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Abstract
Digital twins for industrial control systems have gained significant interest over
recent years. This attention is mainly because of the advanced capabilities
offered by digital twins in the areas of simulation, optimization, and predictive
maintenance. Some recent studies discuss the possibility of using digital twins
for intrusion detection in industrial control systems. To this end, this thesis
aims to propose a security framework for industrial control systems including
its digital twin for security monitoring and a machine learning-based intrusion
detection system for real-time intrusion detection. The digital twin solution
used in this study is a standalone simulation of an industrial filling plant
available as open-source. After thoroughly evaluating the implementation
aspects of the existing knowledge-driven open-source digital twin solutions of
industrial control systems, this solution is chosen. The cybersecurity analysis
approach utilizes this digital twin to model and execute different realistic
process-aware attack scenarios and generate a training dataset reflecting the
process measurements under normal operations and attack scenarios. A total
of 23 attack scenarios are modelled and executed in the digital twin and these
scenarios belong to four different attack types, naming command injection,
network DoS, calculated measurement injection, and naive measurement
injection. Furthermore, the proposed framework also includes a machine
learning-based intrusion detection system. This intrusion detection system
is designed in two stages. The first stage involves an offline evaluation of
the performance of eight different supervised machine learning algorithms on
the labelled dataset. In the second stage, a stacked ensemble classifier model
that combines the best performing supervised algorithms on different training
dataset labels is modelled as the final machine learning model. This stacked
ensemble model is trained offline using the labelled dataset and then used for
classifying the incoming data samples from the digital twin during the live
operation of the system. The results show that the designed intrusion detection
system is capable of detecting and classifying intrusions in near real-time (0.1
seconds). The practicality and benefits of the proposed digital twin-based
security framework are also discussed in this work.

Keywords
Digital Twin, Intrusion Detection Systems, Industry 4.0, Industrial Control
Systems, Machine Learning, Stacked Ensemble Model
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Sammanfattning
Digitala tvillingar för industriella styrsystem har fått ett betydande
intresse under de senaste åren. Denna uppmärksamhet beror främst på
de avancerade möjligheter som digitala tvillingar erbjuder inom simulering,
optimering och förutsägbart underhåll. Några färska studier diskuterar
möjligheten att använda digitala tvillingar för intrångsdetektering i
industriella styrsystem. För detta ändamål syftar denna avhandling till
att föreslå ett säkerhetsramverk för industriella styrsystem inklusive dess
digitala tvilling för säkerhetsövervakning och ett maskininlärningsbaserat
intrångsdetekteringssystem för intrångsdetektering i realtid. Den digitala
tvillinglösningen som används i denna studie är en fristående simulering
av en industriell fyllningsanläggning som finns tillgänglig som öppen
källkod. Efter noggrann utvärdering av implementeringsaspekterna för de
befintliga kunskapsdrivna digitala tvillinglösningarna med öppen källkod för
industriella styrsystem, väljs denna lösning. Cybersäkerhetsanalysmetoden
använder denna digitala tvilling för att modellera och exekvera olika realistiska
processmedvetna attackscenarier och generera en utbildningsdataset
som återspeglar processmätningarna under normala operationer och
attackscenarier. Totalt 23 angreppsscenarier modelleras och utförs i den
digitala tvillingen och dessa scenarier tillhör fyra olika angreppstyper,
namnskommandoinjektion, nätverks -DoS, beräknad mätinjektion
och naiv mätinjektion. Dessutom innehåller det föreslagna ramverket
också ett maskininlärningsbaserat system för intrångsdetektering. Detta
intrångsdetekteringssystem är utformat i två steg. Det första steget innebär en
offline -utvärdering av prestanda för åtta olika algoritmer för maskininlärning
övervakad på den märkta datauppsättningen. I det andra steget modelleras en
staplad ensemble -klassificerarmodell som kombinerar de bäst presterande
övervakade algoritmerna på olika etiketter för utbildningsdataset som den
slutliga modellen för maskininlärning. Denna staplade ensemblemodell
tränas offline med hjälp av den märkta datauppsättningen och används sedan
för att klassificera inkommande dataprover från den digitala tvillingen
under systemets levande drift. Resultaten visar att det konstruerade
intrångsdetekteringssystemet kan upptäcka och klassificera intrång i
nära realtid (0,1 sekunder). Det praktiska och fördelarna med den föreslagna
digitala tvillingbaserade säkerhetsramen diskuteras också i detta arbete.



iv | Sammanfattning

Nyckelord
Digital tvilling, Intrångsdetekteringssystem, Industri 4.0, Industriella
styrsystem, Maskininlärning, Staplad ensemblemodell



Acknowledgments | v

Acknowledgments
The completion of this thesis could not have been possible without the
guidance and support of many people. I would like to take this opportunity
to express my sincere gratitude to each one of them.

Firstly, I would like to thank my industrial supervisor, Ali Balador for
offering me the opportunity to do my Master Thesis in his research group
at RISE. I am thankful for his overall support and insights in this field. I
would also like to thank my examiner, Prof. Panagiotis Papadimitratos for
his consultancy and comments which helped to define and refine the thesis
scope better. I am highly indebted and grateful to my academic supervisor,
Zahra Alimadadi for her motivation and helpful comments. I truly appreciate
her kind support and availability whenever I needed them the most.

Thanks a ton to my family for being my constant source of strength and
support. Above all, I thank God for helping me to complete this phase of my
life journey.

Stockholm, September 2021
Seba Anna Varghese



vi | Acknowledgments



CONTENTS | vii

Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Goals and Objectives . . . . . . . . . . . . . . . . . 4
1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . 5
1.5 Benefits, Ethics, and Sustainability . . . . . . . . . . . . . . . 6
1.6 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Industry 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Industrial Control Systems . . . . . . . . . . . . . . . . . . . 10

2.2.1 Industrial Communication Protocols . . . . . . . . . . 11
2.2.2 Security Vulnerabilities and Challenges . . . . . . . . 12

2.3 Digital Twin . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Digital twin-based Security Solutions for ICSs . . . . 16
2.5.2 Modelling of Attacks against ICSs . . . . . . . . . . . 17
2.5.3 Intrusion Detection in ICSs . . . . . . . . . . . . . . . 18

2.6 Metrics for Evaluation of ML Algorithms . . . . . . . . . . . 19

3 Methodology 23
3.1 Research Process . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Design Methodology . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Identifying an Open-source Digital Twin Solution . . . 25
3.2.2 Modelling Process-awareAttacks andGenerating Labelled

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Designing and Evaluating ML-based IDS . . . . . . . 34



viii | Contents

4 Implementation 39
4.1 Digital Twin Framework . . . . . . . . . . . . . . . . . . . . 39
4.2 Modelling Process-aware Attacks . . . . . . . . . . . . . . . . 40

4.2.1 Command Injection Attack . . . . . . . . . . . . . . . 40
4.2.2 Network DoS Attack . . . . . . . . . . . . . . . . . . 40
4.2.3 Calculated Measurement Injection Attack . . . . . . . 41
4.2.4 Naive Measurement Injection Attack . . . . . . . . . . 42

4.3 Generating Labelled Dataset . . . . . . . . . . . . . . . . . . 42
4.4 ML-based IDS . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Results and Analysis 47
5.1 Modelled Process-aware Attack Scenarios . . . . . . . . . . . 47
5.2 Generated Dataset . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Evaluation of ML Algorithms . . . . . . . . . . . . . . . . . 55
5.4 IDS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Conclusions and Future work 71
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References 75

A Source Code 81



LIST OF FIGURES | ix

List of Figures

1.1 Research Methodology . . . . . . . . . . . . . . . . . . . . . 6

2.1 Industrial revolution from 1.0 to 4.0 (Adapted from [1]) . . . . 9
2.2 Simple ICS architecture . . . . . . . . . . . . . . . . . . . . . 11
2.3 Digital twin concept (Adapted from [2]) . . . . . . . . . . . . 13
2.4 Confusion matrix example: binary classifier . . . . . . . . . . 20
2.5 Confusion matrix example: multiclass classifier . . . . . . . . 21
2.6 Metrics calculation . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Research process . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Industrial filling plant use case & digital twin network topology 30
3.3 Proposed extension of framework from [3] . . . . . . . . . . . 31
3.4 Stacked ensemble classifier model concept . . . . . . . . . . . 35
3.5 Security framework including ML-based IDS . . . . . . . . . 37

5.1 Distribution of data samples across different classes in the
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Distribution of target class labels in training set and test set . . 54
5.3 Normalized confusion matrices for SVM and RF . . . . . . . 56
5.4 Normalized confusion matrices for KNN and LR . . . . . . . 57
5.5 Normalized confusion matrices for DTC and NB . . . . . . . 58
5.6 Normalized confusion matrices for MLP and GB . . . . . . . 59
5.7 Normalized confusion matrix for stacking classifier . . . . . . 60
5.8 Accuracy scores for ML algorithms . . . . . . . . . . . . . . 61
5.9 Precision scores for ML algorithms . . . . . . . . . . . . . . . 62
5.10 Recall scores for ML algorithms . . . . . . . . . . . . . . . . 62
5.11 F1-score values for ML algorithms . . . . . . . . . . . . . . . 63
5.12 Screenshot of IDS dashboard . . . . . . . . . . . . . . . . . . 66
5.13 IDS Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.14 Pie-chart representation of classification of data samples by IDS 68



x | LIST OF FIGURES

5.15 Bar chart representation of classification of data samples by IDS 68
5.16 Latency in predictions by IDS . . . . . . . . . . . . . . . . . 69
5.17 Screenshot of SIEM dashboard . . . . . . . . . . . . . . . . . 70



LIST OF TABLES | xi

List of Tables

2.1 Statistics of the number of ICS devices connected to the
Internet using different industrial communication protocols as
provided by Shodan search engine (Adapted from [4]) . . . . . 12

3.1 Summary of digital twin-based security solutions available for
ICSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Process control parameters and their description . . . . . . . . 32

4.1 Specifications of system setup used to run ML algorithms . . . 43
4.2 Scikit-learn APIs used . . . . . . . . . . . . . . . . . . . . . 44

5.1 Mapping of modelled attack scenarios to different attack types 47
5.2 Modelled attack scenario under command injection attack type 48
5.3 Modelled attack scenarios under network DoS attack type . . . 48
5.4 Modelled attack scenarios under naive measurement injection

attack type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Modelled attack scenarios under calculatedmeasurement injection

attack type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 Sample dataset (labelled) . . . . . . . . . . . . . . . . . . . . 52
5.7 Classification metric score values on evaluating different ML

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8 Computation time for ML algorithms . . . . . . . . . . . . . . 65



xii | LIST OF TABLES



LISTINGS | xiii

Listings

4.1 Command to downgrade cpppo version to 4.1.0 . . . . . . . . 39
4.2 Ettercap command to launch MitM/ARP poisoning . . . . . . 40
4.3 hping3 command for TCP/SYN flooding DoS attack . . . . . . 41
4.4 Enable IP forwarding . . . . . . . . . . . . . . . . . . . . . . 42



xiv | LISTINGS



List of acronyms and abbreviations | xv

List of acronyms and abbreviations
ARP Address Resolution Protocol

CIP Common Industrial Protocol

CPS Cyber-Physical System

CSV Comma Separated Values

DCS Distributed Control System

DoS Denial of Service

ENIP EtherNet/Industrial Protocol

HMI Human Machine Interface

IACS Industrial Automation and Control System

ICS Industrial Control System

IDS Intrusion Detection System

IIoT Industrial Internet of Things

IoT Internet of Things

IP Internet Protocol

IT Information Technology

MitM Man in the Middle

ML Machine Learning

OT Operational Technology

PLC Programmable Logic Controller

SCADA Supervisory Control And Data Acquisition

SIEM Security Information and Event Management



xvi | List of acronyms and abbreviations

SYN SYN flag

TCP Transmission Control Protocol

VM Virtual Machine



Introduction | 1

Chapter 1

Introduction

Industrial Control System (ICS)s are part of traditional Operational Technology
(OT) infrastructure that is used in industries such as electric, oil and gas,
and water, to monitor, supervise and control machines and processes. With
Industry 4.0, ICSs are increasingly connected to communication networks and
integrated into general-purpose Information Technology (IT) systems through
Industrial Internet of Things (IIoT) [5]. This increased interconnectivity has
improved the efficiency, performance, and manageability of the systems; but
on the downside, these systems have become more exposed to cyberattacks
than before.

Cyberattacks against ICSs aim at disrupting critical industrial processes
[6] which can cause catastrophic consequences, including physical damages
and casualties. Few examples of major cyberattacks that happened in recent
years: the Stuxnet malware attack on the nuclear facility of Natanz, Iran, in
2010, which disrupted the nuclear program of Iran [7], a cyberattack on a
Ukrainian power grid in 2015 caused a power outage affecting around 225,000
customers [8], the cyberattacks against natural gas pipeline companies in the
US in 2018 [9], and the attack against Florida water treatment facility in 2021
to manipulate with water’s chemical treatment levels [10].

As ICSs constitute the backbone of critical infrastructures, it is necessary
to ensure the security and safety of these systems. Intrusion detection is
an efficient mechanism to enhance security in ICSs. Timely detection of
intrusions in ICSs alerts operators on malicious activities and enables them
to apply safety countermeasures. Given the nature of industrial processes
controlled by ICSs, implementing security engines inside live industrial
environments can have adverse impacts on the performance and efficiency of
such systems. To solve this issue, intrusion detection in ICSs can be done
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in the digital domain and digital twin-based intrusion detection is a novel
breakthrough in this area. Digital twins can be considered as the virtual
representations of physical systems that can mirror both static and dynamic
characteristics of their physical counterparts [11] in near real-time.

This thesis aims to propose a security framework for an ICS that includes
the digital twin of the ICS for security monitoring and a Machine Learning
(ML)-based Intrusion Detection System (IDS) capable of detecting intrusions
in near real-time. This framework is realized as an extension of the framework
proposed by Dietz et al. [3]. Digital twin in this framework is a standalone
simulation of an industrial filling plant (More details on the framework are
provided in 3.2.3). The main contributions of this work are as listed below:

1. A flexible and extensible security framework for ICS including its digital
twin and an ML-based IDS. We realize this framework by extending
an open-source available digital twin framework with an intrusion
detection module.

2. Comparison between the performances of different supervised ML
algorithms in solving the intrusion detection problem and designing a
stacked ensemble classifier model for implementing an ML-based IDS
in the proposed security framework.

3. A proof of concept implementation of the proposed framework showing
how to perform security monitoring and security analysis in ICS by
modelling and executing different types of attacks in the digital twin.
We also evaluate this framework in terms of its ability to detect and
classify different types of attacks.

1.1 Background
The primary focus for ICSs is to ensure the availability of industrial operations.
To achieve this, it is necessary to protect ICSs against cyberattacks. IDSs play
an important role in enhancing security in ICSs. However, it is not a practical
solution to apply security testing in live running industrial systems as this can
tamper with the efficiency and availability of critical infrastructures. Another
possible solution is to implement and maintain physical security test-beds or
test environments. This solution is an expensive and time-consuming one, and
usually leads to incomplete and out-of-date setups [12]. Digital twin-based
security testing and intrusion detection in ICSs can solve the above-mentioned
problems. Security analysis performed using digital twins does not interfere
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with the live running systems as they are completely run in the digital domain
[9]. Since the digital twin covers the whole life-cycle of a physical system, it
always represents an up-to-date version of the physical system [13]. Digital
twin-based solutions also offer the possibility to include methods that need
more computing resources for cybersecurity analysis (for example, ML and
deep learning) than if deployed in the real physical systems [9].

One important question that arises is that why systems designed to protect
IT systems cannot be used for securing OT systems. This is due to the
differences in security design requirements of both these systems [14]. While
IT systems focus on the confidentiality and integrity of the data, OT systems
focus on the availability of the systems. Security measures deployed in ICSs
must not disrupt the real-time operation of industrial processes, whereas
IT systems can tolerate a moderate amount of delay [14]. For the same
reason, security updates happen less frequently in OT systems compared
to IT systems. As ICSs interact with the physical world and processes,
attacks against these systems target the physical process and are capable of
causing serious damages. Such attacks usually bypass the traditional security
mechanisms and do not violate any protocol specifications as these attacks
are carefully crafted after acquiring knowledge about the controlled industrial
process [14].

Commercial digital twin solutions of ICSs are not easily accessible for
research purposes. This is mainly because of the possible data breach of
sensitive information regarding the systems used in industrial environments
if they are made accessible. This calls for the availability of open-source
implementations of digital twin solutions of ICSs for research purposes.
However, there are not many approaches available that discuss the design
and implementation aspects of digital twin using open-source tools and
software. In this thesis, existing open-source digital twin solutions of ICSs
are investigated and a digital twin-based security framework is proposed.
This framework includes the digital twin of ICS for security monitoring and
analysis and anML-based IDS for intrusion detection. Such a framework using
open-source tools and software is beneficial for researchers and students in
the field of cybersecurity in ICSs. However, this thesis does not focus on the
synchronization aspects between the digital twin and its physical twin; but
provides some indicators in this direction.
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1.2 Problem Statement
ICSs are increasingly being connected to communication networks, making
them more vulnerable to cyberattacks. Due to the importance of industrial
operations handled by these systems, it is quite important to ensure the security
of such systems against attacks. IDSs are one of the many defense mechanisms
that can ensure ICS security. If intrusion detection can be performed in
the digital domain, it can offer more possibilities with respect to computing
resources and zero adverse impact on the efficiency of the running systems. A
digital twin is an enabler for such a system that mimics the physical system in
the digital domain in near real-time. Hence digital twin-based security analysis
and intrusion detection prove to be an efficient measure to secure ICSs against
cyberattacks.

As part of this thesis, the following research questions will be examined:

1. How to perform cybersecurity analysis in ICS using its digital twin
which is implemented using open-source tools?

2. How to carry outML-based intrusion detection in ICS using inputs from
its digital twin implementation?

1.3 Research Goals and Objectives
The main goal of this thesis is to deliver a digital twin-based security
framework to perform security analysis and ML-based intrusion detection in
ICSs. This goal is further divided into the following three objectives:

1. Identify an open-source digital twin solution of an ICS to perform
cybersecurity analysis in ICS.

Related tasks to achieve this objective are:

(a) Investigate and compare different digital twin-based security use
cases and solutions available for ICSs.

(b) Based on this investigation, identify an open-source digital twin
implementation of an ICS and familiarise with the open-source
tools and software used for this implementation.

2. Perform security monitoring and analysis of the ICS using the selected
digital twin solution. Related tasks to achieve this objective are:
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(a) Model different process-aware attack scenarios aimed at disrupting
the industrial control process.

(b) Generate labelled dataset for themodelled attack scenarios that can
be used to train ML-based IDS.

3. Integrate anML-based IDS to the digital twin-based security framework
that is capable of detecting process-aware intrusions in near real-time.

Related tasks to achieve this objective are:

(a) Design anML-based algorithm upon offline evaluation of different
supervised ML algorithms on the generated labelled dataset.

(b) Demonstrate the use case of ML-based intrusion detection using
the proposed framework during the live operation of the system.

1.4 Research Methodology
In this thesis, we use both qualitative and quantitative research methods.
The qualitative approach includes the literature review and study associated
with the thesis objectives. The qualitative methods focus on modelling
and executing different process-aware attacks on the digital twin, collecting
and generating dataset reflecting the process measurements, and detecting
intrusions using ML-based IDS trained on the generated dataset.

The research methodology used in this thesis involves four steps, as shown
in Figure 1.1. The first step is the literature review which includes the study
of existing digital twin-based security solutions of ICSs, modelling of attacks
against ICSs, and ML-based intrusion detection approaches used in ICSs. The
outcome of this step is the formulation of research questions to be addressed
as part of the thesis along with the definition of research goals. As the next
step, a design of the proposed solution to address the research questions is
modelled. The third step of the research methodology is the proof of concept
implementation of the proposed design. Finally, an evaluation is performed to
measure the effectiveness of the proposed solution.

We explain in detail each of the four steps of the research methodology in
the upcoming chapters. Step 1, i.e., literature review is discussed in Section
2.5. Chapter 3 discusses the design step whereas Chapter 4 provides details
on the implementation step. Finally, evaluation methodology is discussed in
Section 3.2.3, and evaluation results are presented in Chapter 5.
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Figure 1.1: Research Methodology

1.5 Benefits, Ethics, and Sustainability
Digital twins can be built even long before the manufacturing and production
of actual physical systems. Proper implementation and testing of these twins
can be beneficial to address sustainability issues in the industry. Some of these
benefits include quicker production cycles, minimal adverse environmental
impacts, and reduced wastage of resources and production cost. On the other
hand, digital twins developed for already existing systems can be helpful for the
early detection of anomalies and intrusions, making it possible to take safety
countermeasures before it is too late. Thus, such systems also address the
adverse ethical impacts caused by cyberattacks against ICSs.

Digital twins need to be properly isolated and only authorized personsmust
be provided access. However, if the digital twin of an ICS is compromised,
it can cause serious ethical and sustainability issues. Ethical issues include
the disruption of industrial processes by attackers who have gained access to
these systems via the compromised digital twin. This disruption can cause
serious damages including casualties and wastage of resources. This further
raises sustainability concerns. It is also necessary to securely store andmanage
data collected by digital twins from the physical environment. Otherwise, this
leaked data regarding critical industrial process control parameters can be used
by the attackers to acquire knowledge about the industrial control processes
and devise attacks targeting specific processes.

1.6 Delimitations
The digital twin solution of ICS used in this thesis is a standalone entity;
meaning there is no physical system running in parallel with the digital
twin. To achieve interaction with the physical system, there needs to be a
synchronization mechanism between these systems, and implementation of
this mechanism is not in the scope of this thesis. It is assumed that the digital
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twin receives all the traffic and input parameters from the physical system in
practice. The standalone digital twin solution used in this thesis simulates the
physical process to operate in standalone mode. Therefore, an attacker having
access to the physical system is represented as an attacker inside the digital
twin network topology. However, digital twins are run in isolated and secure
environments (for example, private cloud) when deployed as real commercial
solutions.

The algorithms chosen to design and evaluate theML-based IDS are purely
based on the comparison of performance results of some of the most common
supervised ML algorithms mentioned in the state-of-the-art research work in
the area of intrusion detection in ICSs. There may be other efficient and better-
performing supervised algorithms that are not considered in this work.

1.7 Structure of the Thesis
The remainder of the report is organized as follows. Chapter 2 presents
necessary background information about the research topic and the related
work. The proposed methodology and the research process used in the thesis
are described in Chapter 3. Information regarding implementation aspects of
the thesis is presented in Chapter 4. Chapter 5 presents the results as well as
the analysis and discussion of the results. Chapter 6 presents the conclusions
and also states the limitations of the thesis and future research directions.
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Chapter 2

Background

In this chapter, Sections 2.1 to 2.4 provide necessary background information
to the readers to follow this thesis. Related research works in the field of digital
twin-based security solutions in ICSs, modelling of attacks against ICSs, and
ML-based intrusion detection approaches in ICSs are discussed in Section 2.5.
Finally, Section 2.6 introduces the metrics used to evaluate ML algorithms in
this work.

2.1 Industry 4.0
Industry 4.0 is the term associated with the latest industrial revolution that
marked the introduction of Cyber-Physical System (CPS)s. These systems
are basically ICSs that used to be standalone entities operating in enclosed
architectures and have now become highly interconnected to the Internet and
hence open to remote access [15]. Industry 4.0 offers several benefits such as
improved performance, increased production rate, reduced cost and waste of
resources, and better manageability of systems [1].

Figure 2.1 illustrates the key enablers of the industrial revolution from its
initial version 1.0 to the latest version 4.0.

Figure 2.1: Industrial revolution from 1.0 to 4.0 (Adapted from [1])
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2.2 Industrial Control Systems
ICSs are responsible for real-time system monitoring, collection and analysis
of data, and automatic control and management of industrial processes [16]
[17]. Some of the well-known ICSs are Supervisory Control And Data
Acquisition (SCADA) systems, Industrial Automation and Control System
(IACS)s and Distributed Control System (DCS)s [18]. Figure 2.2 depicts a
simple ICS architecture. A short description of the roles of major components
and devices that constitute an ICS as shown in Figure 2.2 is provided below.
These devices are listed according to the hierarchical layer (from top to bottom)
in which they operate in an ICS.

• Human Machine Interface (HMI): This is the interface via which
operators can access and communicate with the controller hardware in
the system. HMI allows operators to monitor processes, fetch the status
of devices, and send control commands to field devices [19].

• Programmable LogicController (PLC):This constitutes the controller
hardware of ICS. PLCs interact with field devices by sending operational
control commands and also receive status updates from field devices
[19]. Moreover, HMI interacts with PLCs to acquire status information
of field devices.

• Sensors and actuators: These are field devices that reflect the state
of the industrial environment (for example, the liquid level in a tank)
[19]. PLCs use this information to perform control operations. Sensors
are used to collect data whereas actuators are the ones that physically
perform control actions [20].

With Industry 4.0, ICSs become increasingly connected to communication
networks and become more intelligent and open [16]. But this has also
increased the attack surface for cyberattacks against ICSs. Industrial protocols
used for control and communication purposes in ICSs are different from those
used in IT systems. A brief discussion on this topic is provided in Section
2.2.1. It is also important to understand the security vulnerabilities of ICSs
and the nature of attacks against these systems. This information is provided
in Section 2.2.2.
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Figure 2.2: Simple ICS architecture

2.2.1 Industrial Communication Protocols
The components of an ICS use custom protocols to achieve serial communication
with each other. These protocols were developed long before Industry 4.0
emergence and were not designed then foreseeing the openness to the Internet.
Hence, these protocols lack security design principles such as authentication
and encryption [19]. This has become one of the major vulnerabilities used
for attacks against ICSs.
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Table 2.1: Statistics of the number of ICS devices connected to the Internet
using different industrial communication protocols as provided by Shodan
search engine (Adapted from [4])

Protocols No. of ICS devices connected to the Internet

BACnet 10530

DNP3 588

Ethernet/IP 3943

Modbus 13949

Table 2.1 provides the statistics of the number of ICSs using different
industrial communication protocols such as BACnet, DNP3, EtherNet/Industrial
Protocol (ENIP), and Modbus, connected to the Internet as provided by the
Shodan search engine [4]. These statistics clearly show the impact of Industry
4.0 in increasing the connectivity of ICSs to the Internet. The digital twin
simulation used in this thesis uses ENIP [21] protocol.

ENIP is one of the widely used industrial network protocols that provides
the Ethernet-based implementation of Common Industrial Protocol (CIP) [22].
CIP includes messages and services for a wide range of industrial automation
applications [23]. CIP uses a producer-consumer object model [23] to query
readings from industrial components such as sensors and actuators, and set
configurations [22]. In CIP object model, sensor readings are stored as tags
[22].

2.2.2 Security Vulnerabilities and Challenges
This subsection discusses some of the major vulnerabilities and challenges
that exist in ICSs which make it difficult to enhance security measures in these
systems. Most of the ICSs comprise legacy sub-systems and are difficult to
upgrade [16]. These legacy systems are poorly secured and hence vulnerable
to security threats [24]. It is difficult to stop the operation of ICSs for
fixing bugs and installing software updates [16], as this adversely affects
the stability and smooth running of industrial operations handled by these
systems. Moreover, the components and devices present in ICSs such as
PLCs, sensors, and actuators have limited computing and storage resources
[16]. Running security applications on these devices is not recommended for
the same reasons. Industrial protocols developed originally to work in closed
environments become vulnerable to attacks when connected to the Internet due
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to lack of built-in security mechanisms [16][24]. This vulnerability increases
the risk of exposing critical and sensitive process information to attackers [16].
The digital twin simulation used in this thesis uses ENIP protocol which uses
unencrypted messaging [25]. In our work, we use this lack of encryption
vulnerability of the ENIP protocol to model measurement injection attacks.
Furthermore, CIP lacks authentication control [20], and hence ENIP which
adapts CIP to the Ethernet suffers from this security vulnerability. Command
injection attack modelled in this work exploits this vulnerability of the ENIP
protocol.

2.3 Digital Twin
In simplewords, a digital twin can be considered as an up-to-date representation
of a physical system in operation. Figure 2.3 depicts the concept of the digital
twin. The digital twin receives input signals and data from its physical twin
and mirrors the internal behavior of the physical system [9]. The digital
twin can also send process control information to its physical twin if needed.
For example, if a security vulnerability is detected using digital twin-based
security testing, it can send control signals to the physical system to take
preventive measures.

Figure 2.3: Digital twin concept (Adapted from [2])

Although the key idea behind the digital twins is to enhance the production
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lifecycle of systems in the manufacturing industry, some recent works discuss
the application of digital twin to enhance the security of ICSs (more details
are provided in Section 2.5). In this thesis, the security use case of the digital
twin for intrusion detection purposes in an ICS is explored. Digital twin-based
security analysis provides an efficient way to conduct security analysis outside
the real infrastructure, thus avoiding disruptions and damage caused if such an
analysis is performed on the actual system [26]. Moreover, using digital twin
for security analysis in ICS is a better approach compared to using security
testbeds. This is because of the capability of digital twins to dynamically
reflect the state of physical systems in real-time while testbeds represent only
a static model [27].

According to the authors of [28], there are two possible implementations
for digital twins of ICSs: (i) information/knowledge-driven, and (ii) data-
driven. In the first approach, information regarding the physical systems (for
example, specification of systems) and details regarding the physical process
controlled by the physical systems are used to model a virtual prototypical
digital twin simulation model. Such an implementation does not require a
physical system to be run in parallel with the digital twin. However, this
implementation relies solely on the specification of the physical system, and
hence it is necessary to make the correct specification details available. On
the other hand, the second approach does not require the specification of the
system beforehand and instead uses real-time data from devices in the physical
environment as inputs to form a model of the system. Such an implementation
requires synchronization between the physical system and its digital twin for
real-time data acquisition.

In this thesis, existing open-source digital twin-based security solutions
of ICSs are investigated in terms of their implementation aspects. Based on
this investigation, a standalone digital twin solution of an ICS ( solution from
[3] ) is identified and used in this thesis. The identified solution falls under
the first category of possible implementation approaches of digital twins, i.e.,
knowledge-driven digital twins, as described in [28]. More details on the
results of this investigation and the rationale behind choosing this particular
solution are provided in Chapter 3.

2.4 Intrusion Detection
Intrusion detection is an efficient way to detect malicious activities and
abnormal behaviors caused by cyberattacks in ICSs. IDS for ICS uses several
data sources, such as network traffic, system logs, and process measurements,
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and analyses this information to detect abnormal patterns and potential attacks
[14].

Based on the analysis of data collected by IDS, intrusion detection in
ICSs can be categorized as (i) protocol-analysis based, (ii) traffic-analysis
based, and (iii) process-analysis based [16]. The first two categories check
for protocol specification violations, and abnormalities in network traffic data
for detecting attacks. The third category mainly targets in detecting semantic
attacks performed against ICSs; these types of attacks use information about
the physical systems and the controlled processes to cause damage to ICSs
[16]. This thesis focuses on detecting semantic attacks against ICSs, and hence
a process-analysis based IDS is proposed.

Process-analysis based intrusion detection can be implemented either
using approaches based on the dynamic model of the system or using ML-
based approaches [29]. Dynamic model based process-aware IDS uses a
systemmodel and detect anomalies that deviate from the equations and control
laws governing the behavior of the system [29]. This type of IDSs always
require a well-defined mathematical model of the ICS and are often very
complex and are specific to the ICS for which these are implemented. On
the other hand, ML-based IDSs use a data-driven approach to train models
using information from devices in the ICSs to detect deviations from normal
operations [29]. This type of IDSs is less complex and can generalize easily to
the changes made in the ICS [29]. Because of the benefits offered by the ML-
based approach, this thesis focuses on the implementation of an ML-based
process-aware IDS.

For successful intrusion detection using ML algorithms, it is important
to train the models using high quality dataset. This calls for the need for
meaningful data collection and feature extraction as prerequisites for building
an intrusion model that offers high accuracy and low false positives [30].
By meaningful data collection, we mean the right set of measurements are
collected for generating the dataset. This will be helpful in cases where some
measurements are always constant (for example, upper and lower limit values)
and do not provide any additional information to the MLmodel. Furthermore,
it may be also required to extract only relevant features in those cases where
the input feature dimension space is huge. Based on the dataset used to train
the models, intrusion detection can use supervised algorithms (using labelled
dataset) or unsupervised algorithms (using unlabelled dataset).

The scope of this thesis is to model and execute realistic attack scenarios
belonging to different attack types as insider attacks in the digital twin
implementation, and to generate labelled intrusion datasets having process
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measurements as attributes that can be used by supervised ML algorithms for
intrusion detection. The labelled dataset contains data samples belonging to
normal operation as well as different attack types.

2.5 Related Work
This section discusses three key areas of related work surrounding the research
topic of the thesis: (i) digital twin-based security solutions for ICSs, (ii)
modelling of attacks against ICSs, and (iii) ML-based intrusion detection in
ICSs.

2.5.1 Digital twin-based Security Solutions for ICSs
Eckhart et al. [12] have proposed a framework called CPS Twinning that can
automatically generate the digital twin of an ICS using Mininet-WiFi from
the specification of ICS. This framework supports two operation modes of
digital twin: (i) simulation mode where there is no need for co-existence of
the physical system, and (ii) replication mode that supports synchronization
with the physical system. Another work from the same authors [31] discusses a
specification-based passive state replication approach to achieve synchronization
between the digital twin and physical twin in the CPS Twinning framework.
This work also demonstrates a proof of concept implementation of rule-based
intrusion detection for a Man in the Middle (MitM) attack.

A digital twin-based security architecture for IACS is proposed byGehrmann
et al. [2]. This work mainly focuses on detailing the security requirements for
different components of the proposed architecture. It also puts forward the
concept of an active state replication approach using clock synchronization at
regular intervals to achieve synchronization between physical twin and digital
twin. Intrusion detection is mentioned as a module in the whole architecture
and its implementation is left for future work.

Kamath et al. [32] present the capability of using open-source platforms
to achieve digital twin capabilities, including real-time data acquisition from
the Internet of Things (IoT) devices, virtual representation, data analysis, and
visualization. There is no discussion on a specific type of ICS or on any
security applications that can be deployed using this framework.

The digital twin framework used in this thesis is from Dietz et al. [3]. In
this work, the authors demonstrate the feasibility of integrating digital twin
security simulations in a security operations center. The proposed framework
is realized as a microservice architecture using Docker containers. Security
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simulation is achieved with digital twin implementation using Mininet [33]
andMiniCPS [34] and security analytics is performedwith a Security Information
and Event Management (SIEM) module that uses a rule-based attack detection
from system logs. More details on this framework are provided in Chapter 3.

Akbarian et al. [9] have proposed the inclusion of an intrusion detection
algorithm in a digital twin implementation. They have used the digital twin
implementation of their earlier work [35]. The intrusion detection solution
presented is useful for attack detection and classification. Attack detection
is based on the comparison of the estimated output signal using a Kalman
Filter [36] with the output signal from the digital twin. Further, an ML
approach using a multiclass support vector machine (SVM) is deployed to
classify the detected attacks into different attack categories. The physical
system used in this work is a MATLAB simulation of ball and beam process
[37], and this does not represent a real ICS architecture. Also, the digital
twin implementation is a simulatedmodel of this experimental physical system
using system identification algorithms.

2.5.2 Modelling of Attacks against ICSs
Morris et al. [38] present a set of 17 attacks that can be performed against
SCADA systems that use the Modbus communication protocol. These attacks
belong to four different attack classes; reconnaissance, command injection,
response andmeasurement injection, and Denial of Service (DoS). The attacks
are executed against ICSs in a lab environment, and most of the attacks are
capable of creating network traffic violations. Although this work focuses
specifically on the Modbus protocol, the description of executed attacks under
different attack classes is applied in this thesis to simulate complex semantic
attacks.

Ahmed et al. [39] provide a detailed summary of different data injection
attacks executed on sensors and actuators of a real-world water treatment
testbed, along with the expected impact of these attacks on the system. The
executed attacks range from causing sudden changes in sensor and actuator
measurements to quite slower and stealthy changes in these measurements.
However, the authors of [39] do not discuss the implementation details of the
executed attacks.

Griffith et al. [40] propose a set of attacks that can be used in IDSs tests
for CPSs. The attacks designed as part of this work are grouped into 3 classes,
naming reconnaissance, MitM, and DoS. This work also discusses the use of
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the Ettercap1 tool to execute the MitM/DoS attack which is used in this thesis.

2.5.3 Intrusion Detection in ICSs
Intrusion detection mechanisms used in ICSs can be categorized into five
groups, naming signature-based, anomaly-based, statistical-based, ML-based,
and specification-based [14]. In this section, we discuss the related works that
use supervised ML algorithms for intrusion detection in ICSs.

Bernieri et al. [41] provide analysis of supervised and unsupervised ML-
based anomaly detection using datasets containing process measurements
collected from the Secure Water Treatment (SWaT)2 testbed. In this work,
process measurements chosen from the dataset include only the ones from
the normal operation of the testbed and a single attack type. Support
vector machine (SVM), random forest (RF), and k nearest neighbor (KNN)
are the supervised ML algorithms used and the evaluation metrics used to
compare these algorithms are accuracy and F1-score. According to the
evaluation results, supervised algorithms show better performance compared
to unsupervised algorithms on the dataset used in this work. Furthermore,
RF has the best scores for accuracy and F1-score among other supervised
algorithms. However, this paper does not present an evaluation of the
discussed algorithms on a dataset having measurements from more than one
attack type.

Another work in this area is from Zolanvari et al. [17] which performs an
evaluation of 7 supervised ML algorithms for detecting intrusions on a traffic
dataset collected from a water treatment testbed of a SCADA system. The
algorithms used in this work are support vector machine (SVM), k nearest
neighbor (KNN), naïve Bayes (NB), random forest (RF), decision tree (DT),
logistic regression (LR), and artificial neural network (ANN). The evaluation
metrics used in this work take into account the target class imbalance present
in the dataset, and hence uses metrics such as false alarm rate, sensitivity,
undetected rate, and Matthews correlation coefficient, besides accuracy score.
RF classifier provides the best results among all the other algorithms. This
work also provides insights on different vulnerabilities that exist in SCADA
systems and ways to exploit these vulnerabilities.

Gómez et al. [42] have proposed a methodology to generate a dataset for
cybersecurity analysis using ML and deep learning algorithms in an electric
traction substation. The generated dataset includes network traffic features

1https://www.ettercap-project.org/
2https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/

https://www.ettercap-project.org/
https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
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extracted from traffic captures in the network. Supervised ML algorithms
evaluated in this work are support vector machine (SVM), random forest (RF),
and neural network. Metrics used to evaluate the algorithms are precision,
recall, and F1-score. According to their evaluation, RF provided the best
results, followed by SVM and neural network.

Tamy et al. [43] provide an extensive comparison of the performance of 4
supervised ML algorithms that can be used for network intrusion detection in
a gas pipeline dataset3. The algorithms used in this work are support vector
machine (SVM), one rule (OneR), random forest (RF), and k nearest neighbor
(KNN). In addition to this, the paper also discusses the advantage of using
particle swarm optimization (PSO) to optimize these algorithms. Accuracy
and F-measure are the metrics used for evaluation, and RF classifier optimized
by PSO gives the best results.

2.6 Metrics for Evaluation of ML Algorithms
In this section, we introduce the metrics we use in this thesis for evaluating
supervised ML algorithms. The ML algorithms which are trained on the
labelled dataset are evaluated in terms of their ability to correctly classify
the data samples. Since the labelled dataset has more than two labels, this
becomes a multiclass classification problem. Therefore, the metrics used for
the evaluation of different algorithms are the common metrics used for the
evaluation of classification algorithms. Listed below are the metrics used for
this evaluation:

1. Confusion matrix: This metric gives the tabular representation of
different combinations of predicted and actual values. All other metrics
used in this thesis to evaluate different algorithms are based on this
metric. For a better understanding of this metric, an example confusion
matrix of a binary classifier for an anomaly detection problem is shown
in Figure 2.4. In this example, the prediction of class as ’Anomaly’
is considered as a positive case whereas prediction as ’Normal’ is a
negative case. The terms ’TP’, ’FN’, ’FP’, and ’TN’ represent a whole
number and are defined as follows:

(a) TN (True Negative): Number of cases in which predictions are
Normal when the actual values are Normal.

3https://sites.google.com/a/uah.edu/tommy-morris-uah/
ics-data-sets

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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(b) FN (False Negative): Number of cases in which predictions are
Normal when the actual values are Anomaly.

(c) FP (False Positive): Number of cases in which predictions are
Anomaly when the actual values are Normal.

(d) TP (True Positive): Number of cases in which predictions are
Anomaly when the actual values are Anomaly.

Figure 2.4: Confusion matrix example: binary classifier

The ideal scenario is when both FN and FP values are zero. However,
in practical cases what needs to be minimized among these two values
depends on the problem we are trying to solve.

For multiclass classification, the confusion matrix has more than two
classes. In this case, there is no particular positive or negative class
defined in prior. For each class, the prediction of that class is considered
positive. The confusion matrix for multiclass classification with three
classes is shown in Figure 2.5. The three classes defined are ’Normal’,
’Anomaly1’, and ’Anomaly2’. Each cell in the matrix is given a cell
number (refer to the number highlighted at the right bottom). All
the green circled cells represent the cases where predictions match the
actual values, whereas the grey circled cells represent the opposite case.
TP, FP, FN, and TN for each of the classes are calculated as shown
in Figure 2.6. This can be further extended to the NxN matrix for a
multiclass classifier with N classes.
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Figure 2.5: Confusion matrix example: multiclass classifier

Figure 2.6: Metrics calculation

2. Accuracy: This metric represents the number of correct predictions
made by the classifier for a class over the total predictions made. This
is calculated as follows:

Accuracy =
TN + TP

FN + FP + TN + TP

For multiclass classification, macro averaged accuracy score across all
classes is taken into account.

3. Precision: This metric gives the proportion of cases in which the model
predicts a value as class x when it is actually class x. This is calculated
as follows:

Precision =
TP

TP + FP

This is a good metric to use in our case as it gives the measure of
correctly detected anomalous data samples. Precision is simply the
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measure of how many anomalous samples the model succeeded in
predicting as anomalous. Precision must be close to 100% if FP needs to
be kept minimum. Inmulticlass classification, macro averaged precision
score across all classes is considered as the comparison metric.

4. Recall: This metric gives the proportion of cases in which the model
correctly predicts a value as class x over the number of class x cases.

Recall =
TP

TP + FN

This metric is also a good one as it gives the measure of detected
anomalous data samples over the total anomalous samples. In simple
words, recall represents howmany anomalous samples themodelmissed
to predict as anomalous. This means recall must be close to 100% if FN
needs to be kept minimum. The macro average value of recall across all
classes is considered in the multiclass classification case.

5. F1-score: This metric provides a single score that represents both
precision and recall. Thismetric is good for caseswhere class distribution
is imbalanced in the dataset. It is calculated as the harmonic mean of
these values as shown below:

F1score =
2 ∗ Precision ∗Recall

Precision+Recall

Macro averaged F1-scores across all classes is considered as the metric
for the multiclass classification problem.
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Chapter 3

Methodology

In this chapter, we discuss the methodology used to design the proposed
solution, i.e., a security framework for ICSs. Section 3.1 describes the research
process used in the design of the solution whereas Section 3.2 explains the
design methodology.

3.1 Research Process
Figure 3.1 depicts the high-level overview of the different steps used in the
research process. Each of these steps is further divided into sub-steps to
simplify the implementation phase of the thesis. All these steps contribute
towards designing the proposed digital twin-based security framework for
ICSs that integrates an ML-based IDS.

Figure 3.1: Research process

The first step as shown in Figure 3.1 is about identifying an open-source
digital twin solution of an ICS from the reviewed solutions as part of the
literature study. As the initial sub-step, we perform a detailed comparison
of the identified knowledge-driven digital twin security solutions of ICSs.
This comparison extends beyond the scope of the literature study and involves
hands-on evaluation of these solutions in terms of their implementation aspects
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and suitability to perform cybersecurity analysis in ICSs. Such an evaluation is
necessary to identify a solution that bridges the gap between the various digital
twin concepts presented in research papers and their practical implementation
aspects. Based on this comparison, the next sub-step is to choose a digital
twin solution to perform cybersecurity analysis. The criteria used to make
this choice are the following: open-source availability of the solution, the
capability of the solution to work as a standalone solution (meaning there is no
requirement to run the real physical system in parallel with the digital twin),
demonstration of a real ICS use case, and the possibility to model and execute
different types of attacks in the digital twin. The decision to use an existing
open-source digital twin is for the sake of simplicity in reusing this solution for
the thesis. Since this thesis focuses on the security applications of the digital
twin, synchronization aspects with the physical twin to enable data integration
into the digital twin are not evaluated.

As the second step in the research process, different realistic attack
scenarios are modelled and executed in the chosen digital twin solution and a
labelled dataset is generated for all the scenarios. As the first sub-step, process-
aware attack scenarios are modelled as insider threats in a manner to affect the
process measurements, by causing minimum abnormalities in network traffic.
The main aim of modelling such attacks is not to be detected easily by network
traffic monitoring alone. As the next sub-step, a labelled dataset is generated
which contains process measurements collected during normal operation and
attack duration.

The final step in the research process is to design and evaluate anML-based
IDS. As the first sub-step, different supervised ML algorithms are trained
and evaluated on the generated dataset. Based on the results of evaluation
metrics used, a stacked ensemble classifier model that combines three ML
algorithms is used to implement the ML-based IDS. The second sub-step is to
train this stacked ensemble model offline with the generated dataset. Finally,
the incoming samples from the digital twin during the live operation of the
system are classified by the IDS based on the trained model.

3.2 Design Methodology
In this section, we discuss the methodology used in this thesis to design the
proposed solution. Furthermore, we also discuss the methodology to evaluate
the proposed solution. The design of the proposed solution is achieved in
several steps, as shown in Figure 3.1. The first step of the research process uses
a qualitative method with a deductive approach to choose an implementation
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suitable to perform cybersecurity analysis among the different digital twin-
based security solutions available for ICSs. In this work, we consider a digital
twin solution as suitable to perform cybersecurity analysis when different
types of attacks can be modelled and executed inside the digital twin. The
remaining steps use quantitative methods to model different attack scenarios,
generate a dataset consisting of process measurements, and detect intrusions
usingML-based IDS. The following subsections provide a detailed description
of the methodology used in different steps of the research process.

3.2.1 Identifying anOpen-sourceDigital Twin Solution
The first sub-step in this step involves the evaluation of digital twin solutions
mentioned in 2.5.1 in terms of the feasibility to reuse these solutions to perform
cybersecurity analysis. However, not all of these solutions demonstrate real-
world ICS use cases. Listed below is the summary of the evaluated solutions.

• Solution 1 ([12], [31]) introduces an open-source framework to generate
a virtual environment automatically from the specification of the physical
system usingMininet-WiFi [44]. This specification needs to be provided
as an input to the framework in AutomationML1 data exchange format.
This framework supports two operation modes, namely simulation, and
replication. In simulation mode, digital twin can work as a standalone
simulation without the requirement of the coexistence of a physical twin.
In replication mode, passive state replication is used to synchronize the
physical environment and the virtual environment. Furthermore, the
intrusion detection use case presented in this solution is a rule-based
one.

• Solution 2 ([2]) focuses on the synchronization aspect of the physical
environment and virtual environment using active state replication. This
solution requires a physical twin to be run in parallel with the digital
twin. The physical system used is a simple system consisting of a single
PLC and a server, and hence does not represent a full-fledged real-
world ICS use case. The authors state scalability issues as one of the
limitations of this approach when implemented for large ICSs. This
solution is not available as open-source and the security applications
of the solution are left for future work.

1https://www.automationml.org/

https://www.automationml.org/


26 | Methodology

• Solution 3 ([3]) demonstrates the use case of integration of the digital
twin of an ICS with a security operations center. The ICS use case
demonstrated is of an industrial filling plant. The digital twin is
implemented as a standalone simulation using Mininet-based MiniCPS;
meaning the physical processes are implemented as simple Python
simulations. The solution offers a microservices-based architecture in
which each component of the system is realized usingDocker containers.
Furthermore, all the components are implemented using open-source
tools and the whole solution is available as open-source. However,
MiniCPS-based implementations can be used to model only those CPSs
which use Ethernet as the physical layer for communication (only
Modbus and ENIP).

• Solution 4 ([32]) suggests the capability of open-source tools to achieve
digital twin capabilities like real-time IoT data acquisition, virtualization,
data analytics, and visualization. There is no specific industrial use
case or physical system for which digital twin is implemented; instead,
a publicly available industrial dataset collected from 100 different IoT
machines in the year 2015 is used to implement 100 digital twins for
evaluation purposes. Simulation of real-time scenario is achieved by a
cronjob that acts as a scheduler to collect data of all these machines
from the dataset every minute. However, performance testing is not
performed on a real industrial use case and the proposed solution is not
available as open-source.

• Solution 5 ([35], [9]) demonstrates the inclusion of intrusion detection
in digital twin. The physical system used in this work is a MATLAB
simulation of the ball and beam process, and there is no sufficient
information provided on the implementation of the digital twin. The
industrial use case demonstrated in this work is not a real-world ICS
use case. IDS solution presented uses Kalman filter to estimate output
signals and compares it with output signals from digital twin for attack
detection; and support vector machine ML algorithm for identifying the
type of detected attacks. This solution requires the coexistence of the
physical twin with the digital twin and synchronization between both.

Furthermore, Table 3.1 provides a quick summary of the above-mentioned
digital twin-based security solutions of ICSs.
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As the next sub-step, we select a digital twin solution from the evaluated
solutions. The criteria used for this selection are already discussed in
Section 3.1. Among the listed solutions in Table 3.1, only solutions 1 and 3
demonstrate real-world industrial use cases. Solution 1 demonstrates the use
case of a conveyor belt in a candy factory whereas solution 3 demonstrates the
use case of an industrial filling plant. Furthermore, both of these solutions are
available as open-source and can work as standalone simulations. Although
the idea of the digital twin is complete only with the coexistence of the physical
twin, attaining real-time synchronization between both is quite complex and
not in the scope of this thesis.

We carry out a hands-on feasibility study of the implementation of solutions
1 and 3 and try to bring up the non-working modules in both solutions after
discussions with corresponding authors. Solution 1 poses serious limitations
in terms of stability and functionality, as the open-source code is not being
actively developed any longer. Attempts have been made to bring up the
framework, but failures associated with instantiating the PLC node could not
be resolved. This issue is raised as a bug on the author’s GitHub page2.
Solution 3 implementation is also tried out in parallel, and this solution works
correctly with minor fixes. Moreover, the framework provided as part of
solution 3 is implemented using Docker containers which offers the flexibility
of adding IDS as a Docker container to the existing framework. Hence,
solution 3 is selected as the digital twin solution for this thesis. More details
on this solution are provided in Section 3.2.2.

3.2.2 Modelling Process-awareAttacks andGenerating
Labelled Dataset

The next step is to evaluate the digital twin solution in terms of its ability to
address cybersecurity issues. This step involves modelling realistic industrial
control process-aware attacks, executing these attacks in the digital twin, and
generating labelled dataset for both normal operation aswell as attack duration.

In this thesis, we prefer to generate the dataset by executing different
process-aware attack scenarios over synthetic dataset generation. This is
to utilize the capability of the digital twin in providing accurate process
measurements which are the same as that of the measurements collected from
the real physical system. Such an approach also eliminates the additional
overheads associated with collecting measurements from the physical system.
Moreover, synthetic dataset generation for different attacksmay fail to consider

2https://github.com/sbaresearch/cps-twinning/issues/4

https://github.com/sbaresearch/cps-twinning/issues/4
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the correlation between different process measurements in a given sample and
can lead to generation of incorrect dataset. Hence, it is crucial to generate
the dataset by executing attacks in the digital twin. This approach also proves
beneficial in the future to integrate traffic analysis-based IDS into the proposed
framework.

We make an assumption here that the digital twin standalone simulation
can closely reflect its physical system in near real-time and hence can reflect
the consequences of attacks happening in the physical system. Therefore, it is
decided to place the attacker inside the network of the digital twin to illustrate
security use cases. However, in real scenarios, the digital twin is run in isolated
and secure environments and is not open to unauthorized access.

To model process-aware attacks, it is important to understand the digital
twin framework and the industrial use case run in this framework. A brief
introduction of the framework and the network topology of the digital twin
from [3] is provided below. For more details on the framework, the readers
are encouraged to read [3].

Figure 3.2 depicts the network topology of the digital twin simulation
realized using MiniCPS which is built on top of Mininet. MiniCPS provides a
framework for emulating industrial networks and simulating industrial control
devices and industrial network communication. The emulation of the ethernet-
based network of the industrial filling plant using MiniCPS along with the
simulations of ICS components such as PLCs and HMI is used to replicate the
ICS in near real-time. Moreover, this solution also considers the interaction
between components (PLCs, sensors, and actuators) in the physical layer
(using ENIP industrial protocol) on top of the network communications. In
ICS, the physical layer interactions between components are considered as
attack targets besides the common network-based attacks. Hence, this solution
proves useful in modelling and executing process-aware attacks targeting the
physical layer interactions between the components of the system.

As shown in Figure 3.2, the network consists of three PLCs, one HMI,
and an attacker node connected to a switch. This simulation uses ENIP as the
industrial network communication protocol. The industrial use case simulated
here is of an industrial filling plant, as shown on the right side of the figure.
The industrial filling plant consists of a tank containing some liquid, a bottle,
and a pipe through which liquid flows from the tank to the bottle. The flow
of liquid through the pipe is controlled by an actuator which is a motor valve.
Sensors 1, 2, and 3 read the liquid level in the tank, flow level in the pipe, and
liquid level in the bottle respectively. PLC1 monitors and controls sensor 1
and the actuator; PLC2 and PLC3 are responsible for sensor 2 and sensor3,
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respectively. PLC1 performs the control operation of the actuator based on
all three sensor values. Sensor measurements are stored as ENIP tags in
corresponding PLCs, and transmitted to PLC1 periodically at every control
cycle of PLC1, which is set as 0.5 seconds.

Figure 3.2: Industrial filling plant use case & digital twin network topology

The framework proposed in [3] is implemented as amicroservice architecture
usingDocker compose, where eachmodule runs as a separateDocker container.
Different modules in this framework are: (i) digital twin implemented using
Mininet-based MiniCPS, (ii) filebeat module to gather and ship log data from
digital twin, (iii) logstash module to normalize the log data from filebeat, (iv)
Dsiem correlation engine for rule-based incident detection from log data, (v)
elasticsearch for storing data and executing queries, and (vi) kibana as the
visualization tool. This framework is available at the GitHub repository of the
authors of [3]3.

In this thesis, we propose an extension of the above framework as shown
in Figure 3.3. Each box represents a Docker container. All grey-colored boxes
are retained from the original implementation; the proposed extension is a
new Docker container (yellow box) that runs an ML-based IDS. The newly
added IDS module receives the labelled dataset generated inside the digital

3https://github.com/FrauThes/DigitalTwin-SIEM-integration

https://github.com/FrauThes/DigitalTwin-SIEM-integration
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twin module via filebeat. This dataset is used to train the supervised ML
algorithm running in the IDS module, and the trained model is further used to
detect intrusions in near real-time.

Figure 3.3: Proposed extension of framework from [3]

To model different process-aware attack scenarios inside the digital twin
Docker container, it is important to familiarise with the process control
variables of the system that are of interest from a security perspective. Table
3.2 describes different process control parameters of the system.

Given the details of the digital twin framework, the initial focus in this step
is to model process-aware attacks aimed at disrupting the industrial control
process in operation. These attacks are carefully modelled to cause minimum
abnormalities in network traffic. All the attacks are executed as insider attacks;
meaning attacker who is already present inside the ICS network is executing
the attacks. This is based on the assumption that the attacker is successful in
bypassing IT security measures and has access to the ICS.

Wemodel attack scenarios belonging to four different attack types, naming
Command Injection, Network DoS, Calculated Measurement Injection, and
Naive Measurement Injection. We explain below all the four attack types and
the impact of these attacks on the system. Furthermore, the implementation
details of the modelled attack scenarios are provided in Chapter 4.

1. Command Injection Attack: This type of attack aims at exploiting an
interface to remotely inject malicious commands. In our case, PLC1 that
is responsible for the control operation of the motor valve in the system
is the node under attack. PLC1 does this control operation by sending
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Table 3.2: Process control parameters and their description
No. Parameters Description

1 motor_status integer value representing the motor status; 0 for OFF
and 1 for ON

2 bottle_liquidlevel float value from sensor 3 indicating the liquid level in
the bottle in m3

3 bottle_lowerbound lower bound for the liquid level in the bottle; constant
value set to 0.0

4 bottle_upperbound upper bound for the liquid level in the bottle; constant
value set to 0.9

5 flowlevel float value from sensor 2 indicating the flow level of
the pipe

6 sensor2_thresh threshold value of the flow level of the pipe; constant
value set to 3.0

7 tank_liquidlevel float value from sensor 1 indicating the liquid level in
the tank in m3

8 tank_lowerbound lower bound for the liquid level in the tank; constant
value set to 0.3

9 tank_upperbound upper bound for the liquid level in the tank; constant
value set to 5.81

control commands to switch ON/OFF the motor valve. To tamper with
this control logic, the attacker disguised as HMI reads the actuator value
from PLC1 and sends a command to PLC1 to set a toggled value before
the actual control operation is performed. This attack is performed in
such a way to inject the toggled value before the actual value is set,
and is not a MitM attack. This attack exploits the vulnerability of no
authentication control present in the ENIP protocol. Here, the attacker
intends to disrupt the outflow of the tank which in turn disrupts the rate
of filling of the bottle.

2. Network DoS attack: We model network DoS attacks in our work using
two approaches. In the first approach, the attacker places himself in
between PLC1 and PLC2 (or PLC3) and then uses Address Resolution
Protocol (ARP) poisoning to sniff remote connections coming towards
PLC1. In addition to sniffing, the attack scenario is designed in
such a way that the attacker node does not forward the intercepted
communication to the target node. Such an approach enables the
attacker to perform selective erasure of messages. For example, the
attacker can selectively choose to deny PLC1 of the measurements



Methodology | 33

coming from PLC2, while allowing measurements from PLC3 to reach
PLC1. This approach is called MitM/DoS in the literature [40].
The second approach uses Transmission Control Protocol (TCP)/SYN
flag (SYN) flooding to launch DoS attacks. The attacker disguises
his Internet Protocol (IP) address as that of a valid IP address and
floods the network towards PLC1 with TCP SYN packets. This attack
targets the specific TCP port used by ENIP protocol, i.e., 44818. This
flooding attack congests the network, and PLC1 does not receive any
measurements from PLC2 and PLC3.
For the normal operation of the system, PLC1 must receive sensor
measurements from other PLCs at regular intervals. But network DoS
attacks make it impossible for PLC1 to get these values. Here, the
attacker intends to disrupt the rate of flow of liquid from the tank to the
bottle. The operation continues with previously-stored process control
values causing undesirable impacts.

3. Calculated Measurement Injection Attack: This attack type ismodelled
as MitM attack to alter the sensor measurements sent to PLC1 from
other nodes on the fly. This attack type exploits the vulnerability of the
lack of encryption of the ENIP protocol used in this simulation. Here,
the attacker places himself between PLC1 and PLC2 (or PLC3) and
alters the sensor measurements sent towards PLC1 by a calculated value
(using a positive or negative scaling factor). This scaling is performed
gradually and carefully to disrupt the operation of the systemwithout the
risk of being detected sooner. This type of attack disrupts the normal
operation of the system at a slow pace.

4. Naive Measurement Injection Attack: This attack type is also modelled
asMitM attack and exploits the same vulnerability as that of the previous
type. Here, the attacker places himself in between PLC1 and PLC2 (or
PLC3) and uses a naive approach to alter the sensor measurement sent
towards PLC1 to a constant/random value without taking into account
the actual measurement at that time. This can cause abrupt impacts on
the system disrupting the normal operation of the system and hence may
be detected sooner compared to the previous attack type.

The next sub-step is to generate labelled datasets. All the process control
parameters which are highlighted in Table 3.2 along with the timestamp data
are stored in Comma Separated Values (CSV) format. The non-highlighted
measurements are the threshold values that do not vary over time and are
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therefore neglected. New rows are added to this CSV file at every control
cycle of PLC1. The time for which data needs to be collected is configured
via HMI.

Once this dataset is generated, the next step is to label the dataset which can
be further used to train the ML-based IDS in the framework. These labels are
added as a new column named class in the dataset. We use a comprehensive
labelling approach to label the process measurements collected during normal
operation as ’Normal’ and during attack duration with the corresponding
attack type. Such an approach to include different labels can help to easily
isolate and resolve the detected attacks in the future. Labelling of data samples
collected during attack duration is done either based on threshold condition
checks (for command injection attack) or according to the time duration in
which attacks are performed. An excerpt of the labelled dataset collected
during command injection attack is provided in Table 5.6.

3.2.3 Designing and Evaluating ML-based IDS
This step involves choosing an ML algorithm that works best on the generated
dataset to implement the IDS. Due to time constraints, only supervised ML
algorithms are considered here. The choice of ML algorithm is based on
the evaluation of different supervised algorithms used in the state-of-the-art
research works done in this field.

Evaluation of ML Algorithms

Based on the literature study on ML-based intrusion detection in ICSs,
identified supervised algorithms for evaluating the labelled dataset are support
vector machine (SVM), k nearest neighbor (KNN), naive bayes (NB), random
forest (RF), logistic regression (LR), artificial neural network (ANN), gradient
boosting (GB), and decision tree classifier (DTC).

The metrics used to evaluate these algorithms are already explained in
Section 2.6. Accuracy is a good metric when target classes in data are
balanced. But for those cases where target classes are not balanced, the model
may not be good in accurately predicting the minority class even when the
overall accuracy is high. In our case, the distribution of target classes is not
balanced since attacks are executed usually for short duration. Therefore, it is
not advised to use accuracy alone as the metric to choose the final classifier
model.

Furthermore, it is necessary to correctly classify anomalous samples in the
case of intrusion detection use case. This means all the diagonal elements of
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the confusion matrix (positive classes) for a classifier model are at the highest
and FNs for the anomaly classes need to be kept at a minimum. As discussed
in Section 2.6, high recall value is considered good in our evaluation to keep
FN values to minimum. In case of intrusion detection, we can only tolerate
very few FPs. Otherwise, this can result in high number of false alarms. To
take this factor into account, we also consider F1-score as another metric as
this represents both precision and recall values.

In addition to the evaluation of these individual algorithms, an ensemble
approach called stacking is also evaluated. This approach makes it possible to
combine the predictions of individual classifiers to make the final predictions.
The reason to use a stacking classifier in our case is to check if the classification
results improve upon using this approach. Figure 3.4 shows the concept of
stacking classifier with two levels of classification: Level 0 and Level 1. Level
0 has three individual classifiers and Level 1 is the final classifier. The choice
of Level 0 classifiers is based on the evaluation results of the eight individual
classifiers on distinct class labels. This is because the classifier which gives
the best overall scores across all class labels may not be the best one for each of
the labels. Predictions from each of the classifiers in Level 0 are represented
by P1, P2, and P3. Level 1 classifier is the final classifier that combines the
predictions of Level 0 classifiers and makes the final predictions. Here, Level
1 classifier is trained using the the cross-validated predictions from Level 0
classifiers [45].

Figure 3.4: Stacked ensemble classifier model concept
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IDS Design and Implementation

Based on the comparison of the performance of the individual ML classifier
algorithms using the above-listed metrics, the final classifier used in the
implementation of IDS is a stacked ensemble classifier model that combines
the predictions from three individual classifiers. More details on the dataset as
well as comparison results of different individual algorithms and the stacked
ensemble model are provided in Chapter 5.

Figure 3.5 depicts the security framework consisting of an ML-based IDS
implemented as part of the thesis. During the offline training phase, the
ML model with a stacked ensemble classifier model is trained in the Docker
container running IDS using the labelled dataset collected from the digital
twin. During the operation of ICS, this model classifies the incoming data
samples (unlabelled test dataset) from the digital twin Docker container based
on the trained model. Results from IDS are shown as visualizations using a
dashboard in the kibana container.
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Chapter 4

Implementation

This chapter discusses the implementation details that are relevant to carry out
this thesis. The tools and frameworks used in this thesis are also explained in
this chapter.

4.1 Digital Twin Framework
As discussed in Section 3.2.1, the selected digital twin framework is from [3].
This framework is available as an open-source implementation as a GitHub
repository1. This repository also provides a README file that lists all the
steps to be followed to make this framework up and running. Additionally, the
below-listed prerequisites need to be followed to use this framework.

1. Use Ubuntu version 18.04 to run the framework on a VM.

2. ENIP tags used in the digital twin simulation are supported on older
versions of cpppo package (4.1.x to 4.3.x). The default cpppo-package
version installed along with the Python package ’minicps’ is the latest
version 4.4.2 and does not support ENIP tags. Therefore, this version
needs to be downgraded manually. Listing 4.1 provides the command
to downgrade the cpppo version to 4.1.0.

p i p i n s t a l l cpppo ==4 . 1 . 0
Listing 4.1: Command to downgrade cpppo version to 4.1.0

1https://github.com/FrauThes/DigitalTwin-SIEM-integration

https://github.com/FrauThes/DigitalTwin-SIEM-integration
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4.2 Modelling Process-aware Attacks
This section explains the implementation details regarding the modelling and
execution of different process-aware attacks inside the digital twin. The tools
and libraries used for this implementation are also explained here.

4.2.1 Command Injection Attack
This attack is implemented using a simple Python script that is run on the
attacker node for a certain time duration. In this attack, a naive approach is
used to inject commands to PLC1 to set wrong actuator values causing wrong
control operation of the motor valve. The corresponding process measurement
reflecting this actuator value is the motor_status.

The script reads the actuator values which are stored as ENIP tags in
PLC1, toggles this value, and sends this toggled value to PLC1. This action
is performed every x seconds, where x is a value that is less than the interval
in which PLC1 performs the control operation of the motor valve. If PLC1
receives the command to set the toggled value before it performs the control
operation, then the actuator value is set to this toggled value, and the attack
execution is considered successful. This attack is executed carefully to avoid
causing flooding in the network, thus making it difficult to detect this type of
attack by network traffic monitoring.

4.2.2 Network DoS Attack
We explain the implementation of two approaches used to model and execute
network DoS attacks in this work.

1. MitM/DoS: This attack uses the Ettercap tool to simulate a MitM attack.
Using this tool, the attacker node is placed between PLC1 and other
PLCs. An ARP poisoning MitM attack is performed to sniff remote
connections towards PLC1. In this attack, the intercepted packets
reaching the attacker node are not forwarded to PLC1 resulting in a DoS
attack. A total of three attack scenarios are performed in this category
in which the attacker is placed between (i) PLC1 and PLC2, (ii) PLC1
and PLC3, and (iii) PLC1 and any other hosts.
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e t t e r c a p −T − i a t t a c k e r − e t h0 −M ARP
/ 1 0 . 0 . 0 . 1 / / / 1 0 . 0 . 0 . 2 / /

Listing 4.2: Ettercap command to launch MitM/ARP poisoning

Listing 4.2 shows the command to launchMitM/DoS between PLC1 and
PLC2 using Ettercap. Here, attacker-eth0 is the interface on the attacker
node that launches the attack, 10.0.0.1 is the IP address of PLC1, and
10.0.0.2 is the IP address of PLC2. On execution of this command,
the attacker node is placed between PLC1 and PLC2 and can sniff all
connections coming towards PLC1 from PLC2.

2. TCP SYN flooding: hping32 network tool is used to execute this attack.
This tool allows sending custom TCP/IP packets to hosts. In this attack,
the attacker node disguises its source IP address as a different but valid
address and floods the network with TCP SYN packets targeting TCP
port 44818 on PLC1. PLC1 sends back SYN/ACK packets to the source
known to it; however, these packets go unacknowledged exhausting the
resources reserved on PLC1 for handling this communication. Thus,
PLC1 cannot receive new packets from PLC2 and PLC3 resulting in a
DoS attack.

hp ing3 −S −a 1 0 . 0 . 0 . 4 −− f l o o d −V −p 44818
1 0 . 0 . 0 . 1

Listing 4.3: hping3 command for TCP/SYN flooding DoS attack

Listing 4.3 shows the hping3 command run on the attacker node to
perform this attack. Here, 10.0.0.1 is the IP address of the target which
is PLC1 whereas 10.0.0.4 is the IP address of HMI disguised by the
attacker.

4.2.3 Calculated Measurement Injection Attack
These types of attacks are implemented as custom Python scripts that use
a third-party library called scapy3 to decode and alter packets sent on the
network. Here, the attacker node is placed between PLC1 and other PLCs,
and the payload of ENIP packets sent towards PLC1 is modified on the
fly. These payload values contain the process measurements (flowlevel and

2https://linux.die.net/man/8/hping3
3https://scapy.net/

https://linux.die.net/man/8/hping3
https://scapy.net/
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bottom_liquidlevel) and this attack alters thesemeasurements to a scaled value.
This scaling is done by a small factor to make this attack stealthy. Scaling of
process measurements is done as follows:

modified_value = (1± scaling_factor) ∗ decoded_payload_value

The scaling factor used can be either a constant value or a random value
from a uniform distribution. A total of twelve attack scenarios are performed
under this attack type. Table 5.5 provides a summary of these attack scenarios.

To launch this attack, a MitM ARP poisoning is executed at first using
the command provided in Listing 4.2. IP forwarding is enabled using the
command provided in Listing 4.4. This ensures that the manipulated packet
using the custom Python script reaches the destination node. Further, custom
scripts are run to manipulate packets on the fly.

echo 1 > / p roc / sy s / n e t / i pv4 / i p _ f o rwa r d
Listing 4.4: Enable IP forwarding

4.2.4 Naive Measurement Injection Attack
These types of attacks also use the scapy library tomodify processmeasurements.
Here, the packet payload is modified to either a fixed constant value or a
random value within the predefined limits of process measurements. There
are six attack scenarios performed under this attack type and details of these
attack scenarios are provided in Table 5.4. This attack also uses the commands
provided in Listings 4.2 and 4.4.

4.3 Generating Labelled Dataset
In this step, process measurements are collected from the PLC1 node. This
is because PLC1 is responsible for the control operation of the whole system
running as the digital twin, and the modelled process-aware attack scenarios
target themeasurements reaching PLC1 to disturb the normal control operation
of the system.

To train the ML model, data is collected for both normal operation and
attack duration. In real operation scenarios, the majority of the data samples
belong to the normal operation since attacks are performed only for short
durations. To retain this realistic scenario, each of the modelled attack
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scenarios is executed for short durations (3 to 5 minutes). Balancing of classes
in the generated dataset is intentionally not considered to retain the distribution
of samples across different classes as that of a real scenario. This approach to
not rebalance the dataset is used by the authors of [42] and [17]. Instead of
using data sampling methods to circumvent the imbalance in classes, these
works emphasize considering the choice of proper evaluation metrics for the
classification of imbalanced datasets.

Once the data samples with process measurements are collected, this
dataset is labelled with a class label. Data samples collected during normal
operation are labelled as ’Normal’. Labels for different attack scenarios
represent the attack types to which these belong, and these are ’Command
Injection’, ’Network DoS’, ’Calculated Measurement Injection’, and ’Naive
Measurement Injection’. Labelling of the dataset is automated based on
threshold condition checks and the duration of attacks.

4.4 ML-based IDS
To evaluate ML algorithms, we split the labelled dataset into two sets: 70% as
training set and 30% as testing set. This split is done in such a way that both
the training set and test set have a similar distribution of target class labels.
All the algorithms used for this evaluation are implemented using the scikit-
learn4 library for Python. Anaconda Jupyter notebook (Python 3)5 is used as
the programming environment to implement these algorithms. Table 4.1 lists
the technical specifications of the system setup used to run these algorithms.
Table 4.2 lists the scikit-learn APIs along with the parameters that are used for
this evaluation. Hyperparameter tuning for different models is not taken into
account here.

Table 4.1: Specifications of system setup used to run ML algorithms
System Type x64-based PC
OS Name Microsoft Windows 10 Home
OS Version 10.0.19043 Build 19043

Processor Intel(R) Core(TM) i5-6400 CPU @ 2.70GHz,
4 Core(s) , 4 Logical Processor(s)

RAM 16GB

4https://scikit-learn.org/stable/
5https://anaconda.org/anaconda/jupyter

https://scikit-learn.org/stable/
https://anaconda.org/anaconda/jupyter
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Table 4.2: Scikit-learn APIs used
Scikit-learn API Description Parameters

sklearn.preprocessing.StandardScaler Data preprocessing

sklearn.model_selection.train_test_split To split labelled data into training and test set
train_size:0.7

random_state:1

stratify:<y_train>

sklearn.svm.SVC To implement support vector machine
classifier kernel:linear

sklearn.ensemble.RandomForestClassifier To implement random forest classifier
random_state:1

n_estimators:100

max_depth:None

sklearn.neighbors.KNeighborsClassifier To implement KNN classifier n_jobs:-1

n_neighbors:5

sklearn.linear_model.LogisticRegression To implement logistic regression classifier n_jobs:-1

random_state:0

sklearn.tree.DecisionTreeClassifier To implement decision tree classifier criterion:’gini’

max_depth:None

sklearn.naive_bayes.GaussianNB To implement naive bayes algorithm var_smoothing:1e-09

sklearn.neural_network.MLPClassifier To implement ANN using multi-layer
perceptron classifier

solver:’lbfgs’

hidden_layer_sizes:100

activation:relu

sklearn.ensemble.GradientBoostingClassifier To implement gradient boosting classifier
learning_rate:0.1

n_estimators:100

max_depth:3

sklearn.multiclass.OneVsRestClassifier To fit one classifier per class in multiclass
classification; for all classifiers except SVM

sklearn.multiclass.OneVsOneClassifier To fit one classifier per class pair in multiclass
classification; used for SVM

sklearn.ensemble.StackingClassifier To implement ensemble stacking algorithm cv:10

sklearn.metrics Classification metrics to evaluate models
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Evaluation of different algorithms is done on the labelled dataset. Based
on the evaluation results, the stacking classifier is the one chosen to implement
IDS. IDS implementation is also done in Python using Anaconda Jupyter
notebook. The stacking classifier which is already trained using the labelled
dataset is further used to classify the incoming data samples collected during
the live operation of the system. Results of this detection are written in real-
time into a CSV file which is shipped to logstash via filebeat. Logstash
processes this file and stores the data in elasticsearch. This elasticsearch
data that is updated in real-time is fed as an ingest pipeline to kibana for
visualization purposes.
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Chapter 5

Results and Analysis

In this chapter, we present the results and provide a detailed analysis of these
results. Section 5.1 discusses 23 process-aware attack scenarios modelled as
part of this work. An excerpt of the generated labelled dataset along with
the distribution of classes in this dataset is provided in Section 5.2. Section
5.3 provides the evaluation results of different supervised ML algorithms in
classifying data samples of the generated dataset. Finally, the results of IDS
are presented in Section 5.4.

5.1 Modelled Process-awareAttack Scenarios
In our work, 23 attack scenarios belonging to four different attack types are
modelled and executed in the digital twin simulation. Table 5.1 provides the
mapping of these attack scenarios (summarized in tables 5.2 to 5.5) to attack
types.

Table 5.1: Mapping of modelled attack scenarios to different attack types
Attack Scenario No Attack Type

1 Command Injection

2-5 Network DoS

6-11 Naive Measurement Injection

12-23 Calculated Measurement Injection

Tables 5.2 to 5.5 provide a summary of 23 process-aware attack scenarios
belonging to four different attack types which are modelled and executed in
the digital twin simulation. In each table, Attack Point refers to the targeted



48 | Results and Analysis

node(s), and Affected Process Measurement(s) lists the process measurements
affected by the attack. The Attack Description column provides the description
of attack scenarios. Finally, the intent of the attacker and the impact of attacks
on the system is explained in the last column, namely Attack Impact.

Table 5.2: Modelled attack scenario under command injection attack type
Attack
Scenario

No.

Attack
Point

Affected Process
Measurement(s)

Attack
Description Attack Impact

1 Actuator
value motor_status

Toggle actuator
value every 0.5

seconds

Closes motor valve when
it must be open and
vice-versa; leads to tank
overflow or bottle
overflow

Table 5.3: Modelled attack scenarios under network DoS attack type
Attack
Scenario

No

Attack
Point

Affected Process
Measurement(s)

Attack
Description Attack Impact

2 PLC2 flowlevel

MitM attack to
intercept and drop

packets sent
towards PLC1
from PLC2

Prevents sensor2
measurements from
reaching PLC1; disturbs
the control operation of
the motor valve as PLC1
takes control decision
based on the last received
sensor2 value

3 PLC3 bottle_liquidlevel

MitM attack to
intercept and drop

packets sent
towards PLC1
from PLC3

Prevents sensor3
measurements from
reaching PLC1; disturbs
the control operation of
the motor valve as PLC1
takes control decision
based on the last received
sensor3 value

4 PLC2,
PLC3

flowlevel,
bottle_liquidlevel

Attack scenario 2
+ Attack scenario

3

Causes the combined
impact of attack
scenarios 2 & 3

5 PLC2,
PLC3

flowlevel,
bottle_liquidlevel

TCP SYN flood
attack targeting
ENIP port 44818

of PLC1

Causes the combined
impact of attack
scenarios 2 & 3



Results and Analysis | 49

Table 5.4: Modelled attack scenarios under naive measurement injection
attack type

Attack
Scenario

No

Attack
Point

Affected Process
Measurement(s)

Attack
Description Attack Impact

6 PLC2 flowlevel

Modify
measurements
sent by PLC2

towards PLC1 to a
constant value

PLC1 upon receiving false
flowlevel measurements
closes the valve sooner or
later and can result in
incomplete filling of the
bottle or overflow of the
bottle

7 PLC3 bottle_liquidlevel

Modify
measurements
sent by PLC3

towards PLC1 to a
constant value

PLC1 upon receiving false
bottle_liquidlevel
measurements fails to open
or close the valve at the
right time when the bottle
is empty or full

8 PLC2,
PLC3

flowlevel,
bottle_liquidlevel

Attack scenario 6
+ Attack scenario

7

Causes the combined
impact of attack scenarios
6 & 7

9 PLC2 flowlevel

Modify
measurements
sent by PLC2

towards PLC1 to a
random value

within the allowed
limits for
flowlevel

Similar impact as that of
attack scenario 6

10 PLC3 bottle_liquidlevel

Modify
measurements
sent by PLC3

towards PLC1 to a
random value

within the allowed
limits for bottle

capacity

Similar impact as that of
attack scenario 7

11 PLC2,
PLC3

flowlevel,
bottle_liquidlevel

Attack scenario 9
+ Attack scenario

10

Similar impact as that of
attack scenario 8
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Table 5.5: Modelled attack scenarios under calculated measurement injection
attack type

Attack
Scenario

No

Attack
Point

Affected Process
Measurement(s)

Attack Description Attack Impact

12 PLC2 flowlevel

Positive scaling of
measurements sent by
PLC2 towards PLC1
by a fixed scaling

factor

Increased flowlevel in the pipe
increases the rate of filling of
the bottle; can lead to bottle
overflow

13 PLC3 bottle_liquidlevel

Positive scaling of
measurements sent by
PLC3 towards PLC1
by a fixed scaling

factor

PLC1 upon receiving wrong
measurements regarding bottle
capacity decreases the rate of
flow of liquid from the tank to
the bottle

14 PLC2,
PLC3

flowlevel,
bottle_liquidlevel

Attack scenario 12 +
Attack scenario 13

Causes the combined impact of
attack scenarios 12 & 13

15 PLC2 flowlevel

Scale up
measurements from
PLC2 by a random
value from a uniform

distribution

Similar impact as that of attack
scenario 12

16 PLC3 bottle_liquidlevel

Scale up
measurements from
PLC3 by a random
value from a uniform

distribution

Similar impact as that of attack
scenario 13

17 PLC2,
PLC3

flowlevel,
bottle_liquidlevel

Attack scenario 15 +
Attack scenario 16

Similar impact as that of attack
scenario 14

18 PLC2 flowlevel

Negative scaling of
measurements sent by
PLC2 towards PLC1
by a fixed scaling

factor

Decreased flowlevel in pipe
decreases the rate of filling of
the bottle; can slow down the
normal operations of the plant

19 PLC3 bottle_liquidlevel

Negative scaling of
measurements sent by
PLC3 towards PLC1
by a fixed scaling

factor

PLC1 upon receiving wrong
measurements regarding bottle
capacity increases the rate of
flow of liquid from the tank to
the bottle

20 PLC2,
PLC3

flowlevel,
bottle_liquidlevel

Attack scenario 18 +
Attack scenario 19

Causes the combined impact of
attack scenarios 18 & 19

21 PLC2 flowlevel

Scale down
measurements from
PLC2 by a random
value from a uniform

distribution

Similar impact as that of attack
scenario 18

22 PLC3 bottle_liquidlevel

Scale down
measurements from
PLC3 by a random
value from a uniform

distribution

Similar impact as that of attack
scenario 19

23 PLC2,
PLC3

flowlevel,
bottle_liquidlevel

Attack scenario 21 +
Attack scenario 22

Similar impact as that of attack
scenario 20
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5.2 Generated Dataset
Table 5.6 shows an excerpt of the generated labelled dataset containing process
measurements during normal operation of the system and attack durations.
This dataset is in CSV format and has 2705 data samples collected for 3
hours. Each data sample has 6 attributes as shown in Table 5.6. Timestamp1
(format is YYYY-MM-DD HH24:MI:SS.FF7) reflects the time at which
measurements are collected from PLC1 node, next 4 attributes reflect various
process measurement values collected, and class represents the class label
given to the data sample reflecting whether the sample is collected during
normal operation or a specific attack.

Figure 5.1 shows the distribution of normal and anomalous data samples
in the generated dataset. This dataset is further used to train the ML-based
IDS. There are 1920 normal samples and 785 anomalous samples. Anomalous
samples are collected for different types of attacks executed in the digital twin.
Out of the 785 anomalous samples, 434 belong to calculated measurement
injection attacks, 227 are from naive measurement injection attacks, 88 from
network DoS attacks, and 36 from command injection attacks.

1https://docs.python.org/3/library/datetime.html#datetime.
datetime.now

https://docs.python.org/3/library/datetime.html##datetime.datetime.now
https://docs.python.org/3/library/datetime.html##datetime.datetime.now
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Table 5.6: Sample dataset (labelled)
timestamp tank_liquidlevel flowlevel bottle_liquidlevel motor_status class

32:02.7 2.419907 0 0 1 Normal

32:06.1 2.374537 2.45 0.158796 1 Normal

32:09.6 2.238426 2.45 0.499074 1 Normal

32:12.7 2.102315 2.45 0.748611 1 Normal

32:15.6 1.977546 2.45 0.907407 0 Normal

32:18.8 1.886806 0 0 1 Normal

32:21.8 1.852778 2.45 0.090741 1 Normal

32:26.5 1.728009 2.45 0.362963 1 Normal

32:31.1 1.614583 2.45 0.521759 1 Normal

32:36.7 1.535185 0 0.748611 1 Normal

32:41.7 1.387731 2.45 0.907407 0 Normal

32:46.9 1.319676 0 0.181481 1 Normal

32:51.9 1.194907 2.45 0.431019 1 Normal

32:57.2 1.070139 2.45 0.6125 0 Command Injection

33:02.5 0.979398 0 0.793981 1 Normal

33:07.6 0.831944 2.45 0 0 Command Injection

33:13.1 0.741204 0 0.158796 0 Command Injection

33:18.4 0.63912 0 0.431019 1 Normal

33:23.5 0.514352 2.45 0.635185 1 Normal

33:28.2 0.412269 0 0.907407 0 Normal

33:32.9 0.33287 0 0.136111 1 Normal

33:37.5 5.765972 0 0.249537 0 Command Injection

33:42.2 5.675231 0 0.453704 1 Normal

33:47.9 5.561806 2.45 0.703241 0 Command Injection

33:52.9 5.437037 2.45 0.884722 1 Normal
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Figure 5.1: Distribution of data samples across different classes in the dataset

The size of the dataset used in ML-based intrusion detection on process
data varies across different related work. Related works that use datasets
generated from real-time simulations and testbeds of ICSs ([46], [42]) usually
use training data containing 1000 to 10 000 data samples. Since this thesis
uses generated dataset from the digital twin simulation, the size of the dataset
used here is on par with the approaches that uses simulations and testbeds.

Furthermore, the distribution of target class labels in the training set and
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test set is shown in Figure 5.2. The labels in pie charts indicate the class
labels along with the number of data samples. Additionally, the distribution
percentage is marked on the slices of the pie chart. The distribution of class
labels are similar across these two sets.

(a) Training set

(b) Test set

Figure 5.2: Distribution of target class labels in training set and test set
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5.3 Evaluation of ML Algorithms
Figures 5.3 to 5.6 show the confusion matrices with normalization by the
number of elements in each class for the eight supervised ML algorithms
evaluated on the test set of the labelled dataset. The confusion matrix is a
useful metric to evaluate the efficiency of an algorithm to correctly classify the
unseen data samples based on a training dataset. An algorithm is considered
good if the normalized matrix has all diagonal elements with values equal to
1 or closer to 1. The color scheme used represents the values varying from 0
to 1 as blue color ascending from a lighter shade to a darker shade. Thus, if
the diagonal elements of a matrix are all dark in color, it constitutes a good
classifier.

It is clear from Figures 5.3 to 5.6 that all the models are successful in
classifying correctly the samples belonging to network DoS attacks. However,
SVM, KNN, LR, MLP, and NB have zero values in some of the diagonal
elements. This means that these models are not able to classify the data
samples belonging to that particular class for which the values are zero. For
example, in the case of SVM, the model is not able to classify correctly
the samples from naive measurement injection, command injection, and
calculated measurement injection attacks.

FromFigure 5.5, DTC shows better results for naivemeasurement injection
attacks compared to RF and GB classifiers. The GB classifier outperforms RF
and DTC in terms of normal samples. GB has same results as that of the RF
classifier for calculated measurement injection attacks.

Based on the evaluation of confusion matrices of the above 8 classifiers,
it can be concluded that the GB classifier is the best algorithm when it comes
to predicting samples belonging to normal, network DoS, and calculated
measurement injection. DTC outperforms the GB algorithm in the case of
predicting naive measurement injection attacks. For command injection, NB
gives the best score compared to all the other algorithms. Therefore, GB, DTC,
and NB are chosen as the Level 0 classifiers for the stacked ensemble classifier
approach. The Level 1 classifier used is a neural network usingMLP classifier.
This is done to utilize the benefit of the learning process used in neural network
model compared to other algorithms. The normalized confusion matrix for
the stacking classifier is shown in Figure 5.7. It is clear from this figure that
stacking shows better results compared to individual classifiers.
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(a) Support Vector Machine(SVM)

(b) Random Forest(RF)

Figure 5.3: Normalized confusion matrices for SVM and RF
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(a) K Nearest Neighbor(KNN)

(b) Logistic Regression(LR)

Figure 5.4: Normalized confusion matrices for KNN and LR
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(a) Decision Tree Classifier(DTC)

(b) Naive Bayes(NB)

Figure 5.5: Normalized confusion matrices for DTC and NB
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(a) Multi-Layer Perceptron(MLP)

(b) Gradient Boosting(GB)

Figure 5.6: Normalized confusion matrices for MLP and GB
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Figure 5.7: Normalized confusion matrix for stacking classifier

Figures 5.8 to 5.11 provide the plots of different ML algorithms vs the
classification metric score. The X-axis for all the plots in these figures
represents the eight algorithms along with the stacking classifier evaluated
using the labelled dataset. Y-axis represents the overall score for classification
metrics used.

As shown in Figure 5.8, the best accuracy score is 0.926 given by the
stacking classifier model, followed by GB with a score of 0.924. NB model
gives the worst score of 0.64. From Figure 5.9, the precision score is the
highest for the stacking classifier model and is 0.932, followed by the GB
classifier with a score of 0.928. SVM and LR models give the worst precision
score of 0.347. In terms of recall score (refer to Figure 5.10), the stacking
classifier has the highest score of 0.864 followed by GB with a score of 0.856.
SVM and LR give the worst recall score of 0.4. As shown in Figure 5.11,
F1-score is the highest for the stacking classifier and that is 0.884. This is not
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surprising as F1-score is the highest when precision and recall scores are high,
which is true for the stacking classifier model. F1-score is the worst for SVM
and LR, and the value is 0.37.

For all the plots shown in Figures 5.8 to 5.11, the stacking classifier has
the best score (close to 1) for all of the classification metrics. For ML-
based classification algorithms trained using an imbalanced dataset, the most
important metrics are recall and F1-score. Since the stacking classifier model
outperforms all other algorithms in all metrics in terms of recall and F1-score,
this model is considered a good model for implementing ML-based IDS.

Figure 5.8: Accuracy scores for ML algorithms
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Figure 5.9: Precision scores for ML algorithms

Figure 5.10: Recall scores for ML algorithms
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Figure 5.11: F1-score values for ML algorithms

Table 5.7 lists the scores of different classification metrics used to evaluate
the ML algorithms on the labelled dataset. The scores are rounded to three
decimal places. The best score for each metric is highlighted in green color,
whereas the worst score is highlighted in orange color.

Table 5.7: Classification metric score values on evaluating different ML
algorithms
Algorithm\Classifcation Metric Accuracy Precision Recall F1-score
SVM 0.743 0.347 0.4 0.37
RF 0.908 0.921 0.777 0.83
KNN 0.772 0.553 0.458 0.468
LR 0.743 0.347 0.4 0.37
DTC 0.901 0.913 0.775 0.827
NB 0.64 0.568 0.573 0.4
MLP 0.789 0.735 0.545 0.584
GB 0.924 0.928 0.856 0.887
Stacking classifier 0.926 0.932 0.864 0.894

Furthermore, we perform an analysis of the samples misclassified by the
stacking classifier model. Initially, we compute the prediction probabilities for
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different class labels as predicted by the stacking classifier. This step helps to
check if themisclassification of a sample happened because of a case where the
model chooses a label based on its alphabetical name when two or more labels
(including the correct label) are predicted with the same probability. However,
no such instances are found in the final predictions given by stacking classifier.
We do not eliminate the possibility of occurence of this case in the prediction
outputs of Level 0 classifiers. Using optimized Level 0 classifiers after hyper
parameter tuning can be beneficial in this case. As discussed already, this
optimization is left for future work.

We also perform an analysis of the process measurement samples that are
misclassified by the stacking classifier model. Samples belonging to normal,
naive measurement injection, and calculated measurement injection are the
ones that get misclassified. This is because the current implementation of ML
models learn only the relationship between different measurements in a single
sample. There is no learning of correlation among process measurements
across samples. Such a learning using time-series based algorithms can be
useful in decreasing the misclassification rate in this case. We leave this study
and implementation for future work.

Table 5.8 lists the computation time taken to execute all of the above
mentioned algorithms. Training time indicates the time taken to train a model
on the training set in seconds whereas Prediction time indicates the time
taken by the model to make predictions on the test set in seconds. MLP
classifier takes the highest time to train, whereas NB classifer takes the least
time. All the algorithms take less time for prediction compared to training.
Instead of comparing all the algorithms in terms of computational complexity,
we discuss and compare only those algorithms which are identified best for
implementing IDS. GB, DTC, and NB took less training time and prediction
time compared to the stacking classifier model. This clearly shows that there is
always a computational overhead when a stacked ensemble model is used. The
trade-off between classification performance and computational performance
also needs to be evaluated thoroughly before using stacked ensemble models.
However, such an evaluation is not in the scope of this work. Also, training of
IDS in this work is done offline and at once. Hence, we do not consider this
as a huge overhead. However, we mention that the training time can become
an overhead if the training dataset is large.
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Table 5.8: Computation time for ML algorithms
Algorithm Training time (seconds) Prediction time (seconds)
SVM 0.091 0.045
RF 1.058 0.088
KNN 0.025 0.071
LR 0.071 0.006
DTC 0.024 0.008
NB 0.017 0.009
MLP 80.345 0.016
GB 0.852 0.013
Stacking classifier 14.98 0.041

5.4 IDS Results
ML-based IDS running in the IDS Docker container is trained offline at first
using the generated dataset. Further, this IDS classifies the incoming data
samples from the digital twin container during the live operation of the system.
The results of this classification are stored as a CSV file. These results are
displayed as visualizations in a dashboard created in kibana. Figure 5.12
depicts a screenshot of the dashboard in kibana with the IDS results for a 30-
minutes duration. There are four visualizations displayed in this dashboard.
The zoomed versions of each of these visualizations are provided as Figures
5.13, 5.14, 5.15, and 5.16.
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Figure 5.13 is a time-series visualization of data samples using Timelion2.
The X-axis of this visualization represents the timestamp from incoming data
samples. Y-axis represents the number of samples at a given point of time. All
data samples classified as normal by the IDS are shown in green color while
all the anomalies are shown in red color.

Figure 5.13: IDS Events

Figure 5.13 shows the IDS classification results for 4 attack scenarios
executed in the 30-minutes duration. These scenarios belong to four different
attack types and are executed for 3-minutes duration each. The attack scenarios
executed are in the following order: attack scenario 1 from command injection
type, attack scenario 4 from network DoS, attack scenario 6 from naive
measurement injection, and attack scenario 14 from calculated measurement
injection. The results look promising as we observed only two misclassified
data samples (1 command injection sample misclassified as normal and
1 calculated measurement injection attack sample misclassified as naive
measurement injection) out of the total 85 samples.

Figure 5.14 is a pie-chart visualization of the distribution of data samples
across different class labels as classified by the IDS. As seen in the figure, the
percentage of samples belonging to different classes is represented by different
colors.

2https://www.elastic.co/guide/en/kibana/current/timelion.
html

https://www.elastic.co/guide/en/kibana/current/timelion.html
https://www.elastic.co/guide/en/kibana/current/timelion.html
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Figure 5.14: Pie-chart representation of classification of data samples by IDS

Figure 5.15 is a bar chart visualization of the class label predicted on
the incoming data samples by the IDS. Different classes are represented in
different colors.

Figure 5.15: Bar chart representation of classification of data samples by IDS

Figure 5.16 shows the latency in classifying the samples by the IDS.
’timestamp’ indicates the timestamp from the incoming data samples where
as ’pred_timestamp’ indicates the time of predictions. Another field named
’latency’ is also provided which gives the latency in predictions by IDS in
seconds. For the timeframe shown in this screenshot, the average latency is
0.1 seconds. Hence we can say that the predictions happen in near real-time.
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Figure 5.16: Latency in predictions by IDS

A screenshot of the SIEM dashboard which is already available as part
of the original framework in [3] is shown in Figure 5.17. This dashboard
displays the results of the correlation engine that uses system logs to identify
incidents. This screenshot is captured for the same timeframe as that of the
IDS dashboard shown in Figure 5.12. It is quite clear that the SIEM dashboard
does not report any alarm for the process-aware attacks executed, except for
network DoS. This is because the executed attacks except for network DoS
attacks do not tamper with the system logs and hence the correlation engine
which is based on a set of rules checking the severity of system logs is unable
to detect such attacks. In the case of DoS attacks, system logs are reported
with aWARNING severity and therefore get detected by the correlation engine.
This clearly shows the advantage of adding ML-based IDS to the original
framework.
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Chapter 6

Conclusions and Future work

The conclusions of this thesis are stated in Section 6.1. This is followed by the
limitations of the work which are stated in Section 6.2. Finally, Section 6.3
lists the future work that can be done on top of the current implementation of
the thesis.

6.1 Conclusions
The key goal of this thesis is to deliver a security framework for ICSs which
includes the digital twin of the ICS for security monitoring and an ML-based
IDS for detecting intrusions in near real-time. Such a framework can be
deployed in production environments along with the real physical system and
can be used for cybersecurity analysis of the system without interfering with
the operation of the physical system.

The first step towards achieving this goal is to identify an open-source
implementation of the digital twin of an ICS. Although many research works
discuss the concept of digital twin for ICSs, there are not many works that
dive deep into its implementation aspects using open-source tools. To this
end, a thorough literature study followed by an extensive evaluation in terms of
implementation aspects is performed on the available open-source knowledge-
driven digital twin solutions of ICSs. At the end of this step, an open-source
solution is selected among the evaluated solutions based on several aspects
such as ease of implementation of the solution, ability of the solution to run as
a standalone simulation, and representation of a real industrial use case. This
work intentionally omits the synchronization aspects of the digital twin with
the physical system.
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The selected digital twin solution is of an industrial filling plant which is
implemented using Mininet-based MiniCPS. Furthermore, this thesis uses a
microservices-based architecture realized using Docker compose as the digital
twin framework. This offers great flexibility to add or remove components
to this framework. Additionally, this framework offers the benefit of easy
integration of the solution in production environments.

As the next step, different realistic process-aware attack scenarios are
modelled and executed in the digital twin. These attacks target to disturb
the normal operation of the industrial control process running in the system.
The modelled attack scenarios belong to four different attack types, naming
networkDoS, calculatedmeasurement injection, naivemeasurement injection,
and command injection. A total of 23 attack scenarios are modelled and
executed as part of this work. At first, a training dataset to train ML-based IDS
is generatedwhich contains processmeasurements from the digital twin during
normal operation as well as each of the modelled attack scenarios. This dataset
is further labelled with the target class labels for different attack types. Further,
the process measurements collected during the live operation of the system are
provided to the IDS to classify them based on this pre-trained model.

The final step is to design and evaluate an ML-based IDS which can be
integrated into the proposed security framework. This IDS is implemented as
a Docker container which is built as an extension of the digital twin framework.
The choice of ML algorithm to design IDS is done in two stages. The first
stage involves the evaluation of eight supervised ML classifier models on the
labelled dataset. As the next stage, a stacked ensemble model that combines
those individual classifiers which perform best for a particular target class label
is designed and evaluated on the labelled dataset. This evaluation uses 70% of
the labelled dataset as the training set and the remaining 30% as the test set.
Based on this evaluation, the stacking classifier approach gives the best results
compared to individual classifiers and is hence chosen as the final classifier
model to implement IDS.

ML-based IDS is trained offline at first using the whole labelled dataset
and is further used to classify the new incoming data samples based on this
trained model. This classification task is done in near real-time, showcasing
the effectiveness of ML-based intrusion detection.

In conclusion, this thesis has successfully proposed a security framework
for an ICS using its digital twin for security monitoring. This framework also
includes anML-based IDS capable of detecting and classifying process-aware
intrusions in the system. The proposed framework is extensible and flexible
and is implemented using open-source tools. To the best of our knowledge,
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there is no other work that introduces such a holistic security framework for
ICSs that includes both the digital twin and ML-based IDS, and demonstrates
the whole use case of security monitoring and intrusion detection in ICSs.

6.2 Limitations
The identified limitations of this thesis are as listed below:

1. MiniCPS-based implementation of digital twin supports only Modbus
and ENIP protocols. Therefore, emulation of systems using other
protocols inMiniCPS is not possible. However, themicroservices-based
framework used in this thesis offers the flexibility for easy replacement
of digital twin with other implementations.

2. Evaluation ofML algorithms does not take into account hyper-parameter
tuning to make better predictions. The default parameters used to
evaluate models may not be the best parameters for that model because
of this.

3. ML algorithms used in this work do not consider correlation between
processmeasurements across data samples. Analysis of themisclassified
data samples by the stacked ensemble model shows that considering this
correlation may improve the classification results. This can be achieved
by using time-series based algorithms which are not considered in this
thesis.

6.3 Future work
Following the limitations listed in Section 6.2, the immediate work that can
be done on top of the current implementation of the thesis is to reevaluate the
algorithms with hyper-parameter tuning.

The current implementation of ML-based IDS uses supervised learning.
Evaluation of unsupervised and semi-supervised learning algorithms to detect
intrusions can be taken up as an improvement in the future. Such an approach
can help detect zero-day attacks and can also avoid the need for the labelling
of the dataset.

Another improvement that can be used to reduce the misclassification rate
is to consider including time series-based algorithms to implement IDS. Such
algorithms learn the correlation between process measurements across data
instances and take into account how these measurements change over time.
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Improving the fidelity of the digital twin by integrating data and system
states from its physical twin can be also considered for future work. This can
be done either using data acquisition from live systems in real-time (maybe
at regular clock intervals) or by using passive state replication approaches.
Furthermore, this synchronization ensures that the effects of attacks happening
in physical twin will be reflected in the digital twin and security analysis using
digital twin ensures the smooth running of the real physical process.

Additionally, this framework can be used to develop and test intrusion
prevention measures against different attack types without the need for a
physical system. Such a testing platform to conduct a what-if analysis is useful
before the final integration of preventivemeasures in the physical environment.
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Appendix A

Source Code

All code implementations used in this thesis are available on the GitHub
repository: https://github.com/sebavarghese/MasterThesis

https://github.com/sebavarghese/MasterThesis
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