, (69)

where δ → 0 as N →∞.
Proof: See Appendix B-G.
Now we consider the privacy leakage as follows

I({J(i)}MI
i=1;X

N (W )|C = C)

(a)
= I(J(W );XN (W )|C = C)

= I(Ṽ N [
(
VU |Y \VU |X̃

)
∪ F ∪ IJ ](W );XN (W )|C = C)

= I(Ṽ N [
(
VU |Y \VU |X

)
∪
(
VU |X\VU |X̃

)
∪ F ∪ IJ ](W );

XN (W )|C = C)

= I(Ṽ N [
(
VU |Y \VU |X

)
∪ F ∪ IJ ](W );XN (W )|

Ṽ N [VU |X\VU |X̃ ](W ), C = C)

+ I(Ṽ N [VU |X\VU |X̃ ](W );XN (W )|C = C)

(b)

≤ H(Ṽ N [
(
VU |Y \VU |X

)
∪ F ∪ IJ ](W )|C = C) + δ

≤ |
(
VU |Y \VU |X

)
∪ F ∪ IJ |+ δ

= |VU |Y | − |VU |X |+ |F|+ |IJ |+ δ, (70)

where δ → 0 as N → ∞ and (a) follows from the fact that
the biometric sequence XN (W ) of user W is independent of
the helper data of other users; (b) follows from Lemma 7. For
size of |VU |X |, by [20, Theorem 1], it holds that

lim
N→∞

|VU |X |
N

= H(U |X). (71)

Combining (34), (40), (70), and (71), we have that

I({J(i)}MI
i=1;X

N (W )|C = C)

N
N→∞−−−−→ I(U ;X)− I(U ;Y ) +RI + 2ϵ, (72)

where we used U −X − Y .
f) Complexity Analysis: From [17], we know that

the complexity of successive cancellation operation is
O(N logN). For the identification and authentication pro-
cedure in Algorithm 2, the system operates an exhaustive
search until a matched user is found. Therefore, at most MI

times the successive cancellation is operated, which results in
complexity no larger than O(MIN logN).

Combining (41), (44), (58), (65), (66), and (72), we com-
plete the proof of Theorem 5.

B. Proof of Theorem 6

a) Rate Analysis: Following the analysis in (38), (39),
and (40), we obtain that

lim
N→∞

RI +RS = I(U ;Y )− 2ϵ. (73)

For the helper data rate RJ , it holds that

RJ =
J(W )

N
=
|VU |Y \VU |X̃ |+ |IJ |+ |F|

N
+RS



=
|VU |Y \VU |X̃ |

N
+RI +RS + 2ϵ

(a)
=
|VU |Y \VU |X̃ |

N
+ I(U ;Y )

(b)→ I(U ; X̃), (74)

as N → ∞; where (a) holds due to (73); (b) follows from
(34), (40), and (43).

b) Error Events Analysis: Comparing Algorithm 2 and
Algorithm 4, the identification procedures, i.e., guessing the
user’s index, are the same for the generated secret key system
and the chosen secret key system. From the error events
analysis in the proof of Theorem 5, we can obtain that for the
chosen secret key system, the identification is reliable, i.e.,

Pr{Ŵ ̸= W} N→∞−−−−→ 0. (75)

Then for the authentication error probability, we have that

Pr{Ŝ ̸= S(W )|Ŵ = W}
= Pr{J3(Ŵ )⊖ V̂ N [IS ](Ŵ ) ̸= J3(W )⊖ Ṽ N [IS ](W )

|Ŵ = W}

= Pr{V̂ N [IS ](W ) ̸= Ṽ N [IS ](W )} N→∞−−−−→ 0, (76)

where the last step follows from Lemma 1. Combining (75)
and (76), we obtain that there exists a suitable codebook C =
C such that

Pr{(Ŵ , Ŝ) ̸= (W,S(W ))} N→∞−−−−→ 0. (77)

c) Secrecy Analysis: It holds that

I(S(W ); {J(i)}MI
i=1|C = C) = I(S(W ); J(W )|C = C)

(a)
= I(S(W ); J1(W ), J2(W ), J3(W )|C = C)

= I(S(W ); J1(W ), J2(W )|C = C)

+ I(S(W ); J3(W )|J1(W ), J2(W ), C = C)

(b)
= H(J3(W )|J1(W ), J2(W ), C = C)

−H(J3(W )|S(W ), J1(W ), J2(W ), C = C)

≤ NRS −H(Ṽ N [IS ](W )|S(W ), J1(W ), J2(W ), C = C)

(b)
= NRS −H(Ṽ N [IS ](W )|J1(W ), J2(W ), C = C)

= NRS −H(Ṽ N [IS ](W ))

+ I(Ṽ N [IS ](W ); J1(W ), J2(W )|C = C)

(c)

≤ 2δ, (78)

where δ → 0 as N → ∞; (a) holds since the secret key of
user W is independent of the helper data of the other users; (b)
follows from the fact that S(W ) is independent of X̃N (W )
and thus independent of (J1(W ), J2(W ), V N [IS ](W )) given
the codebook C = C; (c) follows from (63) and (64).

d) Privacy Analysis: It holds that

I(XN (W ); {J(i)}MI
i=1|C = C)

(a)
= I(XN (W ); J(W )|C = C)

= I(XN (W ); J1(W ), J2(W ), J3(W )|C = C)

= I(XN (W ); J1(W ), J2(W )|C = C)

+ I(XN (W ); J3(W )|J1(W ), J2(W ), C = C)

≤ I(XN (W ); J1(W ), J2(W )|C = C) +H(J3(W )|C = C)

−H(J3(W )|XN (W ), X̃(W ), J1(W ), J2(W ), C = C)

≤ I(XN (W ); J1(W ), J2(W )|C = C) +NRS

−H(S(W )|XN (W ), X̃(W ), J1(W ), J2(W ), C = C)

(b)
= I(XN (W ); J1(W ), J2(W )|C = C), (79)

where (a) follows from the fact that the biometric sequence
XN (W ) of user W is independent of the helper data
of other users; (b) follows from S(W ) is independent of
(XN (W ), X̃N (W ), J1(W ), J2(W )) and that S(W ) is uni-
formly distributed on [1 : 2NRS ].

Combining (72) and (79), we obtain that

lim
N→∞

I({J(i)}MI
i=1;X

N (W )|C = C)

N
≤ I(U ;X)− I(U ;Y ) +RI + 2ϵ. (80)

Combining (73), (74), (77), (78), and (80), it completes the
proof of Theorem 2.

C. Proof of Theorem 7

a) Rate Analysis: Combining (36), (37), (39), (40), and
(71), we obtain that

lim
N→∞

RP ≥ I(U ;X)− I(U ;Y ) +RI + 2ϵ, (81)

lim
N→∞

RI +RS ≤ I(U ;Y ) +RP − 2ϵ. (82)

The helper data rate can be bounded as

RJ =
J(W )

N
=
|VU |Y \VU |X̃ |+ |F|+ |P2(W )|

N
(a)→ I(U ; X̃)− I(U ;Y ) +RI + 2ϵ, (83)

as N →∞; where (a) follows from (40) and (43).
b) Error Events Analysis: Assume that user W is

observed. Let J(W ) = (J1(W ), J2(W )), P (W ) =
(P1(W ), P2(W ), P3(W )), and S(W ) denote the actual helper
data, private key and the secret key of the observed user W .
Define the following error events

E01 = {∃ŵ ̸= W : J2(ŵ) = P2(W ),(
V̂ N [VU\VU |X ](ŵ), P3(ŵ)

)
= S(W )},

E02 = {
(
V̂ N [VU\VU |X ](W ), P3(W )

)
̸= S(W )},

E03 = {∃ŵ ̸= W : J2(ŵ) = P2(W ),(
V̂ N [VU\VU |X ](ŵ), P3(ŵ)

)
̸= S(W )}, (84)

The error event E01 denotes the identification error that
there exists another user satisfying the required conditions and
the estimated secret key matches the true one. The second
and third error events are the authentication errors that the
estimated secret key does not match the true one: E02 denotes
the case that the estimated secret key of the observed user
does not match the true one S(W ); E03 denotes the case that
neither the guessed user index nor the estimated secret key is
the same as the true one. The identification and authentication



are reliable if and only if none of the above events happen.
We define the error event

E0 = {(Ŵ , Ŝ) ̸= (W,S(W ))} (85)

and it holds that

E0 ⊂ E1 ∪ E2 ∪ E3 ∪ E4. (86)

In the following, due to symmetry and without loss of
generality, assume that W = 1. We firstly consider E02 |W = 1
as follows

Pr{E02 |W = 1}
= Pr{V̂ N [VU\VU |X ](1) ̸= Ṽ N [VU\VU |X ](1)|W = 1}
(a)
= Pr{V̂ N [VU (\VU |Y ∪ F)](1)

̸= V̂ N [VU (\VU |Y ∪ F)](1)|W = 1} (b)→ 0, (87)

as N → ∞; where (a) holds because V̂ N [(VU |Y \VU |X) ∪
F ](W ) = J11(W ) ⊖ P1(W ) = Ṽ N [(VU |Y \VU |X) ∪ F ](W )
as given in Algorithm 6; (b) follows from Lemma 1.

The probability of E01∪E03 |W = 1 can be bounded as follows

Pr{E01 ∪ E03 |W = 1}
=Pr{∃ŵ ̸= 1 : P2(ŵ) = P2(1)|W = 1}
(a)

≤
∑
ŵ ̸=1

Pr{P2(ŵ) = P2(1)|W = 1}

(b)

≤2NRI2−N(RI+ϵ) = 2−Nϵ N→∞−−−−→ 0, (88)

where (a) follows from the union bound; (b) holds since the
private keys of different users are independent.

Combining (87) and (88), we obtain that there exists a
suitable codebook C = C such that

Pr{E0} N→∞−−−−→ 0. (89)

c) Uniformity of Secret Keys: Consider the following
entropy

H(S(W )|C = C) = H(Ṽ N [VU\VU |X ](W ), P3(W ))

(a)
= H(Ṽ N [VU\VU |X ](W )) +H(P3(W ))

(b)

≥ |VU\VU |X | − δ + |P3(W )|
= |S(W )| − δ, (90)

where δ → 0 as N → ∞; (a) holds because P (W ) is
independent of X̃N (W ) and Ṽ N (W ); (b) follows from (60)
in Lemma 5. This proves the uniformity of secret keys.

d) Secrecy Analysis: It holds that

I(S(W ); {J(i)}MI
i=1|C = C)

(a)
= I(S(W ); J(W )|C = C)

= I(Ṽ N [VU\VU |X ](W ), P3(W );

Ṽ N [(VU |Y \VU |X) ∪ F ](W )⊕ P1(W ),

Ṽ N [VU |X\VU |X̃ ](W ), P2(W )|C = C)

(b)
= I(Ṽ N [VU\VU |X ](W );

Ṽ N [(VU |Y \VU |X) ∪ F ](W )⊕ P1(W ),

Ṽ N [VU |X\VU |X̃ ](W )|C = C)

(c)

≤ I(Ṽ N [VU\VU |X ](W );

Ṽ N [(VU |Y \VU |X) ∪ F ](W )⊕ P1(W ),

|Ṽ N [VU |X\VU |X̃ ](W ), C = C) + δ

≤ δ +H(Ṽ N [(VU |Y \VU |X) ∪ F ](W )⊕ P1(W ))

−H(Ṽ N [(VU |Y \VU |X) ∪ F ](W )⊕ P1(W )

|Ṽ N [VU |X\VU |X̃ ](W ), Ṽ N [VU\VU |X ](W ), C = C)

≤ δ + |(VU |Y \VU |X) ∪ F| −H(P1(W )|
Ṽ N [VU |X\VU |X̃ ](W ), Ṽ N [VU\VU |X ](W ), C = C)

(b)
= δ, (91)

where δ → 0 as N → ∞; (a) follows from the fact
that the biometric sequence XN (W ) of user W is indepen-
dent of the helper data of other users; (b) holds because
(P1(W ), P2(W ), P3(W )) are mutually independent and they
are all independent of Ṽ N (W ); (c) follows from (62) in
Lemma 5 and letting DS = VU |X\VU |X̃ .

e) Privacy Analysis: It holds that

I(XN (W ); {J(i)}MI
i=1|C = C)

(a)
= I(XN (W ); J(W )|C = C)

(b)

≤ I(XN (W ); Ṽ N [(VU |Y \VU |X) ∪ F ](W )⊕ P1(W ),

P2(W )|Ṽ N [VU |X\VU |X̃ ](W ), C = C) + δ

(c)

≤ I(XN (W ); Ṽ N [(VU |Y \VU |X) ∪ F ](W )⊕ P1(W )

|Ṽ N [VU |X\VU |X̃ ](W ), P2(W ), C = C) + δ

≤ H(P1(W ))−H(Ṽ N [(VU |Y \VU |X) ∪ F ](W )⊕ P1(W )

|XN (W ), Ṽ N [VU |X\VU |X̃ ](W ), P2(W ), C = C) + δ

(d)

≤ H(P1(W ))−H(P1(W )|Ṽ N [(VU |Y \VU |X) ∪ F ](W ),

XN (W ), Ṽ N [VU |X\VU |X̃ ](W ), P2(W ), C = C) + δ

(c)
= δ, (92)

where δ → 0 as N → ∞; (a) follows from the fact that the
biometric sequence XN (W ) of user W is independent of the
helper data of other users; (b) follows from Lemma 7; (c)
holds because P1(W ), P2(W ), and (XN (W ), Ṽ N (W )) are
mutually independent; (d) holds since conditioning reduces
entropy.

Combining (81), (82), (83), (89), (90), (91), and (92), we
complete the proof of Theorem 7.

D. Proof of Theorem 8
The proof of Theorem 8 can be obtained by extending

the proof of Theorem 7 with including a masking procedure,
which is similar to the proof idea of Theorem 6.

APPENDIX B
SUPPLEMENTARY PROOF

A. Proof of Lemma 1
In the identification and authentication algorithms, V̂ [IJ ∪

IS ](w) is obtained by successive cancellation operation with



Y N and Ṽ [VU |Y ∪F ](w). Next we consider the size of VU |Y ∪
F .

From (40), we have that for sufficiently small ϵ > 0 there
exists N0(ϵ) ∈ N+ such that for any N = 2n ≥ N0(ϵ)
for some n ∈ N+, it holds that |VU |Y |/N > H(U |Y ) − ϵ.
Therefore, for sufficiently large N , it holds that

|VU |Y ∪ F| = |VU |Y |+ |F| > NH(U |Y ). (93)

Applying [20, Theorem 3], we can obtain (48) from (93).

B. Proof of Lemma 2

The proof idea is similar to [24, Appendix B-B]. For any
user w ∈ [1 : MI ], we have that

D(pX̃N (w)V N (w)||pX̃N (w)Ṽ N (w))

(a)
= D(pV N (w)|X̃N (w)||pṼ N (w)|X̃N (w))

(a)
=

N∑
j

D(pV j(w)|V j−1(w),X̃N (w)||pṼ j(w)|Ṽ j−1(w),X̃N (w))

(b)
=

∑
j∈VU|X̃∪Hc

U

D(pV j(w)|V j−1(w),X̃N (w)

||pṼ j(w)|Ṽ j−1(w),X̃N (w))

(c)
=

∑
j∈VU|X̃

(1−H(V j(w)|V j−1(w), X̃N (w)))

+
∑

j∈Hc
U

(H(V j(w)|V j−1(w))

−H(V j(w)|V j−1(w)), X̃N (w))

(d)

≤ |VU |X̃ |δN +
∑

j∈Hc
U

H(V j(w)|V j−1(w))

≤ |VU |X̃ |δN + |Hc
U |δN ≤ NδN , (94)

where (a) follows from the chain rule of Kullback-
Leibler divergence; (b) follows from (35) and thus
pṼ j(w)|Ṽ j−1(w),X̃N (w) = pV j(w)|V j−1(w),X̃N (w) for any j ∈
(HU\VU |X̃); (c) follows from (35) and the i.i.d. uniformly
distributed assignment of Ṽ N [VU |X̃ ](W ); (d) follows from
(26). Therefore, we obtain that

D(pV N (w)||pṼ N (w))
(a)
= D(pX̃N (w)V N (w)||pX̃N (W )Ṽ N (w))

− D(pV N (w)|X̃N (w)||pṼ N (w)|X̃N (W ))

(b)

≤ NδN , (95)

where (a) follows from the chain rule and the non-negativity
of Kullback-Leibler divergence, respectively.

C. Proof of Lemma 3

For any user w ∈ [1 : MI ] and any i ∈ VU , we have

H(Ṽi(w)|Ṽ i−1(w))

(a)

≥ H(Ṽi(w)|Ṽ i−1(w))−H(Vi(w)|V i−1(w))

+ 1− δN

≥ H(Ṽi(w), Ṽ
i−1(w))−H(Ṽ i−1(w)) + 1− δN

−
(
H(Vai

(w), V i−1(w))−H(V i−1(w))
)

=
(
H(Ṽi(w), Ṽ

i−1(w))−H(Vi(w), V
i−1(w))

)
−
(
H(Ṽ i−1(w))−H(V i−1(w))

)
+ 1− δN

≥ −|H(Ṽi(w), Ṽ
i−1(w))−H(Vi(w), V

i−1(w))|
− |H(Ṽ i−1(w))−H(V i−1(w))|+ 1− δN

(b)

≥ −h2

(
V(pṼi(w),Ṽ i−1(w), pVi(w),V i−1(w))

)
−

V(pṼi(w),Ṽ i−1(w), pVi(w),V i−1(w))

2
log(i− 1)

− h2

(
V(pṼ i−1(w), pV i−1(w))

)
−

V(pṼ i−1(w), pV i−1(w))

2
log(i− 2) + 1− δN

(c)

≥ −2h2

(
V(pṼ N (w), pV N (w))

)
− V(pṼ N (w), pV N (w)) logN + 1− δN

(d)

≥ −2h2

(
2
√
2 ln 2

√
NδN

)
− 2
√
2 ln 2

√
N3δN + 1− δN

(e)→ 1, (96)

as N →∞; where (a) follows from (27); (b) follows from [39,
Theorem 6]; (c) holds because the binary entropy function
h2(x) is increasing for small x > 0; (d) follows from (52)
in Lemma 2; (e) holds due to the fact that N3δN → 03 as
N →∞ and h2(x)→ 0 as x→ 0.

D. Proof of Lemma 4

Similar to the proof idea in [24, Lemma 7], we have that

V(pṼ N [VU\VU|X̃ ](w)), qU|VU\V
U|X̃ |)

(a)

≤ V(pṼ N [VU ](w), qU|VU |)

(b)

≤ V(pṼ N [VU ](w), pV N [VU ](w)) + V(pV N [VU ](w), qU|VU |)

(c)

≤
√
2 ln 2

√
NδN + V(pV N [VU ](w), qU|VU

|)

(d)

≤
√
2 ln 2

√
NδN +

√
2 ln 2

√
D(pV N [VU ](w)||qU|VU |)

=
√
2 ln 2

√
NδN +

√
2 ln 2

√
|VU | −H(V N [VU ](w))

(e)

≤ 2
√
2 ln 2

√
NδN , (97)

where (a) follows by defining qU|VU | the uniform distribution
on [1 : 2|VU |]; (b) follows from the triangle inequality; (c)
follows from Lemma 2; (d) follows from Pinsker’s inequality
[38, p. 44]; (e) holds because for any w ∈ [1 : MI ], we have
that

|VU | −H(V N [VU ](w)))

= |VU | −
∑
i∈VU

H(Vi(w)|V i−1(w))

3This can be proved by L’Hospital’s rule. Since δN = 2−βN , it holds that
limN→∞ N3δN = limN→∞

N3

2βN = limN→∞
6

2βN ln3(2β)
=0.



(f)

≤ |VU | −
∑
i∈VU

(1− δN ) = |VU |δN ≤ NδN , (98)

where (f) follows from (27).

E. Proof of Lemma 5

Let D denote VU\VU |X̃ for simplicity. Similar to [24,
Appendix B-C], if N is sufficiently large, then we have

|D| −H(Ṽ N [D](w))
(a)

≤ V(pṼ N [D](w), qU|D|)× log2
|D|

V(pṼ N [D](w), qU|D|)

(b)

≤ NV(pṼ N [D](w), qU|D|)

− V(pṼ N [D](w), qU|D|)× log2 V(pṼ N [D](w), qU|D|)

(c)

≤ 2
√
2 ln 2

√
NδN

(
N − log2(2

√
2 ln 2

√
NδN )

)
, (99)

where (a) follows from [38, Lemma 2.7]; (b) follows from the
fact that log |D| ≤ N ; (c) holds due to Lemma 4 and the fact
that x log2 x is decreasing for sufficiently small x > 0.

Let δ′N denote 2
√
2 ln 2

√
NδN (N − ln(2

√
2 ln 2

√
NδN )).

Then for any subset DS of D, we have that

|D| −H(Ṽ N [D](w))

=
(
|DS | −H(Ṽ N [DS ](w))

)
+
(
|D\DS |

−H(Ṽ N [D\DS ](w))
)
+ I(Ṽ N [DS ](w); Ṽ

N [D\DS ](w))

≤ δ′N . (100)

Combining (100) with the fact that

|DS | −H(Ṽ N [DS ](w)) ≥ 0, (101)

|D\DS | −H(Ṽ N [D\DS ](w)) ≥ 0, (102)

I(Ṽ N [DS ](w); Ṽ
N [D\DS ](w)) ≥ 0, (103)

we obtain that (61) and (62) hold.
Now we show that δ′N → 0 as N → ∞. As δN = 2−βN ,

from L’Hospital’s rule, we have that

lim
N→∞

√
NδNN = lim

N→∞

N
3
2

(2β/2)N
= lim

N→∞

3
2N

1
2

ln(2β/2)(2β/2)N

= lim
N→∞

3/4

N1/2 ln2(2β/2)(2β/2)N
= 0. (104)

Since
√
NδN → 0 and limx→0 x log2 x = 0, it holds that

lim
N→∞

√
NδN log2

√
NδN = 0. (105)

Combining (99), (104), and (105), we obtain that

|D| −H(Ṽ N [D](w)) ≤ δ′N
N→∞−−−−→ 0. (106)

F. Proof of Lemma 6

It holds that

D(pXN (w)V N (w)||pXN (W )Ṽ N (w))

≤ D(pXN (w)X̃N (w)V N (w)||pXN (w)X̃N (w)Ṽ N (w))

=
∑
xN

∑
x̃N

∑
vN

pXN (w)X̃N (w)V N (w)(x
N , x̃N , vN )

× log
pXN (w)X̃N (w)V N (w)(x

N , x̃N , vN )

pXN (w)X̃N (w)Ṽ N (w)(x
N , x̃N , vN )

=
∑
xN

∑
x̃N

∑
vN

pXN (w)X̃N (w)V N (w)(x
N , x̃N , vN )

× log
pV N (w)|XN (w)X̃N (w)(v

N |xN , x̃N )

pṼ N (w)|XN (w)X̃N (w)(v
N |xN , x̃N )

(a)
=

∑
xN

∑
x̃N

∑
vN

pXN (w)X̃N (w)V N (w)(x
N , x̃N , vN )

× log
pV N (w)|X̃N (w)(v

N |x̃N )

pṼ N (w)|X̃N (w)(v
N |x̃N )

=
∑
x̃N

∑
vN

pX̃N (w)V N (w)(x̃
N , vN )

× log
pX̃N (w)V N (w)(x̃

N , vN )

pX̃N (w)Ṽ N (w)(x̃
N , vN )

= D(pX̃N (w)V N (w)||pX̃N (w)Ṽ N (w))

(b)

≤ NδN
N→∞−−−−→ 0, (107)

where (a) follows from the Markov chain (Ṽ N (w), V N (w))−
X̃N (w)−XN (w); (b) follows from Lemma 1.

G. Proof of Lemma 7

We firstly consider the following mutual information

I(V N [VU |X ](w);XN (w)|C = C)

≤ |VU |X | −H(V N [VU |X ](w)|XN (w), C = C)

(a)

≤ |VU |X | −
∑

i∈VU|X

H(V i(w)|V i−1(w), XN (w), C = C)

(b)

≤ |VU |X | −
∑

i∈VU|X

(1− δN )

= |VU |X |δN ≤ NδN
N→∞−−−−→ 0, (108)

where (a) follows from the fact that conditioning reduces
entropy; (b) follows from (29). Now we consider the following

I(Ṽ N [VU |X ](w);XN (w)|C = C)

− I(V N [VU |X ](w);XN (w)|C = C)

= H(V N [VU |X ](w), XN (w)|C = C)

−H(Ṽ N [VU |X ](w), XN (w)|C = C)

+H(Ṽ N [VU |X ](w)|C = C)−H(V N [VU |X ](w)|C = C)

≤ |H(V N [VU |X ](w), XN (w)|C = C)

−H(Ṽ N [VU |X ](w), XN (w)|C = C)|
+ |H(Ṽ N [VU |X ](w)|C = C)−H(V N [VU |X ](w)|C = C)|

(a)

≤ h2

(
V(pXN (w)V N [VU|X ](w), pXN (w)Ṽ N [VU|X ](w))

)
+

V(pXN (w)V N [VU|X ](w), pXN (w)Ṽ N [VU|X ](w))

2
log(2N)

+ h2

(
V(pV N [VU|X ](w), pṼ N [VU|X ](w))

)
+

V(pV N [VU|X ](w), pṼ N [VU|X ](w))

2
log(2N)



(b)

≤ 2h2

(
V(pXN (w)V N (w), pXN (w)Ṽ N (w))

)
+ V(pXN (w)V N (w), pXN (w)Ṽ N (w)) log(2N)

(c)

≤ 2h2(NδN ) + 4N2δN
N→∞−−−−→ 0, (109)

where (a) follows from [39, Theorem 6]; (b) holds since h2(x)
is increasing for small x > 0; (c) follows from Lemma 6.

Combining (111) and (109), we obtain that

I(Ṽ N [VU |X ](w);XN (w)|C = C)

≤ NδN + 2h2(NδN ) + 4N2δN
(a)→ 0, (110)

as N → ∞; where (a) holds due to the fact that N2δN → 0
as N →∞ and h2(x)→ 0 as x→ 0.

Then we have that

I(Ṽ N [VU |X ](W );XN (W )|C = C)

=

MI∑
w=1

Pr(W = w)I(Ṽ N [VU |X ](w);XN (w)|C = C)

(a)

≤ 2h2(NδN ) + 4N2δN
N→∞−−−−→ 0, (111)

where (a) follows from (110).
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