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1 Abstract

The increasing amount of spatial transcrip-
tomics data prompts for means to amalga-
mate observations from distinct experiments,
especially attractive is to cast quantities from
different sources into a common coordinate
framework (CCF) to relate signals across
space. We here present a method that enables
transfer of information from multiple samples
to a reference representing a CCF, and show
its utility by analyzing an assortment of real
and synthetic data sets.

2 Main

During the last years, there’s been an ever
increasing amount of interest in the field
of spatially resolved transcriptomics, epit-
omized by its “Method of the Year 2020”
award.[1, 2] The field has also experienced a
trend of democratization, where techniques
have spread beyond the groups originally
developing them, a phenomenon reflected by
the growing corpus of spatial transcriptomics
data. Indeed, some of the spatial transcrip-
tomics techniques have already been adopted
as commercial products and embraced by

the scientific community, thus facilitating the
production of consistent high-quality data by
a diverse set of labs. Spatial transcriptomics is
also more frequently appearing as a modality
of interest in ambitious international initia-
tives such as the Human Cell Atlas.[3] While
quantity is key to delineate the many nuances
of transcriptomics data, it also brings with it
certain challenges; perhaps most notably the
need to integrate observations from multiple
sources.

For single cell transcriptomics data the
concept of integration is often strongly
associated with the process of constructing
a shared space based on gene expression,
to then embed the data therewithin. How-
ever, in contrast to single cell data, spatial
transcriptomics data possess an inherent
low-dimensional space, being the physical
domain from which it’s collected. Thus,
when building spatial transcriptomics atlases
or summarizing larger studies, the idea
of integration should be extended beyond
elimination of unwanted batch effects. More
specifically, it ought to encompass the
transfer of data to a shared reference, where
observations from different samples can be
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related in physical space. Such references are
commonly referred to as common coordinate
frameworks (CCFs), a concept which Rood et
al. thoroughly discuss in their perspective.[4]

Considering this need for spatially aware
integration methods, we here present a
landmark-based approach to transfer spatial
transcriptomics data to a defined reference.
Our method relies on Gaussian Process
(GP) regression, which previously has been
successfully applied to identify spatially
variable genes and cell interactions.[5, 6] With
this method we seek to overcome both the
limitations of traditional alignment methods
relying on linear transformations (e.g.,
rotation and translation) as well as the need
for an extensive preexisting reference system
to which the data can be registered. We also
provide an implementation of our method as
a Python package, named “effortless generic
GP landmark transfer”, or eggplant for short.
To promote easy incorporation into already
existing workflows and increase accessibility,
eggplant is designed to be compatible with
the popular analysis framework scanpy and
its derivatives.[7]

To be more precise, our method focuses on
the specific task of transferring observed
spatial features from one coordinate system
to a given reference system, using a set of
shared spatial landmarks. The reference can
be any arbitrary structure that represents a
spatial domain onto which one seeks to trans-
fer information, see Methods. Meanwhile,
we define a spatial landmark as a feature
that can be consistently located with fairly
high precision across individuals. Samples
where spatial landmarks (for brevity, we
hereafter drop the prefix “spatial”) have been
identified will be referred to as “charted”.
Landmarks can be derived from any – to
the tissue – associated information including
morphological and molecular structures
(e.g., gene expression or protein signals).
Furthermore, the charting process can be
manual, unsupervised (using computational

methods) or a mixture of both; since our
method is agnostic to this choice, we consider
a deeper discussion regarding landmark
annotation and identification to be outside
the scope of this work. We also assume
that the spatial data has been appropriately
normalized and had eventual batch effects
corrected for.

Our method is simple in its design and
can be described in a few steps, see Figure
1A for a schematic overview. As input it
requires charted spatial transcriptomics
data containing one or more features of
interest (FOI) together with a reference. The
reference represents the domain to which the
FOI’s distribution should be transferred and
should also be charted. Next, the domain of
the observed data is transformed to make
landmark distances match those of the
reference. The transformation can either be
linear (multiplication with a scaling factor),
or non-linear (using thin plate splines) if one
suspects a non-homogeneous distortion of
the spatial domain. Finally, we formulate a
multivariate regression problem where the
value of the FOI is considered a function
of the distance to respective landmark.
We employ a GP framework, commonly
described as a distribution over functions, to
learn the relationship between feature value
and distances. A transfer of any FOI to the
reference is seamless once the relationship is
established; the function is simply applied
to each location in the reference to obtain
an estimate of the FOI value. Evidently,
multiple samples can be transferred to the
same reference, either one-by-one or jointly.
Notably, there is no need for alignment or
further processing once the samples have
been charted. We also provide a strategy to
determine a lower bound for the number
of landmarks to be used in the process, see
Methods.

To demonstrate our method, we first
apply it to a set of synthetic data containing
eight samples from different time points
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in a dynamically changing system. The
samples represent the same physical domain,
but – like real data – exhibit differences in
structure and orientation. Expression from
each time point was transferred to a reference
with the help of nine landmarks, Figure 1B.
For this, and all subsequent analyses, we
used non-linear landmark adjustment. This
transfer of data to a CCF permits a multitude
of downstream analyses, of which we will
give two examples below.

The first example focuses on characterization
of the system’s underlying spatiotemporal
dynamics. The dynamical model used
to generate the synthetic data is a two-
compartment system, in which expression
fluctuates according to a set of ordinary
differential equations (ODEs). For the sake
of simplicity, we assume that the model’s
structure is known prior to the analysis, and
therefore only aim to estimate the model’s
parameters. The two compartments between
which expression varies (C1 and C2) are
defined in our reference, allowing us to
approximate the total amount of expression
in each compartment at every time point.
From this aggregated data, we estimated the
ODE-model parameters; the corresponding
dynamics are shown in Figure 1C where
they are also compared to the ground truth
values. With the system dynamics established,
we could also reconstruct the exchange of
expression between the two compartments,
see Supplementary Figure 1. In a biological
system, this type of flux-analysis could for
example elucidate how cells migrate between
different regions in a tissue.

In a second example of downstream
analysis, we leverage the fact that all data
now inhabits the same reference, thus making
coordinates comparable between time points.
This allows us to perform “spatial arithmetics”
from which information about local up-or
downregulation of features between time
points or conditions can be deduced and
tested, see Figure 1D.

For additional evaluation of our method, a
second set of synthetic data was generated
to assess the influence of the number of
landmarks on its performance and compare
it to alternative strategies. In short, a
non-homogeneous distortion was applied
to a collection of spatial observations and
associated landmarks, see Supplementary
Figures 2A-B. We then assessed how well
each strategy could recover the original
spatial distribution of the distorted signals,
where our approach exhibited the best
performance, Supplementary Figure 2C. As
expected, for landmark-based approaches,
the number of landmarks was positively
correlated with performance; however, this
trend quickly diminished as the number of
landmarks increased.

Having established confidence in our
method, we next analyzed several sets of
real spatial transcriptomics data. In the first
analysis, we examined twelve first generation
Spatial Transcriptomics (ST1K) samples of the
mouse olfactory bulb (MOB), collected from
different individuals and sexes.[8] Here we
chose 14 landmarks, identified by morpholog-
ical cues in the accompanying Hematoxylin
and Eosin (HE) images, and charted the
corresponding sites in our reference. Having
prepared the data, we applied our method
and transferred the expression of three genes
to the reference: Nrgn, Apoe and Omp, see
Figure 2A and Supplementary Figure 3 and 4.
We also assembled “composite” expression
profiles for each of the aforementioned genes,
allowing us to represent information from all
twelve samples jointly. We also conducted
a “spatial differential expression analysis”
(sDEA) between the three genes, to examine
how their local expression differed. The
composite representations and the sDEA
results are both presented in Figure 2B.

In a second analysis, to show cross-platform
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Figure 1: A) Schematic overview of the method. 1. We, select a number (here two) of samples representing the
same spatial domain together with a reference. 2. We then chart the samples and reference (annotating landmarks).
Here, landmarks are represented by colored markers. 3. Next, a feature of interest (FOI) that should be transferred to
the reference is selected. 4. We learn the function that relates FOI values to landmark distances by using Gaussian
Process (GP) Regression. 5. Finally, the FOI is transferred to reference using the learnt relationship between expression
and landmark distances. B) Top : Observed synthetic data across eight different time points. Bottom : Results from
transferring the observed data to a reference using our method. C) Spatiotemporal analysis of material (gene expression)
transfer between the two compartments in the reference, the graph shows how the expression varies in each compartment
as a function of time. D) An example of spatial arithmetics, subtraction of values at t0 from values at t7 shows local
up-and downregulation of the feature between the two time points.
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Figure 2: A) Top left: observed spatial gene expression of Nrgn in the mouse olfactory bulb (MOB) sections (n=12).
Top right : charted HE-images of the MOB sections, landmarks are indicated by colored markers, for a larger image
see Supplementary Figure 10. Bottom left: results from transferring the observed MOB data to a common reference.
Bottom right : the charted reference to which the MOB expression data is transferred. B) Left : Composite profiles
for each of the three genes Apoe, Nrgn and Omp. The composite expression profiles are formed by computing the
location-wise mean across all twelve MOB sections, see Methods. Right : spatial differential expression analysis (sDEA)
between the three genes, see Methods. Gray areas indicate locations where there’s no differential expression between
the two compared genes. At locations with differential expression, the values for comparison ∆(g1, g2) are obtained
by subtracting the composite profile of g2 from g1. C) Results related to the human developmental heart data. The
“HE-images” panel shows the charted HE-images, landmarks are represented with colored markers. The ‘Composite”
panel gives the composite representation (across samples, n = 7) of the transferred data for each gene. The “Reference”
panel shows the reference to which data was transferred together with the four different regions, landmarks are indicated
with colored markers. The “Enrichment” panel depicts the predicted expression values of each transferred sample (black
dots) within respective region. Mean values are represented with a red marker.
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compatibility, we also transfer gene expres-
sion in the mouse hippocampal area from
data collected using both the Slide-seqV2 and
Visium platforms. The Visium sample was
charted with the help of the associated HE-
image, while we relied on total UMI-counts
for the Slide-seqV2 data, exemplifying how
both morphology and molecular information
may be used in the charting process (see
Supplementary Figure 11). As shown in
Supplementary Figures 13 (Observed) and 14
(Transferred), data from the two platforms
were successfully integrated while preserving
the intricate structure of the expression
patterns.

Finally, we produced a new set of 10x
Genomics Visium data consisting of seven
sections (A-F) à two individuals from human
developmental heart (dh) tissue (collected at
the tenth postconceptional week). We then
transferred the expression profiles of four
genes (COL2A1, ELN, MYH6 and MYH7)
from all seven sections in this data set to a
single reference. Despite vast inter-individual
differences in the structure, the transferred
data correlated well between patients; the
mean between-individual correlation was
0.88 , while the mean within-individual
correlation was 0.96 for individual 1 and
0.91 for individual 2, see Supplementary
Figure 15. We also generated gene-specific
composite profiles, see Figure 2C. Separate
representations of each combination of gene
and section pairs are found in Supplementary
Figure 5 (Observed) and 6 (Transferred).
We also segmented the reference into four
distinct spatial regions, which allowed us to
assess region-specific enrichment of genes.
Importantly, the enrichment analysis does
not require any additional annotation of the
original tissue samples, and the regions can
be redefined without any need to repeat
the transfer process. As expected, MYH6
expression was highest in the atrial regions
(Region 2 and 3), MYH7 expression was
elevated in the ventricular body (Region 0),
and ELN in the outflow tract (Region 1).[9]

The atria also were enriched for COL2A1 but
we, interestingly, observed a preserved and
statistically significant left-right asymmetry
in its expression (pvalue < 0.05, two-sided
permutation test).

Gene expression may be the primary
information that spatial transcriptomics tech-
niques produce, but there’s now a panoply of
methods to infer second order insights from
said data. Thus, to demonstrate the flexibility
of our method, we transferred inferred
(by the tool stereoscope) cell type proportion
values between two Visium sections of human
breast cancer, see Supplementary Figure 7.[10]

In this study we have presented a new
and general method to transfer spatial tran-
scriptomics data from multiple samples to a
shared reference, something that previously
only has been conceptually described. We
look at a varied set of tissue types, the
olfactory bulb and hippocampus are more
symmetrically organized tissues, the heart
is a complex asymmetric tissue, and cancer
in general possess a more random spatial
structure than healthy organs. Using these
tissues we show how eggplant generalize
well and is applicable to a broad set of targets.
The method is versatile and effortless to use.
Furthermore, the implementation leverages
the GPyTorch framework, which supports
GPU acceleration together with efficient
algorithms to reduce the inference’s complex-
ity.[11] Our tool is useful for visualization
purposes, but also prepares the data for more
extensive analysis, such as spatiotemporal
modeling, spatial arithmetics, and regional
enrichment. We are currently relying on
manual identification of landmarks, but see
a great opportunity for future research to
explore different venues for unsupervised
landmark detection. Taken together, we
consider this an important first step towards
harmonizing and integrating spatial tran-
scriptomics data in a common coordinate
framework, with particular relevance for the
collaborative Human Cell Atlas initiative.
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3 Methods

3.1 Code Availability

An implementation of our method is provided
as a Python package named eggplant, short
for effortless generic GP landmark transfer. The
package can be accessed at the GitHub reposi-
tory https://github.com/almaan/eggplant.
The repository also contains a set of Jupyter
notebooks outlining all the presented analy-
ses as well as generation of the synthetic data
associated with this study. The repository also
contains scripts to download and curate the
public data that we’ve used. We have also de-
posited a clone of the repository together with
the charted data at Zenodo, accessible via
https://doi.org/10.5281/zenodo.5659093
.

3.2 Data Availability

Except for the synthetic and developmental
heart data, we used publicly available data
sets in this study. We thus refer to the original
data sources for access, which we list below:

• Synthetic data:
https://github.com/almaan/eggplant

• MOB data:
https://www.spatialresearch.org/resources-
published-datasets/doi-10-1126science-aa
f2403/

• Mouse hippocampus (Visium):
https://support.10xgenomics.com/spatial-ge
ne-expression/datasets/1.1.0/V1_Adult_Mou
se_Brain

• Moue hippocampus (Slide-seqV2, Puck_200115_08):
https://singlecell.broadinstitute.org/sing
le_cell/study/SCP815/highly-sensitive-spat
ial-transcriptomics-at-near-cellular-res
olution-with-slide-seqv2

• bcA:
https://support.10xgenomics.com/spatial-ge
ne-expression/datasets/1.1.0/V1_Breast_Can
cer_Block_A_Section_1

• bcB:
https://support.10xgenomics.com/spatial-ge
ne-expression/datasets/1.1.0/V1_Breast_Can
cer_Block_A_Section_2

• Single cell HER2 data : https://zenodo.org/rec

ord/4739739#.YPF2D5KxVhE

For the human developmental heart, raw
sequencing data can be accessed at the Gene
Expression Omnibus (GEO) with access code
GSEXXXXXX (*). All processed data together
with the presented results are available at the
GitHub and Zenodo repositories associated
with this manuscript.(*)

*Note: all new data will be publicly available
upon publication of the manuscript.

3.3 Data Acquisition

3.3.1 Human Developmental Heart

After collection, the human developmental
heart tissue was fresh-frozen and embedded
in Tissue-Tek (OCT). The tissues samples
were cryosectioned at 10 µm thickness and
placed on 10X Visium spatial gene expres-
sion slides, to then be stored at −80oC prior
the library preparation. Libraries were gen-
erated from the samples using Visium Spa-
tial Gene Expression kit from 10x Genomics.
Every barcoded Visium array contains four
capture areas á 4992 spots, where each spot
contains probes consisting of: a spatial bar-
code, an UMI sequence, and a poly-dT-VN
sequence enabling mRNA capture. Sections
were fixed for 30 min in Methanol, stained
with Hematoxylin and Eosin and imaged us-
ing Metafer Slide Scanning system (Metasys-
tem, Altlussheim, Germany). The 10x Ge-
nomics Visium Tissue Optimization Kit was
used to determine the optimal permeabliza-
tion time, rendering an estimate of 20 mins.
The generated libraries were sequenced us-
ing the Illumina Platform. The lengths for
read 1 and read 2 were 28 bp respectively 120
bp. The sequencing data was processed with
spaceranger v.1.2.0.

3.4 Data Processing

In the Slide-seqV2 data, we removed all
beads with less than 100 UMI’s and then
subsampled the remainder to 20% of its size.
For Visium and first generation Spatial Tran-
scriptomics (ST1K) data, we used all spots
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identified to be under the tissue (for pub-
lic data sets we used the original annotations).

When analyzing gene expression data,
we applied a simple normalization strategy
compiled of functions from the scanpy (v.
1.8.1) package, the recipe is given below:

1. scanpy.pp.filter_genes(...,min_cells = 0.1)

2. scanpy.pp.normalize_total(...,1e4,
exclude_highly_expressed = True)

3. scanpy.pp.log1p(...)

4. scanpy.pp.scale(...)

When cell type proportions acted as the
feature of interest we only used standard
scaling (subtraction by mean and division by
standard deviation).

Working with the older ST1K data, we
also added a spatial smoothing step to the
above recipe (as a last step), to counteract
“holes” caused by tears or ruptures of the
tissue as well as steep gradients and variation
in the capture efficacy across the tissue. The
spatial smoothing is a form of weighted
average of the feature values observed
in a given location’s neighborhood. The
neighborhood of spot s is denoted as N (s)
and contains said spot together with its
four nearest neighbors. If ys is the prior
feature value associated with spot s, then the
smoothed equivalent ysmooth

s is defined as:

ysmooth
s = ∑s′∈N (s) ws′ys′

ws′ =
w̄s′

∑k∈N (s) w̄k

w̄s′ = exp(−||us′ − us||/σ)

(1)

Where us are the coordinates of spot s and ||.||
represents the L2-norm (euclidean distance).
In our analysis we used σ = 50.

3.5 Model

The method we propose transfers a feature
of interest from one coordinate system to a
given reference system, below we describe
the process in more detail.

Let Ω be the domain from which the
observed data is collected, while Ω′ repre-
sents the reference domain onto which we
seek to transfer information. Similarly, L ⊂ Ω
is the set of landmarks in the observed data,
while L′ ⊂ Ω′ represents the landmark posi-
tions in the reference. Here, |L| = |L′| = L,
where L is the number of landmarks and
|.| is the cardinality operator. Importantly,
L and L′ are ordered in the same way. We
also define U ⊂ Ω and U′ ⊂ Ω′ as the sets
of coordinate tuples containing the location
of each observation (ui) and reference points
(u′j). Every observation i has a target value yi
associated with it, and our primary objective
is to find the corresponding values y′j for the
reference points.

First, we will transform the coordinate
tuples in U and L, to put distances be-
tween objects in the two sets at the same
lengthscale as between their reference coun-
terparts (U′ and L′). The transformation
h can either be a simple linear scaling:
h(ui) = hconst(ui) = a · ui, or a more complex
transformation relying on thin plate splines
(TPS). In the case of the former, a will
be given as the average of ratios between
landmark-pair distances, that is:

a =
2

L2 − L

L

∑
i

L

∑
j 6=i

||l′i − l′j||2
||li − lj||2

, li ∈ L, l′i ∈ L′

(2)
In the second case, h will be a composite
function given as h(ui) = hTPS(hconst(ui)),
where hTPS restricted to a family of TPSs
parametrized by minimizing the cost C:

C =
L

∑
i=1
||l′i − h(li)||2 (3)

The transformed versions of U and L,
obtained by applying h to every element in
respective set, are referred to as U∗ and L∗.
In our implementation, we use the Python
package Morphops (v. 0.1.12) for the TPS
warping .
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Next, for all members of U∗ and U′,
we compute the distances to L∗ respectively
L′, forming the two new sets X and X′

defined as:

xip = ||u∗i − l∗p||2
x′jp = ||u′j − l′p||2

(4)

We then seek a function ϕ that will allow us
find the feature values associated with each
location in our reference:

ϕ(X′) = y′ (5)

To learn ϕ, we use Gaussian Process Regres-
sion (see Section 3.6) where the observed data
is used to learn said function.

3.6 Gaussian Process Regression

Gaussian Process (GP) Regression is funda-
mental to our method, and we will therefore
briefly describe it in the context of our work.
However, for a more elaborate account of
GP regression we refer to any of the (many)
already existing works on the subject, for
example the canonical text by Rasmussen and
Williams.[12]

A GP is defined as a collection of ran-
dom variables, of which any finite subset
have a joint Gaussian distribution. Hence,
a GP may be interpreted as a distribution
over functions that fit a certain set of points.
We denote a function f that is distributed
according to a GP as:

f (.) ∼ GP(µ(.), k(., .)) (6)

Here, µ(.) and k(., .) represent the mean
respectively covariance function (also referred
to as the kernel).

In our model, the function f relates
landmark distances to the feature of interest’s
values. We represent the complete set of
observed data as the tuple (X, y), where
X ∈ RM×L is the matrix representing the
distances to each of the L landmarks for all of

the M observations, and y ∈ RM is the value
of the feature of interest associated with each
observation. Distances and feature values are
related via f , that is f (X) = y. The distances
from the locations to the landmarks (in the
reference) are represented by X′ while y′

indicates the reference target values (which
we seek to approximate).

Due to the properties of GPs, the joint
distribution p(y, y′|X, X′; σ) thus becomes:

[
y
y′

]
∼ N

( [
µ(X)
µ(X′)

]
,
[

k(X, X) + σ2 I k(X, X′)
k(X′, X) k(X′, X′)

])
(7)

Where we account for noise in the training
data according to the model : y = f (X) +
ε, ε ∼ N (0, σ2). Using standard Gaussian
identities and the assumption µ(.) = c · 1 = c,
where c is some real number, the conditional
distribution p(y′|X′, X, y; Θ) becomes:

y′|y, X, X′ ∼ N (µ̂, k̂)
µ̂ = c + K∗(y− c)
k̂ = k(X′, X′)− K∗k(X, X′)
K∗ = k(X′, X)(k(X, X) + σ2 I)−1

(8)

With (X, y) being given, we consider the con-
ditional mean a function of X′ and will use
this as ϕ described in Section 3.5, that is:

ϕ(X′) = c+ k(X′, X)(k(X, X)+σ2 I)−1(y− c)
(9)

We support several different kernel functions
but use the RQKernel as default, which is
defined as:

[kRQ(X, X′)]ij =
(

1+
1

2α
(xi− x′j)Γ

−2(xi− x′j)
T
)−α

(10)
Where xi and x′j refers to the i:th respectively

j:th row of X and X′, while α ∈ R and Γ ∈ RL

are kernel parameters. To find optimal values
of the parameters Θ = [c, σ, α, Γ], we opti-
mize the marginal likelihood p(y|X; Θ) using
stochastic optimization. Once these param-
eters have been estimated, ϕ can be used to
estimate y′. Implementation-wise we leverage
the GPyTorch (v. 1.5.0) framework for both
inference and prediction.
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3.7 Synthetic Data

Here we outline the process by which each
synthetic data set was created, the time se-
ries data refers to the set analyzed in Figure
2 while the distortion data refers to the set
presented in Supplementary Figure 2.

3.7.1 Time series data

Eight two-colored images (see Supplementary
Figure 9) were used to generate the spatial
domain for each time point. To convert im-
ages to array data, eggplant’s reference_to_grid
function from the preprocess module was
used, this also assigned each spot in the
array to one of two groups (Compartment
1/C1 and Compartment 2/C2). The number
of transcripts in each compartment was
dictated by the dynamical system; from
which expression values at select time points
were extracted and rounded to the nearest
integer value. The transcripts were then
randomly distributed between array nodes
in the associated compartment. Below we
describe the dynamical model in more detail.

The dynamical model describes a two-
compartment system governed by the
following set of equations:

dc1
dt = (r11 − r12)c1 + r21c2

dc2
dt = (r22 − r21)c2 + r12c1

(11)

Where c1 is the amount of material in
compartment 1 and c2 the same but for
compartment 2. From a given set of initial
values, (c1(0), c2(0)), the system was then
propagated in time for a pre-determined
number of steps (T). Here the following
parameter values – arbitrarily chosen – were
used: (r11, r12, r21, r22) = (0.2, 0.1, 0.8,−0.3)
together with the initial values
(c1(0), c2(0)) = (5000, 100). The eight
time points from which we extracted expres-
sion values were equally spaced in in the
interval [0, 500].

In figures, tables and text we refer to
this synthetic data set as “Synthetic 1”.

3.7.2 Distorted data

First, a p × p grid where each node repre-
sented a spatial capture location (e.g., spot)
was generated, to figure as the domain in
which signals will be collected. Next, to
produce a spatial expression pattern, an i
iterations long random walk was performed
(the initial position also being randomly
sampled from the domain). The number of
times a node was visited in the walk was let
to represent its observed expression level; this
data represent the “ground truth”. From the
ground truth, a “distorted” representation
of the same sample was produced by first
applying a distortion field (F(x, y)) to the
node positions while keeping their values
constant. Then, we placed a new p× p grid
identical to the first over the distorted data,
and interpolated its node values by a nearest
neighbor approach. For a depiction of the
process see Supplementary Figure 2. For
our data we let p = 32, i = 1 × 104, and
F(x, y) = 2√

x2+y2
· (−y + x, x + y).

In figures, tables and text we refer to
this synthetic data set as “Synthetic 2”.

3.8 Choosing the number of land-
marks

While including more landmarks generally
will render a better result, this gain in
performance tends to be marginal after a
certain number of landmarks have been
included in the analysis. Hence, we aim to
provide means to estimate a lower bound of
the number of landmarks that should be used
when transferring information to a reference.
Below, we describe the steps to derive this
lower bound.

First, we select one representative sam-
ple from our data set and position L
landmarks in the (spatial) domain which
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the sample inhabits. Then, landmarks are
randomly placed in the domain using Poisson
Disk Sampling, where the first landmark
always is located at the domain center.[13]
We denote the set of all landmarks as L, this
set is considered as ordered. Next we specify
a sequence (NL = {l1, ..lP}, l1 ≥ 1, lp ≤ L)
of the numbers of landmarks that should
be evaluated. Then, for each entry li we
randomly choose li of the L landmarks,
and learn the transfer function using the
representative sample. In this analysis, the
normalized total-UMI count figures as the
feature of interest. For each number of
landmarks li, we compute the mean negative
marginal log likelihood (nMLL) for the
last T iterations when fitting the model,
and compare the mean values between all
numbers in NL. This process is repeated for
nrep times, which allows us to compute an
average for each element li. By inspecting
the graph obtained by plotting the average
nMLL values as a function of the number
of landmarks and applying a Savitzky–Golay
filter for smoothing, we let the lower bound
be defined as the number of landmarks where
the average nMLL starts to plateau.

Table 1 shows the estimated lower bounds
together with the actual number of used
landmarks in the analysis, the graphs from
which the lower bounds were determined
are shown in Supplementary Figure 16. In
all of our analyses we aimed to use as many
landmarks as we could confidently identify,
with the requirement that this number
should be higher than the – to each sample –
associated lower bound.

The following parameter values were
used: NL = {1, 3, 5, 7, 9, 11, 13, 15, 17, 20},
T = 200, nrep = 5, for the Savitzky–Golay fil-
ter we used the function savgol_filter from the
scipy.signal module (v. 1.7.1) with parameters
window_length=5 and polyorder=4.

3.9 ODE parameter estimation

To estimate the parameters of the ODE system
representing the dynamical model, after the
synthetic data had been transferred to the
reference, we used the BFGS algorithm with a
cost function dependent on the system model
(Equation 11). First we aggregated the data in
each compartment to get an expression tuple
for every time point, that is:

c(t) = (c1(t), c2(t)) = ( ∑
s∈C1

y′s(t), ∑
s∈C2

y′s(t)) (12)

Where Ci is the set of spots in compartment i,
y′s is the transferred expression value at array
point s, and t represents time point t. Next, let
p(., r; T) represent a function that propagates
the first argument according to the dynamics
given in Equation 11 T steps forward in time
with parameter values r. From this, the cost
(C) for a given set of parameters r takes the
form:

C =
1

2|T | ∑
t∈T

2

∑
i=1

[ci(t)− pi(c(0), r, t)]2 (13)

Where T is the set of observed time points.
We used the minimize function from scipy’s
optimization module for the optimization, and
odeint function from the integrate module to
solve the ODE system; with scipy (v. 1.7.1)

3.10 Spatial Arithmetics

Conducting any form of spatial arithmetics is
straightforward once observed data has been
transferred to the same reference. If we let
λ(., .) represent an arbitrary arithmetic oper-
ation, and y(i)s denotes transferred data from
sample i at location s in the reference, then:

ξ
(i,j)
s = λ(yi

s, yj
s) (14)

gives the expression for the spatial arithmetic
calculation, where ξ

(i,j)
s is the output associ-

ated with location s.
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3.11 Spatial Differential Expres-
sion Analysis

From the Gaussian Process Regression, we
obtain both mean and variance estimates of
the feature values at each location, together
these can be used to perform spatial differen-
tial expression analysis (sDEA) between groups
of samples (e.g., disease vs. control). First,
we compute the local group mean (µ) and
variance (σ2) values for a FOI, which for any
group G and location s are defined as:

µ
(G)
s = ∑

g∈G
w(g)µ

(g)
s (15)

And

(σ2
s )

(G) = ∑
g∈G

w(g)(σ2
s )

(g)+

∑
g∈G

w(g)(µ
(g)
s )2−

( ∑
g∈G

w(g)µ
(g)
s )2

(16)

Where w(g) denotes the weight that should be
given to sample g when computing the mean,
and ∑g∈G w(g) = 1 if nothing else is stated
we assign equal weights to all samples within
the same group. Next, for each group G and
location s we construct an interval (I(G)

s ) ac-
cording to:

I(G)
s = [µ

(G)
s − z ∗ σ(G), µ

(G)
s + z ∗ σ)(G)] (17)

Where z relates to the number of samples that
would fall into the interval if we were to sam-
ple new values from the mixed distribution,
if nothing else is stated we use z = 2. Finally,
we consider the FOI to be to be spatially dif-
ferentially expressed at location s between the
two groups Gi and Gj if the two intervals I(Gi)

s

and I
(Gj)
s do not overlap. Evidently, a larger

value of z will require that the two groups
are more distinct in their expression of the
FOI to be considered spatially differentially
expressed at a given location.

3.12 Analysis

3.12.1 Transfer to reference with eggplant

In all analysis steps we used 1000 epochs,
an RQKernel, and the Adam optimizer with
a learning rate of 0.01. The references were
all represented by approximately 1000 array
points, except for the human developmental
heart data where 10000 array points were
used. The number of landmarks used in
each analysis are listed in 1. The landmarks
did not correspond to any “established”
anatomical features but were rather selected
based on their ease of identification from
the morphology or gene expression pattern
across the examined samples.

All references used in our analyses are
found in Supplementary Figure 8 together
with their respective landmark annotation.
The charted observed data is displayed
in Supplementary Figure 9-12. All this
information is also available in the – to this
manuscript – associated GitHub repository.

Data set
Lower
Bound

Used
Landmarks

Synthetic 1 5 9
MOB 9 14

Mouse Hippocampus 5 6
Human Breast Cancer 5 10

Human Developmental Heart 5 16

Table 1: Landmark lower bounds and number of used
landmarks. The column “Lower bound” gives the esti-
mated lower bound for the number of landmarks to be
used in each data set. The column “Used Landmarks”
lists the number of landmarks actually used in the anal-
ysis. The representative sample (S) from each data set
(D) are given as (D,S): (Synthetic 1, t7), (MOB, Rep1),
(Mouse Hippocampus, Visium), (Human Breast Cancer,
bcA), (Human Developmental Heart, dhA).

3.12.2 Benchmarking and Landmark Influ-
ence

We compared the transfer made by eggplant
with three alternative strategies: “no correc-
tion”, “constant mean”, and thin plate spline

12



interpolation (TPS). The task designed to mea-
sure performance consisted of trying to trans-
fer distorted data back to its original (ground
truth) distribution in a data set generated ac-
cording to the procedure described in Meth-
ods Section 3.7.2. The Root Mean Squared
Value (RMSE) value between the ground truth
and the corrected values was used as a met-
ric to assess performance. In the “no correc-
tion” strategy, the grid values in the distorted
data is immediately compared to the ground
truth values. This strategy emulates a sce-
nario where tissue sections would be aligned,
but non-linear distortions not accounted for.
In the “constant mean” approach, we assign
all grid points the same value, being the mean
value. Notably, the expected RMSE value for
this approach is 1 since we applied standard
scaling to the data. Finally, with the TPS
method, the same landmarks as provided to
eggplant were used to correct for the distortion;
then every grid point in the reference domain
was assigned the value of its nearest neighbor
among the shifted data points. We compared
the strategies with different number of land-
marks (L ∈ {3, 7, 11, 15, 19, 23, 27, 31, 35, 39})
and repeated each comparison 3 times to asses
variance of the outcome. In each iteration, the
landmarks were selected from a set of 40 ran-
dom positions – sampled by the same Poisson
Disc Sampling strategy as referenced above
– in the spatial domain and then distorted
by the same field F as the grid points dur-
ing generation of the distorted set. For the
TPS strategy we use the Morphops (v. 0.1.12)
package , for the 2d interpolation we used
scipy.interpolate’s griddata function (v. 1.7.1).

3.12.3 Statistical Tests

In our study we perform a permutation
test to asses whether there’s an asymmetry
between the two different atria (Region 2 and
3) w.r.t. COL2A1 expression in the human
developmental heart data set. We favored
a permutation test since our observations
violate the i.i.d. assumption that most
statistical tests rely on. We outline how this

test is constructed below.

For two arbitrary regions A and B, we
let RA and RB denote the sets of feature
values associated with the locations contained
within respective region. Without loss of
generality, we here assume that our objective
is to determine whether the expression of
a feature of interest differs between region
A and region B. We define the mean region
difference (∆A,B) as the mean of the difference
in feature value across all combinations of
observations from each set. That is:

∆A,B =
1

|RA| ∗ |RB| ∑
x∈RA

∑
y∈RB

x− y (18)

Our objective is then equivalent to testing
whether the observed mean region difference
is more extreme than what is expected by
chance. To perform this test we shuffle the
observations’ region labels and compute the
∆A,B value for each permutation. We then
compute the p-value as:

p1 = 1
nperm

∑
nperm

i I[∆perm,i
A,B ≤ ∆obs

A,B]

p2 = 1
nperm

∑
nperm

i I[∆perm,i
A,B ≥ ∆obs

A,B]

pval = 2×min(p1, p2)

(19)

Where I is the indicator function. If pval ≤ α,
the difference in expression between the two
regions is considered statistically significant.
Here α is the significance level, and the test is
two-sided in its character. In our analysis of
the COL2A1 right-left asymmetry, we let α =
0.05 and ran 1000 permutations.[14] The test
was applied to the composite representation of
the COL2A1 expression.

3.12.4 Single cell mapping with stereo-
scope

For the stereoscope (v. 0.3.1) analysis we used
the major cell type tier found in the single cell
data, only including cells from HER2-positive
patients. Cell types with less than 25 mem-
bers were excluded, for cell types with more
than 500 members, a subset consisting of 500
cells were randomly sampled from these. We
also used a curated list of genes in the analy-
sis consisting of 5540 members, representing
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a union of the 5000 highest expressed genes
and cell type specific marker genes, see Sup-
plementary Data 13 in [15]. We used 50000
epochs and a batch size of 2048 for the sin-
gle cell parameter estimation as well as the
proportion inference.
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