
Doctoral Thesis in Electrical Engineering

First-Order Algorithms for
Communication Efficient
Distributed Learning
SARIT KHIRIRAT

Stockholm, Sweden 2022

kth royal institute
of technology

First-Order Algorithms for
Communication Efficient
Distributed Learning
SARIT KHIRIRAT

Doctoral Thesis in Electrical Engineering
KTH Royal Institute of Technology
Stockholm, Sweden 2022

Academic Dissertation which, with due permission of the KTH Royal Institute of Technology,
is submitted for public defence for the Degree of Doctor of Philosophy on Wednesday 9th of
March 2022 at 2:00 PM in U1, Kungliga Tekniska Högskolan, Brinellvägen 26, Stockholm.

© Sarit Khirirat

ISBN 978-91-8040-134-0
TRITA-EECS-AVL-2022:9

Printed by: Universitetsservice US-AB, Sweden 2022

Abstract

Innovations in numerical optimization, statistics and high perfor-
mance computing have enabled tremendous advances in machine learn-
ing algorithms, fuelling applications from natural language processing
to autonomous driving. To deal with increasing data volumes, and
to keep the training times of increasingly complex machine learning
models reasonable, modern optimization algorithms distribute both
data and computations over a large number of machines. However,
these algorithms face challenges, from hardware and data heterogene-
ity (as different machines have different processors and data) to privacy
and security issues (where data can be extracted from the transmit-
ted parameters). Among these challenges, communication overhead
constitutes a major performance bottleneck of the algorithms. Com-
municating millions of problem parameters between machines has been
reported to consume up to 80% of the training time. To alleviate the
communication bottleneck, we develop theory and strategies in this
thesis to design communication-efficient optimization algorithms.

In the first part, we provide unified analysis frameworks for first-
order algorithms using direct or error-compensated compression. We
first identify key characteristics of the compression errors induced by
many of the most popular compression strategies in the literature. We
then perform a unified analysis of the convergence properties of first-
order algorithms for general families of deterministic and stochastic
gradient compression algorithms. Our results give explicit expressions
for how compression accuracy and the amount of asynchrony affect
the step-sizes and guaranteed convergence times. We next turn our
attention to error-compensated compression algorithms. We develop
theoretical explanations for why error-compensated compression algo-
rithms attain solutions with arbitrarily higher accuracy than direct
compression algorithms. Our results provide strong convergence guar-
antees of error-compensated compression algorithms for distributed
and federated learning problems.

In the second part, we provide flexible tuning frameworks to op-
timize convergence performance of compression algorithms for a va-
riety of system architectures. We start by analyzing data-dependent
complexity that explains why direct compression algorithms are more
communication-efficient than full-precision algorithms in practice. This
complexity leads to automatic tuning strategies that enable popular
compression algorithms on different communication networks to maxi-
mize both the convergence progress towards the solution and the com-
munication efficiency. We then turn our attention to diminishing step-
size schedules to maximize the convergence speed of the algorithms
using noisy gradients. Our analysis framework is based on two classes
of systems that characterize the impact of the step-sizes on the speed
of noisy gradient algorithms. Our results show that such step-size
schedules enable these algorithms to enjoy the optimal rate.

Applications of the algorithms in the thesis to central machine
learning problems on benchmark data validate our theoretical results.

Abstract

Enorma framsteg inom maskininlärningsalgoritmer förbättrar cen-
trala tillämpningar av artificiell intelligens, från naturlig språkbehand-
ling till autonom körning, tack vare innovation inom numerisk optime-
ring och högpresterande datorsystem. Dessa optimeringsbaserade algo-
ritmer använder miljarder maskiner för att samordnat lösa storskaliga
problem inom önskvärd träningstid. Emellertid utgör de utmaningar,
från hårdvaru- och dataheterogenitet (eftersom olika enheter har oli-
ka datorkraft och data) till integritets- och säkerhetsproblematik (där
data kan extraheras från de överförda parametrarna). Bland dessa ut-
maningar utgör kommunikationsoverhead en stor del av prestanda-
flaskhalsen för algoritmerna. Att kommunicera miljoner problempara-
metrar mellan maskiner har rapporterats förbruka upp till 80 % av trä-
ningstiden. För att lätta kommunikationsflaskhalsen utvecklar vi teori
och strategier i denna avhandling för att designa kommunikationseffek-
tiva optimeringsalgoritmer. I den första delen tillhandahåller vi enhet-
liga analysramverk för att analysera prestanda för första ordningens
optimeringsalgoritmer med direkt eller felkompenserad komprimering,
på en enda maskin och över flera maskiner. Vi skisserar först defini-
tioner av kompressionstekniker som täcker in många kompressorer av
praktiskt intresse. Sedan analyserar vi konvergens av första ordning-
ens algoritmer som använder antingen deterministisk eller stokastisk
kompression. Våra resultat påvisar den explicita effekten av kompres-
sionsnoggrannhet och asynkrona fördröjningar på steglängd, konver-
genshastighet och lösningsnoggrannhet för direktkomprimeringsalgo-
ritmer. Vi vänder sedan vår uppmärksamhet till felkompenserade kom-
primeringsalgoritmer. Vi utvecklar teoretiska förklaringar till varför
felkompenserade komprimeringsalgoritmer uppnår lösningar med god-
tyckligt högre noggrannhet än direkta komprimeringsalgoritmer. Våra
resultat visar starka konvergensgarantier för felkompenserade kompri-
meringsalgoritmer för distribuerade och federerade inlärningsproblem.
I den andra delen tillhandahåller vi flexibla inställningsramverk för
att optimera konvergensprestanda för komprimeringsalgoritmer för en
mängd olika systemarkitekturer. Vi börjar med att analysera data-
beroende komplexitet som förklarar varför direktkomprimeringsalgo-
ritmer är mer kommunikationseffektiva än fullprecisionsalgoritmer i
praktiken. Denna komplexitet leder till automatiska inställningsstra-
tegier som möjliggör populära komprimeringsalgoritmer på olika kom-
munikationsnätverk för att maximera både framskridandet av kon-
vergensen mot lösningen och kommunikationseffektiviteten. Vi riktar
sedan vår uppmärksamhet mot steglängdsminskningsscheman för att
maximera konvergenshastigheten för de algoritmer som använder sto-
kastiska gradienter. Vår analysram baseras på två klasser av system
som kännetecknar steglängdernas inverkan på hastigheten av stokas-
tiska gradientalgoritmer. Våra resultat visar att sådana steglängds-
scheman gör det möjligt för dessa algoritmer att åtnjuta den optimala

hastigheten. Simuleringar av algoritmer i denna avhandling på verkliga
problem med referensdatamängder validerar våra teoretiska resultat.

vii

Acknowledgements
I first would like to express my gratitude to my main supervior, Mikael Jo-
hansson, for mentoring me during my Master’s thesis project which introduces
me to active research areas in optimization methods for machine learning and
control applications; and for facilitating me to go through this academic jour-
ney as a doctoral student supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP) funded by Knut and
Alice Wallenberg Foundation. My most memorable advice from him is that
research outputs with strong contributions require time and patience to learn
and understand problems before solving them.

Thanks to Mikael, I am indebted to strong collaborators whom I have
worked with. I first would like to thank Hamid, my previous supervisor of my
Master’s thesis, for the journey of introducing me into research areas in big-
data optimization. I am grateful for collaborating with Dan Alistarh, Sindri
Magnússon and Arda Aytekin, who introduce communication-efficient machine
learning, one of the most active machine and federated learning research areas.
I thank Xuyang Wu, Xiaoyu Wang, and Erik Berglund for current and ongoing
research collaborations in zeroth-order and distributed optimization.

The division of Decision and Control Systems at KTH provides me with
a dynamic research community. I enjoy myself spending time discussing, con-
necting and interacting with PhD students and postdocs from other groups.
I would like to thank colleagues in our research group for intellectual friend-
ship: Sindri, Arda, Vien, Martin, Malin, Hamed, Erik, Xiaoyu, Xuyang, Jacob,
Dominik and Max; and also colleagues outside the group: Alexander, Mina,
Rodrigo, Robert, Ines, and others.

Last but not least, I thank for my family’s support from Thailand.

Sarit Khirirat,
Stockholm, February 2022.

Contents

Contents viii

1 Introduction 1
1.1 High Performance Computing Architectures 4
1.2 New Challenges in Scalable Optimization 5
1.3 Communication-Efficient Optimization 7
1.4 Research Challenges . 8
1.5 Thesis Organization and Contributions 9

2 Preliminaries 13
2.1 Notations . 13
2.2 Convex Optimization . 13
2.3 Proximal Operator . 15
2.4 Numerical Optimization Methods 16

2.4.1 First-order Methods . 16
2.4.2 Operator Splitting Methods 19
2.4.3 Zeroth-order Methods 20

2.5 Performance Analysis of Optimization Methods 20
2.6 Architectures for Scalable Optimization 21

2.6.1 Full Gradient Communication: Dual Decomposition . . 22
2.6.2 Partial Gradient Communication 23

2.7 Federated Learning . 25
2.8 Compression Operators . 25

2.8.1 ε-Compressor . 26
2.8.2 Bounded Relative Error Quantizer 27
2.8.3 Unbiased Random Quantizer 27

I Analysis 29

3 Compressed Gradient Methods 31
3.1 Gradient Compression . 32

3.1.1 Bounded Relative Error Quantizer (BREQ) 33
3.1.2 Unbiased Random Quantizer (URQ) 35

3.2 Assumptions . 37
3.3 Convergence Analysis under BREQ 38

3.3.1 Tighter Convergence of Deterministic Sparsification . . 40
3.3.2 Experimental Results 41

3.4 Convergence Analysis under URQ 42

viii

Contents ix

3.4.1 Full Gradient Communication 43
3.4.2 Partial Gradient Communication 47
3.4.3 Simulation Results . 52

Appendices 57
3.A Derivation of BREQ parameters 57
3.B Proofs of main results for BREQ 58

3.B.1 Lemma 3.6 . 58
3.B.2 Proof of Theorem 3.1 58
3.B.3 Proof of Corollary 3.1 60
3.B.4 Proof of Theorem 3.2 61
3.B.5 Proof of Corollary 3.2 62

3.C Proof of main results for URQ 62
3.C.1 Proof of Lemma 3.4 . 62
3.C.2 Proof of Theorem 3.3 63
3.C.3 Proof of Corollary 3.3 64
3.C.4 Proof of Theorem 3.4 65
3.C.5 Proof of Corollary 3.4 69
3.C.6 Proof of Lemma 3.5 . 69
3.C.7 Proof of Theorem 3.5 71
3.C.8 Proof of Theorem 3.6 72

4 Error-compensated Gradient Methods 79
4.1 Motivation and Prelimiary Results 80

4.1.1 Distributed Optimization 80
4.1.2 Gradient Compression 81

4.2 The Limits of Direct Gradient Compression 81
4.2.1 Full Gradient Communication and Quadratic Case . . . 82
4.2.2 Partial Gradient Communication 83
4.2.3 Limits of Direct Compression: Lower Bound 84

4.3 Error Compensated Gradient Compression 85
4.3.1 Error Compensation: Algorithm and Illustrative Example 86
4.3.2 Partial Gradient Communication 87
4.3.3 Comparison to Hessian-Free Error Compensation 91
4.3.4 Algorithm Complexity and Hessian Approximation . . . 92

4.4 Numerical Results . 93
4.4.1 Linear Least Squares Regression 93
4.4.2 Non-convex Robust Linear Regression 94
4.4.3 Step-size tuning without the Lipschitz constant 95

Appendices 99
4.A Review of Useful Lemmas . 99
4.B Proof of Main Results . 99

4.B.1 Proof of Theorem 4.1 99

x Contents

4.B.2 Proof of Theorem 4.2 101
4.B.3 Proof of Theorem 4.3 101
4.B.4 Proof of Theorem 4.4 103
4.B.5 Proof of Theorem 4.5 104
4.B.6 Proof of Theorem 4.6 107
4.B.7 Proof of Theorem 4.7 108

5 Federated Learning with Error-compensated Compression 113
5.1 λ-FedSplit . 114
5.2 Direct Compression - Limitations 115
5.3 Eco-FedSplit . 118
5.4 Experimental Results . 119

5.4.1 Synthetic Data . 121
5.4.2 Benchmark Data . 121

Appendices 123
5.A Proof of Theorem 1 . 123
5.B Proof of Theorem 2 . 124
5.C Proof of Theorem 3 . 125

II Flexible Tuning Framework 129

6 Adaptive Compression Framework 131
6.1 Background . 132

6.1.1 Gradient Compression 133
6.1.2 Communication Cost: Bits, Packets, Energy and Beyond 134
6.1.3 Key Idea: Communication-Aware Adaptive Tuning (CAT)135
6.1.4 Dynamic Sparsification Benefits in Theory and Practice 136

6.2 Dynamic Sparsification + Quantization 140
6.3 Dynamic Stochastic Sparsification: Stochastic Gradient & Mul-

tiple Nodes . 141
6.4 Experimental Results . 143

Appendices 147
6.A Proofs of Lemmas and Propositions 147

6.A.1 Proof of Lemma 6.1 . 147
6.A.2 Proof of Lemma 6.2 . 148
6.A.3 Proof of Proposition 6.1 149
6.A.4 Proof of Proposition 6.2 149
6.A.5 Proof of Lemma 6.3 . 149
6.A.6 Proof of Lemma 6.4 . 150
6.A.7 Proof of Lemma 6.5 . 150

6.B Iteration Complexities of Adaptive Compressors 151

Contents xi

6.B.1 Analysis for Deterministic Sparsification 151
6.B.2 Analysis for Dynamic Sparsification together with Quan-

tization . 151
6.B.3 Analysis for Stochastic Sparsification 152

6.C Iteration Complexities for Deterministic Sparsification 153
6.D Iteration Complexities for S+Q 155
6.E Iteration Complexities for Distributed Stochastic Sparsified Gra-

dient . 157
6.F Discussions on Optimizing Parameters of Stochastic Sparsification162
6.G Descent Lemma for Multi-node Gradient Methods with Stochas-

tic Sparsification . 162
6.H Additional Experiments on Logistic Regression over URL 163

7 Improved Step-Size Schedules for Noisy Gradient Methods 169
7.1 Step-size Lemmas for Perturbed Sequences 170

7.1.1 Contractive System With Noise 170
7.1.2 Non-expansive system with noise 172

7.2 Applications . 174
7.2.1 Proximal Stochastic Compression Algorithms 175
7.2.2 Proximal Stochastic Coding Algorithms 176
7.2.3 Proximal Zeroth-Order Algorithms 178

7.3 Experimental Results . 180
7.3.1 Strongly-convex Regularized Logistic Regression 180
7.3.2 Non-convex Robust Linear Regression 182

Appendices 183
7.A Proofs . 183

7.A.1 Proof of Central Lemmas 183
7.A.2 Useful Lemmas for Applications 186
7.A.3 Proof of Theorem 7.1 190
7.A.4 Proof of Theorem 7.2 191
7.A.5 Proof of Theorem 7.3 192

8 Conclusion and Future Outlook 197

References 201

Chapter 1

Introduction
In science and engineering we are often interested in finding the best decision
among many possible alternatives. For instance, statisticians and control en-
gineers aim to determine the best estimators which describe data sets, and the
most accurate mathematical models based on signals of processes, respectively.
The search for optimal solutions to engineering problems can often be formu-
lated in the framework of mathematical programming. Here, optimization
problems are typically written in the standard form

minimize F (x)
subject to x ∈ X ,

(1.1)

where x is the decision variable, X is the constraint set restricting the ad-
missible decisions, and F (x) is the objective function measuring the cost of
the decision. Once we have formulated the problem in mathematical terms,
we can apply a wide variety of optimization algorithms, which start from an
initial solution and iteratively improve the solution until an optimal solution
is found

Over the last two decades, the popularity of optimization has increased
dramatically. There are several reasons for this increase in popularity: on the
one hand, the emergence of efficient general-purpose convex optimization algo-
rithms and the abundance of computing power means that we can solve larger
problems quicker and more reliably than ever; on the other hand, an increased
awareness of optimization in general, and convex optimization in particular,
has fueled the application of optimization techniques to many challenging real-
world problems in wireless networks, signal processing, machine learning and
control. We illustrate three successful real-world examples solved by optimiza-
tion tools: resource allocation, binary classification, and adversarial attacks.

Example 1.1 (Resource Allocation). The problem of allocating scarce re-
sources to users arise in several application areas such as smart grids, wireless
networks and finance.

Consider a network with n users and a single supplier in Figure 1.1. The
objective is allocating resource budgets qi ∈ R+ from the supplier to user
i = 1, 2, . . . , n to maximize the sum of all local utility functions from the user∑n
i=1 U

i(qi) subject to capacity constraints, i.e. the total resource capacity
from the supplier Q ∈ R+. The resource allocation problem can be cast as the
following optimization program:

1

2 Introduction

A supplier

User 1 U1(q1)

User 2 U2(q2)

...

User n Un(qn)

q1

q2

q3

Figure 1.1: A network of n users and a single supplier.

maximize
q1,q2,...,qn

n∑
i=1

U i(qi)

subject to
n∑
i=1

qi ≤ Q.

As the networks are growing to meet the increasing demand of multiple
users (e.g. several IoT devices in the wireless networks), we need to solve
larger optimization problems to coordinate the networks efficiently. Therefore,
we need novel optimization algorithms which can handle the unprecedented
scale of these problems.

Example 1.2 (Machine Learning). Machine learning (ML) has become ex-
tremely successful in extracting useful information directly from data. ML
tasks are usually formulated as optimization problems and therefore optimiza-
tion plays a central role in ML. Among important ML problems is classifi-
cation, which attempts to learn an optimal prediction for labelling new data
samples. One prominent example is image recognition [1], where we try to
classify objects from images (e.g. the hand-written digits from 0 to 9 in Fig-
ure 1.2).

We can formulate classification tasks into the form of optimization problem
(1.1) as follows: Given the collection of data {(a1, b1), (a2, b2), . . . , (an, bn)}
with the feature ai and its associated class label bi

minimize
x∈Rd

1
n

n∑
i=1

`(x; ai, bi),

3

Figure 1.2: Sample digit images of the MNIST dataset from 0 to 9.

where x is the parameter of a classification rule, and `(x; ai, bi) is called a loss
function measuring the error of predicting the class label based on the input
ai and the rule x when the true label bi is known.

Optimizing these ML models on the increasingly large volumes of data (e.g.
collected from millions of images [2], of audio recordings [3], or of songs [4])
motivates the need of developing novel efficient optimization algorithms.

Example 1.3 (Adversarial Attacks). Adversarial attacks are methods for
crafting adversarial examples, which are slightly modified data samples, to
test if trained neural network models misclassify these samples or not.

Given a data sample (e.g. an image) x0, the adversarial attack tries to find
an adversarial sample x, which the trained neural network model classifies into
an incorrect target class label l. One possible adversarial attack task can be
formulated into the following optimization problem:

minimize
x∈Rd

f(x, l) = max
{

max
i6=l

log[Z(x)]i − log[Z(x)]l,−ω
}

subject to ‖x− x0‖ ≤ ε.

Here, [Z(x)]i is the predicted probability that x belongs to class i, Z(x) is the
output of all layers except the softmax layer from the trained network, ω > 0
is a parameter which measures how likely the trained network will classify x
with the incorrect label l, and ε > 0 is a parameter which measures how much
x differs from x0

As the trained neural network models and images become huge in dimen-
sion, novel optimization algorithms are required to produce adversarial exam-
ples efficiently.

These aforementioned examples highlight the importance of addressing
large-scale optimization problems that traditional algorithms cannot handle.
To solve such huge problems within reasonable training times, we must develop
scalable parallel and distributed optimization algorithms.

4 Introduction

Processor 1 Processor 2 Processor N

Interconnection network

· · ·

· · ·Memory 1 Memory 2 Memory N

(a) Shared memory

Processor 1 Processor 2 Processor N

Interconnection network

· · ·

Memory 1 Memory 2 Memory N

(b) Distributed memory

Figure 1.3: The simplified view of shared and distributed memory systems.

1.1 High Performance Computing Architectures
Traditional computer programs are written in a serial fashion to perform one
execution at a time. However, a single computer using the serial program
cannot efficiently solve the huge-dimensional optimization problem on mas-
sive data. This necessitates the use of parallel programming. The key idea
is first to split the whole optimization problem into smaller sub-problems.
These sub-problems can be then solved concurrently by multiple processors
in a single computer, or by multiple connected computers. Finally, parallel
programs are written to allow multiple processors (or computers) to perform
concurrent computations to find optimal solutions faster and/or to deal with
larger optimization problems. For training deep neural network models such
as ResNet, AlexNet and LSTM, parallel programs can be written to exploit
multiple GPUs to significantly reduce processing time even on several data
samples [5, 6]. Such parallel programs can be implemented by using many
software frameworks such as MPI [7], MapReduce [8], Aparche Spark [9] and
POLO [10, 11]. In addition, parallel computing architectures can be categorized
based on system memory or coordination.

Shared-Memory and Distributed-Memory Systems
Parallel computing architectures have different memory structures to utilize
multiple processors efficiently. In essence, they can be categorized mainly into
shared memory and distributed memory.

The shared-memory system contains multiple processors, which all share
access to every memory space via an interconnected network called a memory
bus (see Figure 1.3a). Thanks to this feature, some languages provide parallel
programming standards (e.g. OpenMP [12]) that conveniently split computa-
tional tasks among the processors in the shared-memory system. However,
the memory bus in this system requires huge bandwidth to guarantee that
the increasing number of processors all can directly access the shared mem-
ory space. This limitation of the system connections restricts the number of
connected processors and peak performance [13].

New Challenges in Scalable Optimization 5

In the distributed-memory system, each processor has immediate access to
its local memory, whereas some global information can be coordinated among
the processors using the interconnection network (see Figure 1.3b). Coordi-
nations among the processors involve a message passing model that requires
explicit use of send or receive primitives. These coordination primitives need
not only the use of third-party libraries, such as OpenMPI [14] and ZMQ [15],
but also substantial changes in the serial programs to generate the efficient
parallel programs.

Centralized and Decentralized Coordination
Both shared-memory and distributed-memory systems need coordination be-
tween the processors to collaboratively solve large-scale problems. The coor-
dination can be either centralized or decentralized.

In the centralized coordination, every computing node (e.g. processor or
computer) participates in collective communication, e.g. broadcasting the
same information to or aggregating information from all the nodes. One com-
mon centralized coordination architecture is master-server. In the master-
server architecture, each worker node executes its tasks independently of oth-
ers, and transmits its output (e.g. its local solution or gradient) only to the
master node (see Figure 1.6). Among implementations that use this architec-
ture are Project Adam [16], Tensorflow [17] and POLO [10, 11].

Unlike the centralized coordination, the decentralized coordination does
not need any central coordinator. In particular, each node communicates only
with its neighboring nodes under the given network topology (see topology
examples in Figure 1.4). This topology can be either undirected where each
node exchanges data to the neighboring nodes in both directions, or directed
where each node transmits data to the neighboring nodes in only one direction;
see Figure 1.5. The topology captures many real-life communication models,
and it thus plays a central role in the costs of information exchanged between
multiple nodes. Implementations for the decentralized coordination rely on
AllReduce operations [18] using popular frameworks and packages [19, 20, 7].
In AllReduce, all worker nodes perform reduction operations, which aggregate
all the computations and generate the output. AllReduce can be implemented
by third-party libraries such as Horovod [21] and Tensorflow [17].

1.2 New Challenges in Scalable Optimization
Modern optimization algorithms which utilize the parallel architectures are
important to solve scalable problems. Parallelization reduces computation
times at the cost of large communication overhead, which becomes a main
performance bottleneck of algorithms. This bottleneck results from data com-
munication between machines. In this process, data is represented by series

6 Introduction

(a) (b) (c)

Figure 1.4: Examples of decentralized coordination networks: (a) line topol-
ogy, (b) circular topology, and (c) 4-connected ring topology.

1

2

3

(a) Undirected network

1

2

3

(b) Directed network

Figure 1.5: Examples of undirected and directed decentralized coordination
networks of three nodes.

of bits or binary digits (0 or 1) for efficient transmission. For instance, the
communication of each machine needs 32d bits to transmit the vector con-
sisting of d single-precision floating points. To get a sense of communication
costs, transmitting a single stochastic gradient using 32 bits per element re-
quires 40 MB for a neural network model with 10 million parameters [22].
This implies that if we run the gradient-based algorithm on the 4G network,
then we expect to transmit roughly one gradient per second, and typically
need to transmit thousands of gradients per machine for the algorithm to ob-
tain the sufficiently high-accuracy solution. These huge communication costs
can easily overburden the algorithms running on architectures especially with
resource-constrained devices such as the Arm Cortex-M microcontrollers with
only 500KB available memory [23, 24].

Since communication can dominate overall training time [22], this commu-
nication bottleneck motivates a fundamental need to design communication-
efficient optimization algorithms using the parallel architectures.

Communication-Efficient Optimization 7

Data-set 1

D1

Data-set n

Dn

...

Master

Figure 1.6: Master-server architecture.

1.3 Communication-Efficient Optimization
Communication constitutes a major performance bottleneck for optimization
algorithms using parallel architectures to solve state-of-the-art machine learn-
ing applications. For instance, running stochastic gradient-based algorithms
require 80% and 70% of training time for communication to train neural net-
works called AlexNet with 62 million parameters and LSTM with 13 million
parameters, respectively [22]. These communication bottlenecks are mainly
attributed to the size of transmitted information per machine and to commu-
nication frequency between the machines. This necessitates the development of
communication-efficient optimization algorithms to alleviate this communica-
tion bottleneck, which can directly decrease overall time or energy for training
the machine learning models. To reduce communication bandwidth, two com-
monly used mechanisms in these algorithms include infrequent communication
protocols and low-precision information.

Infrequent Communication
Among popular mechanisms to decrease communication are infrequent com-
munication protocols that reduce frequency of communicating information be-
tween the machines. One simplest protocol is asynchronous communication,
where the algorithms update the solution using the currently available infor-
mation sent from a single machine. Although this protocol decreases communi-
cation frequency, it introduces asynchrony into the algorithms. When training
on the architectures with many stragglers (the slowest machines) which pro-
duce long communication delays [25, 26, 27], these asynchronous algorithms
often suffer from slow convergence performance. To diminish the communica-
tion delays, one commonly used alternative is to allow the machines to perform

8 Introduction

some local updates before transmitting their local information. The algorithms
using this protocol are called federated learning algorithms. While federated
learning algorithms reduce communication by increasing local computations,
they face novel challenges, e.g., in hardware and data heterogeneity (as differ-
ent machines access to different local processors and data) and in privacy and
security (where attackers can extract valuable data from transmitted infor-
mation). Thus, designing federated learning algorithms that guarantee high
communication efficiency and practical performance while alleviating these
technical issues is a challenging task.

Low-Precision Information
Another mechanism to reduce communication is to apply compression on in-
formation before transmission. Two successful examples of such compression
strategies include sparsification which transmits only a few elements of infor-
mation, and quantization which reduces information to a low-precision repre-
sentation. Although optimization algorithms using state-of-the-art compres-
sion operators save communication bandwidth, they often suffer from slow
convergence performance [28, 29]. This leads to significant developments in
novel compression mechanisms that enable these algorithms to attain both
communication savings and convergence performance comparable to the algo-
rithms using full-precision information [22, 30, 31].

1.4 Research Challenges
Motivated by the need to solve this communication bottleneck problem, the
challenging research goal is to develop optimization algorithms which reduce
the communication while maintaining competitive performance. In particular,
the ultimate research question is

Can we design scalable optimization algorithms with significantly reduced
inter-node communication, which are able to alleviate the communication

bottleneck, and converge to high-accuracy solutions faster and more
efficiently than full-precision algorithms?

To answer this question, we focus on compression operators, novel mechanisms
and hyperparameter tuning frameworks for communication-efficient optimiza-
tion algorithms throughout the thesis. First, we provide a unified convergence
of popular optimization algorithms with many compressors of interest. In par-
ticular, we characterize the explicit impact of compression level on theoretical
convergence guarantees. Second, we develop novel compensation mechanisms
that enable general compression algorithms to gain fast convergence speed
and high solution accuray. We also provide theoretical justifications on why

Thesis Organization and Contributions 9

and when these mechanisms significantly improve the performance of compres-
sion algorithms, and also theoretical convergence guarantees for compression
algorithms using these mechanisms. Third, we propose tuning frameworks
to improve communication efficiency and convergence performance of general
compression algorithms. In particular, we show tuning strategies that allow
popular compression operators to adjust their compression level adaptively to
maximize communication efficiency and convergence speed of algorithms, and
strategies to fine-tune step-sizes (or learning rates) that enable the algorithms
to attain fast convergence rate and high solution accuracy.

1.5 Thesis Organization and Contributions
We now summarize thesis outline and the contributions in each chapter.

Chapter 2: Preliminaries
In this chapter, we introduce notations and definitions used in this thesis. We
review background of convex optimization; first-order methods, performance
analysis and applications on scalable parallel architectures; and important
families of compressors.

Chapter 3: Compressed Gradient Methods
Compression and asynchronous computation have emerged as two key tech-
niques for achieving scalability in optimization algorithms. However, only a
few theoretical results quantify how these techniques impact algorithmic con-
vergence performance. This chapter presents a unified convergence analysis
for several first-order algorithms with compression and asynchronous com-
putation. Our results characterize the explicit impact of asychrony delays
and compression accuracy on convergence guarantee in terms of iteration and
communication complexity. Numerical results confirm that fast convergence
of these algorithms using limited information exchange is indeed possible.

This chapter is a summary of the following works:

• Sarit Khirirat, Mikael Johansson, and Dan Alistarh. “Gradient com-
pression for communication-limited convex optimization.” 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 2018.

• Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. “Dis-
tributed learning with compressed gradients.” arXiv preprint
arXiv:1806.06573 (2018).

10 Introduction

Chapter 4: Error-compensated Gradient Methods
Compression algorithms have been proposed to reduce the communication
load at the price of a loss in solution accuracy. Recently, it has been shown
how compression errors can be compensated for in the optimization algorithm
to improve the solution accuracy. Even though error-compensated compres-
sion algorithms have displayed superior performance in practice, there is very
limited theoretical support for quantifying the observed improvements in solu-
tion accuracy. In this chapter, we show that error compensation, unlike naive
compression, avoids accumulation of compression errors on quadratic prob-
lems. We also present strong convergence guarantees of error compensation
schemes for stochastic gradient descent. Our numerical experiments highlight
the benefits of error compensation algorithms.

This chapter is a summary of the following works:

• Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov,
Sarit Khirirat, and Cédric Renggli. “The convergence of sparsified gra-
dient methods.” In Advances in Neural Information Processing Systems,
pp. 5973-5983. 2018.

• Sarit Khirirat, Sindri Magnússon, and Mikael Johansson. “Convergence
Bounds for Compressed Gradient Methods with Memory Based Error
Compensation.” ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.
Best Student Paper Award sponsored by Hitachi.

• Sarit Khirirat, Sindri Magnússon and Mikael Johansson, “Compressed
Gradient Methods With Hessian-Aided Error Compensation," in IEEE
Transactions on Signal Processing, vol. 69, pp. 998-1011, 2021.

Chapter 5: Federated Learning with Error-compensated
Compression
State-of-the-art methods in federated learning applications reduce commu-
nication frequency, but are not guaranteed to converge toward the optimal
solutions. These methods also experience a communication bottleneck, espe-
cially when the devices are power-constrained and communicate over a shared
medium. This chapter presents ECO-FedSplit, an algorithm that increases
the communication efficiency of federated learning without sacrificing solution
accuracy. The key is to compress inter-device communication and to com-
pensate for information losses in a theoretically justified manner. We prove
strong convergence properties of ECO-FedSplit on strongly convex optimiza-
tion problems and show that the algorithm yields a highly accurate solution

Thesis Organization and Contributions 11

with dramatically reduced communication. Extensive numerical experiments
validate our theoretical result on real data sets.

This chapter is based on the following work:

• Sarit Khirirat, Sindri Magnússon, and Mikael Johansson. "Eco-Fedsplit:
Federated Learning with Error-Compensated Compression." Manuscript
submitted for publication.

Chapter 6: Adaptive Compression Framework
Early works on compression algorithms for solving learning tasks focused on
the bottleneck between CPUs and GPUs, but communication-efficiency is now
needed in different system architectures, from high-performance clusters to
energy-constrained IoT devices. In the current practice, compression levels are
typically chosen before training and settings that work well for one task may be
vastly sub-optimal for another dataset on another architecture. This chapter
proposes a flexible framework which adapts the compression level to the true
information at each iteration, maximizing the improvement in the objective
function that is achieved per communicated bit. Our framework is easy to
adapt from one technology to the next by modelling how the communication
cost depends on the compression level for the specific technology. Theoretical
results and practical experiments indicate our automatic tuning significantly
increases communication efficiency on several state-of-the-art compressors.

This chapter is based on the following work:

• Sarit Khirirat, Sindri Magnússon, Arda Aytekin, and Mikael Johansson.
"A Flexible Framework for Communication-Efficient Machine Learning."
In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 9, pp. 8101-8109. 2021.

Chapter 7: Improved Step-Size Schedules for Noisy Gradient
Methods
Noisy gradient algorithms have emerged as one of the most popular algorithms
for distributed optimization with massive data. Choosing proper step-size
schedules is an important task to tune in the algorithms for good performance.
For the algorithms to attain fast convergence and high accuracy, it is intuitive
to use large step-sizes in the initial iterations when the gradient noise is typi-
cally small compared to the algorithm-steps, and reduce the step-sizes as the
algorithm progresses. This intuition has been confirmed in theory and practice
for stochastic gradient descent. However, similar results are lacking for other
methods using approximate gradients. This chapter shows that the diminish-
ing step-size strategies can indeed be applied for a broad class of noisy gradient
algorithms. Our analysis framework is based on two classes of systems that

12 Introduction

characterize the impact of the step-sizes on the convergence performance of
many algorithms. Our results show that such step-size schedules enable these
algorithms to enjoy the optimal rate. We exemplify our results on stochastic
compression algorithms. Our experiments validate fast convergence of these
algorithms with the step decay schedules.

The chapter is summarized from the following works:

• Sarit Khirirat, Xiaoyu Wang, Sindri Magnússon, and Mikael Johansson.
"Improved Step-Size Schedules for Noisy Gradient Methods." ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2021.

• Sarit Khirirat, Xiaoyu Wang, Sindri Magnússon and Mikael Johansson,
"Improved Step-Size Schedules for Proximal Noisy Gradient Methods."
Manuscript submitted for publication.

Chapter 8: Conclusion and Future Work
We conclude thesis contributions and discuss future research directions.

Chapter 2

Preliminaries
In this chapter, we summarize relevant theoretical background. We first intro-
duce notations that are used throughout the thesis. We next review definitions
of convex optimization and proximal operators, and introduce well-known nu-
merical optimization methods. For designing scalable optimization methods,
main classes of computing architectures are then introduced. Finally, major
definitions of compressors and examples are provided.

2.1 Notations
Throughout the thesis, we reserve N, N0, Z, R, and R+ to be the set of natural
numbers, the set of natural numbers including zero, the set of integers, the set
of real numbers, and the set of positive real numbers, respectively. For a, b ∈ Z,
we let [a, b] be the set {a, a+1, a+2, . . . , b} where a ≤ b. We use Rd to denote
the d-dimensional vector space of real-valued vectors x = [x1, x2, . . . , xd]T
which have their coordinates from a set of real numbers. For any vector x ∈ Rd,
‖x‖, ‖x‖1 and ‖x‖0 are the `2 norm, the `1 norm and the `0 norm, respectively;
dxe+ = max{0, x}; sign(x) is its sign vector; and supp(x) = {i : xi 6= 0} is the
support set. For real-valued functions g(k) and h(k), g(k) = O(h(k)) implies
that g(k) is of the same order as h(k), i.e. g(k) ≤Mh(k) for some M ∈ R and
for all k ∈ N, while g(k) = o(h(k)) means that g(k) is asymptotically smaller
than h(k), i.e.

lim
k→∞

g(k)
h(k) = 0.

We use Rd1×d2 to denote the set of real-valued matrices with d1 rows and
d2 columns. For a symmetric matrix A ∈ Rd×d, λ1(A), . . . , λd(A) denote
the eigenvalues of A in an increasing order (including multiplicities), and its
spectral norm is defined by ‖A‖ = maxi |λi(A)|. For the fixed-point operator
T : Rd → Rd and a positive integer p, we denote T p(x) = T ◦ T ◦ . . . ◦ T x (p
times).

2.2 Convex Optimization
In this section, we provide basic definitions of convex optimization. We begin
by stating definitions of a convex set and a convex function.

13

14 Preliminaries

Definition 2.1 (Convex set). A set X ⊂ Rd is called convex if for any x, y ∈
X , we have

θx+ (1− θ)y ∈ X , for θ ∈ [0, 1].

This definition implies that if the set is convex, then there always exists a
straight line between any two points in the set which also lies within the set.

Definition 2.2 (Convex function). A function F : Rd → R is called convex if
for any x, y ∈ Rd, we have

F (θx+ (1− θ)y) ≤ θF (x) + (1− θ)F (y), for θ ∈ [0, 1].

In this definition, if the function F (x) where x ∈ R is convex, then the
line segment between points (x, F (x)) and (y, F (y)) always lies above (or on)
the actual curve of F (x). For a differentiable and convex function F (x), the
following inequality also holds

F (y) ≥ F (x) + 〈∇F (x), y − x〉, for x, y ∈ Rd.

In the thesis, we are interested in solving convex optimization problems on
the form:

minimize F (x)
subject to x ∈ X ,

(2.1)

where F (x) is a convex function, and a constraint set X ⊆ Rd is convex.
The solution x from the optimization problem can be either globally opti-

mal, i.e. F (x) ≤ F (z) for all x, z ∈ Rd or locally optimal where there exists
a positive constant R such that F (x) ≤ F (z) for ‖z − x‖ ≤ R. One nice
property of convex optimization is that any locally optimal solution is also
globally optimal [32]. In addition, these problem classes can be solved by clas-
sical optimization algorithms to obtan a solution with high accuracy. Apart
from convexity of problems, we require additional properties of the objective
function F (x) listed below:

Definition 2.3. A function F : Rd → R is smooth with L > 0 if for all
x, y ∈ Rd

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖. (2.2)

This L-smoothness condition is equivalent to [33, Theorem 2.1.5]

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L

2 ‖y − x‖
2, ∀x, y ∈ Rd. (2.3)

Definition 2.4. A function F : Rd → R is strongly convex with µ > 0 if

F (y) ≥ F (x) + 〈∇F (x), y − x〉+ µ

2 ‖y − x‖
2,∀x, y ∈ Rd. (2.4)

Proximal Operator 15

Even though these conditions seem to restrict problem classes, many real-
world engineering applications surprisingly fulfill these properties. Based on
the definitions of smoothness and strong convexity assumptions, we can ana-
lyze convergence behaviors for optimization algorithms throughout this thesis.

2.3 Proximal Operator
In this section, we introduce a proximal operator which can be exploited to
modify classical optimization algorithms for solving constrained, non-smooth,
or distributed problems.

Definition 2.5 (Proximal operator). A proximal operator of a closed proper
convex function f : Rd → R ∪ {+∞} with a positive scalar α is defined by

proxαF (x) = argmin
y∈Rd

(
F (y) + 1

2α‖y − x‖
2
)
. (2.5)

Definition 2.5 implies proxαF (x) is a point that compromises between min-
imizing F and being near to x. The proximal operator reduces to the Euclidean
projection onto a closed nonempty convex set C denoted by proxαF (x) =
πC(x) = argminy∈C‖y − x‖ if F (x) is an indicator function on C (i.e. F (x) =
IC(x) where IC(x) = 0 for x ∈ C and +∞ otherwise), and to the soft-
thresholding operator defined by [proxαF (x)]i =

⌈
xi − α

⌉
+ sign(xi) if F (x) =

‖x‖1. Next, we introduce two key definitions related to the definition of the
proximal operator: a Moreau envelope and a reflected proximal operator.

Definition 2.6 (Moreau envelope). The Moreau envelope (or Moreau-Yoshida
regularization) of a closed proper convex function F : Rd → R∪{+∞} with a
positive scalar α is defined on

Fα(x) = min
y∈Rd

(
F (y) + 1

2α‖y − x‖
2
)
. (2.6)

Definition 2.7. A reflected proximal operator of a closed proper convex func-
tion F : Rd → R ∪ {+∞} with a positive scalar α is defined by

reflαF (x) = 2proxαF (x)− x, (2.7)

where proxαF (x) is the proximal operator.

These definitions above allow for constructing a class of popular algorithms
based on gradient information or operator splitting schemes for solving con-
strained, non-smooth or distributed problems throughout the thesis.

16 Preliminaries

2.4 Numerical Optimization Methods
In this section, we introduce popular numerical optimization methods in the
optimization and machine learning community: first-order methods, operator
splitting methods, and zeroth-order methods.

2.4.1 First-order Methods
First-order methods are most commonly used optimization methods that uti-
lize the gradient of objective functions to update solutions. The simplest
first-order method is gradient descent that updates the solution xk as follows:
Given the initial solution x0 and the positive step-size γ

xk+1 = xk − γ∇F (xk). (2.8)

Theoretical convergence for gradient descent has been well-established, e.g.
in [33, 34]. If we consider Problem (2.1) with the convex, smooth objective
function and X = Rd, then the sequence {xk}k∈N generated by gradient de-
scent (3.2) with γ = 1/L converges at a sub-linear rate:

F (xk)− F (x?) ≤ L

2k ‖x0 − x?‖2,

where k ∈ N is the number of iteration counts, x? is the optimal solution, and
F (x?) is the optimal value. Furthermore, for Problem (2.1) with the strongly-
convex, smooth objective function, gradient descent (3.2) with γ = 1/L enjoys
a linear rate:

F (xk)− F (x?) ≤
(

1− µ

L

)k
(F (x0)− F (x?)).

Although several algorithms such as (quasi-)Newton methods have stronger
convergence performance than gradient descent, they increase the memory re-
quirements and per-iteration costs, and therefore cannot scale well for larger
problem instances. Unlike these algorithms, gradient descent exhibits low
per-iteration costs and has competitive convergence guarantees in practice.
However, as training data become massive in terms of dimension and/or the
number of data points, computing a single gradient can cause computionally
expensive load. Running classical gradient descent on the data-intensive appli-
cations is thus prohibitive. This leads to modifications of first-order methods
which are suitable for these large-scale problems as we discuss next.

Incremental Gradient Methods

Among popular modification of first-order methods is an incremental gradient
method (IGM). To understand its advantages over classical gradient descent,

Numerical Optimization Methods 17

we need to exploit nice structure of optimization problems. In essence, we
turn our attention to the finite-sum optimization on the form:

minimize
x∈Rd

F (x) = 1
n

n∑
i=1

F i(x), (2.9)

where each F i(x) is a component function. For learning applications, each
F i(x) can quantify the statistical error between the solution x and the optimal
solution x? with respect to the ith paritition of data. When the number of
components n is large, computing a single gradient of the whole objective
function F (x) is often prohibitive (since we need to compute gradients of all
component functions). Fortunately, first-order methods are robust to using
gradient approximations.

IGM relies on the gradient of a single component function F i(x) as the
approximate gradient of the entire objective function F (x). IGM updates the
solution xk according to:

xk+1 = xk − γ∇F ik(xk), (2.10)

where ik is the index of the component function selected at each iteration
k. The selection protocol of the index ik can be stochastic or deterministic.
While stochastic gradient descent (SGD) is IGM with ik uniformly selected
with replacement from the set {1, 2, . . . , n}, random reshuffling is IGM with
ik is sampled without replacement (i.e. by choosing a random permutation on
{1, 2, . . . , n}).

IGM is more advantageous than classical gradient descent (3.2) in many
aspects. The most obvious advantage of using IGM rather than gradient de-
scent is its lower per-iteration cost by a factor of 1/n, [35, 1]. This leads to
fast convergence speed toward the solution and small memory requirements for
deploying IGM to solve huge-scale problems. Despite its benefits, IGM trades
off fast convergence for high solution accuracy. Estimating the true gradient
based on only a single component function enables small computation time
but crude gradient estimates with high variance, [1, 36, 37, 38, 39]. Therefore,
it is preferable to design algorithms which reduce the variance but still achieve
competitive convergence performance.

One common variance reduction technique is mini-batching, where several
component functions are processed per iteration. The mini-batching technique
is useful for converting the serial IGM into parallel and distributed ones in or-
der to provide better training accuracy and scalability [40]. Another technique
is to form a gradient approximation which guarantees the convergence toward
the solution with high solution accuracy. Details of this technique are provided
in the next section.

18 Preliminaries

Incremental Aggregate Gradient Methods

Another major modification of first-order methods is the incremental aggre-
grate gradient (IAG) method. IAG computes the gradient of a single compo-
nent function like IGM, while keeping a memory of the most recent gradients
of all component functions. In essence, IAG estimates the gradient according
to:

g IAG
k = 1

n

n∑
i=1
∇F i(xk−τk

i
) ≈ 1

n

n∑
i=1
∇F i(xk).

Here, each τki ∈ N0 quantifies the latest time since the gradient of component
function i was computed and stored. To solve finite-sum problems (2.9), IAG
updates the solution xk via

xk+1 = xk − γgIAG
k . (2.11)

This method has the same per-iteration cost to compute the gradient of a single
component function F i(x) as IGM, but like other variance-reduction methods
such as SVRG [41] and SAGA [42] it needs extra memory requirements to store
the gradients of every component function. Unlike IGM, IAG attains global
convergence toward the exact optimum for deterministic problems. However,
it suffers from slow convergence rate when running on architecture with slow
machines or stragglers, which result in a large value of τki .

To reduce the adverse impact of stragglers, it is recommended to add data
redundancy among the machines so that the method needs to wait for only
gradients from fast machines. The methods using redundancy techniques are
called coded gradient methods which are described next.

Coded Gradient Methods

Although distributed methods have gained increasing popularity, their perfor-
mance is strongly dictated by stragglers, machines that are slow to process and
submit their information. To reduce the impact of stragglers, one alternative
approach is adding data redundancy across the machines and updating the
solution without waiting for the stragglers. For finite-sum problems (2.9), the
goal is to design the matrix D ∈ Rn×m for assigning m parts of redundant
data across n machines which have access to their private functions F i(x).
Here, Dij 6= 0 if the ith part of data is available on machine j, and Dij = 0
otherwise. After assigning data redundancy across the machines according to
D, all machines compute the coded gradient

Gj =
n∑
i=1

Dij

ᾱi
gik,

Numerical Optimization Methods 19

where gik is the stochastic gradient with respect to F i(xk), and ᾱi =
∑m
j=1Dij .

Then, the central server waits and aggregates only a few gradients from the
machines according to:

gcoded
k = 1

n

m∑
j=1

wjGj , (2.12)

where w ∈ Rm represents a decoding coefficient vector where wj = 1 if the
server receives the gradient from machine j, and 0 otherwise. The server
updates the solution xk using the descent update based on the coded gradient,
i.e.

xk+1 = xk − γgcoded
k . (2.13)

These coded gradient methods have been shown empirically to outperform
traditional distributed gradient methods (or uncoded gradient methods), and
many coding schemes have been developed to improve training performance
of coded gradient methods [43, 44, 45, 46, 47, 48].

2.4.2 Operator Splitting Methods
Operator splitting methods have been successfully used to decompose large-
scale distributed optimization problems into sub-problems that can be solved
fast. Without loss of generality, the abstract form of distributed problems is
the minimization of the sum of two objective functions on the form:

minimize
x∈Rd

F (x) + g(x), (2.14)

where F (x) and g(x) are closed, proper convex functions. Popular exam-
ples of operator-splitting methods solving these problems include the forward-
backward splitting (FBS) method [49], and the relaxed Peaceman-Rachford
splitting (relaxed PRS) method [50].

The FBS method, also called the proximal gradient method, has been
extensively studied in [51, 52, 53]. This method can be used to solve Problem
(2.14) where F (x) is differentiable and L-smooth, and g(x) is non-smooth but
convex. The FBS method updates the solution xk according to

xk+1 = proxγg(xk − γ∇F (xk)), (2.15)

where γ is a fixed positive step-size. Note that when we let g(x) = 0, the FBS
method is classical gradient descent in Section 2.4.1. Inspired by the FBS
method, many proximal gradient-based methods have been further developed
to handle large-scale non-smooth problems. Key examples of such methods are
proximal stochastic gradient methods [54, 55, 56] and proximal IAG (PIAG)
[26, 57, 58].

20 Preliminaries

Another key operator-splitting method for solving Problem (2.14) is the
relaxed PRS method, which updates the solution xk via

xk+1 = (1− λk)xk + λkreflγF (reflγg(xk)), (2.16)

for positive tuning parameters λ, γ. The relaxed PRS method with λk = 1/2
and λk = 1 are, respectively, the Douglas-Rachford splitting (DRS) method
[59] and Peaceman-Rachford splitting (PRS) method [60].

2.4.3 Zeroth-order Methods
Several learning and decision making applications can be cast as optimization
problems, where we can get access only to objective function values. Popular
application examples include sensor selection problems in smart grids or wire-
less network systems [61, 62, 63], optimal hyper-parameter tuning for learning
models [64, 65], and black-box adversarial attacks on neural network models
[66, 67, 68, 69]. This motivates the development of zeroth-order (or derivative-
free) optimization, which studies numerical methods for minimizing a function
without having access to its gradients.

One of the earliest approaches to zeroth-order optimization was direct
search. In each direct search step, the objective function is queried at var-
ious points, usually close to ones previously visited. If a point provides an
improvement over the function value at the current solution, it is stored in
memory as the algorithms progress. Prominent direct search methods include
the Nelder-Mead simplex method [70], and the mesh adaptive direct search
(MADS) method [71]. Another popular type of zeroth-order methods uses
function value differences to estimate the gradients [72, Section 3.4]. Two
commonly used approaches for approximating gradients for problems of min-
imizing the objective function F (x) are

gτ (x) = F (x+ τu)− F (x)
τ

u, and ĝτ (x) = F (x+ τu)− F (x− τu)
2τ u

(2.17)

where u ∈ Rd is generated from the Gaussian distribution with zero mean and
unit variance, with a positive scalar τ . However, for d-dimensional problems,
these methods are d times slower than classical gradient descent in Section
2.4.1, and also suffers from poor performance particularly for ill-conditioned
high-dimensional problems.

2.5 Performance Analysis of Optimization
Methods

Several methods have been introduced to tackle different problem families in
Section 2.4. To study and compare convergence performance of these op-

Architectures for Scalable Optimization 21

timization methods for given problem classes, we often start by measuring
computational efforts of each method (e.g. its running time) to obtain the
optimal solution with target accuracy on solving problems in numerical sim-
ulations. Inspired by these empirical performance metrics, the literature in
numerical optimization focuses on two popular complexities that characterize
the convergence rate of given optimization methods in mathematical terms:
iteration complexity and communication complexity.

The iteration complexity measures the number of iterations needed to run
a single method to reach the optimal solution with ε-accuracy. The iteration
complexities of first-order methods have been well-established in the literature.
For instance, gradient descent in Section 2.4.1 needs

L‖x0 − x?‖2

2
1
ε

and L

µ
log
(
F (x0)− F (x?)

ε

)
iterations

to reach F (xk) − F (x?) ≤ ε for convex and strongly convex optimization,
respectively. These classical theoretical lower bounds of gradient descent have
been derived in [73, 74].

The communication complexity measures the number of communicated bits
required for the method to reach the ε-accuracy. Despite extensive studies of
the iteration complexity, there are very few works which study the communi-
cation complexity and its lower bound. For instance, Tsitsiklis and Luo [75]
derived lower bounds for the method using two machines to solve problems
of minimizing the sum of two objective functions F 1(x) + F 2(x). However,
theoretical results for the methods utilizing multiple machines to solve gen-
eral finite-sum problems are lacking. Characterizing communication complexi-
ties of optimization methods can imply their practical performance, especially
when the methods are run on the network of several computing machines to
solve sizable problems. This is because in these problem settings the methods
have high communication overhead, even to the point where communication
dominates the overall running time of algorithms [22].

2.6 Architectures for Scalable Optimization
The scale and complexity in learning and decision making applications have
been dramatically increasing. This leads to the popularity of using paral-
lel architectures to reduce training time. In the thesis, we study first-order
methods due to their easy implementations under these parallel architectures.
In essence, we categorize these methods based on the use of a) full gradient
communication or b) partial gradient communication; see Figure 2.1. On the
one hand, we solve the optimization problem under the full gradient com-
munication by communicating the full gradient information in every iteration.
Such communication usually appears in dual decomposition methods; see Sub-
section 2.6.1. On the other hand, the first-order methods under the partial

22 Preliminaries

(a) (b)

Figure 2.1: Two common communication architectures for distributed gradi-
ent methods: 1) full gradient communication (left) and 2) partial gradient
communication (right).

gradient communication rely on gradient evaluations based on different nodes,
each with its local data. We now review first-order methods under these com-
munication architectures separately in more details.

2.6.1 Full Gradient Communication: Dual Decomposition
Resource allocation is a class of distributed optimization problems where a
group of n nodes aim to minimize the sum of their local utility function over
a set of shared resource constraints. In particular, the nodes collaboratively
solve

minimize
q1,...,qn

n∑
i=1

U i(qi)

subject to qi ∈ Qi, i = 1, . . . , n
h(q1, q2, . . . , qn) = 0.

(2.18)

Each node has a utility function U i(q) depending on its own private resource
allocation qi, constrained by the set Qi. The decision variables are coupled
through the total resource constraint h(q1, q2, . . . , qn) = 0, which captures
system-wide physical or economical limitations.

Resource allocation problems arise naturally in wireless networks, data
communications, and smart grids, [76, 77, 78]. In data communications we
optimize the data flows between n source-destination pairs through an L−link
communications network by solving the utility minimization problem (2.18)
with h(q1, q2, . . . , qn) =

∑
s∈Sl q

s − cl for l ∈ [1, L] [78]. Here, Sl is the set of
source-destination pairs that use link l, and U i(·) represents the utility of data
flow i to communicate at rate qi. In electric power systems, where problems on

Architectures for Scalable Optimization 23

the form of (2.18) are used to optimize the electricity generation and consump-
tions of a group of electric devices (e.g., smart meters, household appliances
and renewable generators), h(q1, q2, . . . , qn) = 0 represents the physics of the
grid.

The solution to problems on this form is typically decomposed by consid-
ering the dual problem [78, 79, 80, 81, 82, 83]. To illustrate this procedure,
we consider the following dual problem which is equivalent to solving (2.18)
(under mild technical conditions [32, chapter 5])

maximize
x

F (x) := min
q
L(q, x), (2.19)

In this formulation, x is the dual variable, F (x) is the dual objective function,
and

L(q, x) =
n∑
i=1

U i(qi) + xTh(q1, . . . , qn),

is the Lagrangian of Problem (2.18). The dual function is concave and the
dual gradient (or a dual subgradient) is given by

∇F (x) = h(q1(x), . . . , qn(x)), q(x) = argmin
q

L(q, x).

In many networks the dual gradient is obtained from measurements of the
effect of the current decisions. Often, we only get a stochastic version of the
gradient denoted by g(x, ξ) where ξ is a random variable. If the primal problem
has structure, then dual gradient methods can often be used to decompose its
solution. For example, in many network applications h(q1(x), . . . , qn(x)) =∑n
i=1 h

i(q1(x), . . . , qn(x)). Then, the equivalent dual problem (2.19) can be
solved by gradient descent, leading to the following iteration

qik+1 =argmin
q

U i(qik) + 〈xk, hi(qik)〉, i = 1, . . . , n

xk+1 =xk + γg(xk; ξk)

where γ is a step-size parameter. Notice that the essential step in the al-
gorithm is the communication of the stochastic dual gradient g(xk, ξk) ≈
h(q1

k+1, . . . , q
n
k+1) which allows each node i to update qik+1 in parallel based on

the dual variable xk. To effectively communicate the gradient, it must first be
compressed into a finite number of bits. Throughout the thesis, we study gra-
dient descent with compression strategies, and compensation schemes which
help obtain fast convergence guarantees despite limited information exchange.

2.6.2 Partial Gradient Communication
Problems on the form of (2.9) appear, e.g., in machine learning and signal pro-
cessing where we wish to find optimal estimators based on data from multiple

24 Preliminaries

nodes. One important example is empirical risk minimization (ERM) where
labelled data is split among n nodes which collaborate to find the optimal
estimate. In particular, if each node i ∈ {1, 2, . . . , n} has access to its local
data with feature vectors zi = (zi1, . . . , zim) and labels yi = (yi1, . . . , yim) with
zij ∈ Rd and yij ∈ R, then the local objective functions are

F i(x) = 1
m

m∑
j=1

`(x; zij , yij) + λ

2 ||x||
2, for i = 1, 2, . . . , n (2.20)

where `(·) is some loss function and λ > 0 is a regularization parameter. The
ERM formulation covers many important machine learning problems. For
example, we obtain the least-squares regression problem by letting `(x; z, y) =
(1/2)(y − zTx)2, the logistic regression problem when `(x; z, y) = log(1 +
exp(−y · zTx)), the support vector machine (SVM) problem if `(x; z, y) =⌈
1− y · zTx

⌉
+, and the robust phase retrieval problem in image and speech

processing if `(x; z, y) = |(zTx)2 − y2|.
When the data set on each node is large, the above optimization problem

can be typically solved by first-order methods under the master-slave architec-
tures. One common algorithm is distributed stochastic gradient descent. In
each iteration, the master node broadcasts a decision variable xk, while each
worker node i computes a stale stochastic gradient gi(xk−τ i

k
) by evaluating its

objective function gradient on a random subset of its local data Di. After the
master receives the information from some worker nodes, it can perform the
update

xk+1 = xk − γ
1
n

n∑
i=1

gi
(
xk−τ i

k

)
. (2.21)

Here, the stochastic gradient preserves the unbiasedness assumption, i.e.
Egi(x) = ∇F i(x), ∀x ∈ Rd. (2.22)

Note that τki ∈ N0 quantifies the communication delay when the gradient
of worker node i is received by the master node at each iteration k. This
communication delay model allows to study distributed stochastic gradient
descent for both asynchronous and synchronous architecture (when τki = 0
amd τki > 0 for all i, k, respectively) [84, 85, 86]. In particular, this method
has been studied and implemented under the asynchronous communication
[26, 87, 84, 88, 89] and under the synchronous protocol [22, 84, 89, 45].

As the dimension of decision vectors continue to increase, a significant
time is spent communicating gradient and decision vectors between computing
nodes. For example, communication has been reported to account for up to
80% of the total training time of state-of-the-art deep neural network models
with millions of parameters such as AlexNet, ResNet and LSTM [22]. To
reduce communication time, it is suggested to increase the number of local
updates and/or to compress the information on the optimization algorithms.

Federated Learning 25

2.7 Federated Learning
Another emerging framework for partial gradient communication architectures
in Section 2.6.2 is federated learning (FL), initially proposed by McMahan et
al. [90]. Unlike traditional distributed first-order methods, FL methods utilize
machines to cooperate to solve problems locally and transmit local model
parameters, rather than private data, to a central server. To solve finite-sum
optimization problems (2.9), FL methods perform the following update:

xk+1 = (1− λ)xk + λ
1
n

n∑
i=1
T pγF i(xk), (2.23)

where γ, λ are positive tuning parameters. Popular FL methods FedAvg (also
known as local SGD) [91, 92, 93] and FedProx [94] are covered by Equa-
tion (2.23) with TγF i(x) = x − γ∇F i(x) and with TγF i(x) = proxγF i(x),
respectively, and λ = 1.

Although FL cover data-sensitive applications in hospitals, insurance cor-
porations and government agencies, it poses challenges from hardware and
data heterogeneity (as different devices have different capabilities and data)
to privacy and security issues (where data can be extracted from the trans-
mitted parameters). Among these challenges, the communication overhead
constitutes a major performance bottleneck of FL algorithms. This is because
model parameters have typically huge size. Transmitting a single ML model
(with 32 bits per element) requires 40 MB for a neural network with 10 mil-
lion parameters [22]. It takes several hours for running FL on 4G connected
devices to get a reasonable performance. This huge communication can over-
burden FL training over a network with limited resources. It is thus suggested
to reduce communicated information on the FL methods to train large-scale
problems over the communication-constrained networks.

2.8 Compression Operators
To reduce the time of transmitting the full-precision vector, it is recommended
to compress the vector information. Two successful compression schemes in-
clude sparsification which transmits a few elements of the information, and
quantization which converts the information to a low-precision representation.

Sparsification is one common compression scheme that transmits only the
T most important elements of the full-precision vector v ∈ Rd, i.e.

[Q(v)]j =
{
vj if j ∈ IT (v)
0 otherwise.

(2.24)

where IT (v) is the index set for the T components of v with the highest absolute
magnitude. Rather than sending the T largest elements, the stochastic version

26 Preliminaries

of sparsification is to send a few elements according to

[Q (v)]j = (vj/pj)ξj , (2.25)

where ξj ∼ Bernouli(pj), T =
∑d
j=1 p

j is the number of non-zero elements,
and pj ∈ (0, 1] is the probability of whether vj is selected (i.e. ξj = 1). Ideally,
pj represents the magnitude of vj , so that pj should be large if |vj | is large
relative to the other entries. There are many heuristics to choose pj . For
example, if we set pj = |vj |/‖v‖q with q = 2, q = ∞, and q ∈ (0,∞], then
we get, respectively, QSGD in [22] with s = 1, TernGrad in [95], and the `q-
quantization in [96]. We can also tune p automotically, see [96]. Further note
that for the sparsified vector from (2.24) or (2.25), we need to encode the T
largest elements and the vector sparsity pattern.

Quantization is another popular compression scheme reducing the preci-
sion of vector elements. One quantization example is sign compression which
transmits only a positive scalar c and sign of every vector element, i.e.

[Q(v)]j = c · sign(vj). (2.26)

When we let c = 1, c = ‖v‖ and c = ‖v‖1/d, sign compression in (2.26) recov-
ers, respectively, the binary quantization [97], the ternary quantization [22]
and the scaled binary quantization [29]. Also notice that the sign compres-
sion in (2.26) requires encoding the positive scalar c and the sign of all vector
elements.

To improve communication efficiency, we may both sparsify and quantize
the vector. For instance, we can combine the sparsification (2.24) with the
quantization (2.26), i.e. for a positive scalar c

[Q(v)]j =
{
c · sign(vj) if j ∈ IT (v)
0 otherwise.

(2.27)

Note that in the sparsification with quantization (2.27) we encode the positive
scalar c, the vector sparsity pattern, and the sign of all non-negative vector
elements.

To this end, we introduce three main definitions which capture the compres-
sion schemes of broad interest: ε-compressor, bounded relative error quantizer
and unbiased random quantizer.

2.8.1 ε-Compressor
The operator Q(·) is an ε-compressor if the Euclidean distance between the
full vector and its compressed version is bounded by a positive scalar ε, i.e.

‖Q(v)− v‖ ≤ ε, ∀v ∈ Rd.

Compression Operators 27

The ε-compressor requires only the bounded magnitude of the compression
errors. A small value of ε implies the high precision of given compression.At
the extreme when ε = 0, we have Q(v) = v.

2.8.2 Bounded Relative Error Quantizer
The operator Q(·) is called a bounded relative error quantizer (BREQ) if the
compressed version of the vector v satisfies the following inequalities

〈Q(v), v〉 ≥ σ‖v‖2, and ‖Q(v)‖2 ≤ β‖v‖2

for positive constants σ, β. Note that as σ and β both are close to 1, the BREQ
implies high precision of given compression (e.g. Q(v) = v when σ = β = 1
for extreme cases). In addition, these conditions imply that

‖Q(v)− v‖2 ≤ (1− 2σ + β)‖v‖2.

Unlike the ε-compressor, the BREQ has a compression error which scales lin-
early in the Euclidean norm of the input vector v. If ‖v‖ ≤ C for some positive
constants C, then the BREQ is the ε-compressor with ε = C

√
1− 2σ + β.

2.8.3 Unbiased Random Quantizer
The operator Q(·) is called a unbiased random quantizer (URQ) if the com-
pressed version of the vector v satisfies

E[Q(v)] = v, and E‖Q(v)‖2 ≤ α‖v‖2

for a positive scalar α. Note that Q(·) is unbiased and variance-bounded. Un-
like the ε-compressor and the BREQ, the URQ requires the unbiased property
of Q(v) and yields Q(v) which is close to v as α is close to 1. In addition, by
these conditions the URQ satisfies

E‖Q(v)− v‖2 ≤ (α− 1)‖v‖2.

Like the BREQ, the URQ has the compression error scaling linearly in the
Euclidean norm of v. If ‖v‖ ≤ C for some positive constants C, the URQ is
the ε-compressor with ε = C

√
α− 1.

Throughout the thesis, we provide detailed definitions and examples of all
stated compression operators. In particular, we present a unified analysis for
first-order algorithms with each family of compressors in the next chapter.

Part I

Analysis

29

Chapter 3

Compressed Gradient Methods
Distributed machine learning problems involve empirical risk minimization,
and can be cast as the following finite-sum optimization problem

minimize
x∈Rd

F (x) =
n∑
i=1

F i(x). (3.1)

Here, x ∈ Rd is a vector representing the d parameters of a machine learn-
ing model, and each F i(·) is the loss based on a single data point or subset
of data points locally stored on node i. To solve these problems on massive
training data within desirable training times, one can resort to the partial gra-
dient communication architecture (in Section 2.6.2) that splits computational
tasks among multiple nodes. The architecture is either a synchronous or an
asynchronous version.

In the synchronous architecture, a master node waits for all the information
evaluated by worker nodes before it makes an update [98, 84]. One natural
implementation of first-order methods on this architecture is gradient descent
(GD). After receiving all the gradients by the worker nodes ∇F i(·), the master
node updates the iterate xk via:

xk+1 = xk − γ
n∑
i=1
∇F i(xk) (3.2)

for some positive step-size γ. However, insisting on the synchronous operation
leads to long communication times (due to waiting for the slowest worker
node to complete) and the benefits of parallelization diminish as the number
of worker nodes increases.

To alleviate this bottleneck, the asynchronous architecture (such as the
parameter server framework [99]) enables the master node to update its pa-
rameters every time it receives new information from a worker node. Among
popular first-order methods naturally implemented in this architecture is in-
cremental aggregate gradient (IAG) [100], where the master node executes the
update according to:

xk+1 = xk − γ
n∑
i=1
∇F i(xk−τ i

k
). (3.3)

Here τ ik describes the staleness of the gradient information from worker node i
available to the master node at iteration k. Under the assumption of bounded

31

32 Compressed Gradient Methods

staleness, τ ik ≤ τ for all k, i, convergence guarantees for IAG have been estab-
lished for several classes of loss functions, see e.g. [100, 27, 101, 26].

To analyze performance of these distributed first-order algorithms, itera-
tion complexity is the traditional performance indicator which measures to-
tal running time of the algorithm. The iteration complexity is well-studied;
fundamental lower bounds have been derived [102, 33] and algorithms with
order-optimal convergence rates have been developed [34, 33]. However, when
problems become large in dimension d and the number of data points, the
communication cost for exchanging gradients between the nodes escalates.
Therefore, designing the algorithm that reduces the number of iterations k to
obtain an optimal solution with target accuracy is no longer sufficient. Rather,
it becomes essential to design the algorithm that minimizes the total amount
of communication required to reach the target solution accuracy.

A natural way to limit the amount of exchanged communication is to
compress the gradients before transmitting them between the nodes in the
network. The gradient compression can be stochastic [95, 103, 22] or de-
terministic [82, 22, 104], and empirical studies have demonstrated that they
can yield significant savings for many gradient-based algorithms in network
traffic [103, 22, 95, 105, 95, 82]. To understand theoretical effect of gra-
dient compression, it is essential to study communication complexity which
measures amounts of communication required to reach an ε-optimal solution.
Although the communication complexity has received some attention in the
past [106, 107, 108, 109], this concept is much less well understood than iter-
ation complexity. For instance, lower bounds on communication complexity
exist only for special classes of functions, and optimal algorithms are yet un-
known even for unconstrained problems.

In this chapter, we establish unified analysis for first-order algorithms op-
erating on two families of deterministic and stochastic gradient compression:
the bounded relative error quantizer (BREQ) and unbiased randomized quan-
tizers (URQ). We characterize and utilize useful inequalities for each family
of compression to establish per-iteration convergence rates of GD and IAG
operating on compressed gradients. Our convergence rate results give explicit
expressions for how compression accuracy and staleness bounds affect the ex-
pected running time of the algorithms to reach the ε-accuracy. Based on these
results, we characterize the trade-off between iteration and communication
complexity under gradient compression. Finally, we validate the theoretical
results on parameter estimation problems over benchmark data sets.

3.1 Gradient Compression
To study the iteration and communication complexity of first-order algorithms
using gradient compression, we first consider BREQ and URQ. Both of these

Gradient Compression 33

definitions cover deterministic and stochastic gradient compression of practical
interest in the literature.

3.1.1 Bounded Relative Error Quantizer (BREQ)
We define BREQ which represent general deterministic gradient compression.

Definition 3.1. The operator Q : Rd → Rd is called a bounded relative error
quantizer (BREQ) if for all v ∈ Rd and for some positive constants α, β

(a) 〈Q(v), v〉 ≥ α‖v‖2, and

(b) ‖Q(v)‖2 ≤ β‖v‖2.

Note the first inequality is satisfied by any quantizer for which sgn(Q(v)) =
sgn(v). Moreover, conditions (a) and (b) imply that

‖Q(v)− v‖2 ≤ (1− 2α+ β)‖v‖2,

so the relative quantization error induced by Q is indeed bounded. Thus, the
BREQ parameters α, β quantifies compression accuracy. For the extreme case
when α = β = 1, Q(v) = v. Next, we give three main deterministic gradient
compression examples which are BREQs.

Examples of BREQs

Gradient compression schemes can be sparsification which sets small vector
elements to be zero, quantization which each vector element is represented by
a low number of bits, or both. The first scheme is deterministic sparsifica-
tion which can be done by keeping top K elements with the highest absolute
magnitude. We define this formally below.

Definition 3.2. The deterministic sparsification QKG : Rd 7→ Rd is

[QKG (v)]i =
{

[v]π(i) if i ≤ K
0 otherwise

where π is a permutation of {1, . . . , d} such that |vπ(k)| ≥ |vπ(k+1)| for all
k ∈ {1, . . . , d− 1}.

The caseK = 1 has been treated by Nutini et al. [110]. A naive encoding of
a vector processed by the deterministic sparsification requires K(log2(d) + b)
bits: log2(d) bits to represent each index and b bits to represent the corre-
sponding entry of the K non-zero values.

Another compression scheme to reduce the size of the gradient vector is to
quantize the individual elements. At the extreme, one can consider three-level

34 Compressed Gradient Methods

(ternary) quantization, where each vector element is quantized to the levels
{−1, 0, 1}. The convergence of gradient descent with the three-level quantizer
has been studied in [82]. One drawback with this quantizer is that the absence
of magnitude information about the original gradient leads to a residual error
in the gradient descent. To avoid this problem, one can rather code each
element of v to {−‖v‖, 0, ‖v‖}. We thus consider the following quantizer:

Definition 3.3. The deterministic ternary quantization QT : Rd 7→ Rd is

[QT (v)]i = ‖v‖sgn(vi).

The required number of bits to encode the gradient by the deterministic
ternary quantization is 2d+ b: b bits to encode the norm of the vector, and 2
bits for each element to encode its sign.

Finally, one can also combine sparsification and quantization; the com-
pressed gradient is then represented by its (uncompressed) magnitude and the
sign of a few entries. Such compression has been recently proposed in, e.g.,
[22, 95]. We now provide the definition.

Definition 3.4. The deterministic sparsification and quantization QD : Rd 7→
Rd is defined as

[QD(v)]i =
{
‖v‖sgn(vi) if i ∈ I(v)
0 otherwise

where I(v) is the smallest subset of {1, . . . , d} such that∑
i∈I(v)

|vi| ≥ ‖v‖.

The deterministic sparsification and quantization, analyzed in Alistarh et
al. [22], requires |I(v)|(log2(d) + 1) + b bits to encode the gradient.

Furthermore, the above-mentioned compression schemes are easily proved
to be all the BREQ with the following parameters:

Lemma 3.1. The deterministic sparsification QKG (·) is a BREQ with α = K/d
and β = 1. In addition, for any g ∈ Rd,

(K/d)‖v‖2 ≤ ‖QKG (v)‖2 (3.4)

Lemma 3.2. The deterministic ternary quantization QT (·) is a BREQ with
α = 1, β ≤ d.

Lemma 3.3. The deterministic sparsification and quantization QD(·) is a
BREQ with α = 1, β ≤

√
d.

Lemma 3.1, 3.2 and 3.3 all quantify how accurate the compressors are. For
example, the deterministic sparsification with K = d leads to the condition
that Q(v) = v, while the deterministic ternary quantization is less accurate
than the deterministic sparsification and quantization by

√
d.

Gradient Compression 35

3.1.2 Unbiased Random Quantizer (URQ)
We next define URQ which covers general stochastic gradient compression.

Definition 3.5. A mapping Q : Rd → Rd is called an unbiased random
quantizer if, for every v ∈ Rd,

1. supp(Q(v)) ⊆ supp(v)

2. E{Q(v)} = v

3. E{‖Q(v)‖2} ≤ α‖v‖2

for some finite positive α. In addition, Q is said to be sign-preserving if

[Q(v)]ivi ≥ 0

for every v ∈ Rd and i ∈ [1, d].

URQs satisfy some additional useful inequalities. First,

E {‖Q(v)‖0} ≤ c,

for any v ∈ Rd and a finite positive constant c ≤ d. The sign-preserving
property guarantees the same direction between the compressed vector and
the full one. This property of Q also implies that

E ‖Q(v)− v‖2 ≤ β‖v‖2,

for any v ∈ Rd and a finite positive constant β ≤ α− 1. As we will show next,
it is typically possible to derive better bounds for c and β when we consider
specific classes of stochastic gradient compression.

Examples of URQs

Several stochastic gradient compression algorithms have been proposed for
solving distributed problems under limited communications. Like BREQs in
Section 3.1.1, stochastic gradient compression can use either sparsification
or quantization techniques. Important examples include the stochastic spar-
sification [103], the stochastic ternary quantization [95], and the stochastic
sparsification and quantization [22] as defined below.

Definition 3.6. The stochastic sparsification S : Rd → Rd is defined as

Si(v) =
{
vi/pi with probability pi

0 otherwise ,

where pi is probability that coordinate i is selected.

36 Compressed Gradient Methods

Note that when the stochastic sparsification uses the same probability for
each coordinate, it will effectively result in a randomized coordinate descent.
Choosing pi = |vi|/‖v‖, on the other hand, will result in the stochastic ternary
quantization [95]:

Definition 3.7. The stochastic ternary quantization T : Rd → Rd is defined
as

T i(v) =
{
‖v‖ sign(vi) with probability |vi|/‖v‖

0 otherwise .

The stochastic sparsification and quantization [22], defined next, combines
sparsification of the gradient vector with quantization of its element to further
reduce the amount of information exchanged.

Definition 3.8. The stochastic sparsification and quantization Qb : Rd → Rd
is defined as

Qib(v) = ‖v‖ sign(vi)ξ(v, i, s),

where

ξ(v, i, s) =
{

l/s with probability 1− p
(
|vi|/‖v‖, s

)
(l + 1)/s otherwise ,

and p(a, s) = as − l for any a ∈ [0, 1]. Here, s is the number of quantization
levels distributed between 0 and 1, and l ∈ [0, s) such that |vi|/‖v‖ ∈ [l/s, (l+
1)/s].

Notice that the stochastic ternary quantization is the stochastic sparsifica-
tion and quantization with s = 1 (and hence l = 0). In addition, these afore-
mentioned compression examples can be easily shown to be sign-preserving
URQs. Specifically, we have the following results:

Proposition 3.1 ([103]). The stochastic sparsification S : Rd → Rd is a
sign-preserving URQ, which satisfies

1. E{‖S(v)‖2} ≤ (1/pmin)‖v‖2 where pmin = min
i∈[1,d]

pi , and

2. E{‖S(v))‖0} =
∑d
i=1 p

i.

Proposition 3.2 (Lemma 3.4 in [22]). The stochastic sparsification and quan-
tization Qb : Rd → Rd is a sign-preserving URQ, which satisfies

1. E{‖Qb(v)‖2} ≤
(

1 + min
(
d/s2,

√
d/s
))
‖v‖2, and

2. E{‖Qb(v))‖0} ≤ s(s+
√
d).

Assumptions 37

Proposition 3.1 and 3.2 both imply that E‖Q(v)‖2 is close to ‖v‖2 if the
URQs are sufficiently accurate; e.g., when we set pi = 1 for all i in the stochas-
tic sparsification (we send the full vector) and when we let s → ∞ in the
stochastic sparsification and quantization (we send the exact solution). Al-
though the probability pi in the stochastic sparsification can be time-varying
(e.g., when we set pi ∝ vi), we assume a time-invariant α-value in the analysis
to simplify notation.

3.2 Assumptions
To facilitate our analysis throughout this chapter, we impose the following
assumptions which are commonly used on the optimization problem (3.1).

Assumption 3.1. Each F i : Rd → R is L-smooth, i.e. there exists L > 0
such that

F i(y) ≤ F i(x) + 〈∇F i(x), y − x〉+ L

2 ‖y − x‖
2 ∀x, y ∈ Rd.

Note that Assumption 3.1 implies that F is also smooth with L̄ ≤ mL.

Assumption 3.2. The whole objective function F : Rd → R is µ−strongly
convex, i.e. there exits µ > 0 such that

F (y) ≥ F (x) + 〈∇F (x), y − x〉+ µ

2 ‖y − x‖
2 ∀x, y ∈ Rd.

Assumption 3.3. Each F i : Rd → R has a bounded gradient, i.e. there exists
a positive scalar C such that

‖∇F i(x)‖ ≤ C.

Notice that the optimization problem satisfying Assumption 3.3 is the low-
rank least-squares matrix completion problem which arises in Euclidean dis-
tance estimation, clustering and other applications [105, 111].

Furthermore, by exploiting a data sparsity pattern we can derive a smaller
Lipschitz constant which enable larger step-sizes and faster convergence rates.
To quantify the sparsity pattern, we further make the additional assumption
as follows:

Assumption 3.4. Each F i : Rd → R can be written as F i(x) = `(〈ai, x〉, bi),
such that supp(∇F i(x)) = supp(ai) for given data

{
(ai, bi)

}n
i=1 with ai ∈ Rd

and bi ∈ R.

Note that Assumption 3.4 does not require boundedness of the gradi-
ents. Both least-squares problems, where F i(x) = (1/2)(〈ai, x〉 − bi)2 and
∇F i(x) = (〈ai, x〉 − bi)ai, and logistic regression problems, where F i(x) =

38 Compressed Gradient Methods

log(1 + exp(−bi〈ai, x〉)) and ∇F i(x) = −
(
bi/
(
1 + exp(−bi〈ai, x〉)

))
ai sat-

isfy the assumption. When Assumption 3.4 is satisfied, the sparsity pattern of
component function gradients can be computed off-line directly from the data.
We will consider two important sparsity measures: the average and maximum
conflict graph degree of the data, defined as

∆ave = 1
n

n∑
i=1

n∑

j=1,j 6=i
1{supp(ai) ∩ supp(aj) 6= ∅}

 , and

∆max = max
i∈[1,n]

n∑

j=1,j 6=i
1{supp(ai) ∩ supp(aj) 6= ∅}

 .

These sparsity measures allow us to derive a tighter bound L̄ for the Lipschitz
constant of the total loss F (x) =

∑n
i=1 F

i(x), as shown next:

Lemma 3.4. Consider Problem (3.1) under Assumption 3.4. If `(·) is smooth
with L > 0, then the gradient of the total loss F (x) =

∑n
i=1 F

i(x) is smooth
with

L̄ = L
√
n(1 + ∆),

where ∆ = min(∆ave,∆max).

Proof. See Appendix 3.C.1.

These sparsity measures are used to tighten our convergence results.

3.3 Convergence Analysis under BREQ
In this section, we establish a unified convergence analysis of the gradient
descent algorithm under BREQ in terms of both iteration counts and number
of communicated bits. We thus consider

xk+1 = xk − γQ (∇F (xk)) , (3.5)

where γ is a positive step size andQ(·) is the BREQ introduced in Section 3.1.1.
The following theorem characterizes its convergence rate results.

Theorem 3.1. Consider Problem (3.1), and the iterates {xk}k∈N generated
by gradient descent with BREQ in (3.5) with γ = α/(βL).

a) Strongly-convex: If F (·) is L-smooth and µ-strongly convex, then

F (xk)− F (x?) ≤
(

1− µ α2

2βL

)k
(F (x0)− F (x?)) .

Convergence Analysis under BREQ 39

b) Convex: If F (·) is convex and L-smooth, then

F (xk)− F (x?) ≤ 1
k

2βL
α2 R2,

where R ≥ ‖xk − x?‖ for all k.

c) Non-convex: If the whole objective function F (·) is L-smooth, then

min
l∈[0,k−1]

‖∇F (xl)‖2 ≤
1
k

2βL
α2 (F (x0)− F (xk)) ,

Proof. See Appendix 3.B.2.

From Theorem 3.1, gradient descent under BREQ attains linear conver-
gence for strongly convex problems and sub-linear convergence for convex and
non-convex problems. In particular, the tuning parameter and the convergence
rate for gradient descent under BREQ are penalized by α/β and by α2/(2β),
respectively, compared to a similar analysis of full-precision gradient descent.
This penalized factor quantifies the accuracy of BREQ. For instance, the fac-
tor α2/(2β) ranges from 1/(2

√
d) for the deterministic ternary quantization

to K2/(2d2) for the deterministic sparsification. This theorem also allows us
to estimate the iteration and communication complexity, which are penalized
by the precision of BREQ α2/(2β), as shown next.

Corollary 3.1. Consider Problem (3.1) where the whole objective function
f(·) is L-smooth, and the iterates {xk}k∈N generated by gradient descent with
BREQ in (3.5) with γ = α/(βL). Let c be the required number of bits to encode
one compressed vector.

a) Strongly-convex: If F (·) is L-smooth and µ-strongly convex, then the
algorithm reaches F (xT)− F (x?) ≤ ε within

T ? = 2β
α2

L

µ
log
(
F (x0)− F (x?)

ε

)
,

iterations under which B? = dcT ?e bits are sent.

b) Convex: If F (·) is convex and L-smooth, then the algorithm reaches
F (xT)− F (x?) ≤ ε within

T ? = 2β
α2

LR2

ε
,

iterations under which B? = dcT ?e bits are sent. Here, R ≥ ‖xk − x?‖
for all k.

40 Compressed Gradient Methods

c) Non-convex: If the whole objective function F (·) is L-smooth, then the
algorithm reaches mink∈[0,T−1] ‖∇F (xk)‖2 ≤ ε within

T ? = 2β
α2

L[F (x0)− F (xT)]
ε

,

iterations under which B? = dcT ?e bits are sent.

Proof. See Appendix 3.B.3.

3.3.1 Tighter Convergence of Deterministic Sparsification
The deterministic sparsification has a small value of α, which translates into
a high convergence penalty in the unified analysis. However, by exploiting
the lower bound on ‖Q(v)‖ stated in Lemma 3.1, we can give convergence
guarantees that are of the same order of magnitude as the other BREQs.

Theorem 3.2. Consider Problem (3.1) and the iterates {xk}k∈N generated by
(3.5) using the deterministic sparsification with γ = 1/L.

a) Strongly-convex: If F (·) is L-smooth and µ-strongly convex, then

F (xk)− F (x?) ≤
(

1− K

2d
µ

L

)k
(F (x0)− F (x?)).

b) Convex: If F (·) is convex and L-smooth, then

F (xk)− F (x?) ≤ 1
k

2dL
K

R2,

where R ≥ ‖xk − x?‖ for all k.

c) Non-convex: If the whole objective function F (·) is L-smooth, then

min
l∈[0,k−1]

‖∇F (xl)‖2 ≤
1
k

2dL
K

(F (x0)− F (xk)) .

Proof. See Appendix 3.B.4.

Theorem 3.2 implies the d/K larger step-size and convergence speed than
Theorem 3.1. In the similar fashion for the generic BREQ analysis, we can de-
rive the following bound on the communication complexity of the deterministic
sparsification methods.

Corollary 3.2. Consider Problem (3.1) and the iterates {xk}k∈N generated by
(3.5) using the deterministic sparsification with γ = 1/L. Let c be the required
number of bits to encode one compressed vector.

Convergence Analysis under BREQ 41

a) Strongly-convex: If F (·) is L-smooth and µ-strongly convex, then the
algorithm reaches F (xT)− F (x?) ≤ ε within

T ? = 2d
K

L

µ
log
(
F (x0)− F (x?)

ε

)
,

iterations under which B? = dcT ?e bits are sent.

b) Convex: If F (·) is convex and L-smooth, then the algorithm reaches
F (xT)− F (x?) ≤ ε within

T ? = 2d
K

LR2

ε
,

iterations under which B? = dcT ?e bits are sent. Here, R ≥ ‖xk − x?‖
for all k.

c) Non-convex: If the whole objective function F (·) is L-smooth, then the
algorithm reaches mink∈[0,T−1] ‖∇F (xk)‖2 ≤ ε within

T ? = 2d
K

L[F (x0)− F (xT)]
ε

,

iterations under which B? = dcT ?e bits are sent.

Proof. See Appendix 3.B.5.

From Corollary 3.1 and 3.2, iteration and communication complexities of
GD with different BREQs (3.5) for non-convex problems are summarized in
Table 3.1. On the one hand, the deterministic sparsification with K ≥

√
d

achieves the lower iteration complexity than the deterministic ternary quanti-
zation, and deterministic sparsification and quantization. On the other hand,
if Kmax := maxk |supp(Q(∇f(xk)))| < min(

√
d, 2d/[log2(d) + 1]), then the

deterministic sparsification and quantization provides the lower communica-
tion complexity than the deterministic sparsification and deterministic ternary
quantization. We validate this observation in our numerical experiments in the
next section.

3.3.2 Experimental Results
We evaluated the performance of GD with different BREQs on a least-squares
problem. This problem is on the form (3.1) with F (x) = (1/2)‖Ax − b‖2
where A ∈ Rm×d and b ∈ Rm. Test instances with m = 1000 and d = 800
were created as follows: each element of A was drawn from U(0, 1) and each
element of b was set to be the sign of a random number drawn from N (0, 1).
We normalized each row of A by its Euclidean norm and computed the Lip-
schitz constant as L = λmax(ATA). The compressed gradient iterations were

42 Compressed Gradient Methods

Quantizer γ T ? B?

Deterministic 1
L

d
K ν dd(log2(d) + b)νe

sparsification

Deterministic ternary 1
dL dν dKmax(2d+ b)νe

quantization

Deterministic sparsification 1√
dL

√
dν dKmaxCDνe

and quantization

Table 3.1: iteration and communications complexity of compressed gradient
descent for non-convex problems, where CD = Kmax(log2(d) + 1) + b, Kmax =
maxkKk, Kk = |supp(Q(∇f(xk)))| and ν = 2Lε0/ε.

initialized from x0 = 0, and we assumed that real numbers were represented
by b = 64 bits. The step sizes under different gradient compression algorithms
are tuned according to Table 3.1.

From Figure 3.1a, GD has the fastest convergence towards the optimum in
terms of iteration counts, since all gradient compression techniques introduce
an information loss. Furthermore, since K ≥

√
d in this case, GD with the

deterministic sparsification provides lower iteration complexity to reach the
ε-accuracy than GD using other compressors. However, GD with compression
tends to have better performance than GD in terms of the number of com-
municated bits; see Figure 3.1b. The exception is the deterministic ternary
quantization, which is uniformly worse than its alternatives, possibly due to its
small theoretically justified step size. Figure 3.1b indicates that GD with the
deterministic sparsification and quantization attains the best communication
complexity among GD with other compressors.

3.4 Convergence Analysis under URQ
In this section, we provide a unified convergence analysis of gradient descent
under URQ. We show that the unbiasedness property of URQ can be used to
obtain theoretical guarantees for both full and partial gradient architectures.
Our results show explicit dependency of convergence on compression accuracy
and asynchrony.

Convergence Analysis under URQ 43

0 1 2 3 4 5

·104

10−1

100

101

102

103

104

iteration counts

‖∇
f
(x

k
)‖

2

GD: γ = 1/L
Ternary Q

K−greedy Q with K = 50
Dyn. Grad. Q

(a) Iteration counts

0 0.5 1 1.5

·107

102

103

communication bits

‖∇
f
(x

k
)‖

2

GD: γ = 1/L
Ternary Q

K−greedy Q with K = 50
Dyn. Grad. Q

(b) communicated bits

Figure 3.1: The performance of gradient descent with different BREQs and
full-precision gradient descent. Here, K-greedy Q, Ternary Q and Dyn.
Grad. Q are the deterministic sparsification, the deterministic ternary quan-
tization, and the deterministic sparsification and quantization, respectively.

3.4.1 Full Gradient Communication
To build the intuition on the effect of URQ, we study gradient descent under
the full gradient communication architecture. The result is of significance for
distributed optimization using dual decomposition methods, where the dual
function is optimized typically by using gradient descent (see details in Section
2.6.1). Furthermore, it complements and improves on results for the BREQ
in Section 3.3. In essence, the convergence of algorithms using the URQ, like
the BREQ, is shown to depend on the compression accuracy. This theoreti-
cal guarantee leads to explicit formulas for the iteration and communication
complexity of GD under URQ. In addition, the result establishes a baseline
for the partial gradient communication architectures later.

To this end, we start by considering compressed gradient descent, which
updates the solution {xk}k∈N via the following recursion

xk+1 = xk − γQ(∇F (xk)), (3.6)

where γ is the fixed, positive step size, and Q(·) is the URQ. Throughout
this section, we derive explicit expressions for how the variance bound α of
the URQ affects admissible step-sizes and guaranteed convergence times. The
next result charaterizes the convergence of GD with URQ (3.6).

Theorem 3.3. Consider Problem (3.1), and the iterates {xk}k∈N generated
by (3.6). Let ∆ = min(∆ave,∆max) and L̄ = L

√
n(1 + ∆). Then,

1. Strongly-convex: If γ = (1/α)
(
2/(µ+ L̄)

)
, and Assumption 3.1, 3.2

44 Compressed Gradient Methods

and 3.4 hold, then

E‖xk − x?‖2 ≤
(

1− 1
α

4µL̄
(µ+ L̄)2

)k
‖x0 − x?‖2.

2. Convex: If γ = 1/(αL̄), and Assumption 3.1 and 3.4 hold, then

E (F (xk)− F (x?)) ≤ αL̄

2(k + 1)‖x0 − x?‖2.

Proof. See Appendix 3.C.2.

Theorem 3.3 quantifies how the convergence guarantees depend on α. If the
worker node sends the exact gradient, i.e. Q(∇F (xk)) = ∇F (xk), α = 1. Also,
this theorem with α = 1 recovers the convergence rate of full-precision gradient
descent for strongly-convex problems with γ = 2/(µ+ L̄) and convex problems
with γ = 1/L̄, presented in [112, 73]. If the quantizer produces a less accurate
vector (larger α), then we must decrease the step size γ to guarantee numerical
stability at the cost of higher iteration and communication complexity to reach
the target solution accuracy.

To illustrate this, notice that one naive encoding of a vector processed by
the URQ requires c(log2 d+B) bits: log2 d bits to represent each index and B
bits to represent the corresponding vector entry of c non-zero values. Hence,
Theorem 3.3 yields the following iteration and communication complexity that
all are penalized by the URQ precision α.

Corollary 3.3. Consider Problem (3.1), and the iterates {xk}k∈N generated
by (3.6). Let ∆ = min(∆ave,∆max), L̄ = L

√
n(1 + ∆), B be the number of

bits required to encode a single vector entry, and E{‖Q(v)‖0} ≤ c. Then,

1. Strongly-convex: If γ = (1/α)
(
2/(µ+ L̄)

)
, and Assumption 3.1, 3.2

and 3.4 hold, then the algorithm in (3.6) reaches E‖xT −x?‖2 ≤ ε within

T ? = α
(µ+ L̄)2

4µL̄
log
(
‖x0 − x?‖2

ε

)
iterations, under which

B? =
⌈

(log2d+B) c · α (µ+ L̄)2

4µL̄
log
(
‖x0 − x?‖2

ε

)⌉
bits are sent.

Convergence Analysis under URQ 45

2. Convex: If γ = 1/(αL̄), and Assumption 3.1 and 3.4 hold, then the
algorithm in (3.6) reaches E (F (xT)− F (x?)) ≤ ε within

T ? = αL̄

2 ·
‖x0 − x?‖2

ε

iterations, under which

B? =
⌈

(log2d+B) c · αL̄2 ·
‖x0 − x?‖2

ε

⌉
bits are sent.

Proof. See Appendix 3.C.3.

Next, we conclude this section by studying the following compressed IAG
algorithm: given an initial point x0 and a fixed, positive step size γ

xk+1 = xk − γQ

(
n∑
i=1
∇F i(xk−τ i

k
)
)
. (3.7)

The iteration accounts for heterogeneous worker delays, but performs a cen-
tralized compression of the sum of staled gradients. We include the result here
to highlight how the introduction of heterogeneous delays affect our conver-
gence guarantees, and consider it as an intermediate step towards the more
practical architectures studied in the next section. Note that compressed IAG
(3.7) with τ ik = 0 is Algorithm (3.6). We now state the result:

Theorem 3.4. Consider Problem (3.1), and the iterates {xk}k∈N generated by
(3.7) with τ ik ≤ τ and 0 < γ < γ̄ for positive scalars τ , γ̄. Let L̄ = L

√
n(1 + ∆)

and ∆ = min(∆ave,∆max).

1. Strongly-convex: If Assumption 3.1, 3.4 and 3.2 hold, and

γ̄ = min
(

µ
√
ατL̄2

,
1
αL̄

)
,

then

E[F (xk)− F (x?)] ≤
(

1− µγ + L̄4γ3τ2α

µ

)k/(1+2τ) (
F (x0)− F (x?)

)
.

2. Non-convex: If Assumption 3.1 and 3.4 hold, and

γ̄ = 1√
1 + 8 (1 + β(1 + θ)) τ(τ + 1)

2
L̄
,

46 Compressed Gradient Methods

and β < 1/ (2(1 + 1/θ)) for θ > 0, then

min
l∈[0,k]

E‖∇F (xl)‖2 ≤
1
a

1
k + 1 (F (x0)− F (x?)) ,

where a = γ/2− γβ(1 + 1/θ).

Proof. See Appendix 3.C.4.

From Theorem 3.4, the admissible step-size and corresponding convergence
speed all depend on the delay bound τ and the compression bound α. For
strongly convex problems, the upper bound on the step-size in Theorem 3.4-1
is smaller than the corresponding result in Theorem 3.3-1. If the quantizer
produces the exact output (Q(v) = v), then the compressed IAG algorithm
(3.7) coincides with the IAG algorithm (3.3) for strongly convex optimization.
If we let α = 1, µ/L̄ ≤ τ , and γ = 0.5γ̄, then the IAG iteration (3.3) from
Theorem 3.4-1 satisfies

F (xk)− F (x?) ≤
(

1− 1
8

1
1 + 2τ

µ2

τL̄2

)k (
F (x0)− F (x?)

)
where the inequality follows from the fact that (1−x)a ≤ 1−ax for x, a ∈ [0, 1].
Thus, our step-size is more than three times larger than the one derived in [27],
which results in corresponding improvements in convergence factors.

From Theorem 3.4 we can next characterize the associated ε-convergence
times and expected information exchange from the worker to the master for
running the compressed IAG algorithm (3.7).

Corollary 3.4. Consider Problem (3.1), and the iterates {xk}k∈N gener-
ated by (3.7) with τ ik ≤ τ and 0 < γ < γ̄ for positive scalars τ , γ̄. Let
L̄ = L

√
n(1 + ∆), ∆ = min(∆ave,∆max), B be the number of bits required to

encode a single vector entry, and E{‖Q(v)‖0} ≤ c.

1. Strongly-convex: If Assumption 3.1, 3.4 and 3.2 hold, and

γ̄ = min
(

µ
√
ατL̄2

,
1
αL̄

)
,

then the algorithm (3.7) reaches E[F (xT)− F (x?)] ≤ ε within

T ? = (1 + 2τ) µ

γ
(
µ2 − L̄4γ2τ2α

) log
(
F (x0)− F (x?)

ε

)
iterations, under which

B? =
⌈

(log2d+B)c · (1 + 2τ) µ

γ
(
µ2 − L̄4γ2τ2α

) log
(
F (x0)− F (x?)

ε

)⌉
bits are sent.

Convergence Analysis under URQ 47

2. Non-convex: If Assumption 3.1 and 3.4 hold, and

γ̄ = 1√
1 + 8 (1 + β(1 + θ)) τ(τ + 1)

2
L̄
,

and β < 1/ (2(1 + 1/θ)) for θ > 0, then the algorithm (3.7) reaches
min
l∈[0,T]

E‖∇F (xl)‖2 ≤ ε within

T ? = 1
γ/2− γβ(1 + 1/θ)

F (x0)− F (x?)
ε

iterations, under which

B? =
⌈

(log2d+B)c · 1
γ/2− γβ(1 + 1/θ)

F (x0)− F (x?)
ε

⌉
bits are sent.

Proof. See Appendix 3.C.5.

3.4.2 Partial Gradient Communication
To solve scalable real-world problems effectively, it is natural to apply compres-
sion strategies on gradient descent under the partial gradient communication
architecture. Even though convergence rate results of algorithms using the
BREQ can be obtained, they often require restrictive conditions on problems.
For instance, the vast majority of existing works often makes the uniformly
bounded assumption on the norm of the objective function gradient. Although
this assumption is valid for a certain class of problems, it is always violated
for strongly-convex problems.

In this section, we rather study the effect of the URQ on distributed gradi-
ent descent algorithms. The unbiased property of the URQ, unlike the BREQ,
allows us to establish theoretical guarantees without restrictive assumptions.
Analogous to Section 3.4.1, the convergence rate is shown to depend explicitly
on the URQ accuracy and the communication delay due to asynchrony.

Before studying these effect on the asynchronous algorithm, we consider
its synchronous version called D-QGD. In each iteration of this algorithm, the
master waits for the compressed gradient sent by every worker and maintains
the iterates {xk} according to

xk+1 = xk − γ
n∑
i=1

Q(∇F i(xk)). (3.8)

Since URQs are random and modify the gradient vectors and their support,
the sparsity patterns of the quantized gradients are time-varying and can be

48 Compressed Gradient Methods

characterized by the quantities

∆k
max = max

i∈[1,n]

{
n∑

j=1,j 6=i
1
{
supp(Q(ai)) ∩ supp(Q(aj)) 6= ∅

}}

∆k
ave = 1

n

n∑
i=1

{
n∑

j=1,j 6=i
1{supp(Q(ai)) ∩ supp(Q(aj)) 6= ∅}

}
.

(3.9)

A limitation with these quantities is that they cannot be computed off-line.
However, since compression reduces the support of vectors, i.e. supp(Q(ai)) ⊂
supp(ai), it always holds that ∆k

max ≤ ∆max and ∆k
ave ≤ ∆ave.

The next lemma enables us to benefit from sparsity in our analysis.

Lemma 3.5. Under Assumption 3.4, for k ≥ 0∥∥∥∥∥
n∑
i=1

Q(∇F i(xk))

∥∥∥∥∥
2

≤ σk
n∑
i=1

∥∥Q(∇F i(xk))
∥∥2
,

where

σk = min
(√

n(1 + ∆k
ave), 1 + ∆k

max

)
.

Moreover,

σk ≤ σ = min
(√

n(1 + ∆ave), 1 + ∆max

)
.

Proof. See Appendix 3.C.6.

Notice that Lemma 3.5 quantifies the combined impact of data sparsity
and compression. We have σk = 1 if the quantized gradients are completely
sparse (their support sets do not overlap), whereas σk = n if the quantized
gradients are completely dense (all support sets overlap).

Now, we state the convergence rate result.

Theorem 3.5. Consider the optimization problem (3.1), and iterates {xk}k∈N
generated by (3.8) with γ = 1/ (Lα(1 + θ)σ) for a positive scalar θ. Let σ =
min

(√
n(1 + ∆ave), 1 + ∆max

)
.

1. Strongly-convex: If Assumption 3.1, 3.2 and 3.4 hold, then

E‖xk − x?‖2 ≤ (1− µγ)k‖x0 − x?‖2 + 1
µθL

n∑
i=1
‖∇F i(x?)‖2.

Convergence Analysis under URQ 49

2. Convex: If Assumption 3.1 and 3.4 hold, then

E(F (x̄k)− F (x?)) ≤ 1
γ

1
k
‖x0 − x?‖2 + 1

θL

n∑
i=1
‖∇F i(x?)‖2,

where x̄k = (1/k)
∑k−1
l=0 xl.

Proof. See Appendix 3.C.7.

Theorem 3.5 establishes a convergence of D-QGD towards the optimum
with a residual error depending on th step-size parameter θ, problem param-
eters µ,L, and the Euclidean norm of a component gradient at the optimum
‖∇F i(x?)‖. The step-size and convergence rate of D-QGD are impacted by
the sparsity measure σ and the compression accuracy parameter α. In partic-
ular, a larger value of θ allows for the larger step-size and better convergence
factor, at the cost of a larger residual error.

For simplicity of notation and applicability of the results, we formulated
Theorem 3.5 in terms of σ, not σk (the proof, however, can also provide
convergence guarantees in terms of σk). The result is conservative in the sense
that compression increases sparsity of the gradients, which should translate
into larger step-sizes. To evaluate the degree of conservatism, we carry out
Monte Carlo simulations on the data sets described in Table 3.3. We indeed
note that σk is significantly smaller than σ, as shown in Table 3.2.

Unlike many finite-time convergence results for distributed SGD, Theo-
rem 3.5 do not require bounded gradients and can therefore handle strongly-
convex problems such as `2-regularized losses. In addition, general results
such as [22, Theorem 3.4] can lead to extremely small step-sizes and associ-
ated slow convergence. To verify this, we generated a random least-squares
problem with dimension 1000×100 and used the ternary quantizer with s = 1
(i.e. β = 10). We set the number of iterations to T = 2000 and let the number
of workers (mini-batch groups) equal to 10. We then generate random data
matrices for two scenarios: one dense (σ = n) and one block diagonal (σ = 1).
Our analysis suggest a step-size of 1000 times larger than the step-size allowed
by [22, Theorem 3.4] in the sparse data examples, and a factor 100 larger in
the dense data examples. Figure 3.2 suggests that the convergence using the
step-size in Theorem 3.5-2 gives dramatic improvements in convergence over
[22, Theorem 3.4].

Q-IAG Method
IAG is the popular first-order algorithm implemented on the partial gradient
communication architecture. For heterogeneous and communication-limited
environment, we study the compressed IAG algorithm which reduces commu-
nication bandwidth by both asynchronous regimes and compression operators.

50 Compressed Gradient Methods

E{σk}/m
Data Set σ/n GS TQ LP

RCV1-train 0.83 0.66 0.07 0.42
real-sim 0.8278 0.58 0.06 0.37
GenDense 1 1 0.7 1

Table 3.2: Empirical evaluations of σk and σ when we use gradient sparsifier
(GS) with pj = 0.5 for j ∈ [1, d], ternary quantizer (TQ), and low-precision
quantizer (LP) with s = 4.

0 500 1,000 1,500 2,000
0.9

0.92

0.94

0.96

0.98

1

iteration counts

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

data matrix with σ = m

[22, Theorem 3.4] Theorem 3.5

0 500 1,000 1,500 2,000
0.5

0.6

0.7

0.8

0.9

1

Some titleiteration counts

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

data matrix with σ = 1

Figure 3.2: Convergence of distributed quantized gradient methods (3.8) using
the ternary quantizer with s = 1 for least-squares problems over the randomly
generated data sets with dimension 1000×100. The initial point x0 = x?+10η
where x? is the optimum and η is a Gaussian noise with zero mean and unit
variance.

In each iteration of this algorithm, called Q-IAG, the master node receives
compressed gradients from some worker nodes, while reusing the staled gradi-
ents from the rest. Then, Q-IAG updates the iterate xk according to

xk+1 = xk − γ
n∑
i=1

Q
(
∇F i(xk−τ i

k
)
)
, (3.10)

where γ is the constant step size, and Q(·) is the URQ.
By Assumption 3.4, supp(Q(∇F i(xk−τ i

k
))) = supp(Q(ai)), and thus the

sparsity measures defined (3.9) will be used to strengthen our analysis. Now,
we present the result which are analogous to Theorem 3.5.

Convergence Analysis under URQ 51

Theorem 3.6. Consider the optimization problem (3.1), and the iterates
{xk}k∈N generated by (3.10) with τ ik ≤ τ for all i, k and 0 < γ < γ̄. Let L̄ =
L
√
n(1 + ∆), σ = min

(√
n(1 + ∆ave), 1 + ∆max

)
, and ∆ = min(∆ave,∆max).

1. Strongly-convex: If Assumption 3.1, 3.4 and 3.2 hold, and

γ̄ = 2µ
1 + nσαL2

(
2L̄2τ2 + (1 + θ)

)
where θ > 0, then

E‖xk − x?‖2 ≤ (p+ q)k/(1+2τ)‖x0 − x?‖2 + e/(1− p− q),

where

p = 1− 2µγ + γ2

q = 2nσαL2γ2L̄2τ2 + (1 + θ)γ2nασL2

e =
(
2nαγ2L̄2τ2 + (1 + 1/θ)γ2σα

) n∑
i=1

∥∥∇F i(x?)∥∥2
.

2. Non-convex with bounded gradients: If Assumption 3.1, 3.4 and
3.3 hold, and

γ̄ = 1
1 +

√
1 + 8τ(τ + 1)

2
L̄
,

then

min
l∈[0,k]

E‖∇F (xl)‖2 ≤
2
γ

1
k + 1 (F (x0)− F (x?)) + 2βσnC2.

Proof. See Appendix 3.C.8.

Unlike the result for the compressed IAG algorithm (3.7), Theorem 3.6
can only guarantee that Q-IAG (3.10) converges towards the optimum with
the residual error depending on problem parameters µ,L,C, n, the sparsity
pattern σ, the tuning parameters γ, θ, the precision of compression α, and the
Euclidean norm of a component gradient at the optimum ‖∇F i(x?)‖.

In addition, setting θ = 1 and γ = 0.5γ̄ in Theorem 3.6-1 results in the
following convergence rate of Q-IAG for strongly-convex problems

E‖xk − x?‖2 ≤
(

1− µ2

1 + 2nσαL2
(
L̄2τ2 + 1

))k/(1+2τ)

‖x0 − x?‖2 + E,

52 Compressed Gradient Methods

where

E = 2µ nαL̄2τ2 + σα

1 + 2nσαL2(L̄2τ2 + 1)

n∑
i=1
‖∇F i(x?)‖2.

Thus, the convergence rate and step-size for (3.10) depend on the delay bound
τ and the URQ accuracy parameter α. In particular, the convergence factor
is penalized roughly by µ2/(αL̄4τ2) when individual workers compress their
gradient information. In the absence of the worker asynchrony (τ = 0), the
upper bound on the step-size becomes µ/(nσαL2), which is smaller than the
step-size allowed by Theorem 3.5-1 with θ = 1.

3.4.3 Simulation Results
We consider the empirical risk minimization problem (3.1) with component
loss functions on the form of

F i(x) = 1
2ρ‖Aix− bi‖

2 + σ

2 ‖x‖
2,

where Ai ∈ Rp×d and bi ∈ Rp. Data samples (a1, b1), . . . , (am, bm) were split
among n workers. Hence, m = np. The experiments were done using both
synthetic and real-world data sets as shown in Table 3.3. Each data sample ai
is then normalized by its own Euclidean norm. We evaluated the performance
of the distributed gradient algorithms (3.6)-(3.10) using the stochastic spar-
sification, the stochastic sparsification and quantization, and the stochastic
ternary quantization. We set n = 3, x0 = 1, set σ = 1, and set ρ equal to the
total number of data samples according to Table 3.3. In addition, GenDense
from Table 3.3 generated the dense data set such that each element of the
data matrices Ai is randomly drawn from a uniform random number between
0 and 1, and each element of the class label vectors bi is the sign of a zero-mean
Gaussian random number with unit variance. For the stochastic sparsification,
we assumed that vector elements are represented by 64 bits (IEEE doubles)
while the low-precision quantizer only requires 1 + log2(s) bits to encode each
vector entry. For the distributed algorithms, we have used τ = n.

Data Set Type Samples Dimension
RCV1-train sparse 23149 47236
real-sim sparse 72309 20958
covtype dense 581012 54

GenDense dense 40000 1000

Table 3.3: Summary of synthetic and benchmark data used in our experiments.

Figure 3.3 shows the trade-off between the convergence in terms of iteration
counts and the number of communicated bits. Gradient descent with the

Convergence Analysis under URQ 53

URQs (3.6) has the slower convergence rate with respect to iteration counts
than full-precision gradient descent. The situation is reversed if we judge the
convergence relative to the number of communicated bits. In this case, the
9-bit stochastic sparsification and quantization (s = 10) makes the fastest
progress per information bit, followed by the stochastic ternary quantization.
To reach the sub-optimality at ε = 0.2 on the real-sim and covtype data set,
the full gradient descent requires more bits in the order of magnitude than the
stochastic sparsification and quantization.

The corresponding results for the compressed IAG algorithm according to
Equation (3.10) in the asynchronous parameter server setting are shown in
Figure 3.4. The results are qualitatively similar: sending the gradient vec-
tors in higher precision yields the fastest convergence but can be extremely
wasteful in terms of communication load. The stochastic sparsification and
quantization allows us to make a gentle trade-off between the two objectives,
having both a rapid and communication-efficient convergence. In particular,
the results from covtype show that a fast convergence in terms of both it-
eration counts and communications load for the stochastic sparsification and
quantization with the higher number of quantization levels.

54 Compressed Gradient Methods

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

iteration counts

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

GD (3.2) CGD (3.6) with SS CGD (3.6) with STQ CGD (3.6) with SS+Q

0 1 2 3 4 5 6

·106
0

0.2

0.4

0.6

0.8

1

communicated bits

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

(a) real-sim

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

iteration counts

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

GD (3.2) CGD (3.6) with SS CGD (3.6) with STQ CGD (3.6) with SS+Q

0 0.2 0.4 0.6 0.8 1 1.2

·107

0.2

0.4

0.6

0.8

1

communicated bits

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

(b) RCV1-train

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

iteration counts

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

GD (3.2) CGD (3.6) with SS CGD (3.6) with STQ CGD (3.6) with SS+Q

0 0.2 0.4 0.6 0.8 1

·104
0

0.2

0.4

0.6

0.8

1

communicated bits

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

(c) covtype

Figure 3.3: Convergence of compressed gradient descent algorithms (3.6)
against iteration counts and communicated bits using different URQs over
benchmark data. Here, SS, STQ and SS+Q are the stochastic sparsification with
pi = 0.5 for i ∈ [1, d], the stochastic ternary quantization and the stochastic
sparsification and quantization with s = 10.

Convergence Analysis under URQ 55

0 0.2 0.4 0.6 0.8 1

·104
0

0.2

0.4

0.6

0.8

1

iteration counts

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

Q-IAG (3.10) with SS Q-IAG (3.10) with STQ Q-IAG (3.10) with SS+Q

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·108

0.2

0.4

0.6

0.8

1

communicated bits

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

(a) real-sim

0 0.2 0.4 0.6 0.8 1

·104
0

0.2

0.4

0.6

0.8

1

iteration counts

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

Q-IAG (3.10) with GS Q-IAG (3.10) with TQ Q-IAG (3.10) with LP

0 0.5 1 1.5 2 2.5

·108

0.2

0.4

0.6

0.8

1

communicated bits

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

(b) RCV1-train

0 0.2 0.4 0.6 0.8 1

·104

0

0.2

0.4

0.6

0.8

1

iteration counts

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

Q-IAG (3.10) with SS Q-IAG (3.10) with STQ Q-IAG (3.10) with SS+Q

0 1 2 3 4 5 6

·106

0.2

0.4

0.6

0.8

1

communicated bits

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
))

(c) covtype

Figure 3.4: Convergence of Q-IAG (3.10) against iteration counts and com-
municated bits using different URQs over benchmark data. Here, SS, STQ and
SS+Q are the stochastic sparsification with pi = 0.5 for i ∈ [1, d], the stochastic
ternary quantization and the stochastic sparsification and quantization with
s = 10.

Appendix

3.A Derivation of BREQ parameters
Deterministic sparsification
Clearly,

‖QKG (v)‖2 =
∑
i∈I(v)

|vi|2 ≤ ‖v‖22

so β = 1 is a valid estimate. To estimate α, we write QKG (v) =
∑
i∈I(v) e

ivi,

where vi is the i th element of v ∈ Rd; I(v) collects K indices corresponding
elements of v with largest absolute value; and ei ∈ {0, 1}d with only 1 at
component i ∈ I(v) and zeros elsewhere. Then

〈v,QKG (v)〉 = 〈v,
∑
i∈I(g)

eivi〉 =
∑
i∈I(v)

|vi|2 = ‖QKG (v)‖2.

Introducing Ic(v) as the complement of the set I(v), we note that for every
j ∈ Ic(v), ∣∣vj∣∣2 ≤ min

i∈I(v)
|vi|2 ≤ 1

K

∑
i∈I(v)

|vi|2.

As |I(v)| = K and |Ic(v)| = d−K

‖v‖2 =
∑

i∈I(v)
|vi|2 +

∑
j∈Ic(v)

|vj |2 ≤ (1 + d−K
K)

∑
i∈I(v)

|vi|2 = d
K ‖Q

K
G (v)‖2,

which implies the inequality (3.4) and that

〈v,QKG (v)〉 ≥ (K/d)‖v‖2

Hence, α = K/d is a valid estimate.

Deterministic quantization
Since ‖v‖1 =

∑d
i=1 v

i sgn(vi) and ‖v‖1 ≥ ‖v‖

〈v,QT (v)〉 = ‖v‖‖v‖1 ≥ ‖v‖2

so α = 1 is valid. Next, ‖QT (v)‖2 = |supp(QT (v))| · ‖v‖2 ≤ d‖v‖2, confirms
the bounds for β.

57

58 Compressed Gradient Methods

Deterministic sparsification and quantization
By Definition 3.4, we have

〈v,QD(v)〉 = 〈v, ‖v‖
∑
i∈I(v)

sgn(vi)ei〉 = ‖v‖
∑
i∈I(v)

visgn(vi) = ‖v‖
∑
i∈I(v)

|vi|

By the construction of I(v), we thus conclude that

〈v,QD(v)〉 ≥ ‖v‖2.

In addition, ‖QD(v)‖2 = |I(v)| · ‖v‖2. From [22, Lemma F.1], we know that
|I(v)| ≤

√
d. This confirms the proposed bounds on α and β.

3.B Proofs of main results for BREQ
3.B.1 Lemma 3.6
This lemma establishes our unified theoretical results of compressed gradient
descent with the BREQ compression and the fixed step-size.

Lemma 3.6. Consider the optimization problem (3.1), where the whole objec-
tive function F (·) is L-smooth. Then, the iterates {xk}k∈N generated by (3.5)
with the BREQ according to Definition 3.1 satisfy

F (xk+1) ≤ F (xk)− γ
(
α− Lβγ

2

)
‖∇F (xk)‖2.

Proof. From the definition of the Lipschitz continuity of ∇F (·) and (3.5), we
have:

F (xk+1) ≤ F (xk)− γ〈∇F (xk), Q(∇F (xk))〉+ Lγ2

2 ‖Q(∇F (xk))‖2.

Applying two inequalities of BREQ from Definition 3.1 into the main result
completes the proof.

3.B.2 Proof of Theorem 3.1
By using Lemma 3.6, we can prove the results for Theorem 3.1.

Proof of Theorem 3.1-a)

By the strong convexity assumption of F (·),

‖∇F (xk)‖2 ≥ 2µ (F (xk)− F (x?)) .

Proofs of main results for BREQ 59

Applying this inequality into the one in Lemma 3.6 and using γ = α/(βL)
yields

F (xk+1)− F (x?) ≤ ρ (F (xk)− F (x?)) , (3.11)

where ρ = 1−Γ/κ, Γ = α2/(2β) and κ = L/µ. Suppose that ρ ∈ (0, 1). Then,
by the recursion of the inequality, we obtain the result.

Proof of Theorem 3.1-b)

We start by assuming that there exists a finite positive constant R such that
‖xk−x?‖ ≤ R where {xk} is generated by (3.5). This assumption is commonly
stated; see e.g., [73]. By the convexity of the objective function F (·), we have:

F (xk)− F (x?) ≤ 〈∇F (xk), xk − x?〉.

By Cauchy-Schwarz’s inequality,

F (xk)− F (x?) ≤ ‖∇F (xk)‖‖xk − x?‖ ≤ R‖∇F (xk)‖. (3.12)

Denote Vk = F (xk)− F (x?). Plugging this inequality into the one in Lemma
3.6 and using γ = α/(βL), we get

Vk+1 ≤ Vk − ΩV 2
k , (3.13)

where Ω = α2/(2βL). Using this inequality, we have

1
Vk+1

− 1
Vk
≥ Ω Vk

Vk+1
≥ Ω,

where we reach the last inequality by the fact that Vk+1 ≤ Vk from Lemma
3.6 with γ = α/(βL). By the recursion,

1
VT
≥ 1
V0

+ TΩ.

Since V0 ≥ 0, the proof is complete.

Proof of Theorem 3.1-c)

Summing the inequality in Lemma 3.6 with γ = α/(βL) over k = 0, 1, . . . , T−1
yields

T−1∑
k=0
‖∇F (xk)‖2 ≤ 2βL

α2 (F (x0)− F (xT)) .

Using the fact that mink∈[0,T−1] ‖∇F (xk)‖2 ≤ (1/T)
∑T−1
k=0 ‖∇F (xk)‖2, we

complete the proof.

60 Compressed Gradient Methods

3.B.3 Proof of Corollary 3.1
Proof of Corollary 3.1-a)

Let Ω = α2/(2βL) and ε0 = F (x0)−F (x?). From Theorem 3.1-a), the number
of iterations T required for the algorithm satisfies

T log (1− µΩ) ≤ − log
(ε0

ε

)
to reach F (xT) − F (x?) ≤ ε. By proper manipulations and by the fact that
−1/ log(1− x) ≤ 1/x for 0 < x ≤ 1, we obtain

T ≤ 1
µΩ log

(ε0

ε

)
.

If c is the number of bits required to encode one compressed vector, then the
total communication need to reach the ε-accuracy is B = dcT e.

Proof of Corollary 3.1-b)

Let Ω = α2/(2βL) and ε0 = R2 where R ≥ ‖xk−x?‖ for all k. From Theorem
3.1-b), the number of iterations T required for the algorithm satisfies

1
T

1
ΩR

2 ≤ ε

to reach F (xT)− F (x?) ≤ ε. By proper manipulations, we obtain

T ≤ 1
Ω
ε0

ε
.

If c is the number of bits required to encode one compressed vector, then the
total communication need to reach the ε-accuracy is B = dcT e.

Proof of Corollary 3.1-c)

Let Ω = α2/(2βL) and ε0 = F (x0)−F (x?). From Theorem 3.1-c), the number
of iterations T required for the algorithm satisfies

1
T

1
Ωε0 ≤ ε

to reach mink∈[0,T−1] ‖∇F (xk)‖2 ≤ ε. By proper manipulations, we obtain

T ≤ 1
Ω
ε0

ε
.

If c is the number of bits required to encode one compressed vector, then the
total communication need to reach the ε-accuracy is B = dcT e.

Proofs of main results for BREQ 61

3.B.4 Proof of Theorem 3.2
In this section, we provide the unified results of gradient descent with de-
terministic sparsification. We begin by stating the following lemma which is
useful in our analysis.

Lemma 3.7. Consider the optimization problem (3.1), where the whole ob-
jective function F (·) is L-smooth. Suppose that γ ≤ 2/L. Then, the iterates
{xk}k∈N generated by (3.5) with deterministic sparsification satisfy

F (xk+1) ≤ F (xk)−
(
γ − Lγ2

2

)
K

d
‖∇F (xk)‖2.

Proof. From the definition of the Lipschitz continuity of ∇F (·) and (3.5), and
by the fact 〈v,QKG (v)〉 = ‖QKG (v)‖2,

F (xk+1) ≤ F (xk)−
(
γ − Lγ2

2

)
‖QKG (∇F (xk))‖2.

By the fact that ‖QKG (∇F (xk))‖2 ≥ (K/d)‖∇F (xk)‖2 and that γ ≤ 2/L, we
have the result.

Proof of Theorem 3.2-a)

Applying the strong convexity assumption (3.11) into the one in Lemma 3.7
with γ = 1/L yields

F (xk+1)− F (x?) ≤ ρ (F (xk)− F (x?)) ,

where ρ = 1−(2d/K)(µ/L). Since ρ ∈ (0, 1), by the recursion of the inequality,
we obtain the result.

Proof of Theorem 3.2-b)

By the convex property of the whole objective function F (·), we have the
inequality according to (3.12). Plugging this inequality into the one in Lemma
3.7 with γ = 1/L yields the inequality (3.13) with Ω = K/(2dL). Using the
same arguments as in Theorem 3.1, we complete the proof.

Proof of Theorem 3.2-c)

Summing the inequality in Lemma 3.6 with γ = 1/L over k = 0, 1, . . . , T − 1
yields

T−1∑
k=0
‖∇F (xk)‖2 ≤ 2dL

K
(F (x0)− F (xT)) .

Using the fact that mink∈[0,T−1] ‖∇F (xk)‖2 ≤ (1/T)
∑T−1
k=0 ‖∇F (xk)‖2, we

complete the proof.

62 Compressed Gradient Methods

3.B.5 Proof of Corollary 3.2
From Theorems 3.2-a), Theorems 3.2-b) and Theorems 3.2-c), we follow similar
proof arguments in Corollary 3.1 to obtain the result.

3.C Proof of main results for URQ

3.C.1 Proof of Lemma 3.4
For x, y ∈ Rd, ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 〈x, y〉. Together with the fact that
F (x) =

∑n
i=1 F

i(x), this property implies that

‖∇F (x)−∇F (y)‖2

=
∥∥∇F 1(x)−∇F 1(y)

∥∥2 +
n∑
i=2

〈
∇F 1(x)−∇F 1(y),∇F i(x)−∇F i(y)

〉
+
∥∥∇F 2(x)−∇F 2(y)

∥∥2 +
n∑

i=1,i6=2

〈
∇F 2(x)−∇F 2(y),∇F i(x)−∇F i(y)

〉
+...+ ‖∇Fn(x)−∇Fn(y)‖2 +

n−1∑
i=1

〈
∇Fn(x)−∇Fn(y),∇F i(x)−∇F i(y)

〉
=

n∑
i=1

∥∥∇F i(x)−∇F i(y)
∥∥2

+
n∑
i=1

n∑
j=1,j 6=i

〈
∇F i(x)−∇F i(y),∇F j(x)−∇F j(y)

〉
ei,j ,

where ei,j = 1 if supp(∇F i(x)) ∩ supp(∇F j(x)) 6= ∅ and 0 otherwise. By
Cauchy-Schwarz’s inequality, we have

‖∇F (x)−∇F (y)‖2

≤
n∑
i=1

∥∥∇F i(x)−∇F i(y)
∥∥2

+
n∑
i=1

n∑
j=1,j 6=i

∥∥∇F i(x)−∇F i(y)
∥∥ · ∥∥∇F j(x)−∇F j(y)

∥∥ei,j .
The Lipschitz continuity of the gradients of component functions F i(·)

implies that

‖∇F (x)−∇F (y)‖2 ≤ L2

n+
n∑
i=1

n∑
j=1,j 6=i

ei,j

 ‖x− y‖2
= L2n (1 + ∆ave) ‖x− y‖2,

Notice that the sparsity pattern of ∇F i(·) can be found using the data matrix
A, [113].

Proof of main results for URQ 63

Next, we can tighten the bound using the maximum conflict degree ∆max.
By Cauchy-Schwarz’s inequality and by the Lipschitz gradient assumption of
F i(·), we have

‖∇F (x)−∇F (y)‖2 ≤ L2

n+
n∑
i=1

n∑
j=1,j 6=i

ei,j

 ‖x− y‖2
≤ L2n (1 + ∆max) ‖x− y‖2,

where the last inequality derives from the definition of the maximum conflict
graph degree. In conclusion,

L̄2 = L2n (1 + ∆) ,

where ∆ = min(∆ave,∆max).

3.C.2 Proof of Theorem 3.3
Proof of Theorem 3.3-1.

Using the distance between the iterates {xk}k∈N and the optimum x?, we have

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2γ〈Q(∇F (xk)), xk − x?〉+ γ2‖Q(∇F (xk))‖2.

Taking the expectation with respect to all the randomness in the algorithm
yields

E‖xk+1 − x?‖2 = E‖xk − x?‖2 − 2γE〈∇F (xk), xk − x?〉+ γ2E‖Q(∇F (xk))‖2

≤ E‖xk − x?‖2 − 2γE〈∇F (xk), xk − x?〉+ γ2αE‖∇F (xk)‖2,

where the inequality follows from the second property in Definition 3.5. Denote
Vk = E‖xk − x?‖2. It follows from [73, Theorem 2.1.12] that

Vk+1 ≤ ρVk +
(
−2γ 1

µ+ L̄
+ γ2α

)
E‖∇F (xk)‖2,

where ρ = 1− 2γ µL̄
µ+L̄ . If −2γ/(µ+ L̄) + γ2α ≤ 0, or equivalently

γ ∈
(

0, 2
α(µ+ L̄)

]
,

then ρ ∈ [0, 1) for α ≥ 1, and the second term on the right-hand side of the
above inequality is non-positive. Therefore, Vk+1 ≤ ρVk implies Vk ≤ ρkV0.

64 Compressed Gradient Methods

Proof of Theorem 3.3-2.

Denote Vk = E‖xk − x?‖2 and L̄ = L
√
n(1 + ∆). Following the proof in

Theorem 3.3-1., we have

Vk+1 ≤ Vk − 2γE〈∇F (xk), xk − x?〉+ γ2αE‖∇F (xk)‖2.

By the property of Lipschitz continuity of ∇F (x), we have:

〈∇F (xk), xk − x?〉 ≥ F (xk)− F (x?) + 1
2L̄
‖∇F (xk)‖2,

and by assuming that γ ≤ 1/(L̄α), we get

Vk+1 ≤ Vk − 2γE (F (xk)− F (x?)) .

After the manipulation, we have:

2
T∑
k=0

γE (F (xk)− F (x?)) ≤ V0 − VT+1. (3.14)

Again from the Lipschitz gradient assumption of F (·), we have

F (xk+1) ≤ F (xk)− γ〈∇F (xk), Q(∇F (xk))〉+ L̄γ2

2 ‖Q(∇F (xk))‖2.

Taking the expectation over all random variables yields

EF (xk+1) ≤ EF (xk)−
(
γ − L̄αγ2

2

)
‖∇F (xk)‖2,

where we reach the inequality by properties stated in Definition 3.5. Due to
the fact that γ ≤ 1/(L̄α) and the non-negativity of the Euclidean norm, we
can conclude that EF (xk+1) ≤ EF (xk). From (3.14),

2γ(T + 1)E (F (xT)− F (x?)) ≤ E‖x0 − x?‖2 −E‖xT+1 − x?‖2.

By proper manipulations and by letting γ = 1/(L̄α), we obtain the result.

3.C.3 Proof of Corollary 3.3
From Theorems 3.3-1. and 3.3-2., we follow similar proof arguments in Corol-
lary 3.1 to obtain the upper bound of iteration complexity T ?. Also note that
the number of bits required to code the vector is at most (log2d+B) c bits in
each iteration, where B is the number bits required to encode a single vector
entry. We thus reach the upper bound of communication complexity B?.

Proof of main results for URQ 65

3.C.4 Proof of Theorem 3.4
Proof of Theorem 3.4-1.

Denote gk =
∑n
i=1∇F i(xk−τ ik). Let us first introduce two main lemmas which

are instrumental to our main analysis.

Lemma 3.8. Consider the iterates generated by (3.7). For k ∈ N0,

‖gk‖2 ≤
2L̄2

µ
max

s∈[k−τ,k]
F (xs)− F (x?),

where L̄ = L
√
n(1 + ∆) and ∆ = min(∆ave,∆max).

Proof. Since ∇f(x?) = 0, we have

‖gk‖2 =

∥∥∥∥∥
n∑
i=1
∇F i(xk−τ i

k
)−∇F i(x?)

∥∥∥∥∥
2

.

Following the proof of Lemma 3.4 with x = xk−τ i
k
and y = x? yields

‖gk‖2 ≤ L̄2 max
s∈[k−τ,k]

‖xs − x?‖2,

where L̄ = L
√
n(1 + ∆) and ∆ = min(∆ave,∆max). The result also uses the

fact that ‖xk−τ i
k
− x?‖ ≤ max

s∈[k−τ,k]
‖xs − x?‖. Since F (x)−F (x?) ≥ (µ/2)‖x−

x?‖2, for any x, we complete the proof.

Lemma 3.9. The sequence {xk} generated by (3.7) satisfies

E‖∇F (xk)− gk‖2 ≤
2γ2L̄4τ2α

µ
max

s∈[k−2τ,k]
F (xs)− F (x?),

for k ∈ N0, where L̄ = L
√
n(1 + ∆) and ∆ = min(∆ave,∆max).

Proof. By the definition of gk,

‖∇F (xk)− gk‖2 =

∥∥∥∥∥
n∑
i=1
∇F i(xk)−∇F i(xk−τ i

k
)

∥∥∥∥∥
2

.

Following the proof of Lemma 3.4 with x = xk and y = xk−τ i
k
yields

‖∇F (xk)− gk‖2 ≤ L̄2 max
i∈[1,n]

∥∥∥xk − xk−τ i
k

∥∥∥2
,

66 Compressed Gradient Methods

where L̄ = L
√
n(1 + ∆) and ∆ = min(∆ave,∆max). We also reach the result

by the fact that
∥∥∥xk − xk−τ i

k

∥∥∥ ≤ max
i∈[1,n]

∥∥∥xk − xk−τ i
k

∥∥∥ . Next, by the fact that

‖
∑N
i=1 xi‖2 ≤ N

∑N
i=1 ‖xi‖2 for xi ∈ Rd and N ∈ N, and that 0 < τki ≤ τ for

all i, k

‖∇F (xk)− gk‖2 ≤ L̄2 max
i∈[1,n]

τ ik

k−1∑
j=k−τ i

k

‖xj+1 − xj‖2 ≤ L̄2γ2τ
k−1∑
j=k−τ

‖Q(gj)‖2 .

Taking the expectation with respect to the randomness yields

E‖∇F (xk)− gk‖2 ≤ γ2L̄2τα

k−1∑
j=k−τ

‖gj‖2 .

It follows from Lemma 3.8 that

E‖∇F (xk)− gk‖2 ≤
2γ2L̄4τα

µ

k−1∑
j=k−τ

max
s∈[j−τ,j]

F (xs)− F (x?)

≤ 2γ2L̄4τ2α

µ
max

s∈[k−2τ,k]
F (xs)− F (x?).

We now prove Theorem 3.4-2. Since the entire cost function F (·) has
Lipschitz continuous gradient with constant L̄, we have

F (xk+1)− F (x?) ≤ F (xk)− F (x?)− γ〈Q(gk),∇F (xk)〉+ γ2L̄

2 ‖Q(gk)‖2.

Taking the expectation with respect to the randomness and using the second
property in Definition 3.5, we obtain

E[F (xk+1)− F (x?)] ≤ E[F (xk)− F (x?)]− γE[〈gk,∇F (xk)〉] + γ2αL̄

2 E[‖gk‖2].

If γαL̄ ≤ 1, then γ2αL̄ ≤ γ, which implies that

E[F (xk+1)− F (x?)] ≤ E[F (xk)− F (x?)]− γE[〈gk,∇F (xk)〉] + γ

2 E[‖gk‖2].

Using gk = gk − ∇F (xk) +∇F (xk) and F (x) − F (x?) ≤ (1/(2µ)) ‖∇F (x)‖2
for any x, we have

E[F (xk+1)− F (x?)] ≤ (1− γµ)E[F (xk)− F (x?)] + γ

2 E[‖gk −∇F (xk)‖2],

Proof of main results for URQ 67

It follows from Lemma 3.9 that

Vk+1 ≤ pVk + q max
s∈[k−2τ,k]

Vs,

where Vk = E[F (xk) − F (x?)], p = 1 − γµ and q = γ3L̄4τ2α/µ. According
to Lemma 1 of [114], if p + q < 1, or, equivalently, γ < µ/(L̄2τ

√
α), then

Vk ≤ (p+ q)k/(1+2τ)V0. This completes the proof.

Proof of Theorem 3.4-2.

Define gk =
∑n
i=1∇F i(xk−τ ik). Let us introduce three main lemmas which

are instrumental in our main analysis.

Lemma 3.10. The sequence {xk} generated by (3.7) satisfies

‖∇F (xk)− gk‖2 ≤ L̄2γ2τ

k−1∑
j=k−τ

‖Q(gj)‖2 ,

where L̄ = L
√
n(1 + ∆) and ∆ = min(∆ave,∆max).

Proof. Following the proof in Lemma 3.9 yields the result.

Lemma 3.11. The sequence {xk} generated by (3.7) satisfies

E ‖∇F (xk)−Q(gk)‖2 ≤ α1E ‖∇F (xk)− gk‖2 + α2E‖∇F (xk)‖2,

where α1 = 2 (1 + β(1 + θ)), α2 = 2β(1 + 1/θ), and θ > 0.

Proof. We start by deriving the upper bound of E ‖gk −Q(gk)‖2. By the
property stating that E‖Q(v)−v‖2 ≤ β‖v‖2 and by the fact that ∇F (x?) = 0,
we have:

E ‖gk −Q(gk)‖2 ≤ β(1 + θ)‖gk −∇F (xk)‖2 + β(1 + 1/θ)‖∇F (xk)‖2,

where the inequality derives from the fact that ‖x+ y‖2 ≤ (1 + θ)‖x‖2 + (1 +
1/θ)‖y‖2 for x, y ∈ Rd and θ > 0.

Now, we are ready to derive the upper bound of E ‖∇F (xk)−Q(gk)‖2. By
the fact that ‖

∑N
i=1 xi‖2 ≤ N

∑N
i=1 ‖xi‖2 for xi ∈ Rd and N ∈ N, we have

‖∇F (xk)−Q(gk)‖2 ≤ 2 ‖∇F (xk)− gk‖2 + 2 ‖gk −Q(gk)‖2 .

Taking the expectation over the randomness and then plugging the upper
bound of E ‖gk −Q(gk)‖2 into the result yield the result.

68 Compressed Gradient Methods

Lemma 3.12. Suppose that non-negative sequences {Vk}, {wk}, and {Θk}
satisfying the following inequality

Vk+1 ≤ Vk − aΘk − bwk + c
k∑

j=k−τ
wj , (3.15)

where a, b, c > 0. Further suppose that b− c(τ + 1) ≥ 0 and wk = 0 for k < 0.
Then,

1
K + 1

K∑
k=0

Θk ≤
1
a

1
K + 1(V0 − VK+1).

Proof. Summing (3.15) from k = 0 to k = K yields
K∑
k=0

Vk+1 ≤
K∑
k=0

Vk − a
K∑
k=0

Θk − b
K∑
k=0

wk + c
K∑
k=0

k∑
j=k−τ

wj ,

or equivalently due to the telescopic series

a

K∑
k=0

Θk ≤ (V0 − VK+1)− b
K∑
k=0

wk + c

K∑
k=0

k∑
j=k−τ

wj

= (V0 − VK+1)− b
K∑
k=0

wk

+ c(w−τ + w−τ+1 + . . .+ w0)
+ c(w−τ+1 + w−τ+2 + . . .+ w0 + w1) + . . .

+ c(w−τ+K + w−τ+K+1 + . . .+ w0 + w1 + . . .+ wK)

≤ (V0 − VK+1)− b
K∑
k=0

wk + c(τ + 1)
K∑
k=0

wk

≤ V0 − VK+1,

where the second inequality comes from the fact that wk ≥ 0 for k ≥ 0. In
addition, the last inequality follows from the assumption that b− c(τ +1) ≥ 0.
Then, we obtain the result.

Now, we are ready to derive the convergence rate. From the definition of
the Lipschitz continuity of the gradient of the function F (·) and from the fact
that 2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 for any x, y ∈ Rd, we have

F (xk+1)− F (x?) ≤ F (xk)− F (x?)− γ

2 ‖∇F (xk)‖2 −
(
γ

2 −
γ2L̄

2

)
‖Q(gk)‖2

+ γ

2 ‖∇F (xk)−Q(gk)‖2 ,

Proof of main results for URQ 69

where L̄ = L
√
n(1 + ∆) and ∆ = min(∆ave,∆max). Denote Vk = EF (xk) −

F (x?),Θk = E‖∇F (xk)‖2, and wk = E‖Q(gk)‖2. Next, taking the expecta-
tion over the randomness, and then plugging the inequality from Lemma 3.10
and 3.11 yield

Vk+1 ≤ Vk − α1Θk − α2wk + α3

k−1∑
j=k−τ

wj ,

where α1 = γ/2−γβ(1+1/θ), α2 = 0.5(γ−L̄γ2) and α3 = γ (1 + β(1 + θ)) L̄2γ2τ ,
and L̄ = L

√
n(1 + ∆) and ∆ = min(∆ave,∆max). Next, we apply Lemma 3.12.

Notice that ‖Q(gk)‖ = ‖xk+1 − xk‖/γ, which implies that wk = 0 if k < 0.
Therefore,

1
K + 1

K∑
k=0

Θk ≤
1
a

1
K + 1(V0 − VK+1),

which means that

min
k∈[0,K]

E‖∇F (xk)‖2 ≤ 1
a

1
K + 1 (F (x0)− F (x?))− 1

a

1
K + 1 (EF (xk)− F (x?)) .

To ensure the validity of the result, we must determine γ and β to satisfy three
conditions, i.e. a > 0, b > 0 and b−c(τ+1) ≥ 0. The first criterion implies that
β < 1/ (2(1 + 1/θ)), and the last two criteria yield the admissible range of the
step size γ. The second criterion implies that γ < 1/L̄, and the equivalence of
the last criterion is 0.5− 0.5L̄γ − (1 + β(1 + θ)) L̄2τ(τ + 1)γ2 ≥ 0. Therefore,
let γ = 1/

(
L̄(1 + ω)

)
where ω > 0, and plugging the expression into the

inequality yields ω2+ω−2ψ ≥ 0, where ψ = (1 + β(1 + θ)) τ(τ+1). Therefore,
ω ≥ 0.5

(
−1 +

√
1 + 8ψ

)
, and the admissible step-size is γ < 2/(αL̄) with

α =
√

1 + 8 (1 + β(1 + θ)) τ(τ + 1).

3.C.5 Proof of Corollary 3.4
From Theorems 3.4-1. and 3.4-2., we follow similar proof arguments in Corol-
lary 3.1 to obtain the upper bound of iteration complexity T ?. Also note that
the number of bits required to code the vector is at most (log2d+B) c bits in
each iteration, where B is the number bits required to encode a single vector
entry. We thus reach the upper bound of communication complexity B?.

3.C.6 Proof of Lemma 3.5
Denote ski = supp(Q(ai)). By Assumption 3.4, the definition of the Euclidean
norm and Cauchy-Schwarz’s inequality,∥∥∥∥∥

n∑
i=1

Q(∇F i(xk))

∥∥∥∥∥
2

≤
n∑
i=1
‖Q(∇F i(xk))‖2 + T,

70 Compressed Gradient Methods

where T =
∑n
i=1
∑n
j=1,j 6=i ‖Q(∇F i(xk))‖‖Q(∇F j(xk))‖1

(
ski ∩ skj 6= ∅

)
. For

simplicity, let ei,j = 1
(
ski ∩ skj 6= ∅

)
and ∆i =

∑n
j=1,j 6=i ei,j . Therefore, we

define the maximum conflict degree ∆k
max = maxi∈[1,n] ∆i and the average

conflict degree ∆k
ave = (

∑n
i=1 ∆i)/n. Now, we bound the left-hand side by

using two different data sparsity measures. First, we bound T by using the
maximum conflict degree ∆k

max. By the fact that 2ab ≤ a2 + b2 for a, b ∈ R,
we have

T ≤ 1
2

n∑
i=1

n∑
j=1,j 6=i

(
‖Q(∇F i(xk))‖2 + ‖Q(∇F j(xk))‖2

)
ei,j

≤ ∆k
max

n∑
i=1
‖Q(∇F i(xk))‖2.

Therefore, ‖
∑n
i=1Q(∇fi(xk))‖2 ≤ (1+∆k

max)
∑n
i=1 ‖Q(∇F i(xk))‖2. Next, we

bound the left-hand side by using the average conflict degree ∆k
ave. By Cauchy-

Schwarz’s inequality, we get:

∥∥∥∥∥
n∑
i=1

Q(∇F i(xk))

∥∥∥∥∥
2

=
n∑
i=1
‖Q(∇F i(xk)‖

n∑
j=1
‖Q(∇F j(xk))‖ei,j

≤
n∑
i=1
‖Q(∇F i(xk))‖

√√√√ n∑
j=1
‖Q(∇F j(xk))‖2

n∑
j=1

e2
i,j

≤

√√√√ n∑
i=1
‖Q(∇F i(xk))‖2

√√√√ n∑
j=1
‖Q(∇F j(xk))‖2

√√√√ n∑
i=1

n∑
j=1

e2
i,j

≤

√√√√ n∑
i=1

n∑
j=1

ei,j

n∑
i=1
‖Q(∇F i(xk))‖2

=
√
n(1 + ∆k

ave)
n∑
i=1
‖Q(∇F i(xk))‖2.

In conclusion,

∥∥∥∥∥
n∑
i=1

Q(∇F i(xk))

∥∥∥∥∥
2

≤ σk
n∑
i=1
‖Q(∇F i(xk))‖2,

where σk = min
(√

n(1 + ∆k
ave), 1 + ∆k

max

)
.

Proof of main results for URQ 71

3.C.7 Proof of Theorem 3.5
Proof of Theorem 3.5-1.

Since the component functions are convex and have L-Lipschitz continuous
gradients,

‖∇F i(x)−∇F i(y)‖2 ≤ L〈∇F i(x)−∇F i(y), x− y〉 ∀x, y ∈ Rd. (3.16)

By Young’s inequality and (3.16),

‖∇F i(xk)‖2 ≤ (1 + θ)L〈∇F i(xk)−∇F i(x?), xk − x?〉
+(1 + 1/θ)‖∇F i(x?)‖2. (3.17)

We use the distance between the iterates {xk}k∈N and the optimum x? to
analyze the convergence:

‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 − 2γ
〈

n∑
i=1

Q(∇F i(xk)), xk − x?
〉

+ γ2σk

n∑
i=1

∥∥Q(∇F i(xk))
∥∥2
,

where the inequality comes from Lemma 3.5. Since all machines have the
same quantizers with the same parameters, we have E

∥∥Q(∇F i(xk))
∥∥2 ≤

αE‖∇F i(xk)‖2. Therefore, taking the expectation over all random variables
yields

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 − 2γE 〈∇F (xk), xk − x?〉

+ γ2σkα
n∑
i=1

E
∥∥∇F i(xk)

∥∥2

≤ E‖xk − x?‖2 − 2γE 〈∇F (xk)−∇f(x?), xk − x?〉
+ γ2σαL(1 + θ)E〈∇F (xk)−∇F (x?), xk − x?〉

+ γ2σα(1 + 1/θ)
n∑
i=1

E‖∇F i(x?)‖2,

where the last inequality comes from (3.17),∇F (x) =
∑n
i=1∇F i(x),∇F (x?) =

0, and σk ≤ σ. Now, let γ = 1/ (Lα(1 + θ)σ) . Then, by strong convexity of
F (·), we have:

E‖xk+1 − x?‖2 ≤ ρE‖xk − x?‖2 + γ
1
θL

n∑
i=1

E
∥∥∇F i(x?)∥∥2

,

72 Compressed Gradient Methods

where ρ = 1−µγ. Since ρ ∈ (0, 1), we have Vk ≤ ρkV0 + ē where ē = e/(1−ρ)
or equivalently

E‖xk − x?‖2 ≤ (1− µγ)k‖x0 − x?‖2 + 1
µθL

n∑
i=1

∥∥∇F i(x?)∥∥2
.

Proof of Theorem 3.5-2.

Following the proof in Theorem 3.5-1., we reach:

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 − 2γE 〈∇F (xk)−∇F (x?), xk − x?〉
+ γ2σαL(1 + θ)E〈∇F (xk)−∇F (x?), xk − x?〉

+ γ2σα(1 + 1/θ)
n∑
i=1

E‖∇F i(x?)‖2.

Now, let γ = 1/ (Lα(1 + θ)σ) . Then, we have:

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 − γE 〈∇F (xk)−∇F (x?), xk − x?〉

+ γ
1
θL

n∑
i=1

E
∥∥∇F i(x?)∥∥2

≤ E‖xk − x?‖2 − γE(F (xk)− F (x?)) + γ
1
θL

n∑
i=1

E
∥∥∇F i(x?)∥∥2

,

where we reach the last inequality by the convexity of F (·), i.e.

〈∇F (xk), xk − x?〉 ≥ F (xk)− F (x?).

Denote x̄T =
∑T−1
k=0 xk/T . Due to the convexity of the objective function f ,

F (x̄T) ≤
∑T−1
k=0 F (xk)/T . By the manipulation, we have

E(F (xT)− F (x?)) ≤ 1
γ

1
T
‖x0 − x?‖2 + 1

θL

n∑
i=1

E‖∇F i(x?)‖2,

where we reach the last inequality by the telescopic series and by the non-
negativity of the Euclidean norm.

3.C.8 Proof of Theorem 3.6
Proof of Theorem 3.6-1.

Denote gk =
∑n
i=1∇F i(xk−τ ik). Before deriving the convergence rate, we

introduce an essential lemma for our main analysis.

Proof of main results for URQ 73

Lemma 3.13. Let L̄ = L
√
n(1 + ∆), and ∆ = min(∆ave,∆max). Consider

the IAG update (3.10) with the URQ according to Definition 3.5. Then,

E ‖ek‖2 ≤ 2mσαL2γ2L̄2τ2 max
s∈[k−2τ,k]

‖xs − x?‖2 + 2mαγ2L̄2τ2
n∑
i=1

∥∥∇F i(x?)∥∥2

where σ = min
(√

n(1 + ∆ave), 1 + ∆max

)
, and gk =

∑n
i=1∇F i(xk−τ ik).

Proof. Denote gk =
∑n
i=1∇F i(xk−τ ik) and ek = ∇F (xk) − gk. Following the

proof of Lemma 3.4 with x = xk and y = xk−τ i
k
yields

‖ek‖2 ≤ L̄2 max
i∈[1,n]

‖xk − xk−τ i
k
‖2,

where L̄ = L
√
n(1 + ∆), and ∆ = min(∆ave,∆max). Next, by the bounded

delay assumption and (3.10),

‖ek‖2 ≤ L̄2 max
i∈[1,n]

τ ik

k−1∑
j=k−τ i

k

‖xj+1 − xj‖2 ≤ γ2L̄2τ

k−1∑
j=k−τ

∥∥∥∥∥
n∑
i=1

Q(∇F i(xj−τ i
j
))

∥∥∥∥∥
2

.

On the other hand, by Lemma 3.5 and the second property of Definition 3.5,

E

∥∥∥∥∥
n∑
i=1

Q(∇F i(xj−τ i
j
))

∥∥∥∥∥
2

≤ σ
n∑
i=1

E
∥∥∥Q(∇F i(xj−τ i

j
))
∥∥∥2
≤ σα

n∑
i=1

∥∥∥∇F i(xj−τ i
j
)
∥∥∥2
.

Using the inequality ‖x+y‖2 ≤ 2‖x‖2+2‖y‖2 with x = ∇F i(xj−τ i
j
)−∇F i(x?)

and y = ∇F i(x?) and using the Lipschitz continuity assumption for gradient
of each F i, we have

E

∥∥∥∥∥
n∑
i=1

Q(∇F i(xj−τ i
j
))

∥∥∥∥∥
2

≤ 2σα
n∑
i=1

L2
∥∥∥xj−τ i

j
− x?

∥∥∥2
+ 2σα

n∑
i=1

∥∥∇F i(x?)∥∥2

≤ 2nσαL2 max
s∈[j−τ,j]

‖xs − x?‖2 + 2nα
n∑
i=1

∥∥∇F i(x?)∥∥2
,

where the last inequality by the bounded delay assumption. Hence, plugging
this result into the upper bound of ek yields the result.

We now prove Theorem 3.6-1. Using the definition of the Euclidean norm
with (3.10) and taking the expectation over all the random variables yields

E ‖xk+1 − x?‖2 = E ‖xk − x?‖2 − 2γE
〈

n∑
i=1
∇F i(xk−τ i

k
), xk − x?

〉

+ γ2E

∥∥∥∥∥
n∑
i=1

Q
(
∇F i(xk−τ i

k
)
)∥∥∥∥∥

2

.

74 Compressed Gradient Methods

Using the second property in Definition 3.5 and Lemma 3.5 due to Assumption
3.4, we get

E ‖xk+1 − x?‖2 ≤ E ‖xk − x?‖2 − 2γE 〈∇F (xk), xk − x?〉
+ 2γE 〈gk −∇F (xk), xk − x?〉

+ γ2σα
n∑
i=1

E
∥∥∥∇F i(xk−τ i

k
)
∥∥∥2

≤ E ‖xk − x?‖2 − 2γE 〈∇F (xk), xk − x?〉
+ E ‖gk −∇F (xk)‖2 + γ2E ‖xk − x?‖2

+ (1 + θ)γ2σα

n∑
i=1

E
∥∥∥∇F i(xk−τ i

k
)−∇F i(x?)

∥∥∥2

+ (1 + 1/θ)γ2σα

n∑
i=1

E
∥∥∇F i(x?)∥∥2

where σ = min
(√

n(1 + ∆ave), 1 + ∆max

)
gk =

∑n
i=1∇F i(xk−τ ik). The sec-

ond inequality follows from Cauchy-Schwarz’s inequality and from the fact
that ‖x+ y‖2 ≤ (1 + θ)‖x‖2 + (1 + 1/θ)‖y‖2 for x, y ∈ Rd and θ > 0. Due to
the Lipschitz continuity assumption of ∇F i(·), we get

E ‖xk+1 − x?‖2 ≤ (1 + γ2)E ‖xk − x?‖2 − 2γE 〈∇F (xk), xk − x?〉
+ E ‖gk −∇F (xk)‖2

+ (1 + θ)γ2nασL2E
∥∥∥xk−τ i

k
− x?

∥∥∥2

+ (1 + 1/θ)γ2σα
n∑
i=1

E
∥∥∇F i(x?)∥∥2

.

It follows from Lemma 3.13 that

E ‖xk+1 − x?‖2 ≤ (1 + γ2)E ‖xk − x?‖2 − 2γE 〈∇F (xk), xk − x?〉
+ 2nσαL2γ2L̄2τ2 max

s∈[k−2τ,k]
‖xs − x?‖2

+ 2nαγ2L̄2τ2
n∑
i=1

∥∥∇F i(x?)∥∥2

+ (1 + θ)γ2nασL2 max
s∈[k−τ,k]

E ‖xs − x?‖2

+ (1 + 1/θ)γ2σα
n∑
i=1

E
∥∥∇F i(x?)∥∥2

.

Denote Vk = E‖xk − x?‖2. Due to the fact that ∇F (x?) = 0 and the
property of the strong convexity assumption of F (·), it holds for x, y ∈ Rd that

Proof of main results for URQ 75

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2, using this inequality with x = xk, y = x?

and yields

Vk+1 ≤ pVk + q max
s∈[k−2τ,k]

Vs + e,

where

p = 1− 2µγ + γ2

q = 2nσαL2γ2L̄2τ2 + (1 + θ)γ2nασL2

e =
(
2nαγ2L̄2τ2 + (1 + 1/θ)γ2σα

) n∑
i=1

E
∥∥∇F i(x?)∥∥2

.

From Lemma 1 of [114], p+ q < 1 implies that

γ <
2µ

1 + nσαL2
(
2L̄2τ2 + (1 + θ)

) .
Then, this implies that Vk ≤ (p+ q)k/(1+2τ)V0 + e/(1− p− q).

Proof of Theorem 3.6-2.

Denote g̃k =
∑n
i=1Q

(
∇F i(xk−τ i

k
)
)
and gk =

∑n
i=1∇F i(xk−τ ik). Before de-

riving the convergence rate, we introduce the lemmas which are instrumental
in our main analysis.

Lemma 3.14. The sequence {xk} generated by (3.10) satisfies

‖gk −∇F (xk)‖2 ≤ L̄2γ2τ
k−1∑
j=k−τ

‖g̃j‖2.

Proof. Following the proof in Lemma 3.9 yields the result.

Lemma 3.15. The sequence {xk} generated by (3.10) under Assumption 3.4
satisfies

‖gk − g̃k‖2 ≤ σ
n∑
i=1

∥∥∥∇F i(xk−τ i
k
)−Q

(
∇F i(xk−τ i

k
)
)∥∥∥2

,

where σ = min
(√

n(1 + ∆ave), 1 + ∆max

)
.

Proof. The proof arguments follow those in Lemma 3.5 with replacingQ(∇F i(xk))
with ∇F i(xk−τ i

k
)−Q

(
∇F i(xk−τ i

k
)
)
. Also, note that

supp
(
∇F i(xk−τ i

k
)−Q

(
∇F i(xk−τ i

k
)
))
⊂ supp(∇F i(xk−τ i

k
)),

76 Compressed Gradient Methods

and Assumption 3.4 implies that supp(∇F i(xk−τ i
k
)) can be computed from

the data directly.

Lemma 3.16. The sequence {xk} generated by (3.10) under Assumption 3.4
and 3.3 satisfies

E‖g̃k −∇F (xk)‖2 ≤ 2L̄2γ2τ
k−1∑
j=k−τ

E‖g̃j‖2 + 2βσnC2.

Proof. By the fact that ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2, we have:

‖g̃k −∇F (xk)‖2 ≤ 2‖gk −∇F (xk)‖2 + 2‖gk − g̃k‖2

≤ 2L̄2γ2τ
k−1∑
j=k−τ

‖g̃j‖2 + 2‖gk − g̃k‖2,

where the last inequality follows from Lemma 3.14. Next, taking the expecta-
tion of the inequality from Lemma 3.15 over the randomness yields

E‖gk − g̃k‖2 ≤ σ
n∑
i=1

E
∥∥∥∇F i(xk−τ i

k
)−Q

(
∇F i(xk−τ i

k
)
)∥∥∥2

≤ βσ
n∑
i=1

E
∥∥∥∇F i(xk−τ i

k
)
∥∥∥2
,

where we reach the last inequality by the second property of the URQ, i.e.
E‖Q(v) − v‖2 ≤ βE‖v‖2. Next, taking the expectation over the randomness
yields

E‖g̃k −∇f(xk)‖2 ≤ 2L̄2γ2τ
k−1∑
j=k−τ

E‖g̃j‖2 + 2E‖gk − g̃k‖2

≤ 2L̄2γ2τ
k−1∑
j=k−τ

E‖g̃j‖2 + 2βσ
n∑
i=1

E
∥∥∥∇F i(xk−τ i

k
)
∥∥∥2

≤ 2L̄2γ2τ
k−1∑
j=k−τ

E‖g̃j‖2 + 2βσnC2,

where the last inequality results from Assumption 3.3.

Lemma 3.17. Assume that non-negative sequences {Vk}, {wk}, and {Θk}
satisfying the following inequality

Vk+1 ≤ Vk − aΘk − bwk + c
k∑

j=k−τ
wj + e, (3.18)

Proof of main results for URQ 77

where a, b, c, e > 0. Further suppose that b − c(τ + 1) ≥ 0 and wk = 0 for
k < 0. Then,

1
K + 1

K∑
k=0

Θk ≤
1
a

1
K + 1(V0 − VK+1) + 1

a
e.

Proof. Following the proof in Lemma 3.12 yields the result.

Now, we are ready to derive the convergence rate. From the Lipschitz
continuity assumption of the gradient of f and from the fact that 2〈x, y〉 =
‖x‖2 + ‖y‖2 − ‖x− y‖2 for x, y ∈ Rd,

f(xk+1)− f? ≤ F (xk)− F (x?)− γ

2 ‖∇F (xk)‖2 − α ‖g̃k‖2

+ γ

2 ‖g̃k −∇F (xk)‖2 ,

where α = γ/2 − L̄γ2/2. Taking the expectation over the randomness and
using Lemma 3.16 yields

EF (xk+1)− F (x?) ≤ EF (xk)− F (x?)− γ

2 E ‖∇F (xk)‖2 − αE ‖g̃k‖2

+ L̄2γ3τ
k−1∑
j=k−τ

E‖g̃j‖2 + γβσnC2

Applying Lemma (3.17) with Vk = EF (xk)−F (x?),Θk = E‖∇F (xk)‖2, wk =
E‖g̃k‖2, e = γβσnC2, a = γ/2, b = α, and c = L̄2τγ3 yields the result.

min
k∈[0,K]

E‖∇F (xk)‖2 ≤ V0 − VK
a(K + 1) + 1

a
e.

where Vk = F (xk) − F (x?). Note that wk = 0 for k < 0 since E‖g̃k‖2 =
E‖xk+1 − xk‖2/γ2. Lastly, we need to find the admissible range of the step-
size which guarantees the convergence. The following criteria must be satisfied:
b > 0 and b − c(τ + 1) ≥ 0. The first criterion implies that γ < 1/L̄. The
second criterion implies that 0.5γ − 0.5L̄γ2 − L̄2τ(τ + 1)γ3 ≥ 0. Lastly, let
γ = 1/(L̄+ω) for ω > 0 and plugging the expression into the result yields ω2 +
L̄ω − 2L̄2τ(τ + 1) ≥ 0, and therefore ω ≥

(
−1 +

√
1 + 8τ(τ + 1)

)
L̄/2. Thus,

we can conclude that the admissible range of the step-size is γ < (2/L)(1/β),
where β = 1 +

√
1 + 8τ(τ + 1).

Chapter 4

Error-compensated Gradient
Methods
Large-scale and data-intensive problems in machine learning, signal process-
ing, and control are typically solved by parallel/distributed optimization al-
gorithms. These algorithms achieve high performance by splitting the compu-
tation load between multiple nodes that cooperatively determine the optimal
solution. In the process, much of the algorithm complexity is shifted from the
computation to the coordination. This means that the communication can
easily become the main bottleneck of the algorithms, making it expensive to
exchange full precision information especially when the decision vectors are
large and dense. For example, in training state-of-the-art deep neural net-
work models with millions of parameters such as AlexNet, ResNet and LSTM
communication can account for up to 80% of overall training time, [22].

To reduce the communication overhead in large-scale optimization much
recent literature has focused on algorithms that compress the communicated
information. Some successful examples of such compression strategies are spar-
sification, where some elements of information are set to be zero [103, 115]
and quantization, where information is reduced to a low-precision represen-
tation [22, 82]. Algorithms that compress information in this manner have
been extensively analyzed under both centralized and decentralized architec-
tures, [22, 115, 82, 116, 117, 118, 119, 120, 121, 122]. These algorithms are
theoretically shown to converge to approximate optimal solutions with an ac-
curacy that is limited by the compression precision. Even though compression
schemes reduce the number of communicated bits in practice, they often lead
to significant performance degradation in terms of both solution accuracy and
convergence times, [29, 28].

To mitigate these negative effects of information compression on opti-
mization algorithms, serveral error compensation strategies have been pro-
posed [28, 123, 124, 125]. In essence, error compensation corrects for the
accumulation of many consecutive compression errors by keeping a memory of
previous errors. Even though very coarse compressors are used, optimization
algorithms using error compensation often display the same practical perfor-
mance as algorithms using full-precision information, [28, 123].

Motivated by these encouraging experimental observations, we provide
novel theoretical insights in error compensation on gradient descent with com-
pression schemes. Our key results quantify accuracy gains of error compen-
sation on strongly convex quadratic problems. The improvements in solution

79

80 Error-compensated Gradient Methods

accuracy are particularly significant on ill-conditioned problems. Furthermore,
we provide strong theoretical guarantees of stochastic gradient methods using
both Hessian-free and Hessian-aided error compensation on the network with
multiple nodes. In essence, we show that both compensation schemes with
proper tuning parameters can achieve arbitrarily high solution accuracy. We
also prove that the Hessian-aided error compensation, unlike the Hessian-free
compensation, avoids accumulation of compression errors. Numerical experi-
ments confirm the superior performance of Hessian-aided error compensation
over other schemes. In addition, the experiments indicate that error compen-
sation with a diagonal Hessian approximation achieves similar performance
improvements as using the full Hessian.

4.1 Motivation and Prelimiary Results
In this section, we motivate our study of error-compensated gradient meth-
ods. We give an overview of distributed optimization algorithms based on
communicating gradient information in § 4.1.1 and describe a general form of
gradient compressors, covering most existing ones, in § 4.1.2. Later in § 4.2
we illustrate the limits of directly compressing the gradient, motivating the
need for the error-compensated gradient methods studied in this paper.

4.1.1 Distributed Optimization
Distributed optimization algorithms have enabled us to solve large-scale and
data-intensive problems in a wide range of application areas such as smart
grids, wireless networks, and statistical learning. Many distributed optimiza-
tion algorithms build on gradient methods and can be categorized based on
whether they use a) full gradient communication or b) partial gradient com-
munication (see detailed discussions in § 2.6). The full gradient algorithms
solve problems on the form

minimize
x

F (x), (4.1)

by the standard gradient descent iterations

xk+1 = xk − γ∇F (xk), (4.2)

communicating the full gradient ∇F (xk) in every iteration. Such a communi-
cation pattern usually appears in dual decomposition methods where F (·) is
a dual function associated with some large-scale primal problem; we illustrate
this in § 2.6.1. The partial gradient algorithms are used to solve separable
optimization problems on the form

minimize
x

F (x) = 1
n

n∑
i=1

F i(x), (4.3)

The Limits of Direct Gradient Compression 81

by gradient descent

xk+1 = xk −
γ

n

n∑
i=1
∇F i(xk), (4.4)

and distributing the gradient evaluation on n nodes, each responsible for eval-
uating one of the partial gradients ∇F i(x); see § 2.6.2). Clearly, full gradient
communication is a special case of partial gradient communication with n = 1.
However, considering the full gradient communication algorithms separately
will enable us to get stronger results in that case.

4.1.2 Gradient Compression
We consider the following class of gradient compressors.

Definition 4.1. The operator Q : Rd → Rd is an ε-compressor if there exists
a positive constant ε such that

‖Q(v)− v‖ ≤ ε, ∀v ∈ Rd.

Definition 5.1 only requires bounded magnitude of the compression errors.
A small value of ε corresponds to high accuracy. At the extreme when ε = 0,
we have Q(v) = v. An ε-compressor does not need to be unbiased (in constrast
to those considered in [22, 117]) and is allowed to have a quantization error
arbitrarily larger than magnitude of the original vector (in constrast to [126,
Definition 2.1] and [127, Assumption A]). Definition 5.1 covers most popular
compressors in machine learning and signal processing appplications, which
substantiates the generality of our results later in the paper. One common
example is the rounding quantizer, where each element of a full-precision vector
vi ∈ R is rounded to the closet point in a grid with resolution level ∆ > 0

[Qdr(v)]i = sign(vi) ·∆ ·
⌊
|vi|
∆ + 1

2

⌋
. (4.5)

This rounding quantizer is a ε-compressor with ε = d · ∆2/4, [128, 129, 130,
131]. In addition, if gradients are bounded, the sign compressor [28], the de-
terministic sparsification [115], and the deterministic sparsification and quan-
tization [22, 115] are all ε- compressors.

4.2 The Limits of Direct Gradient Compression
To reduce communication overhead in distributed optimization, it is most
straightforward to compress the gradients directly. The goal of this section is to
illustrate the limits of this approach, which motivates our gradient correction
mechanisms for compression algorithms in § 4.3.

82 Error-compensated Gradient Methods

4.2.1 Full Gradient Communication and Quadratic Case
A major drawback with direct gradient compression is that it leads to error
accumulation. To illustrate why this happens we start by considering convex
quadratic objectives

F (x) = 1
2x

THx+ bTx. (4.6)

Gradient descent using compressed gradients reduces to

xk+1 = xk − γQ (∇F (xk)) , (4.7)

which can be equivalently expressed as

xk+1 =
:=Aγ︷ ︸︸ ︷

(I − γH)xk − γb+ γ (∇f(xk)−Q (∇F (xk))) . (4.8)

Hence,
xk+1 − x? = Ak+1

γ (x0 − x?)

+ γ

k∑
j=0

Ak−jγ (∇F (xj)−Q (∇F (xj))) .
(4.9)

where x? is the optimal solution and the equality follows from the fact that
Hx? + b = 0. The final term of Equation (4.9) describes how the compression
errors from every iteration accumulate. We show how error compensation helps
to remove this accumulation in § 4.3. Even though the error accumulates, the
compression error will remain bounded if the matrix Aγ is stable (which can
be achieved by a sufficiently small step-size), as illustrated in the following
theorem.

Theorem 4.1. Consider the optimization problem over the objective func-
tion (4.6) where H is positive definite and let µ and L be the smallest and
largest eigenvalues of H, respectively. Then, the iterates {xk}k∈N generated by
(4.7) satisfy

‖xk − x?‖ ≤ ρk‖x0 − x?‖+ 1
µ
ε,

where

ρ =
{

1− 1/κ if γ = 1/L
1− 2/(κ+ 1) if γ = 2/(µ+ L) ,

and κ = L/µ is the condition number of H.

Proof. See Appendix 4.B.1.

The Limits of Direct Gradient Compression 83

Theorem 4.1 shows that the iterates of the compressed gradient descent
in Equation (4.7) converge linearly to solution with residual error ε/µ. The
theorem recovers the results of classical gradient descent when ε = 0.

We show in § 4.2.3 that this upper bound is tight. With our error-
compensated method as presented in § 4.3 we can achieve arbitrarily high
solution accuracy even for fixed ε > 0 and µ > 0. These results can be gener-
alized to include partial gradient communication, stochastic, and non-convex
optimization problems as we show next.

4.2.2 Partial Gradient Communication
We now study direct gradient compression in the partial gradient communica-
tion architecture. We focus on the distributed compressed stochastic gradient
descent algorithm (D-CSGD)

xk+1 = xk − γ
1
n

n∑
i=1

Q(gi(xk)), (4.10)

where each gi(x) is a partial stochastic gradient sent by worker node i to the
central node. We assume that the stochastic gradient preserves the unbiased-
ness and bounded variance assumptions, i.e.

Egi(x) = ∇F i(x), and (4.11)
E‖gi(x)−∇F i(x)‖2 ≤ σ2, ∀x ∈ Rd. (4.12)

Notice that unlike [88, Assumption 1] and [132, Assumption 3] this con-
dition only requires similarity between the local gradient and its stochastic
oracle but allows for arbitrary differences between the whole data and local
data distributions. In the deterministic case, we have the following rate result
analogous to Theorem 4.1.

Theorem 4.2. Consider the optimization problem (4.3) where F i(·) are L-
smooth and F (·) is µ-strongly convex. Suppose that gi(xk) = ∇F i(xk). If Q(·)
is the ε-compressor and γ = 2/(µ+ L) then

‖xk − x?‖ ≤ ρk‖x0 − x?‖+ 1
µ
ε.

where ρ = 1− 2/(κ+ 1) and κ = L/µ.

Proof. See Appendix 4.B.2.

Furthermore, in the general stochastic case we have the following result.

84 Error-compensated Gradient Methods

Theorem 4.3. Consider the optimization problem (4.3) where each F i(·) is
L-smooth, and the iterates {xk}k∈N generated by (4.10) under the assumption
that the underlying partial stochastic gradients gi(xk) satisfies the unbiased
and bounded variance assumptions in Equation (4.11) and (4.12). Assume
that Q(·) is the ε-compressor and γ < 1/(3L).

a) (non-convex problems) Then,

min
l∈[0,k]

E‖∇F (xl)‖2 ≤
1

k + 1
2
γ

1
1− 3Lγ (F (x0)− F (x?))

+ 3L
1− 3Lγ γσ

2 + 1 + 3Lγ
1− 3Lγ ε

2.

(4.13)

b) (strongly-convex problems) If F (·) is also µ-strongly convex, then

E (F (x̄k)− F (x?)) ≤ 1
k + 1

1
2γ

1
1− 3Lγ ‖x0 − x?‖2

+ 3
1− 3Lγ γσ

2 + 1
2

1/µ+ 3γ
1− 3Lγ ε

2,

(4.14)

where x̄k =
∑k
l=0 xl/(k + 1).

Proof. See Appendix 4.B.3

Theorem 4.3 establishes a sub-linear convergence of D-CSGD toward the
optimum with a residual error depending on the stochastic gradient noise σ,
compression ε, problem parameters µ,L and the step-size γ. In particular, the
residual error consists of two terms. The first term comes from the stochastic
gradient noise σ2 and decreases in proportion to the step-size. The second term
arises from the precision of the compression ε, and cannot diminish towards
zero no matter how small we choose the step-size. In fact, it can be bounded
by noting that

1 + 3Lγ
1− 3Lγ > 1 and 1

2
1/µ+ 3γ
1− 3Lγ >

1
2µ,

for all γ ∈ (0, 1/(3L)). This means that the upper bound in Equation (4.13)
cannot become smaller than ε2 and the upper bound in Equation (4.14) cannot
become smaller than ε2/(2µ).

4.2.3 Limits of Direct Compression: Lower Bound
We now show that the bounds derived above are tight.

Example 4.1. Consider the scalar optimization problem

minimize
x

µ

2x
2.

Error Compensated Gradient Compression 85

and the iterates generated by the CGD algorithm

xk+1 = xk − γQ(F ′(xk)) = xk − γµQ(xk), (4.15)

where Q(·) is the ε-compression (see Definition 5.1)

Q(z) =
{
z − ε z|z| if z 6= 0
ε otherwise.

If γ ∈ (0, 1/µ] and |x0| > ε then for all k ∈ N we have x? = 0 and

|xk+1 − x?| =|xk − γQ(F ′(xk))|
=(1− µγ)|xk|+ γε

=(1− µγ)k+1|x0|+ εγ
k∑
i=0

(1− µγ)i

=(1− µγ)k+1|x0|+ εγ
1− (1− µγ)k+1

µγ

=(1− µγ)k+1(|x0| − ε) + ε/µ

≥ε/µ,

where we have used that x? = 0. In addition,

F (x̄k)− F (x?) = µ

2
1

k + 1

k∑
i=0
|xi|2 ≥

1
2µε

2,

where x̄k =
∑k
i=0 xi/(k + 1).

The above example shows that the ε-compressor cannot achieve accuracy
better than ε/µ and ε2/(2µ) in terms of ‖xk − x?‖2 and F (x̄k) − F (x?), re-
spectively. These lower bounds match the upper bound in Theorem 4.1, and
the upper bound (4.14) in Theorem 4.3 if the step-size is sufficiently small.
However, in the next section we show the surprising fact that an arbitrarily
good solution accuracy can be obtained with ε-compressor and any ε > 0 if we
include a simple correction step in the optimization algorithms.

4.3 Error Compensated Gradient Compression
In this section we illustrate how error compensation can avoid the accumu-
lation of previous compression errors in compressed gradient methods. We
first introduce our error compensation mechanism and illustrate its benefits
on quadratic problems, as shown next.

86 Error-compensated Gradient Methods

4.3.1 Error Compensation: Algorithm and Illustrative
Example

To introduce the error compensation algorithm and show how it avoids the
accumulation of compression errors, we again consider the quadradic problem

F (x) = 1
2x

THx+ bTx.

The basic idea of the error compensation scheme is to compute the compres-
sion error in each iteration and compensate for it in the next search direction.
For quadratic problem and full gradient descent, the iterations can be written
as

xk+1 = xk − γQ(∇F (xk) +Aγek)
ek+1 = ∇F (xk) +Aγek︸ ︷︷ ︸

Input to Compressor

− Q(∇F (xk) +Aγek)︸ ︷︷ ︸
Output from Compressor

. (4.16)

with e0 = 0 and Aγ = I−γH. This algorithm is similar to the direct gradient
compression in Equation (4.7). However, the main difference is that we have
introduced the memory term ek in the gradient update. The term ek is es-
sentially the compression error, the difference between the compression input
and output. To see how the error correction is helpful, consider the gradient
error

ck = ∇F (xk)︸ ︷︷ ︸
True Gradient

− Q(∇F (xk) +Aγek)︸ ︷︷ ︸
Approximated Gradient Step

.

The compression error can then be re-written as

ek+1 = ck +Aγek,

which reduces to

ek =
k−1∑
j=0

Ak−1−j
γ cj .

With this in mind, we can re-write the algorithm step as

xk+1 = Aγxk − γb+ γck

and establish that

xk+1 − x? = Ak+1
γ (x0 − x?) + γ

k∑
i=0

Ak−iγ ci

= Ak+1
γ (x0 − x?) + γek+1. (4.17)

Notice that here the residual error depends only on the latest compression
error ek+1, instead of the accumulation of previous compression errors as in

Error Compensated Gradient Compression 87

Equation (4.9). In particular, ‖ek+1‖ ≤ ε if Q(·) is an ε-compressor and
we do not accumulate compression errors. This means that we can recover
high solution accuracy given proper step-size tuning. We illustrate this in the
following theorem.

Theorem 4.4. Consider the optimization problem over objective function (4.6)
where H is positive definite, and let µ and L be the smallest and largest eigen-
values of H, respectively. Then, the iterates {xk}k∈N generated by (4.16) with
Aγ = I − γH and e0 = 0 satisfy

‖xk − x?‖ ≤ ρk‖x0 − x?‖+ γε,

where

ρ =
{

1− 1/κ if γ = 1/L
1− 2/(κ+ 1) if γ = 2/(µ+ L) ,

and κ = L/µ.

Proof. See Appendix 4.B.4.

Theorem 4.4 implies that error-compensated gradient descent has linear
convergence rate and can attain arbitrarily high solution accuracy by decreas-
ing the step-size. Comparing with Theorem 4.1, we note that error com-
pensation attains lower residual error than direct compression if we insist on
maintaining the same convergence rate. In particular, error compensation in
Equation (4.16) with γ = 1/L and γ = 2/(µ + L) reduces compression error
κ and (κ + 1)/2, respectively. Hence, the benefit is especially pronounced
for ill-conditioned problems [133]. Finally, Figure 4.1 shows that our worst-
case bound in Theorem 4.4 is empirically shown to be tight for least-squares
problems over synthetic data sets.

We next generalize these results to stochastic gradient methods under par-
tial gradient communication architectures.

4.3.2 Partial Gradient Communication
For optimization with partial gradient communication, the natural generaliza-
tion of error-compensated gradient algorithms consists of the following steps:
at each iteration in parallel, worker nodes compute their local stochastic gra-
dients gi(x) and add a local error compensation term ei before applying the
ε-compressor. The master node waits for all compressed gradients and updates
the decision vector by

xk+1 = xk − γ
1
n

n∑
i=1

Q(gi(xk) +Aike
i
k), (4.18)

88 Error-compensated Gradient Methods

0 0.2 0.4 0.6 0.8 1

·104

0

20

40

60

iteration counts k

‖x
k
−
x
?
‖

Experiment: CGD
Bound: CGD

Experiment: EC-CGD
Bound: EC-CGD

Figure 4.1: The performance of CGD (4.7) and EC-CGD (4.16) with their the-
oretical bounds presented in Theorems 4.1 and 4.4 for least-squares problems
over synthetic data sets with 40, 000 data points and 1, 000 problem variables.
Here, we set the step-size γ = 1/L and the initial point x0 = 0.

while each worker i updates its memory ei according to

eik+1 = gi(xk) +Aike
i
k −Q(gi(xk) +Aike

i
k). (4.19)

Here, γ is the fixed, positive step-size and Aik ∈ Rd×d is the weighted matrix.
The compression schemes can be divided into two categories: Hessian-fee and
Hessian-aided error compensation schemes. We provide theoretical details of
these compensation algorithms separately in the next section.

4.3.2.1 Hessian-Free Error Compensation

Stochastic gradient descent with Hessian-free error compensation updates the
solution according to Equation (4.18) and (4.19) with Aik = I. These error
compensation algorithms were empirically shown to have almost comparable
convergence performance as full-precision algorithms [28, 123]. Motivated by
these practical observations, we provide the first theoretical analysis of these
compensated algorithms with the deterministic sparsification (according to
Definition 3.2). In essence, we show explicit formulas of step-size and conver-
gence rate under mild conditions as shown in the following theorem.

Theorem 4.5. Consider the optimization problem (4.3) where each F i(·) is
L-smooth, and the iterates {xk}k∈N generated by (4.18) with Aik = I. Assume
that Q(·) is the deterministic sparsification according to Definition 3.2 which

Error Compensated Gradient Compression 89

0 0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

Epochs

E
m

p
ir

ic
al
ξ

synthetic

Deterministic sparsification with K = 1%
Deterministic sparsification with K = 10%

0 5 10 15 20 25 30
0

0.5

1

1.5

Epochs

E
m

p
ir

ic
al
ξ

RCV1

Figure 4.2: Validating Condition (4.20) on least-squares problems.

satifies ‖Q(v)− v‖ ≤ α‖v‖ with α =
√

1−K/d, and∥∥∥∥∥Q
(

1
n

n∑
i=1

vik

)
− 1
n

n∑
i=1

Q
(
vik
) ∥∥∥∥∥ ≤ ξ

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk−1)

∥∥∥∥∥ , (4.20)

where vik = gi(xk−1) + eik−1 and ξ is a positive constant. Further suppose that
stochastic gradients gi(x) are unbiased and satisfy E‖

∑n
i=1 g

i(x)/n‖2 ≤ M2

for all x ∈ Rd. If γ ≤ 1/(βL) where β = 2(α + ξ)2∑k−1
l=0 (2α2)l for a fixed

count k ∈ N, then

min
l∈[0,k]

E‖∇F (xl)‖2 ≤
2

γ(k + 1) (F (x0)− F (x?)) + γLM2. (4.21)

Proof. See Appendix 4.B.5.

This theorem shows the sub-linear convergence of algorithms with Hessian-
free error compensation toward the optimum with the residual error. The
step-size tuning is affected by the compression accuracy α, while the residual
term depends on the norms of stochastic gradients M2. Also note that we
can obtain the solution with high accuracy. As the step-size decreases, the
residual term becomes arbitrarily small.

Even though Condition (4.20) seems limited, its validity can be shown on
the experimental results. We validate this assumption on the least-squares
problems on synthetic data and benchmark data RCV1 [134]. In particular,
we generated the dense synthetic data set with 4000 samples and 2000 fea-
tures, while we used RCV1 with 20242 samples and 47236 features. Figure 4.2
indicates that this condition appears to hold with relatively low, stable values
of the constant ξ.

90 Error-compensated Gradient Methods

4.3.2.2 Hessian-Aided Error Compensation

Motivated by the result from Section 4.3.1, we consider stochastic gradient
descent with Hessian-aided error compensation. In essence, we study the con-
vergence results of these error-compensated algorithms according to (4.18) and
(4.19) with the weighted matrix defined by

Aik = I − γHi
k (4.22)

whereHi
k is either a deterministic or stochastic version of the Hessian∇2F i(xk).

In this section, we define the stochastic Hessian in analogous way as the
stochastic gradient as follows:

E[Hi
k] = ∇2F i(xk), and (4.23)

E‖Hi
k −∇2F i(xk)‖2 ≤ σ2

H . (4.24)

Notice that Hi
k is a local information of worker i. In real implementations,

each worker can form the stochastic Hessian and the stochastic gradient in-
dependently at random. In the deterministic case the algorithm has similar
convergence properties as the error compensation for the quadradic problems
studied above.

Theorem 4.6. Consider the optimization problem (4.3) where F i(·) are L-
smooth and f(·) is µ-strongly convex. Suppose that gi(xk) = ∇F i(xk) and
Hi
k = ∇2F i(xk). If Q(·) is the ε-compressor and γ = 2/(µ+ L) then

‖xk − x?‖ ≤ ρk‖x0 − x?‖+ γεC,

where ρ = 1− 2/(κ+ 1), κ = L/µ, C = 1 + γL(κ+ 1).

Proof. See Appendix 4.B.6.

The theorem shows that the conclusions from the quadratic case can be
extended to general strongly-convex functions and multiple nodes. In par-
ticular, the algorithm converges linearly to an approximately optimal solution
with higher precision as the step-size γ decreases. We now illustrate the results
in the general stochastic case.

Theorem 4.7. Consider the optimization problem (4.3) where each F i(·) is
L-smooth, and the iterates {xk}k∈N generated by (4.18) with γk = γ and Aik de-
fined by Equation (4.22), under the assumptions of stochastic gradients gi(xk)
in Equation (4.11) and (4.12), and stochastic Hessians Hi

k in Equation (4.23)
and (4.24). Assume that Q(·) is an ε-compressor and that ei0 = 0 for all
i ∈ [1, n].

Error Compensated Gradient Compression 91

a) (non-convex problems) If γ < 1/(3L), then

min
l∈[0,k]

E‖∇F (xl)‖2 ≤
1

k + 1
2
γ

1
1− 3Lγ (F (x0)− F (x?))

+ 3L
1− 3Lγ γσ

2 + α2

1− 3Lγ γ
2ε2,

where α2 = L2 + (2 + 6Lγ)(σ2
H + L2).

b) (strongly-convex problems) If F (·) is also µ−strongly convex, and γ <
(1− β)/(3L) with 0 < β < 1, then

E (F (x̄k)− F (x?)) ≤ 1
k + 1

1
2γ

1
1− β − 3Lγ ‖x0 − x?‖2

+ 3
2

1
1− β − 3Lγ γσ

2 + 1
2

α1

1− β − 3Lγ γ
2ε2,

where α1 = µ+ L/β + (4/µ+ 6γ) (σ2
H + L2) and x̄k =

∑k
l=0 xl/(k + 1).

Proof. See Appendix 4.B.7.

The theorem establishes the sub-linear convergence of the Hessian-aided
error-compensation method at the rate O(1/k) toward the optimum with a
residual error. Like Theorem 4.3 for direct gradient compression, the residual
error consists of two terms. The first residual term depends on the stochastic
gradient noise σ2 and the second term depends on the precision of the compres-
sion ε. The first term can be made arbitrary small by decreasing the step-size
γ > 0, similarly as in Theorem 4.3. However, unlike in Theorem 4.3, here we
can make the second residual term arbitrarily small by decreasing γ > 0. In
particular, for a fixed ε > 0, the second residual term goes to zero at the rate
O(γ2). This means that in absence of gradient noise (σ2 = 0) we can get an
arbitrarily high solution accuracy even when the compression resolution ε is
fixed.

4.3.3 Comparison to Hessian-Free Error Compensation
We now compare the Hessian-aided error compensation algorithms to the
Hessian-free error compensation algorithms, which was analyzed by the other
recent works [124, 125, 126, 127, 135, 136]. Unlike the Hessian-aided com-
pensation, the Hessian-free compensation schemes keep in memory the sum
(or weighted sum) of all previous compression errors. To illustrate this, we
consider the centralized algorithms for quadratic problems in Section 4.3.1.
Then, we can write the centralized Hessian-free compensation algorithms in
the form of Equation (4.18) and (4.19) (in Section 4.3.2) by setting n = 1 and
A1
k = α · I with α ∈ (0, 1]. If we perform the similar convergence study as

92 Error-compensated Gradient Methods

we did for the centralized Hessian-aided compensation algorithm for quadratic
problems in Section 4.3.1, then we have

xk+1 − x? = Ak+1
γ (x0 − x?) + γek+1 + γ

k∑
l=0

Ak−lγ Bα,γel

where Aγ = I − γH and Bα,γ = (1 − α)I − γH. The final term shows
that these Hessian-free compensation schemes do not remove the accumulated
quantization errors, even though they have been shown to outperform direct
compression. However, the Hessian-aided error compensation does avoid all
of the accumulated error, as shown in Section 4.3.1. This example shows
why the Hessian-based compensation schemes can be more effective than the
Hessian-free compensation schemes.

We validate the superior performance of Hessian-based error compensa-
tion over existing schemes in Section 4.4. To reduce computing and memory
requirements, we propose a Hessian approximation (using only the diagonal el-
ements of the Hessian). Error compensation with this approximation is shown
to have comparable performance to using the full Hessian.

4.3.4 Algorithm Complexity and Hessian Approximation
The Hessian-aided compensation scheme improves the iteration complexity of
compressed gradient methods, both of the methods that use direct compression
and error-compensation. This reduces the number of gradient transmissions,
which in turn makes our compression more communication efficient than the
existing Hessian-free compensation schemes. However, the improved commu-
nication complexity comes at the price of additional computations, since the
Hessian-aided compensation uses the second-order information. In particu-
lar, from Equations (4.18) and (4.19) with Aik = I − γHi

k, computing the
compressed gradient at each node requires O(d2) arithmetic operations to
multiply the Hessian matrix by the compression error. On the other hand,
direct compression and existing Hessian-free compensation methods require
only O(d) operations to compute the compressed gradient. Thus, the Hessian-
aided compensation methods are more communication efficient than existing
Hessian-free compensation schemes but achieves that by additional computa-
tions at nodes each iteration. We can improve the computational efficiency of
the Hessian-aided error-compensation by using computationally efficient Hes-
sian approximations. For example, the Hessian can be approximated by using
only its diagonal elements. This reduces the computation of each compression
to O(d) operations, comparable to existing schemes. We show in the next
section that this approach gives good results on both convex and non-convex
problems. Alternatively, we might use standard Hessian approximations from
quasi-Newton methods such as BFGS [31], [32] or update the Hessian less
frequently.

Numerical Results 93

4.4 Numerical Results
In this section, we validate the superior convergence properties of Hessian-
aided error compensation compared to the state-of-the-art. We also show
that error compensation with a diagonal Hessian approximation shares many
benefits with the full Hessian algorithm. In particular, we evaluate the com-
pensation schemes on centralized stochastic gradient descent and distributed
gradient descent for the minimization problem (4.3) with

F i(x) =
m∑
j=1

`(x; zij , yij), for i = 1, . . . , n. (4.25)

Here, (zi1, yi1), . . . , (zim, yim) are data samples associated with the component
function F i(x), with feature vectors zij ∈ Rd and associated class labels yij ∈
{−1, 1}. In all simulations, we normalized each data sample by its Euclidean
norm and used the initial point x0 = 0. In plot legends, Non-EC denotes
the compressed gradient method (4.10), while EC-I, EC-H and EC-diag-H
are compensation methods governed by the iteration described in Equations
(4.18) and (4.19) with Aik = I, Aik = I − γHi

k and Aik = I − γdiag(Hi
k),

respectively. Here, Hi
k is the Hessian matrix associated with the stochastic

gradient gi(xk) and diag(Hi
k) is a matrix with the diagonal entries of Hk

i on
its diagonal and zeros elsewhere. Thus, EC-I is the existing Hessian-free error
compensation scheme in the literature, EC-H denotes the Hessian-aided error
compensation, and EC-diag-H is the error compensation using a diagonal
Hessian approximation. Throughout the experiments, we also set the same
step-size for all compression algorithms. In particular, γ = 2/(µ + L) and
0.1/L for linear least-squares regression over synthetic data and benchmark
data (i.e. mushrooms, a9a and w8a), while γ = 1/(60

√
3L) for non-convex

robust linear regression.

4.4.1 Linear Least Squares Regression
We consider the least-squares regression problem (4.3) with each component
function on the form (4.25) with

`(x; zij , yij) = (〈zij , x〉 − yij)2/2.

Clearly, F i(x) is strongly convex and smooth with parameters µi and Li, de-
noting the smallest and largest eigenvalues, respectively, of the matrix Ai =∑m
j=1 z

i
j(zij)T . For this problem, the objective function F (·) is thus µ-strongly

convex and L-smooth with µ = mini∈[1,n] µ
i and L = maxi∈[1,n] L

i, respec-
tively.

We evaluated full gradient methods with three Hessian-aided compensation
variants; EC-H, EC-diag-H and EC-BFGS-H. Here, EC-BFGS-H is the com-
pensation update where the full Hessian Hk is approximated using the BFGS

94 Error-compensated Gradient Methods

update [137]. Figure 4.1 suggests that the worst-case bound from Theorem
4.4 is tight for error compensated methods with EC-H. In addition, compensa-
tion updates that approximate Hessians by using only the diagonal elements
and by the BFGS method perform worse than the full Hessian compensation
scheme.

0 0.5 1 1.5

·104

10−2

10−1

100

101

Iteration counts

‖x
k
−

x
?
‖

Bound: Non-EC Non-EC EC-diag-H
Bound: EC-H EC-H EC-BFGS-H

Figure 4.1: Comparisons of D-CSGD and D-EC-CSGD with one worker node
and with gi(x; ξi) = ∇fi(x) for the least-squares problems over synthetic data
with 4, 000 data points and 400 features, when the deterministic rounding
quantizer with ∆ = 1 is applied. We set the step-size γ = 2/(µ+ L).

We begin by considering the deterministic rounding quantizer (4.5). Figure
4.2 shows that compressed SGD cannot reach a high solution accuracy, and
its performance deteriorates as the quantization resolution decreases (the com-
pression is coarser). Error compensation, on the other hand, achieves a higher
solution accuracy and is surprisingly insensitive to the amount of compression.

Figures 4.3 and 4.4 evaluate error compensation the binary (sign) com-
pressor on several data sets in both single and multi-node settings. Almost
all variants of error compensation achieve higher solution accuracy after a
sufficiently large number of iterations. In particular, EC-H outperforms the
other error compensation schemes in terms of high convergence speed and low
residual error guarantees for centralized SGD and distributed GD. In addition,
EC-diag-H has almost the same performance as EC-H.

4.4.2 Non-convex Robust Linear Regression
Next, we consider the robust linear regression problem [138, 139], with the
component function (4.25) and

`(x; zij , yij) = (〈zij , x〉 − yij)2/(1 + (〈zij , x〉 − yij)2).

Numerical Results 95

Here, F i(x) is smooth with Li =
∑m
j=1 ‖zij‖2/(6

√
3), and thus F (x) is smooth

with the parameter L = maxi∈[1,n] L
i.

We consider the binary (sign) compressor and evaluated many compensa-
tion algorithms on different data sets; see Figures 4.5 and 4.6, Compared with
direct compression, almost all error compensation schemes improve the solu-
tion accuracy, and EC-H provides a higher accurate solution than EC-diag-H
and EC-I for both centralized and distributed architectures. Error compen-
sation using diagonal elements of full Hessian (without any noise) also provides
stronger performance than EC-I (see Figure 4.6). However, as the Hessian be-
comes stochastic, the advantage of the diagonal compensation diminishes, and
its performance becomes similar to existing compensation schemes, as shown
in Figure 4.5.

0 10 20 30 40

10−2

10−1

100

epochs (k/m)

E
{F

(x
k
)
−
F

(x
?
)}
/(
F

(x
0
)
−
F

(x
?
))

Non-EC + ∆ = 1 Non-EC + ∆ = 100
EC-H + ∆ = 1 EC-H + ∆ = 100

Figure 4.2: Comparisons of D-CSGD and D-EC-CSGD with one worker node
using different compensation schemes for the least-squares problems over a3a
when the deterministic rounding quantizer is applied. Here, the step-size γ =
0.1/L, the mini-batch size b = |D|/20, where |D| is the total number of data
samples.

4.4.3 Step-size tuning without the Lipschitz constant
In this paper we considered constant step-sizes that rely on the Lipschitz
constant L. For some loss functions it is non-trivial to compute L. Therefore, it
is worthwhile to illustrate the benefits of the Hessian-aided error-compensation
for other step-size schemes that do not rely on the knowledge of L. We consider
two step-size schemes: a) diminishing step-sizes [36, 141, 142] and line search
techniques [51, 143, 144].

96 Error-compensated Gradient Methods

0 10 20 30 40 50

10−5

10−4

10−3

10−2

10−1

100

epochs

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
)) mushrooms

Non-EC EC-H EC-diag-H EC-I

0 5 10 15 20 25 30
10−6

10−5

10−4

10−3

10−2

10−1

100

epochs

E
(F

(x
k
)
−

F
(x

?
))
/(
F
(x

0
)
−
F
(x

?
)) a9a

0 2 4 6 8 10 12 14 16

10−5

10−4

10−3

10−2

10−1

100

epochs

E
(F

(x
k
)
−
F
(x

?
))
/(
F
(x

0
)
−

F
(x

?
)) w8a

Figure 4.3: Comparisons of D-CSGD and D-EC-CSGD with one worker node
using different compensation schemes for the least-squares problems over
bench-marking data sets from [140] when the binary (sign) compression is
applied. We set the step-size γ = 0.1/L, and the mini-batch size b = |D|/10,
where |D| is the total number of data samples.

0 20 40 60 80
10−3

10−2

10−1

100

epochs

(F
(x

k
)
−

F
(x

?
))
/(
F
(x

0
)
−

F
(x

?
))

mushrooms

Non-EC EC-H EC-diag-H EC-I

0 5 10 15 20

10−3

10−2

10−1

100

epochs

(F
(x

k
)
−

F
(x

?
))
/(
F
(x

0
)
−

F
(x

?
))

a9a

0 2 4 6 8 10 12

10−1

100

epochs

(F
(x

k
)
−

F
(x

?
))
/(
F
(x

0
)
−

F
(x

?
))

w8a

Figure 4.4: Comparisons of D-CSGD and D-EC-CSGD with gi(x) = ∇F i(x)
using different compensation schemes for the least-squares problems over
bench-marking data sets from [140] when the binary (sign) compression is
applied. We set the step-size γ = 0.1/L, and 5 worker nodes.

We run the compensation method in (4.18) with n = 1. The diminishing
step-size scheme is γk = 1/(a + k) where a > 0. The step-sizes evaluated by
the line search rule are generated as follows. We start with an initial Lipschitz
estimate Lk. We then double Lk until the following inequality is satisfied

F̃ (xk − γkgQ(xk)) ≤ F̃ (xk)− γk〈g(xk), gQ(xk)〉+ γ2
kLk
2 ‖gQ(xk)‖2 (4.26)

where

gQ(xk) = Q(g(xk) + (I − γkHk)ek),

γk = 1/(θLk), and F̃ (xk) and g(xk) is the stochastic function and gradient,
respectively, based on the random subset of the local data at iteration k.

Numerical Results 97

0 10 20 30 40
10−6

10−5

10−4

10−3

10−2

10−1

100

epochs

m
in k
E
‖∇

F
(x

k
)‖

a3a

EC-H EC-diag-H EC-I Non-EC

0 2 4 6 8 10

10−5

10−4

10−3

10−2

10−1

100

epochs

m
in k
E
‖∇

F
(x

k
)‖

mnist

0 10 20 30 40 50 60

10−6

10−5

10−4

10−3

10−2

10−1

100

epochs

m
in k
E
‖∇

F
(x

k
)‖

phishing

Figure 4.5: Comparisons of D-CSGD and D-EC-CSGD with one worker node
using different compensation schemes for non-convex robust linear regression
over bench-marking data sets from [140] when the binary (sign) compression
is applied. We set the step-size γ = 1/(60

√
3L), and the mini-batch size

b = |D|/10, where |D| is the total number of data samples.

0 10 20 30 40 50 60

10−3

10−2

10−1

100

epochs

m
in k
E
‖∇

F
(x

k
)‖

a3a

EC-H EC-diag-H EC-I Non-EC

0 2 4 6 8

10−2

10−1

100

epochs

m
in k
E
‖∇

F
(x

k
)‖

mnist

0 10 20 30 40 50 60

10−5

10−4

10−3

10−2

10−1

100

epochs

m
in k
E
‖∇

F
(x

k
)‖

phishing

Figure 4.6: Comparisons of D-CSGD and D-EC-CSGD with gi(x) = ∇F i(x)
using different compensation schemes for non-convex robust linear regression
over bench-marking data sets from [140] when the binary (sign) compression
is applied. We set the step-size γ = 1/(60

√
3L), and 5 worker nodes.

We illustrate the results in Figure 4.7. We use the binary (sign) compressor
and consider the linear least-squares regression problem over a9a as in Section
4.4.1. We let a and θ be the mini-batch size and 10, respectively. Figure 4.7
shows that Hessian information improves both the speed and solution accuracy
of error compensation methods with both the diminishing step-size and the
step-size based on line search procedures. These results show that our Hessian-
aided error compensation can be beneficial for other time-varying step-sizes
and step-sizes that do not rely on knowledge of L.

98 Error-compensated Gradient Methods

0 2 4 6 8 10

10−5

10−4

10−3

10−2

10−1

100

epochs

E
{f

(x
k
)
−
f
?
}/

(f
(x

0
)
−
f
?
)

Non-EC: Linesearch Non-EC: γk = 1
a+k

EC-H: Linesearch EC-H: γk = 1
a+k

EC-diag-H: Linesearch EC-diag-H: γk = 1
a+k

EC-I: Linesearch EC-I: γk = 1
a+k

Figure 4.7: Convergence performance of all compensation methods with one
worker for the least-squares problem over a9a when the binary compression is
applied. We evaluated these methods with (a) the line search (in solid lines)
and (b) the diminishing step-size γk = 1/(a+ k), where θ = 10, a = b and the
mini-batch size b = |D|/10 with |D| is the total number of data samples.

Appendix

4.A Review of Useful Lemmas
This section states lemmas which are instrumental in our convergence analysis.

Lemma 4.1. For xi ∈ Rd and a natural number N ,∥∥∥∥∥
N∑
i=1

xi

∥∥∥∥∥
2

≤ N
N∑
i=1
‖xi‖2 .

Lemma 4.2. For x, y ∈ Rd and a positive scalar θ,

‖x+ y‖2 ≤ (1 + θ)‖x‖2 + (1 + 1/θ)‖y‖2.

Lemma 4.3. For x, y ∈ Rd and a positive scalar θ,

2〈x, y〉 ≤ θ‖x‖2 + (1/θ)‖y‖2.

Lemma 4.4 ([73]). Assume that F (x) is convex and L−smooth, and the op-
timimum is denoted by x?. Then,

‖∇F (x)‖2 ≤ 2L(F (x)− F (x?)), for x ∈ Rd. (4.27)

4.B Proof of Main Results
4.B.1 Proof of Theorem 4.1
The algorithm in Equation (4.7) can be written as

xk+1 = xk − γ(∇F (xk) + ek),

where ek = Q(∇F (xk)) − ∇F (xk). Using that ∇F (x?) = Hx? − b = 0 we
have

xk+1 − x? = (I − γH)(xk − x?)− γek,

or equivalently

xk − x? = (I − γH)k(x0 − x?)− γ
k−1∑
i=0

(I − γH)k−1−iei. (4.28)

99

100 Error-compensated Gradient Methods

By the triangle inequality and the fact that for a symmetric matrix I − γH
we have

‖(I − γH)x‖ ≤ ρ‖x‖ for all x ∈ Rd.

where
ρ = max

i∈{1,2,...,d}
|λi(I − γH)| = max

i∈{1,2,...,d}
|1− γλi(H)|.

We thus have

‖xk − x?‖ ≤ ρk‖x0 − x?‖+ γ
k−1∑
i=0

ρk−1−iε.

In particular, when γ = 1/L then ρ = 1− 1/κ meaning that

‖xk − x?‖ ≤ (1− 1/κ)k ‖x0 − x?‖+ 1
L

k−1∑
i=0

(1− 1/κ)k−1−i
ε,

where κ = L/µ. Since 1− 1/κ ∈ (0, 1) we have

k−1∑
i=0

(1− 1/κ)k−1−i ≤
∞∑
i=0

(1− 1/κ)i = κ,

which implies

‖xk − x?‖ ≤ (1− 1/κ)k ‖x0 − x?‖+ 1
µ
ε.

Similarly, when γ = 2/(µ+ L) then ρ = 1− 2/(κ+ 1) and

‖xk − x?‖ ≤ (1− 2/(κ+ 1))k ‖x0 − x?‖+ 2
µ+ L

k−1∑
i=0

(1− 2/(κ+ 1))k−1−i
ε.

Since 1− 2/(κ+ 1) ∈ (0, 1) we have

k−1∑
i=0

(1− 2/(κ+ 1))k−1−i ≤
∞∑
i=0

(1− 2/(κ+ 1))i = (κ+ 1)/2.

This means that

‖xk − x?‖ ≤
(
κ− 1
κ+ 1

)k
‖x0 − x?‖+ 1

µ
ε.

Proof of Main Results 101

4.B.2 Proof of Theorem 4.2
We can rewrite the direct compression algorithm (4.10) equivalently as Equa-
tion (4.29) with ηk = 0. By the triangle inequality for the Euclidean norm,

‖xk+1 − x?‖ ≤ ‖xk − x? − γ∇f(xk)‖+ γ
1
n

n∑
i=1
‖eik‖.

If γ = 2/(µ+ L), by the fact that f(·) is L-smooth and that ‖eik‖ ≤ ε

‖xk+1 − x?‖ ≤ ρ‖xk − x?‖+ γε,

where ρ = 1 − 2/(κ + 1) and κ = L/µ. By recursively applying this main
inequality, we have

‖xk+1 − x?‖ ≤ ρk‖x0 − x?‖+ γ

1− ρε.

By rearranging the terms, we complete the proof.

4.B.3 Proof of Theorem 4.3
We can write the algorithm in Equation (4.10) equivalently as

xk+1 = xk − γ (∇F (xk) + ηk + ek) , (4.29)

where

ηk = 1
n

n∑
i=1

[
gi(xk)−∇F i(xk)

]
, and

ek = 1
n

n∑
i=1

[
Q
(
gi(xk)

)
− gi(xk)

]
.

By Lemma 4.1, the bounded gradient assumption, and the definition of the
ε-compressor we have

E‖ηk‖2 ≤
1
n

n∑
i=1

E‖gi(xk)−∇F i(xk)‖2 ≤ σ2, and (4.30)

‖ek‖2 ≤
1
n

n∑
i=1
‖Q
(
gi(xk)

)
− gi(xk)‖2 ≤ ε2. (4.31)

Proof of Theorem 4.3-a)

By the Lipschitz smoothness assumption on F (·) and Equation (4.29) we have

F (xk+1) ≤ F (xk)− γ〈∇F (xk),∇F (xk) + ηk + ek〉+ Lγ2

2 ‖∇F (xk) + ηk + ek‖2.

102 Error-compensated Gradient Methods

Due to the unbiased property of the stochastic gradient (i.e. Eηk = 0), taking
the expectation and applying Lemma 4.1, and Equation (4.30) and (4.31)
yields

EF (xk+1) ≤ EF (xk)−
(
γ − 3Lγ2

2

)
E‖∇F (xk)‖2

+ γE〈∇F (xk),−ek〉+ 3Lγ2

2 (σ2 + ε2).

Next, applying Lemma 4.3 with x = ∇F (xk), y = −ek and θ = 1 into the
main result yields

EF (xk+1) ≤ EF (xk)−
(
γ

2 −
3Lγ2

2

)
E‖∇F (xk)‖2 + T,

where T = (1+3Lγ)γε2/2+3Lγ2σ2/2. By rearranging the terms and recalling
that γ < 1/(3L) we get

E‖∇F (xk)‖2 ≤ 2
γ

1
1− 3Lγ (EF (xk)−EF (xk+1) + T) .

Using the fact that

min
l∈[0,k]

E‖∇F (xl)‖2 ≤
1

k + 1

k∑
l=0

E‖∇F (xl)‖2

and the cancelations of telescopic series we get

min
l∈[0,k]

E‖∇F (xl)‖2 ≤
1

k + 1
2
γ

1
1− 3Lγ (EF (x0)−EF (xk+1)) + 2

γ

1
1− 3LγT.

We can now conclude the proof by noting that F (x?) ≤ F (x) for all x ∈ Rd

Proof of Theorem 4.3-b)

From the definition of the Euclidean norm and Equation (4.29),

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2γ〈∇F (xk) + ηk + ek, xk − x?〉
+ γ2‖∇F (xk) + ηk + ek‖2.

(4.32)

By taking the expected value on both sides and using the unbiasedness of the
stochastic gradient, i.e., that Eηk = 0, and Lemma 4.1 and Equation (4.30)
and (4.31) to get the bound

E‖∇F (xk) + ηk + ek‖2 ≤ 3E‖∇F (xk)‖2 + 3(σ2 + ε2)

Proof of Main Results 103

we have

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 − 2γE〈∇F (xk) + ek, xk − x?〉
+ 3γ2E‖∇F (xk)‖2 + 3γ2(σ2 + ε2).

Applying Equation (2.4) with x = xk and y = x? and using Lemma 4.4 with
x = xk we have

E‖xk+1 − x?‖2 ≤ (1− µγ)E‖xk − x?‖2 − 2(γ − 3Lγ2)E[F (xk)− F (x?)]
+ 2γE〈ek, x? − xk〉+ 3γ2(σ2 + ε2).

From Lemma 4.3 with θ = µ and Equation (4.31), we have

2γ〈ek, x? − xk〉 ≤ µγ‖xk − x?‖2 + ε2γ/µ,

which yields

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 − 2γ(1− 3Lγ)E[F (xk)− F (x?)] + T,

where T = γ(1/µ + 3γ)ε2 + 3γ2σ2. By rearranging the terms and recalling
that γ < 1/3L we get

E (F (xk)− F (x?)) ≤ 1
2γ

1
1− 3Lγ

(
E‖xk − x?‖2 −E‖xk+1 − x?‖2 + T

)
.

Define x̄k =
∑k
l=0 xl/(k + 1). By the convexity of F (·) and from the cancela-

tions of the telescopic series we have

E (F (x̄k)− F (x?)) ≤ 1
k + 1

k∑
l=0

E (F (xl)− F (x?))

≤ 1
k + 1

1
2γ

1
1− 3Lγ ‖x0 − x?‖2 + 1

2γ
1

1− 3LγT.

Hence, the proof is complete.

4.B.4 Proof of Theorem 4.4
We can write the algorithm in Equation (4.16) equivalently as

xk+1 = xk − γ(∇F (xk)− ck),

where

ck = ∇f(xk)−Q(∇F (xk) +Aγek), and
ek+1 = ck +Aγek

104 Error-compensated Gradient Methods

and Aγ = I − γH. Following similar line of arguments as in the proof of
Theorem 4.1 we obtain

xk − x? = Akγ(x0 − x?) + γ
k−1∑
i=0

Ak−1−i
γ ci.

By using that ek =
∑k−1
i=0 A

k−1−i
γ ci and e0 = 0 we get that

xk − x? = Akγ(x0 − x?) + γek.

Since Aγ is symmetric, by the triangle inequality and the fact that ‖ek‖ ≤ ε
(since ek is the compression error) we have

‖xk − x?‖ ≤ ρk‖x0 − x?‖+ γε,

where ρ = maxi∈[1,d] |1−γλi|. Now following similar arguments as used in the
proof of Theorem 4.1 If γ = 1/L then ρ = 1− 1/κ. Since 1− 1/κ ∈ (0, 1) we
have

‖xk − x?‖ ≤
(

1− 1
κ

)k
‖x0 − x?‖+ 1

L
ε.

If γ = 2/(µ+ L) then ρ = 1− 2/(κ+ 1). Since 1− 2/(κ+ 1) ∈ (0, 1) we have

‖xk − x?‖ ≤
(
κ− 1
κ+ 1

)k
‖x0 − x?‖+ 2

µ+ L
ε.

4.B.5 Proof of Theorem 4.5
We can rewrite Equation (4.18) with Aik = I equivalently as

x̃k+1 = x̃k − γ
1
n

n∑
i=1

gi(xk), (4.33)

where

x̃k = xk − γ
1
n

n∑
i=1

eik. (4.34)

Before proving the main result, we prove one lemma which is instrumental
to our analysis.

Lemma 4.5. Consider the sequences {xk} and {x̃k} generated by Equation
(4.18) and (4.33), respectively. Assume that the stochastic gradient satisfies

E

∥∥∥∥∥ 1
n

n∑
i=1

gi(x)

∥∥∥∥∥
2

≤M2

Proof of Main Results 105

for all x ∈ Rd, and that Q(·) is the K-greedy quantizer satisfying∥∥∥∥∥Q
(

1
n

n∑
i=1

gi(xk) + eik

)
− 1
n

n∑
i=1

Q
(
gi(xk) + eik

) ∥∥∥∥∥ ≤ ξ
∥∥∥∥∥ 1
n

n∑
i=1

gi(xk)

∥∥∥∥∥ ,
fork ≥ 0 and some positive constant ξ. Then, for fixed k ≥ 0

E‖x̃k − xk‖2 ≤ γ2 · 2(α+ ξ)2M2
k−1∑
l=0

(2α2)l,

where α =
√

1−K/d.

Proof. From Lemma 4.1 and Equation (4.33), the Euclidean distance between
xk and x̃k satisfies

‖x̃k − xk‖2 ≤ γ2

∥∥∥∥∥ 1
n

n∑
i=1

eik

∥∥∥∥∥
2

. (4.35)

To bound this distance, we need to determine the upper-bound of
∥∥∑n

i=1 e
i
k/n

∥∥.
From the compensation update according to Equation (4.19) with Aik = I,∥∥∥∥∥ 1
n

n∑
i=1

eik

∥∥∥∥∥ =

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk−1) + eik−1 −Q
(
gi(xk−1) + eik−1

)∥∥∥∥∥
≤

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk−1) + eik−1 −Q

(
1
n

n∑
i=1

gi(xk−1) + eik−1

)∥∥∥∥∥
+

∥∥∥∥∥Q
(

1
n

n∑
i=1

gi(xk−1) + eik−1

)
− 1
n

n∑
i=1

Q
(
gi(xk−1) + eik−1

) ∥∥∥∥∥ ,
where the last inequality comes from Cauchy-Schwarz’s inequality. Assume
that Q(·) is K-greedy quantizer which satifies ‖Q(v) − v‖ ≤ α‖v‖ with α =√

1−K/d, and∥∥∥∥∥Q
(

1
n

n∑
i=1

vik

)
− 1
n

n∑
i=1

Q
(
vik
) ∥∥∥∥∥ ≤ ξ

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk−1)

∥∥∥∥∥ ,
where vik = gi(xk−1) + eik−1 and ξ is a positive constant. We then have∥∥∥∥∥ 1

n

n∑
i=1

eik

∥∥∥∥∥ ≤ α
∥∥∥∥∥ 1
n

n∑
i=1

gi(xk−1) + eik−1

∥∥∥∥∥+ ξ

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk−1)

∥∥∥∥∥
≤ (α+ ξ)

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk−1)

∥∥∥∥∥+ α

∥∥∥∥∥ 1
n

n∑
i=1

eik−1

∥∥∥∥∥ .

106 Error-compensated Gradient Methods

Therefore,∥∥∥∥∥ 1
n

n∑
i=1

eik

∥∥∥∥∥
2

≤ 2(α+ ξ)2

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk−1)

∥∥∥∥∥
2

+ 2α2

∥∥∥∥∥ 1
n

n∑
i=1

eik−1

∥∥∥∥∥
2

,

or equivalently∥∥∥∥∥ 1
n

n∑
i=1

eik

∥∥∥∥∥
2

≤ 2(α+ ξ)2
k−1∑
l=0

(2α2)k−1−l

∥∥∥∥∥ 1
n

n∑
i=1

gi(xl−1)

∥∥∥∥∥
2

.

Further suppose that E‖
∑n
i=1 g

i(x)/n‖2 ≤ M2 for all x ∈ Rd. Then, taking
the expectation over the inequality yields

E

∥∥∥∥∥ 1
n

n∑
i=1

eik

∥∥∥∥∥
2

≤ 2(α+ ξ)2M2
k−1∑
l=0

(2α2)l.

Using this inequality and taking the expectation over (4.35), we complete the
proof.

Now, we prove the main result. By the Lipschitz smoothness of the whole
objective function f(·) and (4.33),

F (x̃k+1) ≤ F (x̃k)− γ
〈
∇F (x̃k), 1

n

n∑
i=1

gi(xk)
〉

+ γ2L

2

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk)

∥∥∥∥∥
2

.

Taking the expectation and using the fact that F (x) =
∑n
i=1 F

i(x)/n yield

EF (x̃k+1) ≤ EF (x̃k)− γE 〈∇F (x̃k),∇F (xk)〉+ γ2L

2 E

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk)

∥∥∥∥∥
2

.

By the fact that 2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 for x, y ∈ Rd and that F (·)
is L-smooth,

EF (x̃k+1) ≤ EF (x̃k)− γ

2 E‖∇F (x̃k)‖2 − γ

2 E ‖∇F (xk)‖2

+ γL2

2 E ‖x̃k − xk‖2 + γ2L

2 E

∥∥∥∥∥ 1
n

n∑
i=1

gi(xk)

∥∥∥∥∥
2

.

Assume that stochastic gradients satisfy E
∥∥∑n

i=1 g
i(x)/n

∥∥2 ≤ M2 for all
x ∈ Rd. Using Lemma 4.1 and (4.5), we have

EF (x̃k+1) ≤ EF (x̃k)− γ

2 E‖∇F (x̃k)‖2 − γ

2 E ‖∇F (xk)‖2

+ γ3L2

2 · 2(α+ ξ)2M2
k−1∑
l=0

(2α2)l + γ2L

2 M2.

Proof of Main Results 107

If γ ≤ 1/(βL) where β = 2(α+ ξ)2∑k−1
l=0 (2α2)l, then

EF (x̃k+1) ≤ EF (x̃k)− γ

2 E‖∇F (x̃k)‖2 − γ

2 E ‖∇F (xk)‖2 + γ2LM2,

or equivalently

E ‖∇F (xk)‖2 ≤ 2
γ

[EF (x̃k)−EF (x̃k+1)]−E‖∇F (x̃k)‖2 + γLM2.

Since ‖x‖2 ≥ 0 for x ∈ Rd and minl∈[0,k] E‖∇F (xl)‖2 ≤
∑k
l=0 E‖∇F (xl)‖2/(k+

1), we have

min
l∈[0,k]

E‖∇F (xl)‖2 ≤
2

γ(k + 1) [EF (x̃0)−EF (x̃k+1)] + γLM2.

By the cancelations in the telescopic series and by the fact that F (x) ≥ F (x?)
for x ∈ Rd and x̃0 = x0, we complete the proof.

4.B.6 Proof of Theorem 4.6
We can rewrite the error compensation algorithm (4.18) with gi(xk) = ∇F i(xk)
and Aik = I − γ∇2F i(xk) equivalently as Equation (4.36) with ηk = 0. By the
triangle inequality for the Euclidean norm,

‖x̃k+1 − x?‖ ≤ ‖x̃k − x? − γ∇F (x̃k)‖+ γ‖∇F (x̃k)−∇F (xk)‖

+ γ2 1
n

n∑
i=1
‖∇2F i(xk)eik‖.

If γ = 2/(µ + L), by the fact that F (·) is L-smooth and that x̃k − xk =
−γ
∑n
i=1 e

i
k/n

‖x̃k+1 − x?‖ ≤ ρ‖x̃k − x?‖+ γ2Lε+ γ2 1
n

n∑
i=1
‖∇2F i(xk)eik‖,

where ρ = 1−2/(κ+1) and κ = L/µ. Since each F i(·) is L-smooth, ∇2F i(x) �
LI for x ∈ Rd, and ‖eik‖ ≤ ε, we have

‖x̃k+1 − x?‖ ≤ ρ‖x̃k − x?‖+ 2γ2Lε.

By recursively applying this main inequality,

‖x̃k − x?‖ ≤ ρk‖x̃0 − x?‖+ 2γ2L

1− ρε.

Using the triangle inequality and the fact that ‖xk−x̃k‖ ≤ γε, we can conclude
that

‖xk − x?‖ ≤ ‖x̃k − x?‖+ ‖xk − x̃k‖ ≤ ρk‖x̃0 − x?‖+
(

2γ2L

1− ρ + γ

)
ε.

Since x̃0 = x0, the proof is complete.

108 Error-compensated Gradient Methods

4.B.7 Proof of Theorem 4.7
We can write the algorithm in Equation (4.18) equivalently as

x̃k+1 = x̃k − γ [∇F (xk) + ηk]− γ 1
n

n∑
i=1

(Aik − I)eik, (4.36)

where

x̃k = xk − γ
1
n

n∑
i=1

eik, and

ηk = 1
n

n∑
i=1

[
gi(xk)−∇F i(xk)

]
.

By Lemma 4.1, the bounded gradient assumption and by the definition of the
ε-compressor, it can be proved that

E‖ηk‖2 ≤ σ2, and (4.37)

‖xk − x̃k‖2 ≤ γ2
n∑
i=1
‖eik‖2/n ≤ γ2ε2. (4.38)

Proof of Theorem 4.7-a)

Before deriving the main result we prove two lemmas that are need in our
analysis.

Lemma 4.6. Assume that ‖eik‖ ≤ ε, and that the Hessian Hi
k satisfies the un-

biased and bounded variance assumptions described in Equation (4.23) and (4.24).
If ∇2fi(x) 4 LI for x ∈ Rd, then

E

∥∥∥∥∥γ 1
n

n∑
i=1

Hi
ke
i
k

∥∥∥∥∥
2

≤ 2γ2(σ2
H + L2)ε2, for k ∈ N. (4.39)

Proof. By Lemma 4.1, we have

E

∥∥∥∥∥γ 1
n

n∑
i=1

Hi
ke
i
k

∥∥∥∥∥
2

≤ 2γ2 1
n

n∑
i=1

(
E‖[Hi

k −∇2F i(xk)]eik‖2 + E‖∇2F i(xk)eik‖2
)
.

Since Hi
k −∇2F i(xk) is symmetric, using Equation (4.24), and the fact that

∇2F i(xk) 4 L · I and that ‖eik‖ ≤ ε yields the result.

Lemma 4.7. If F (·) is strongly convex, then for θ1 > 0

−〈∇F (xk), x̃k − x?〉 ≤ −(F (xk)− F (x?))− µ

4 ‖x̃k − x
?‖2

+ 1
2

(
µ+ 1

θ1

)
‖x̃k − xk‖2 + θ1

2 ‖∇F (xk)‖2.
(4.40)

Proof of Main Results 109

Proof. By using the strong convexity inequality in Equation (2.4) with x = xk
and y = x? we have

−〈∇F (xk), xk − x?〉 ≤ −(F (xk)− F (x?))− µ

2 ‖xk − x
?‖2.

Using the fact that ‖x+y‖2 ≤ 2‖x‖2+2‖y‖2 with x = xk−x? and y = x̃k−xk,
we have

−‖xk − x?‖2 ≤ −
1
2‖x̃k − x

?‖2 + ‖xk − x̃k‖2.

Combining these inequalities yields

−〈∇F (xk), xk − x?〉 ≤ −(F (xk)− F (x?))− µ

4 ‖x̃k − x
?‖2 + µ

2 ‖xk − x̃k‖
2.

(4.41)
Next, by Lemma 4.3

−〈∇F (xk), x̃k − xk〉 ≤
1

2θ1
‖xk − x̃k‖2 + θ1

2 ‖∇F (xk)‖2, (4.42)

for θ1 > 0. Summing Equation (4.41) and (4.42) completes the proof.

Now, we prove the main result. By using the L-smoothness of F (·) and
Equation (4.36) with Aik defined by Equation (4.22) we have

F (x̃k+1) ≤ F (x̃k)− γ〈∇F (x̃k),∇F (xk) + ηk〉+ γ

〈
∇F (x̃k), γ 1

n

n∑
i=1

Hi
ke
i
k

〉

+ Lγ2

2

∥∥∥∥∥∇F (xk) + ηk − γ
1
n

n∑
i=1

Hi
ke
i
k

∥∥∥∥∥
2

.

By the unbiased property of the stochastic gradient in Equation (4.11),
and by applying Lemma 4.3 with θ = 1 and Lemma 4.1 we get

EF (x̃k+1) ≤ EF (x̃k)− γE〈∇F (x̃k),∇F (xk)〉+
(
γ

2 + 3Lγ2

2

)
E‖∇F (x̃k)‖2

+ 3Lγ2

2 E‖ηk‖2 +
(
γ

2 + 3Lγ2

2

)
E

∥∥∥∥∥γ 1
n

n∑
i=1

Hi
ke
i
k

∥∥∥∥∥
2

.

Since each F i(·) is L-smooth, ∇2F i(x) � L · I for x ∈ Rd. Applying the
bounds in Equation (4.37) and (4.39) yields

EF (x̃k+1) ≤ EF (x̃k)− γE〈∇F (x̃k),∇F (xk)〉

+
(
γ

2 + 3Lγ2

2

)
E‖∇F (xk)‖2 + T,

110 Error-compensated Gradient Methods

where T = 3Lγ2σ2/2 + (1 + 3Lγ)(σ2
H + L2)γ3ε2. Using that

−2〈x, y〉 = −‖x‖2 − ‖y‖2 + ‖x− y‖2 for all x, y ∈ Rd

we have

EF (x̃k+1) ≤ EF (x̃k)−
(
γ

2 −
3Lγ2

2

)
E‖∇F (xk)‖2

+ γ

2 E‖∇F (x̃k)−∇F (xk)‖2 + T.

By the Lipschitz continuity assumption of ∇F (·), and by (4.38),

EF (x̃k+1) ≤ EF (x̃k)−
(
γ

2 −
3Lγ2

2

)
E‖∇F (xk)‖2 + T̄ ,

where T̄ = T + L2(γ3/2)ε2. By rearranging the terms and recalling that
γ < 1/(3L) we get

E‖∇F (xk)‖2 ≤ 2
γ

1
1− 3Lγ

(
EF (x̃k)−EF (x̃k+1) + T̄

)
.

Since minl∈[0,k] E‖∇F (xl)‖2 ≤
∑k
l=0 E‖∇F (xl)‖2/(k + 1), we have

min
l∈[0,k]

E‖∇F (xl)‖2 ≤
1

k + 1
2
γ

1
1− 3Lγ (EF (x̃0)−EF (x̃k+1)) + 2

γ

1
1− 3Lγ T̄ .

By the fact that e0 = 0 (i.e. x̃0 = x0), that F (x) ≥ F (x?) for x ∈ Rd we
complete the proof.

Proof of Theorem 4.7-b)

From Equation (4.36) with Aik defined by Equation (4.22) we have

‖x̃k+1 − x?‖2 = ‖x̃k − x?‖2 − 2γ〈∇F (xk) + ηk, x̃k − x?〉

+ 2γ
〈
γ

1
n

n∑
i=1

Hi
ke
i
k, x̃k − x?

〉

+ γ2

∥∥∥∥∥∇F (xk) + ηk − γ
1
n

n∑
i=1

Hi
ke
i
k

∥∥∥∥∥
2

.

By the unbiasedness of the stochastic gradient described in Equation (4.11), by
Lemma 4.1, by Lemma 4.3 with θ = µ/2 and by the bound in Equation (4.37)
we have

E‖x̃k+1 − x?‖2 ≤
(

1 + µγ

2

)
E‖x̃k − x?‖2 − 2γE〈∇F (xk), x̃k − x?〉

+
(

2γ
µ

+ 3γ2
)

E

∥∥∥∥∥γ 1
n

n∑
i=1

Hi
ke
i
k

∥∥∥∥∥
2

+ 3γ2E‖∇F (xk)‖2 + 3γ2σ2.

Proof of Main Results 111

Since each F i(·) is L-smooth, ∇2F i(x) � L · I for x ∈ Rd, we can apply
Lemma 4.7. From Equation (4.38) in Lemma 4.6 and Equation (4.40) in
Lemma 4.7 with θ1 = β/L we have

E‖x̃k+1 − x?‖2 ≤ E‖x̃k − x?‖2 − 2γE (F (xk)− F (x?))

+
(
βγ

L
+ 3γ2

)
E‖∇F (xk)‖2 + T̄ ,

where

T̄ =
(
µ+ L

β
+
(

4
µ

+ 6γ
)

(σ2
H + L2)

)
γ3ε2 + 3γ2σ2.

By Lemma 4.4, we have

E‖x̃k+1 − x?‖2 ≤ E‖x̃k − x?‖2 − 2αγE (F (xk)− F (x?)) + T̄ .

where α = 1 − β − 3Lγ. By recalling that γ < (1 − β)/(3L) and β ∈ (0, 1)
then

E (F (xk)− F (x?)) ≤ 1
2αγ

(
E‖x̃k − x?‖2 −E‖x̃k+1 − x?‖2 + T̄

)
.

Define x̄k =
∑k
l=0 xl/(k + 1). By the convexity of F (·) and the cancelations

in the telescopic series we have

E (F (x̄k)− F (x?)) ≤ 1
k + 1

k∑
l=0

E (F (xl)− F (x?))

≤ 1
k + 1

1
2αγE‖x̃0 − x?‖2 + 1

2αγ T̄ .

By the fact that ei0 = 0 (i.e. x̃0 = x0), the proof is complete.

Chapter 5

Federated Learning with
Error-compensated Compression
Federated learning (FL) has become a popular distributed machine learning
framework as it allows multiple nodes to optimize problem parameters without
sharing local data [145, 90, 146]. However, communication easily becomes a
major bottleneck in FL because the nodes need to iteratively share models
which often have millions of parameters [147, 148, 124]. This easily renders FL
algorithms infeasible in high-dimensional settings, especially if the nodes are
power-constrained or communicate over bandwidth-restricted networks [90,
149, 22].

A popular approach to limit the communication overhead in FL is to in-
crease the local computation on the devices. This is typically done by having
the devices perform additional deterministic, stochastic, or proximal gradient
updates locally before communicating its local parameters [91, 92, 94]. Experi-
mental results have shown that this approach does accelerate convergence, but
it also causes the algorithm to converge to a sub-optimal solution. In fact, it
is easily shown that increasing the number of local gradient/proximal updates
can make the algorithm converge to an increasingly sub-optimal solution [150].
To mitigate this problem, [150] developed FedSplit, an FL algorithm based
on operator splitting. FedSplit adapts Peaceman-Rachford splitting [60] for
solving distributed problems, and it enjoys fast linear convergence toward the
exact optimal solution.

Communication efficiency can also be improved by reducing the number of
bits exchanged per transmission round. This can, e.g., be done by compress-
ing the information using, for example, sparsification [103, 115] or quantiza-
tion [22, 82, 97]. Even though these compression operators have improved the
communication efficiency of distributed optimization algorithms, they gen-
erally suffer in terms of solution accuracy. However, recent work has illus-
trated how the solution accuracy of compressed algorithms can be improved
by error-compensation, exploiting a feedback mechanism based on previous
compression errors. Error-compensation is shown to enable algorithms with
even coarse compression to retain the convergence rate of the full-precision
algorithm, and also obtain highly accurate solutions [124, 151, 152].

In this paper we propose Eco-FedSplit, a fast communication efficient
federated algorithm that does not sacrifice solution accuracy. By using both
operator splitting schemes and error-compensated compression, our algorithm
guarantees global linear convergence towards a high-accuracy solution. Our

113

114 Federated Learning with Error-compensated Compression

key results prove that error-compensated compression has far superior perfor-
mance to naive compression, and fully eliminates the accumulation of compres-
sion errors. In particular, we demonstrate that error compensation enables our
algorithm to obtain an arbitrary solution accuracy as we decrease its tuning
parameter λ. Finally, our numerical experiments confirm strong performance
of Eco-FedSplit on logistic regression problems over benchmark data sets.

5.1 λ-FedSplit

Federated learning is a distributed framework for solving finite-sum optimiza-
tion problems on the form

minimize
x∈Rd

F (x) = 1
n

n∑
i=1

F i(x), (5.1)

where each F i(·) is an objective function privately known by worker node i.
Typically, a master node updates the solution, based on the local variables
aggregated from all the worker nodes. In particular, for a given initial value
x0, the master performs the following update

xk+1 = (1− λ)xk + λ
1
n

n∑
i=1
T pγF i(xk), (5.2)

where k is the iteration index and γ is the positive, fixed learning rate. The
parameter λ ∈ [0, 1] provides the master node flexibility to put some weights
on its own previous iterations. This degree of freedom is not typical in fed-
erated learning algorithms. However, we show that for error-compensated
compression, λ allows us to balance a trade-off between the solution accuracy
and convergence rate. In particular, decreasing λ will improve the solution
accuracy at the cost of more iterations.

At each iteration k, worker i performs p local iterations by applying the
local operator TγF i(·) p-times on the parameter xk. The benchmark feder-
ated learning algorithms FedAvg [91] and FedProx [94] are covered by Equa-
tion (5.2) with TγF i(x) = x − γ∇F i(x) and with TγF i(x) = proxγF i(x),
respectively, and λ = 1. However, FedAvg and FedProx do not generally con-
verge to the global optimum, even in the deterministic case that we study. In
particular, the stationary/fixed points of these algorithms can be distant from
the optimal solution even on simple problems, as shown in [150].

FedSplit [150] was recently developed to find the exact optimal solution
of the problem. This algorithm relies on classical splitting schemes, and has
the following iteration. Each worker i updates its local vector zik based on its
private function F i(·) via:

zik+1 = reflγF i(2z̄k − zik). (5.3)

Direct Compression - Limitations 115

Then, the master aggregates the local vectors from all workers, and performs
the following update

xk+1 = (1− λ)xk + λz̄k+1, (5.4)

where z̄k =
∑n
i=1 z

i
k/n and λ ∈ [0, 1] is the tuning parameter. Note that when

n = 1, FedSplit reduces to Douglas-Rachford splitting [153] for λ = 1/2 and
to Peaceman-Rachford splitting [60] for λ = 1.

The linear convergence of FedSplit for λ = 1 is proved in [150]. For the
purposes of this paper, it will be useful to have the freedom to consider any
λ ∈ (0, 1]. We begin by establishing a similar linear convergence result in this
case.

Theorem 5.1. Consider FedSplit in (5.3) and (5.4) to solve Problem (5.1),
where each fi(·) is µ-strongly convex and L-smooth. If γ = 1/

√
µL and x0 =

z1
0 = . . . = zn0 , then

wk+1 ≤ Akw0, where A :=
[

1− λ ρ/
√
n

0 ρ

]
, (5.5)

λ ∈ (0, 1], ρ = 1− 2/(
√
L/µ+ 1), and

wk =
[
‖xk − x?‖
‖zk − z?‖

]
(5.6)

for z = (z1, z2, . . . , zn) ∈ Rd·n.

Proof. See Appendix 5.A.

Theorem 5.1 shows that FedSplit with λ ∈ (0, 1] converges linearly to-
wards the exact optimum, unlike federated learning algorithms such as FedAvg
and FedProx. When λ = 1, our result recovers the FedSplit convergence pre-
sented in Theorem 1 with b = 0 in [150]. However, the convergence rate of
FedSplit is also affected by the tuning parameter λ. In particular, decreasing
λ slows down the convergence rate of FedSplit. However, we show that when
we compress the local variables with error-compensation, decreasing λ allows
us to achieve better solution accuracy.

5.2 Direct Compression - Limitations
To limit the communication in FedSplit, we need to compress the communi-
cated information. Since in FedSplit zi is the variable that is communicated
by each worker, a natural compressed version of FedSplit is to have the mas-
ter perform the following update at each iteration k:

xk+1 = (1− λ)xk + λz̄k+1, (5.7)

116 Federated Learning with Error-compensated Compression

where z̄k+1 is updated according to

z̄k+1 = 1
n

n∑
i=1

Q(zik+1), and

zik+1 = reflγF i(2z̄k − zik),
(5.8)

where Q(·) is a compression operator. To make the conclusions of our analysis
broad we consider a general class compressors.

Definition 5.1 (Bounded Error Compression). The operator Q : Rd → Rd is
an ε-compressor if there exists a positive constant ε such that ‖Q(v)− v‖ ≤ ε
for all v ∈ Rd.

For compression operators to satisfy Definition 5.1, they need only to be
bounded error magnitude. Here, ε > 0 quantifies the precision of the compres-
sion operator. In particular, a compression with a large ε is coarse/imprecise
and a compression with a small ε is precise (e.g. Q(v) = v in the extreme
case when ε = 0). Most popular compressors in machine learning such as the
sign compression [97], the Top-K sparsification [115] and the sparsification to-
gether with quantization [22] are in fact the ε-compressor if the full-precision
vector has a bounded norm.

Our next result characterizes the linear convergence of FedSplit with the
ε-compressor in Equation (5.7).

Theorem 5.2. Consider compressed FedSplit in (5.7) and (5.8) to solve
Problem (5.1), where each F i(·) is µ-strongly convex and L-smooth. Also, let
reflIE (z) = 2z̄ ·1−z be non-expansive. If γ = 1/

√
µL and x0 = z1

0 = . . . = zn0 ,
then

wk+1 ≤ Awk + λε · [1, 0]T, (5.9)

where λ ∈ (0, 1], ρ = 1 − 2/(
√
L/µ + 1), and where A and wk are defined

in (5.5) and (5.6). In addition, we have

lim sup
k→∞

‖xk − x?‖ ≤ ε.

Proof. See Appendix 5.B.

Theorem 5.2 establishes a convergence bound on the compressed FedSplit.
In particular, the convergence rate in Equation (5.9) has two parts. The
first part is the linear rate to the exact optimal solution, similar to the non-
compressed FedSplit in Theorem 5.1. The second part is a compression error
depending on ε > 0 that is not improved as the algorithm progresses. Note that
even if we decrease λ the upper bound on limk→∞ ||xk − x?|| is not improved.

Direct Compression - Limitations 117

This is because decreasing λ increases the eigenvalues of the matrix A. In
particular, the fixed point of the linear dynamical system in Equation (5.9) is

~wFix = (I −A)−1 [λε 0
]T =

[
ε 0

]T
.

This means that no matter how we choose γ or λ, we cannot improve the
solution accuracy of compressed FedSplit.

The upper bound in Theorem 5.2 is tight as we show next.

Proposition 5.1. There exists a federated learning problem on the form
of (5.1) such that limk→∞ ||xk − x?|| = ε.

We can prove the proposition with the following example.

Example 5.1 (Lower Bound). Consider Problem in (5.1) with i = 1, d = 1,
and F 1(x) = (µ/2)x2. Let xk, z̄k, and zik be the iterates of compressed
FedSplit given in (5.7) and (5.8) where Q(·) is the ε-compression

Q(z) =
{
z − ε · z/|z| if z 6= 0
ε otherwise.

Suppose also that zk = xk, λ ∈ (0, 1], γ > 0 and x0 > θε where θ = 1+1/(µγ).
Then for all k ∈ N, we have that

reflγF (2xk − zk) = 1
1 + µγ

xk,

and

|xk+1−x?| =ρ|xk|+ λε

=ρk+1|x0|+ λε
k∑
i=0

ρi

=ρk+1|x0|+λε
1−ρk+1

1− ρ
=ρk+1 (|x0|−θε) + θε

≥ε,

where ρ = 1 − λ + λ/(1 + µγ) and x? = 0. The last inequality follows from
the fact that θ ≥ 1.

These results show that the solution accuracy of compressed FedSplit can
never be better than the compression precision ε. In the next section we
illustrate how we can achieve arbitrarily good solution accuracy no matter
how large the compression precision ε is.

118 Federated Learning with Error-compensated Compression

5.3 Eco-FedSplit

We now illustrate how error compensation enables FedSplit to achieve signif-
icant solution accuracy improvements. We call this algorithm Eco-FedSplit,
and describe it as follows. The master receives the compensated vectors from
all worker nodes, and performs the iteration

xk+1 = (1− λ)xk + λz̄k+1, (5.10)

while each worker updates the compression error eik by the following iteration:
given ei0 = 0 for i = 1, 2, . . . , n,

z̄k+1 = 1
n

n∑
i=1

Q(zik+1 + (1− λ)eik),

zik+1 = reflγF i(2z̄k − zik), and

eik+1 = (zik+1 + (1− λ)eik)−Q(zik+1 + (1− λ)eik).

(5.11)

To understand why Eco-FedSplit achieves higher solution accuracy than com-
pressed FedSplit, we compare the closed form of both algorithms. On the
one hand, compressed FedSplit (5.7) has the following equivalent closed-form

xk = (1− λ)kx0 + λ
k∑
l=0

(1− λ)k−l(z̃l + ẽl),

where z̃k = (1/n)
∑n
i=1 z

i
k, ẽk = (1/n)

∑n
i=1 e

i
k and eik = Q(zik) − zik for

i = 1, 2, . . . , n. On the other hand, Eco-FedSplit (5.10) can be written equiv-
alently as

xk = (1− λ)kx0 + λ
k∑
l=0

(1− λ)k−lz̃l + λẽk.

Notice that Eco-FedSplit fully avoids the accumulations of previous compres-
sion errors. In fact, our algorithm can recover the solution with high accuracy
by properly adjusting the tuning parameter λ. We illustrate this below:
Theorem 5.3. Consider Eco-FedSplit in (5.10) and (5.11) to solve Prob-
lem (5.1), where each F i(·) is µ-strongly convex and L-smooth. Also, let
reflIE (z) = 2z̄ ·1−z be non-expansive. If γ = 1/

√
µL and x0 = z1

0 = . . . = zn0 ,
then

wk+1 ≤ Awk + λ2ε · [1, 0]T (5.12)

where λ ∈ (0, 1], ρ = 1 − 2/(
√
L/µ + 1), and where A and wk are defined

in (5.5) and (5.6). In addition,

lim sup
k→∞

‖xk − x?‖ ≤ λ · ε.

Experimental Results 119

Proof. See Appendix 5.C.

Theorem 5.3 shows that Eco-FedSplit converges to the neighborhood of
the optimal solution with the same linear rate as the full-precision and com-
pressed FedSplit. Similarly as Theorem 5.2 for compressed FedSplit, the
convergence bound has the residual term due to the precision of compression
ε. Compared to compressed FedSplit, this upper bound on limk→∞ ||xk−x?||
for Eco-FedSplit can be made arbitrarily small by reducing λ. For instance,
Eco-FedSplit obtains the approximate solution with higher accuracy than
compressed FedSplit when λ < 1, and with the same accuracy as full-precision
FedSplit when λ is close to zero. Eco-FedSplit with the small λ guaran-
tees significant solution improvements at the cost of the slower convergence
rate. This highlights the trade-off between the solution accuracy and the con-
vergence speed for Eco-FedSplit, similarly for error-compensated distributed
gradient algorithms in [152].

5.4 Experimental Results

0 50 100 150
10−2

10−1

100

the number of iterations

F
(x

k
)
−
F

?

S+Q quantizer

FP (λ = 0.5) C (λ = 0.5) EC (λ = 0.5)
FP (λ = 0.05) C (λ = 0.05) EC (λ = 0.05)

0 100 200 300
10−3

10−2

10−1

100

the number of iterations

F
(x

k
)
−
F

?

Top-K quantizer with K = 40

0 50 100 150 200 250
10−3

10−2

10−1

100

the number of iterations

F
(x

k
)
−
F

?

Rounding quantizer with ∆ = 10

Figure 5.1: Convergence of FedSplit with full precision (FP), compression
(C) and error compensation (EC) on logistic regression (5.13) with σ = 10−2

over the synthetic data with m = 10, 000 and d = 100. We evaluated the
algorithm using the sparsification with quantization (left), the deterministic
sparsification with T = 40 (middle), and the rounding quantizer with ∆ = 10
(right).

We illustrate the superior convergence properties of Eco-FedSplit com-
pared to other compressed federated algorithms, in terms of both the speed
and solution accuracy. We evaluated the performance of all communication-
efficient federated learning methods on the regularized logistic regression prob-

120 Federated Learning with Error-compensated Compression

0 500 1,000 1,500

10−2

10−1

100

the number of iterations

F
(x

k
)
−
F

?

colon-cancer

Eco-FedSplit Eco-FedProx C-FedSplit C-FedProx

0 50 100 150 200 250

10−1

100

the number of iterations

F
(x

k
)
−
F

?

a5a

0 20 40 60 80 100

10−1

100

the number of iterations

F
(x

k
)
−
F

?

w8a

(a) Sign quantizer

0 500 1,000 1,500

10−4

10−3

10−2

10−1

100

the number of iterations

F
(x

k
)
−

F
?

colon-cancer

Eco-FedSplit Eco-FedProx C-FedSplit C-FedProx

0 50 100 150 200 250

10−1

100

the number of iterations

F
(x

k
)
−

F
?

a5a

0 20 40 60 80 100
10−2

10−1

100

the number of iterations

F
(x

k
)
−

F
?

w8a

(b) Deterministic sparsification with T = 0.3 · d

Figure 5.2: Convergence of FedSplit and FedProx with compression (C) and
error compensation (Eco).

lem

minimize
x∈Rd

m∑
i=1

log(1 + exp(−bi · 〈ai, x〉)) + σ

2 ‖x‖
2, (5.13)

where σ is a positive regularization parameter, and (a1, b1), (a2, b2), . . . , (am, bm)
is the collection of data points with ai ∈ Rd is the feature vector and bi ∈
{−1, 1} is its associated class label. Throughout all the experiments, we
normalized each feature vector by its Euclidean norm (‖ai‖ = 1 for i =
1, 2, . . . ,m), and set 5 workers. We implemented FedProx and FedSplit, and
popular compressors in Python: the rounding quantizer [154, Equation (15)],
the sign quantizer [29, Section 6.1], the deterministic sparsification [104, Defi-
nition 2], and the sparsification together with quantization [104, Definition 4].
The proximal operators were also solved by using CVXPY with the SCS solver
using a convergence tolerance at ε = 10−2.

Experimental Results 121

5.4.1 Synthetic Data
We study the effect of tuning parameters on the performance of federated
learning methods over synthetic data with m = 10, 000 and d = 100. We
randomly generated each element of the true solution x? and of each fea-
ture vector ai according to N (0, 1), and then we set the class label via bi =
sign

(
sigmoid(〈ai, x?〉)

)
, where the sigmoid function is

sigmoid(z) = 1/(1 + exp(−z)).

We also set σ = 10−2 and γ = 0.1.
Figure 5.1 suggests that the convergence speeds of all FedSplit algorithms

decrease when we lower λ. No matter how small λ is, compressed FedSplit
cannot obtain the solution with high accuracy. Unlike direct compression, er-
ror compensation enables FedSplit to gain significant accuracy improvements
even if the compressors is very coarse. Especially when λ = 0.05 and the round-
ing quantizer with ∆ = 10 is used, the solution accuracy from Eco-FedSplit
is higher than compressed FedSplit by more than an order of magnitude (see
Figure 5.1). While saving communication costs, error-compensated compres-
sion also obtains higher accurate solutions than direct compression.

5.4.2 Benchmark Data
We compared the performance of direct compression and error-compensated
compression on Fedsplit and Fedprox. over benchmark LIBSVM data [155].
We also set σ = 10−1, λ = 10−2, and γ = 0.06, 0.1 and 5 for a5a, w8a and
colon-cancer, respectively.

FedSplit has faster convergence than FedProx when both direct and error-
compensated compression are used. Compared to direct compression, er-
ror compensation gains significant accuracy improvements for FedProx and
FedSplit (see Figure 5.2a and 5.2b). Eco-FedSplit outperforms other fed-
erated learning methods, in terms of both the convergence speed and the
solution accuracy. When training over colon-cancer, Eco-FedSplit obtains
a higher accurate solution than Eco-FedProx by an order of magnitude for
the sign quantizer and two orders of magnitude for the deterministic sparsifi-
cation with T = 0.3 · d. To reach target accuracy at 10−1, iteration counts for
error-compensated FedProx require more than twice those for Eco-FedSplit
to solve the problems on a5a and w8a. Also notice that compressed FedSplit
still outperforms compressed FedProx. In particular, compressed FedSplit
reaches the optimal solution with higher accuracy than compressed FedProx
by more than an order of magnitude to train over colon-cancer, as suggested
in Figure 5.2a and 5.2b.

Appendix

5.A Proof of Theorem 1
If λ ∈ (0, 1], then by the triangle inequality of the Euclidean norm and by the
iteration (5.4)

‖xk+1 − x?‖ ≤ (1− λ)‖xk − x?‖+ λ‖z̄k+1 − z̄?‖, (5.14)
where the inequality follows from the fixed point assumption, i.e. the point
x? = z̄? = (1/n)

∑n
i=1(zi)? satisfies the relation

proxγF i(2z̄? − (zi)?) = z̄?, for i = 1, 2, . . . , n.

Next, define the vector z = (z1, z2, . . . , zn) ∈ Rd·n. Let F i(·) be µ-strongly
convex and L-smooth, let reflIE (z) = 2z̄ · 1 − z be non-expansive, and let
γ = 1/

√
µL. Since

‖z̄k+1 − z̄?‖ ≤
1√
n
‖zk − z?‖

by Equation (36) with r(t) = 0 from [150], we then have

‖z̄k − z̄?‖ ≤
ρ√
n
‖zk − z?‖ (5.15)

where ρ = 1− 2/(
√
κ+ 1) and κ = L/µ. Plugging this result into (5.14) yields

‖xk+1 − x?‖ ≤ (1− λ)‖xk − x?‖+ ρ√
n
‖zk − z?‖.

By rearranging the terms we get

wk+1 ≤ Awk :=
[

1− λ ρ/
√
n

0 ρ

]
wk,

where

wk =
[
‖xk − x?‖
‖zk − z?‖

]
.

By recursively applying this inequality, we can prove that
wk ≤ Akw0.

Following [156], we guarantee the convergence of the main inequality if ‖A‖ < 1
or equivalently det(I −A) > 0, i.e. we needs to satisfy the condition:

λ(1− ρ) > 0.
This stability condition is thus satisfied when ρ ∈ (0, 1) and λ > 0. Finally,
we complete the proof.

123

124 Federated Learning with Error-compensated Compression

5.B Proof of Theorem 2
Compressed FedSplit in Equation (5.7) can be expressed equivalently as

xk+1 = (1− λ)xk + λz̄k+1 + λek, (5.16)

where

ek = 1
n

n∑
i=1

[Q(zik+1)− zik+1],

z̄k = 1
n

n∑
i=1

Q(zik), and

zik = reflγF i(2z̄k − zik) for i = 1, 2, . . . , n.

Note that from Definition 5.1 we can easily show that

‖ek‖ ≤
1
n

n∑
i=1
‖Q(zik+1)− zik+1‖ ≤ ε.

If λ ∈ (0, 1], then by the triangle inequality of the Euclidean norm and by the
update (5.16) we have

‖xk+1 − x?‖ ≤ (1− λ)‖xk − x?‖+ λ‖z̄k − z̄?‖+ λε, (5.17)

where the inequality follows from the fixed point assumption, i.e. the point
x? = z̄? = (1/n)

∑n
i=1(zi)? satisfies the relation

reflγF i(2z̄? − (zi)?) = z̄?, for i = 1, 2, . . . , n.

Next, define the vector z = (z1, z2, . . . , zn) ∈ Rd·n. Let F i(·) be µ-strongly
convex and L-smooth, let reflIE (z) = 2z̄ · 1 − z be non-expansive, and let
γ = 1/

√
µL. Since

‖z̄k+1 − z̄?‖ ≤
1√
n
‖zk − z?‖

by Equation (36) with r(t) = 0 from [150], we then have Eq. (5.15). By
applying this result into (5.17), we have

‖xk+1 − x?‖ ≤ (1− λ)‖xk − x?‖+ ρ√
n
‖zk − z?‖+ λε.

By rearranging the terms we get

wk+1 ≤ Awk + λ

[
ε
0

]
,

Proof of Theorem 3 125

where

A =
[

1− λ ρ/
√
n

0 ρ

]
, and wk =

[
‖xk − x?‖
‖zk − z?‖

]
.

By following [156], the convergence of this main inequality is guaranteed if
‖A‖ < 1 or equivalently det(I − A) > 0, i.e. the following condition must be
satisfied

λ(1− ρ) > 0.

We thus can guarantee the convergence since ρ ∈ (0, 1) and λ > 0. In addition,

lim sup
k→∞

wk ≤ (I −A)−1λ

[
ε
0

]
= λ

λ(1− ρ)

[
1− ρ ρ/

√
n

0 λ

] [
ε
0

]
=
[
ε
0

]
.

5.C Proof of Theorem 3
Compensated FedSplit algorithm in Equation (5.10) and (5.11) can be simi-
larly rewritten on the form

x̃k+1 = (1− λ)x̃k + λz̃k+1, (5.18)

where

z̃k = 1
n

n∑
i=1

zik,

x̃k = xk + λ
1
n

n∑
i=1

eik,

z̄k+1 = 1
n

n∑
i=1

Q(zik+1 + (1− λ)eik), and

zik+1 = reflγF i(2z̄k − zik).

If λ ∈ (0, 1], then from Definition 5.1 we can easily show that ‖eik‖ ≤ ε for all
i, k, and

‖x̃k − xk‖ ≤
λ

n

n∑
i=1

∥∥eik∥∥ ≤ λε. (5.19)

126 Federated Learning with Error-compensated Compression

Thus, we complete the proof. Next, by the triangle inequality of the Euclidean
norm and by the update (5.18) we have

‖x̃k+1 − x?‖ ≤ (1− λ)‖x̃k − x?‖+ λ‖z̃k − z̃?‖, (5.20)

where the inequality follows from the fixed point assumption, i.e. the point
x? = z̄? = z̃? = (1/n)

∑n
i=1(zi)? satisfies the relation

reflγF i(2z̄? − (zi)?) = z̃?, for i = 1, 2, . . . , n.

Next, define the vector z = (z1, z2, . . . , zn) ∈ Rd·n. Let F i(·) be µ-strongly
convex and L-smooth, let reflIE (z) = 2z̄ · 1 − z be non-expansive, and let
γ = 1/

√
µL. Since

‖z̃k+1 − z̃?‖ ≤
1√
n
‖zk − z?‖

by Equation (36) with r(t) = 0 from [150], we then have Eq. (5.15). By
plugging this result into (5.20), we have

‖x̃k+1 − x?‖ ≤ (1− λ)‖x̃k − x?‖+ ρ√
n
‖zk − z?‖.

By rearranging the terms we get

w̃k+1 ≤ Aw̃k,

where

A =
[

1− λ ρ/
√
n

0 ρ

]
, and w̃k =

[
‖x̃k − x?‖
‖zk − z?‖

]
.

By recursively applying this inequality, we can prove that

w̃k ≤ Akw̃0. (5.21)

Following [156], we guarantee the convergence if ‖A‖ < 1 or equivalently
det(I −A) > 0, i.e. we needs to satisfy the condition

λ(1− ρ) > 0.

This stability condition is hence satisfied, since ρ ∈ (0, 1) and λ > 0. Next, by
the triangle inequality of the Euclidean norm and by (5.19)

‖xk − x?‖ ≤ ‖x̃k − x?‖+ ‖x̃k − xk‖ ≤ ‖x̃k − x?‖+ λε.

Since ei0 = 0 for all i = 1, 2, . . . , n, we can easily show that x̃0 = x0, and that
the main inequality (5.21) can be equivalently expressed as

wk ≤ Akw0 + λ

[
ε
0

]
,

Proof of Theorem 3 127

where

wk =
[
‖xk − x?‖
‖zk − z?‖

]
.

Furthermore, we can prove that

lim sup
k→∞

‖xk − x?‖ ≤ λε.

Part II

Flexible Tuning Framework

129

Chapter 6

Adaptive Compression Framework
The vast size of modern machine learning is shifting the focus on optimiza-
tion and learning algorithms from centralized to distributed architectures.
State-of-the-art models are now typically trained using multiple CPUs or
GPUs, and data is increasingly being collected and processed in networks
of resource-constrained devices, e.g., IoT devices, smart phones, or wireless
sensors. This trend is shifting the bottleneck from the computation to the
communication. The shift is particularly striking when learning is performed
on energy-constrained devices that communicate over shared wireless channels.
Indeed, distributed training is often communication bound since the associated
optimization algorithms hinge on frequent transmissions of gradients between
nodes. These gradients are typically huge: it is not uncommon for state-of-the-
art models to have millions of parameters. To get a sense of the corresponding
communication cost, transmitting a single gradient or stochastic gradient us-
ing single precision (32 bits per entry) requires 40 MB for a model with 10
million parameters. If we use 4G communications, this means that we can
expect to transmit roughly one gradient per second. The huge communication
load easily overburdens training even on loosely interconnected clusters and
may render federated learning on some IoT or edge devices infeasible.

To alleviate the communication bottleneck, much recent research has fo-
cused on compressed gradient methods. These methods achieve communica-
tion efficiency by using only the most informative parts of the gradients at
each iteration. We may, for example, sparsify the gradient, i.e. use only the
most significant entries at each iteration and set the rest to be zero [22, 124,
151, 95, 96, 104, 30]. We may also quantize the gradient elements or do some
mix of quantization and sparsification [22, 117, 82, 30, 31, 128, 157, 158].

Several of the cited papers have demonstrated huge communication im-
provements for specific training problems. However, these communication
benefits are often realized after a careful tuning of the compression level before
training, e.g. the number of elements to keep when sparsifying the gradient.
We cannot expect there to be a universally good compressor that works well
on all problems, as shown by the worst-case communication complexity of any
optimization methods in [75]. There is generally a delicate problem-specific
balance between compressing too much or too little. Trying to strike the
right balance by hyper-parameter tuning is expensive and the resulting tun-
ing parameters will be problem-specific. Moreover, most existing compression
schemes are agnostic of the disparate communication costs for different tech-
nologies. In contrast, our proposed on-line mechanism adapts the compression

131

132 Adaptive Compression Framework

level to each gradient information and each platform-specific communication
cost.

Contributions: We consider deterministic and stochastic gradient meth-
ods in distributed settings where compressed gradients are communicated at
every iteration. We propose a flexible framework for an on-line adaption of the
gradient compression level to the problem data and communication technol-
ogy used. This Communication-aware Adaptive Tuning (CAT) optimally ad-
justs the compression of each communicated gradient by maximizing the ratio
between the guaranteed objective function improvement and the communica-
tion cost. The communication cost can be easily adjusted to the technology
used, either by analytical models of the communication protocols or through
empirical measurements. We illustrate these ideas on three state-of-the-art
compression schemes: a) sparsification, b) sparsification with quantization,
and c) stochastic sparsification. In all cases, we first derive descent lemmas
specific to the compression, relating the function improvement to the tuning
parameter. Using these results we can find the tuning that optimizes the com-
munication efficiency measured in the descent direction relative to the given
communication costs. Even though most of our theoretical results are for a
single node case, we illustrate the efficiency of CAT to all three compression
schemes in large-scale experiments in multi-node settings. For the stochastic
sparsification we also prove convergence for stochastic gradient methods in the
multi-node settings.

Related work on federated learning: Another approach to improve
communication efficiency is to increase local computations in hope of reducing
the number of iterations, and thereby the number of communication rounds.
This is typically done by letting the nodes perform multiple gradient or proxi-
mal gradient updates locally before communicating their updated parameters,
see, e.g., [91, 93, 92, 159, 160],[94]. By adapting the number of local up-
dates within a communication time interval [161], it is possible to find a good
balance between the communication savings and suboptimality guarantees of
the solution. In contrast, we focus on adaptive compression, where our CAT
framework strikes this balance by adjusting the compression level online, e.g.
by optimizing the transmitted bits per iteration. In general, these two adaptive
strategies can be combined to obtain further savings without compromising
the convergence guarantees. In other words, CAT can be seen as a complement
to existing adaptive schemes, addressing another dimension of communication
efficiency.

6.1 Background
The main focus of this paper is empirical risk minimization

minimize
x∈Rd

F (x) = 1
|D|

∑
z∈D

L(x; z)

Background 133

where D is a set of data points, x is the model parameters and L(·) is a loss
function.

6.1.1 Gradient Compression
Consider the standard compressed gradient iteration

xk+1 = xk − γkQT (∇F (xk)). (6.1)

Here, QT (·) is a compression operator and T is a parameter that controls
the compression level. The goal is to achieve communication efficiency by
using only the most significant information. One of the simplest compression
schemes is to sparsify the gradient, i.e. we let

[QT (g)]j =
{
gj if j ∈ IT (g)
0 otherwise.

(6.2)

where IT (g) is the index set for the T components of g with largest magnitude.
The following combination of sparsification and quantization has been shown
to give good practical performance [22]:

[QT (g)]j =
{
||g||sign(gj) if i ∈ IT (g)
0 otherwise.

(6.3)

In this case, we communicate only the gradient magnitude and the sparsity
pattern of the gradient. It is sometimes advantageous to use stochastic spar-
sification. Rather than sending the top T entries of each gradient, we then
send T components on average. We can achieve this by setting

[QT,p (g)]j = (gj/pj)ξj , (6.4)

where ξj ∼ Bernouli(pj) and T =
∑d
j=1 p

j . Ideally, we would like pj to
represent the magnitude of gj , so that pj should be large if |gj | is large relative
to the other entries. There are many heuristic methods to choose pj . For
example, if we set pj = |gj |/‖g‖q with q = 2, q =∞, and q ∈ (0,∞], then we
get, respectively, the stochastic sparsifications in [22] with s = 1, the TernGrad
in [95], and `q-quantization in [96]. We can also optimize p to reduce the
variance error, see [96].

Experimental results have shown huge communication savings by com-
pressed gradient methods in large-scale machine learning [162, 163]. Never-
theless, we can easily create pedagogical examples where they are no more
communication efficient than full gradient descent. For sparsification, con-
sider the function F (x) = ||x||2/2. Then, gradient descent with the step-size
γ = 1 converges in one iteration, and thus communicates only d floating points

134 Adaptive Compression Framework

(one for each element of ∇F (x) ∈ Rd) to reach any ε-accuracy. On the other
hand, T -sparsified gradient descent (where T divides d) needs d/T iterations,
which implies d communicated floating points in total. In fact, the sparsified
method is even worse since it requires additional d log(d) communicated bits
to indicate the sparsity pattern.

This example shows that the benefits of sparsification cannot be seen on
worst-case problems, and that traditional worst-case analysis (e.g. [104]) is
unable to guarantee the improved communication complexity. Rather, sparsi-
fication is useful for exploiting the structure that appears in real-world prob-
lems. The key in exploiting this structure is to choose T properly at each
iteration. In this paper we describe how to choose T dynamically to optimize
the communication efficiency of sparsification.

6.1.2 Communication Cost: Bits, Packets, Energy and
Beyond

The compressors discussed above have a tuning parameter T , which controls
the sparsity budget of compressed gradient descent. Our goal is to tune T
adaptively to optimize the communication efficiency. To explain how this is
done, we first need to discuss how to model the communication cost. Let C(T)
denote the communication cost per iteration as a function of T , e.g., the total
number of transmitted bits. Then, C(T) consists of payload (actual data)
and communication overhead. The payload is the number of bits required to
communicate the compressed gradient. For the sparsification in Eq. (6.2) and
the quantization in Eq. (6.3), the payload consumes, respectively,

P S(T) = T × (dlog2(d)e+ FPP) bits and
P SQ(T) = FPP + T × dlog2(d)e bits,

(6.5)

where the log2(d) factor comes from indicating T indices in the d-dimensional
gradient vector. Here FPP is our floating point precision, e.g., FPP = 32 or
FPP = 64 for, respectively, single or double precision floating-points. Our
simplest communication model accounts only for the payload, i.e., C(T) =
P (T). We call this the payload model. In real-world networks, however, each
communication also includes the overhead and set-up costs. A more realistic
model is therefore affine C(T) = c1P (T)+c0, where P (T) is the payload. Here
c0 is the communication overhead, while c1 is the cost of transmitting a single
payload byte. For example, if we just count transmitted bits (c1 = 1), then
a single UDP packet transmitted over the Ethernet requires an overhead of
c0 = 54 × 8 bits and can have a payload of up to 1472 bytes. In the wireless
standard IEEE 802.15.4, the overhead ranges from 23-82 bytes, leaving 51−110
bytes of payload before the maximum packet size of 133 bytes is reached [164].
Another possibility is to use a packet model, i.e. to have a fixed cost per packet

C(T) = c1 × dP (T)/Pmaxe+ c0, (6.6)

Background 135

where Pmax is the number of payload bits per packet. The term dP (T)/Pmaxe
counts the number of packets required to send the P (T) payload bits, c1 is the
cost per packet, and c0 is the cost of initiating the communication. These are
just two examples; ideally, C(T) should be tailored to the specific communica-
tion standard used, and possibly even estimated from system measurements.

6.1.3 Key Idea: Communication-Aware Adaptive Tuning
(CAT)

When communicating the compressed gradients, we would like to use each bit
as efficiently as possible. In optimization terms, we would like the objective
function improvement for each communicated bit to be as large as possible.
In other words, we want to maximize the ratio

Efficiency(T) = Improvement(T)
C(T) , (6.7)

where Improvement(T) is the improvement in the objective function when we
use T -sparsification as the given compressor. We will demonstrate how the
value of Improvement(T) can be obtained from novel descent lemmas and de-
rive dynamic sparsification policies which, at each iteration, find the T that
optimizes Efficiency(T). We derive optimal T -values for the three compres-
sors and two communication models introduced above. However, the idea is
general and can be used to improve the communication efficiency for many
other compression algorithms.

We begin by describing how our CAT framework can be applied to spar-
sified gradient methods. To this end, the following lemma introduces a useful
measure α(T) of function value improvement:

Lemma 6.1. Suppose that F : Rd → R is (possibly non-convex) L-smooth
and γ = 1/L. Then for any x, x+ ∈ Rd with x+ = x− γQT (∇F (x)) we have

F (x+) ≤ F (x)− α(T)
2L ||∇F (x)||2,

where α(T) = ||QT (∇F (x))||2/||∇F (x)||2. Moreover, there are L-smooth func-
tions F (·) for which the inequality is tight for every T = 1, . . . , d.

This lemma is in the category of descent lemmas, which are standard
tools to study the convergence for convex and non-convex functions. In fact,
Lemma 6.1 generalizes the standard descent lemma for L-smooth functions
(see, e.g., in Proposition A.24 in [165]). In particular, if the gradient ∇F (x)
is T -sparse (or T = d) then Lemma 6.1 gives the standard descent

F (x+) ≤ F (x)− 1
2L ||∇F (x)||2.

136 Adaptive Compression Framework

In the next subsection, we will use Lemma 6.1 to derive novel convergence
rate bounds for sparsified gradient methods, extending many standard results
for gradient descent. First, however, we will use Improvement(T) = α(T) to
define the following CAT mechanism for dynamic sparsification:

Step 1: Tk = argmax
T∈[1,d]

αk(T)
C(T) , (6.8)

Step 2: xk+1 = xk −
1
L
QTk(∇F (xk)). (6.9)

The algorithm first finds the sparsity budget Tk that optimizes the communi-
cation efficiency defined in (6.7), and then performs a standard sparsification
using this value of Tk. Since ‖∇F (x)‖2/2L is independent of T , we can max-
imize efficiency by maximizing α(T)/C(T).

To find T i at each iteration we need to solve the maximization problem
in Eq. (6.9). This problem has one dimension, and even a brute force search
would be feasible in many cases. As the next two results show, however, the
problem has a favourable structure that allows the maximization to be solved
very efficiently. The first result demonstrates that the descent always increases
with T and is bounded.

Lemma 6.2. For g ∈ Rd the function α(T) = ||QT (g)||2/||g||2 is increasing
and concave when extended to the continuous interval [0, d]. Moreover, α(T) ≥
T/d for all T ∈ {0, . . . d} and there exists an L-smooth function such that

||QT (∇f(x))||2/||∇f(x)||2 = T/d for all x ∈ Rd.

Lemma 6.2 results in many consequences in the next section, but first we
make another observation:

Proposition 6.1. Let α(T) be increasing and concave. If C(T) = c̃1T + c0,
then α(T)/C(T) is quasi-concave and has a unique maximum on [0, d]. When
C(T) = c̃1dT/τmaxe+ c0, on the other hand, α(T)/C(T) attains its maximum
for a T which is an integer multiple of τmax.

This proposition shows that the optimization in Eq. (6.9) is easy to solve.
For the affine communication model, one can simply sort the elements in the
decreasing order, initialize T = 1 and increase T until α(T)/C(T) decreases.
In the packet model, the search for the optimal T is even more efficient, as
one can increase T in steps of τmax.

6.1.4 Dynamic Sparsification Benefits in Theory and
Practice

Although the CAT framework applies to general communication costs, it is
instructive to see what our results say about the communication complexity,

Background 137

Deterministic Sparsification Stochastic Sparsification
Upper-Bound µ-convex convex nonconvex µ-convex convex nonconvex

No-Compression ASC
ε AC

ε ANC
ε BSC

ε BC
ε BNC

ε

Data-Dependent 1
ᾱT

·ASC
ε

1
ᾱT

·AC
ε

1
ᾱT

·ANC
ε

1
ω̄T

·BSC
ε

1
ω̄T

·BC
ε

1
ω̄T

·BNC
ε

Worst-Case d
T

·ASC
ε

d
T

·AC
ε

d
T

·ANC
ε

d
T

·BSC
ε

d
T

·BC
ε

d
T

·BNC
ε

Table 6.1: Iteration complexity for T -sparsified (stochastic) gradient descent.
We prove these results and analogous results for S + Q compression in the
Appendix. For Deterministic Sparsification, ASC

ε , AC
ε , and ANC

ε are standard
upper bounds for gradient descent on iteration counts needed to achieve
ε-accuracy for, respectively, strongly-convex, convex, and non-convex prob-
lems. In particular, ASC

ε = κ log(ε0/ε), AC
ε = 2LR2/ε, ANC

ε = 2Lε0/ε, where
κ = L/µ, ε0 = F (x0) − F ?, and R is a constant such that ||xi − x?|| ≤ R
(for some optimizer x?). For Stochastic Sparsification, BSC

ε , BC
ε , and BNC

ε

are standard upper bounds for multi-node stochastic gradient descent on
iteration counts needed to achieve ε-accuracy (in expected value) for, re-
spectively, strongly-convex, convex, and non-convex problems. In partic-
ular, BSC

ε = 2(1 + 2σ2/(µεL))(ASC
ε + δ), BC

ε = 2(1 + 2σ2/(εL))AC
ε , and

BNC
ε = 2(1 + 2σ2/ε)ANC

ε , where δ = κ log(2) and σ2 is a variance bound of
stochastic gradients. The ε-accuracy is measured in E[F (x)− F (x?)] for con-
vex problems, and in E‖∇F (x)‖2 otherwise.

i.e., the number of bits that needs to be communicated to guarantee that a
solution is found within an ε-accuracy. Table 1 compares the iteration com-
plexity of Gradient Descent (GD) in row 1 and T -Sparsified Gradient Descent
(T -SGD) in rows 2 and 3 with constant T for strongly-convex, convex, and
non-convex problems. The results for gradient descent are well-known and
found in, e.g., [166], while the worst-case analysis is from [104]. The results
for T -sparsified gradient descent are derived using Lemma 6.1 instead of the
standard descent lemma; see proofs in the supplementary materials.

Comparing rows 1 and 3 in the table, we see that the worst-case analysis
does not guarantee any improvements in the number of communicated floating
points. Although T -SGD only communicates T out of d gradient entries in each
round, we need to perform d/T times more iterations with T -SGD than with
SGD, so both of these approaches will need to communicate the same number
of floating points. In fact, T -SGD will be worse in terms of communicated
bits since it requires T dlog2(d)e additional bits per iteration to indicate the
sparsity pattern.

Let us now turn our attention to our novel analysis shown in row 2 of Table

138 Adaptive Compression Framework

10−3 10−2 10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

T/d (%)

ᾱ
T

ᾱT T/d SpeedUp(T)

10−3 10−2 10−1 100 101 102

100

101

102

T/d (%)

S
p
e
e
d
U
p

(T
)

(a) ᾱT and speedup

10−3 10−2 10−1 100 101 102

105

106

T/d (%)

C
(T

)/
α
(T

)

GD: payload GD: packet
SG: payload SG: packet

(b) Hypothetical: Communica-
tions to reach ε-accuracy

10−3 10−2 10−1 100 101 102

107

108

109

T/d (%)

b
it
s

GD: payload GD: packet
SG: payload SG: packet

CAT SG: payload CAT SG: packet

(c) Experiments: Communications
(in bits) to reach ε-accuracy

Figure 6.1: CAT sparsified gradient descent on the RCV1 data set.

1. Here, the parameter ᾱT is a lower bound on αk(T) over every iteration,
that is

αk(T) ≥ ᾱT for all k.

Unfortunately, ᾱT is not useful for algorithm development: we know from
Lemma 6.2 that it can be as low as T/d, and it is not easy to compute a tight
data-dependent bound off-line, since ᾱT depends on the iterates produced by
the algorithm. However, ᾱT explains why gradient sparsification is commu-
nication efficient. In practice, only few top entries cover the majority of the
gradient energy, so αk(T) grows rapidly for small values of T and is much
larger than T/d.

To illustrate the benefits of sparsification, let us look at the concrete ex-
ample of logistic regression on the standard benchmark data set RCV1 (with
d = 47, 236 and 697, 641 data points). Figure 6.1a depicts ᾱT computed af-
ter running 1000 iterations of gradient descent and compares it to the worst

Background 139

case bound T/d. The results show a dramatic difference between these two
measures. We quantify this difference by the ratio

SpeedUp(T) = d

T

/
1
ᾱT

= ᾱT
T/d

.

Note that this measure is the ratio between rows 2 and 3 in Table 1, and
hence tells us the hypothetical speedup by sparsification, i.e., the ratio between
the number of communicated floating points needed by GD and T -SGD to
reach ε-accuracy. The figure shows a dramatic speedup; for small values of T ,
the speed-up is of three orders of magnitude (we confirm this in experiments
below).

Interestingly, the speedup decreases with T and is maximized at T = 1.
This happens because doubling T doubles the number of communicated bits,
while the additional descent is often less significant. Thus, an increase in T
worsens communication efficiency. This suggests that we should always take
T = 1 if the communication efficiency in terms of bits is optimized without
considering overhead. In the context of the dynamic algorithm in Eq. (6.9),
this leads to the following result:

Proposition 6.2. Consider the dynamic sparsified gradient algorithm in Eq. (6.9)
with C(T) = P S(T) given by Eq. (6.5). Then, the maximization problem (6.9)
has the solution Tk = 1 for all k.

Figures 6.1b and 6.1c depict, respectively, the hypothetical and true val-
ues of the total number of bits needed to reach an ε-accuracy for different
communication models. In particular, Figure 6.1b depicts the ratio C(T)/ᾱT
(compare with Table 1) and Figure 6.1c depicts the experimental results of
running T -SGD for different values of T . We consider: a) the payload model
with C(T) = P S(T) (dashed lines) and b) the packet model in Eq. (6.6) with
c1 = 128 bytes, c0 = 64 bytes and Pmax = 128 bytes (solid lines). In both
cases, the floating point precision is FPP = 64. We compare the results with
GD (blue lines) with payload d × FPP bits per iteration. As expected, if we
ignore overheads, then T = 1 is optimal and the improvement compared to
GD are of three orders of magnitude. For the packet model, there is a delicate
balance between choosing T too small and too big. For general communica-
tion models it is difficult to find the right value of T a priori, and the costs of
choosing a bad T can be of many orders of magnitude. To find a good T we
could do a hyper-parameter search, e.g. by first estimating ᾱT from data and
then by using it to find the optimal T . However, this will be expensive and
moreover ᾱT might not be a good estimate of αk(T) we get at each iteration.
In contrast, our CAT framework finds the optimal T at each iteration with-
out any hyper-parameter optimization. In Figure 6.1c we show the number
of communicated bits needed to reach ε-accuracy with our algorithm. The
results show that for both communication models, our algorithm achieves the
same communication efficiency as if we would choose the optimal T .

140 Adaptive Compression Framework

6.2 Dynamic Sparsification + Quantization
We now describe how our CAT framework can improve the communication
efficiency of compressed gradient methods that use sparsification combined
with quantization, i.e., using QT (·) in Equation (6.3). As before, our goal is
to choose Tk dynamically by maximizing the communication efficiency per iter-
ation defined in (6.7). This selection can be performed based on the following
descent lemma.

Lemma 6.3. Suppose that F : Rd → R is (possibly non-convex) L-smooth.
Then for any x, x+ ∈ Rd with x+ = x−γQT (∇F (x)) where QT (·) is as defined
in Eq. (6.3) and γ =

√
β(T)/(

√
TL) then

F (x+) ≤ F (x)− β(T)
2L ||∇F (x)||2,

where β(T) = 〈∇F (x), QT (∇F (x))〉2/
(
T · ‖∇F (x)‖4

)
.

Since this compression operator affects the descent differently from spar-
sification, this lemma differs from Lemma 6.1, e.g, in terms of the step-size
and descent measure (β(T) vs. α(T)). Unlike α(T) in Lemma 6.1, β(T) does
not converge to 1 as T goes to d. In fact, β(T) is not even an increasing
function, and QT (g) does not converge to g when T increases. Nevertheless,
〈∇F (x), QT (∇F (x))〉2 is non-negative, increasing and concave. Under the
affine communication model, T ×C(T) = c̃0T

2 + c1T is non-negative and con-
vex, which implies that β(T)/C(T) is quasi-concave. The optimal T can then
be efficiently found similarly to what was done for the CAT-sparsification.
Therefore, Lemma 6.3 allows us to apply the CAT framework for this com-
pression. In particular, with

βk(T)= 〈∇F (xk), QT (∇F (xk))〉2

T · ‖∇F (xk)‖42

we get the algorithm

Step 1: Tk = argmax
T∈[1,d]

βk(T)
C(T) (6.10)

Step 2: γk=
√
βk(Tk)√
TkL

(6.11)

Step 3: xk+1=xk−γkQTk(∇F (xk)). (6.12)

The algorithm optimizes Tk, based on each gradient and the actual commu-
nication cost. Note that [22] proposes a dynamic mechanism that chooses Tk
so that ITk(gk) is the smallest subset such that

∑
j∈ITk (gk) |g

j
k| ≥ ‖gj‖. How-

ever, this heuristic has no clear connection to the descent or consideration for

Dynamic Stochastic Sparsification: Stochastic Gradient & Multiple Nodes 141

0 0.5 1 1.5 2

·107

0.4

0.6

0.8

1

Communications (bits)

(F
(x

i)
−
F

?
)/
(F

(x
0
)
−
F

?
)

Alistarh S+Q: payload Alistarh S+Q: packet
CAT S+Q: payload CAT S+Q: packet

Figure 6.1: CAT sparsification + quantization on the RCV1 data set.

communication costs. Our experiments show that our framework outperforms
this heuristic in both running time and communication efficiency.

We compared CAT to the dynamic tuning introduced in [22]. In Figure
6.1, algorithms with both tuning rules are comparable if we only account for
the payload in Equation (6.5). However, the heuristic rule in [22] is agnostic
to the actual communication model C(T) in Equation (6.6) with c1 = 128
bytes, c0 = 64 bytes and Pmax = 128 bytes. The blue lines show that the CAT
is roughly two times more communication efficient than the dynamic tuning
rule in [22] for the packet communication model.

6.3 Dynamic Stochastic Sparsification:
Stochastic Gradient & Multiple Nodes

We finally illustrate how the CAT framework can improve the communication
efficiency of stochastic sparsification. Our goal is to choose Tk and pk dynam-
ically for the stochastic sparsification in Eq. (6.4) to maximize the commu-
nication efficiency per iteration. To this end, we need the following descent
lemma, similarly to the ones we proved for deterministic sparsifications in the
last two sections.

Lemma 6.4. Suppose that F : Rd → R is (possibly non-convex) L-smooth.
Then for any x, x+ ∈ Rd with x+ = x−γQT,p(∇F (x)) where QT,p(·) is defined
in (6.4) and γ = ωp(T)/L we have

EF (x+) ≤ EF (x)− ωp(T)
2L E||∇F (x)||2,

142 Adaptive Compression Framework

where ωp(T) = ||∇F (x)||2/E||QT,p(∇F (x))||2.

Similarly as before, we optimize the descent and the communication effi-
ciency by maximizing, respectively, ωp(T) and ωp(T)/C(T). For a given T ,
the p? minimizing ωp(T) can be found efficiently, see [96] and our discussion
in the supplementary materials. In this paper we always use p? and omit p
in QT (·) and ω(T). We can now use our CAT framework to optimize the
communication efficiency. If we set ωk(T)=||∇F (xk)||2/E||QT,p(∇F (xk))||2
we get the dynamic algorithm:

Step 1: Tk = argmax
B∈[1,d]

ωk(T)
C(T) (6.13)

Step 2: γk = ωk(Tk)
L

(6.14)

Step 3: xk+1 = xk − γkQTk(∇F (xk)). (6.15)

This algorithm can maximize communication efficiency by finding the optimal
sparsity budget T to the one-dimensional problem. This can be solved effi-
ciently since the sparsification parameter ω(T) has properties that are similar
to α(T) for deterministic sparsification. Like Lemma 6.2 for deterministic spar-
sification, the following result shows that ω(T) is increasing with the budget
T ∈ [1, d] and is lower-bounded by T/d.

Lemma 6.5. For any vector g ∈ Rd the function ω(T) = ‖g‖2/‖QT,p(g)‖2 is
increasing over T ∈ [1, d]. Moreover, ω(T) ≥ T/d for all T ∈ [1, d], where we
obtain the equality when pj = T/d for all j ∈ [1, d].

This lemma leads to many consequences for ω(T), analogous to α(T). For
instance, by following proof arguments in Proposition 6.1, ω(T)/C(T) attains
its maximum for a T which is an integer multiple of τmax when C(T) =
c̃1dT/τmaxe+ c0.

Furthermore, stochastic sparsification has some favorable properties that
allow us to generalize our theoretical results to stochastic gradient methods
and to multi-node settings. Suppose that we have n nodes that wish to solve
the minimization problem with F (x) =

∑n
i=1 F

i(x)/n where F i(·) is kept by
node i ∈ [1, n]. Then, we may solve the problem by distributed compressed
gradient descent

xk+1 = xk − γ
1
n

n∑
i=1

QT i
k

(
gi(xk; ξik)

)
, (6.16)

where Q(·) is the stochastic sparsifier and gi(x; ξi) is a stochastic gradient with
respect to ∇F i(x) at x. We assume that gj(x; ξj) is unbiased and satisfies a
bounded variance assumption, i.e. Eξg

i(x; ξi) = ∇F i(x) and Eξ‖gi(x; ξi) −
∇F (x)‖2 ≤ σ2. The expectation is with respect to a local data distribution

Experimental Results 143

at node i. These conditions are standard to analyze randomized first-order
algorithms in machine learning [132, 88].

We can derive a descent lemma for Algorithm (6.16) similarly as Lemma
6.4 for the single-node sparsification method (see Theorem 3 in the Appendix).
This means that we easily prove similar data-dependent convergence results
as we did for deterministic sparsification in Table 1. To illustrate this, sup-
pose that for a given T there is ω̄T satisfying ωik(T) ≥ ω̄T where ωik(T) =
||∇F i(xk)||2/E||QT (∇F i(xk))||2. Then, the iteration complexity of Algorithm
(6.16) is as given in the right part of Table 1. The parameter ω̄T captures the
sparsification gain, similarly as ᾱT did for deterministic sparsification. In the
worst case there is no communication improvement of sparsification compared
to sending full gradients, but when ω̄T is large the communication improve-
ment can be significant.

6.4 Experimental Results

101 103 105 107
100

101

102

103

∑
k C(T (i))

F
(x

i)

Single Node, Communication

0 1 2 3 ·105100

101

102

103

Time (sec)

F
(x

i)

Single Node, Convergence

0 1 2 3 ·109
10−3

10−2

10−1

100

Communications (bits)

F
(x

i)
−

F
?

Multi Node, Convergence

GD Alistarh S+Q CAT S+Q CAT SG CAT SS

Figure 6.1: Performance of CAT frameworks on three compressors for solving
logistic regression problems. We used the URL data set in the single-node (one
master/one worker) architecture and RCV1 in the multi-node (one master/four
worker) setting.

Experiment 1 (single node). We evaluate the performance of our CAT
framework for dynamic sparsification and quantization (S+Q) in the single-
master, single-worker setup on the URL data set with 2.4 million data points
and 3.2 million features. The master node, located 500 km away from the
worker node, is responsible for maintaining the decision variables based on
the gradient information received from the worker node. The nodes commu-
nicate with each other over a 1000 Mbit Internet connection using the ZMQ
library. We implemented vanilla gradient descent (GD), Alistarh’s S+Q [22]
and CAT- S+Q using the C++ library POLO [87]. We first set FPP = 32 and
measure the communication cost in a wall-clock time. After obtaining a linear
fit to the measured communication cost (see the supplementary materials for

144 Adaptive Compression Framework

details), we ran 30, 000 iterations and with step-size according to Lemma 6.3.
Figure 6.1 shows the loss improvement with respect to the total communica-
tion cost (leftmost) and wall-clock time (middle). We observe that CAT S+Q
outperforms GD and Alistarh’s S+Q up to two orders and one order of mag-
nitude, respectively, in communication efficiency. In terms of wall-clock time,
CAT S+Q takes 26% (respectively, 39%) more time to finish the full 30, 000
iterations than that of GD (respectively, Alistarh’s S+Q). Note, however, that
CAT S+Q achieves an order of magnitude loss improvement in an order of
magnitude shorter time, and the loss value is always lower in CAT S+Q than
that in Alistarh’s S+Q. Such a performance is desirable in most of the ap-
plications (e.g., hyper-parameter optimizations and day-ahead market-price
predictions) that do not impose a strict upper bound on the iteration counts
but rather on the wall-clock time of the algorithm.

Experiment 2 (MPI - multiple nodes): We evaluate the performance
of our CAT tuning rules on deterministic sparsification (SG), stochastic spar-
sification (SS), and sparsification with quantization (S+Q) in a multi-node
setting on RCV1. We compare the results to gradient descent and Alistarh’s
S+Q [22]. We implement all algorithms in Julia, and run them on 4 nodes
using MPI, splitting the data evenly between the nodes. In all cases we use
the packet communication model (6.6) with c1 = 576 bytes, c0 = 64 bytes and
Pmax = 512 bytes. The right-most plot in Figure 6.1 shows that our CAT S+Q
outperforms all other compression schemes. In particular, CAT is roughly 6
times more communication efficient than the dynamic rule in [22] for the same
compression scheme (compare number of bits needed to reach ε = 0.4).

Additional Experiments for Stochastic Sparsification and Error
Compensation. We include additional simulations that illustrate generality
and efficiency of our CAT frameworks on stochastic sparsification, and on
error compensation (see details e.g. in [124, 151, 125, 152]). We evaluated the
performance for logistic regression problems on the RCV1 data set. The packet
communication model in Equation (6.6) also has c1 = 128 bytes, c0 = 64 bytes
and Pmax = 128 bytes.

For stochastic sparsification, we compared traditional ATOMO called SS [96],
against our CAT tuning with ATOMO named CAT-SS. The communications are
averaged over three Monte Carlo runs. Figure 6.2 shows that stochastic spar-
sification has the same conclusions as deterministic sparsification. In the sim-
plest payload model it is best to choose T small. However, for the packet
model we need to carefully tune T so that it is neither too big nor too small.
Our CAT rule adaptively finds the best value of T in both cases.

Next, we showed that our CAT algorithms can achieve faster convergence
acceleration by using error compensation schemes. For deterministic sparsifi-
cation, the error-compensated CAT algorithm is 2 times more communication
efficient to achieve F (xk) = 0.4 than the direct compression CAT algorithm
(see Figure 6.3). This highlights high flexibility of our CAT framework to
improve efficiency of any compressed algorithms.

Experimental Results 145

10−2 10−1 100 101

107

107.5

T/d (%)

b
it
s
to

re
ac
h
ε
ac
cu

ra
cy

SS: payload CAT-SS: payload
SS: packet CAT-SS: packet

Figure 6.2: Expected communicated bits to reach ε-accuracy for gradient de-
scent with stochastic sparsification.

0 0.5 1 1.5 2

·108

0.2

0.4

0.6

Communications [bits]

f
(x

k
)

TopK: CAT TopK: CAT + EC

Figure 6.3: CAT sparsification with and without error compensation on RCV1.

Appendix

6.A Proofs of Lemmas and Propositions
6.A.1 Proof of Lemma 6.1
By the L-smoothness of F (·) and the iterate x+ = x − γQT (∇F (x)) where
x+, x ∈ Rd, from Lemma 1.2.3. of [166] we have

F (x+) ≤ F (x)− γ 〈∇F (x), QT (∇F (x))〉+ Lγ2

2 ‖QT (∇F (x))‖2.

It can be verified that
〈g,QT (g)〉 = ||QT (g)||2

for all g ∈ Rd and, therefore, if γ = 1/L then we have

F (x+) ≤ F (x)− 1
2L‖QT (∇F (x))‖2.

By the definition of α(T) we have ‖QT (∇F (x))‖2 = α(T)‖∇F (x)‖2, which
yields the result.

Next, we prove that there exist L-smooth functions F (·) where the in-
equality is tight. Consider F (x) = L‖x‖2/2. Then, F is L-smooth, and also
satisfies

F (x− γQT (∇F (x))) = L

2 ‖x− γQT (Lx)‖2

= L

2 ‖x‖
2 − γ〈Lx,QT (Lx)〉+ Lγ2

2 ‖QT (Lx)‖2.

Since 〈g,QT (g)〉 = ‖QT (g)‖2 by the definition QT (·) and γ = 1/L, we have

F (x− γQT (∇F (x))) = F (x)− 1
2L‖QT (Lx)‖2.

Since ∇F (x) = Lx, by the definition of α(T)

α(T) = ‖QT (Lx)‖2

‖Lx‖2
=
∑
i∈IT x

2
i∑d

i=1 x
2
i

,

where IT is the index set of T elements with the highest absolute magnitude.
Therefore,

F (x− γQT (∇F (x))) = F (x)− α(T)
2L ‖∇F (x)‖2.

147

148 Adaptive Compression Framework

6.A.2 Proof of Lemma 6.2
Take g ∈ Rd and, without the loss of generality, we let |g1| ≥ |g2| ≥ . . . ≥ |gd|
and gi ∈ R (otherwise we may re-order g). To prove that α(T) is increasing
we rewrite the definition of α(T) equivalently as

α(T) =
T∑
j=1

(gj)2/‖g‖2, for T ∈ [0, d].

Notice that α(T) = 0 when T = 0. Clearly, α(T) is also increasing with
T ∈ [1, d] since each term of the sum

∑T
j=1(gj)2 is increasing.

We prove that α(T) is concave by recalling the slope of α(T)

d

dT
α(T) = (gM)2/‖g‖2,

for T ∈ (M − 1,M) and M = 1, 2, . . . , d. Since |g1| ≥ |g2| ≥ . . . ≥ |gd|, the
slope of α(T) has a non-increasing slope when T increases. Therefore, α(T) is
concave.

We prove the second statement by writing ‖g‖2 on the form of

‖g‖2 =
∑

j∈IT (g)

(gj)2 +
∑

j∈ITc (g)

(gj)2,

where IT c is the index set of d − T elements with lowest absolute magni-
tude. Applying the fact that (gj)2 ≤ minl∈IT (g)(gl)2 for j ∈ IT c(g) and that
minl∈IT (g)(gl)2 ≤ (1/T)

∑
l∈IT (g)(gl)2 into the main inequality, we have

‖g‖2 ≤
(

1 + d− T
T

) ∑
j∈IT (g)

(gj)2.

By the definition of QT (g), we get

α(T) ≥ T/d.

Finally, we prove the last statement by setting F (x) = (1/2)xTAx where
A = (L/d)11T .Then F (·) is L-smooth and its gradient is

∇F (x) = x̄1,

where

x̄ = 1
d

d∑
j=1

xj .

Therefore, ‖QT (∇F (x))‖2 = (T/d)‖∇F (x)‖2.

Proofs of Lemmas and Propositions 149

6.A.3 Proof of Proposition 6.1
The ratio between a non-negative concave function α(T) and a positive affine
function C(T) is quasi-concave and semi-strictly quasi-concave [167, 168],
meaning that every local maximal point is globally maximal.

Next, we consider α(T)/C(T) when C(T) = c̃1dT/τmaxe+ c0. If T ∈ ((c−
1)τmax, cτmax], then α(T) ≤ α(cτmax) due to monotonicity of α(·) and C(T) =
C(cτmax), meaning that α(T)/C(T) ≤ α(cτmax)/C(cτmax). This implies that
T = cτmax maximizes α(T)/C(T) for T ∈ ((c− 1)τmax, cτmax] and that we can
obtain the maximum of T = cτmax for some integers c.

6.A.4 Proof of Proposition 6.2
Take g ∈ Rd and, without the loss of generality, we let |g1| ≥ |g2| ≥ . . . ≥ |gd|
and gj ∈ R (otherwise we may re-order g). Since C(T) = C · T where C =
dlog2(d)e+ FPP, we have

Tk = argmax
T∈[1,d]

αk(T)
C(T) = argmax

T∈[1,d]

∑T
j=1(gj)2

C · T
.

Since
∑T
j=1(gj)2/T ≤ (g1)2, the solution from Equation (6.9) is Tk = 1 for all

k.

6.A.5 Proof of Lemma 6.3
By using the L-smoothness of F (·) (Lemma 1.2.3. of [166]) and the iterate
x+ = x− γQT (∇F (x)) where x+, x ∈ Rd, we have

F (x+) ≤ F (x)− γ 〈∇F (x), QT (∇F (x))〉+ Lγ2

2 ‖QT (∇F (x))‖2.

If QT (∇F (x)) has T non-zero elements, then we can easily prove that

〈∇F (x), QT (∇F (x))〉 =
√
Tβ(T) · ‖∇F (x)‖2, and

‖QT (∇F (x))‖2 = T · ‖∇F (x)‖2,

where β(T) is defined as

β(T) = 1
T

〈∇F (x), QT (∇F (x))〉2

‖∇F (x)‖42
.

Plugging these equations into the above inequality yields

F (x+) ≤ F (x)−
(
γ
√
Tβ(T)− TLγ2

2

)
‖∇F (x)‖2.

Setting γ =
√
β(T)/(

√
TL) completes the proof.

150 Adaptive Compression Framework

6.A.6 Proof of Lemma 6.4
By using the L-smoothness of F (·) (Lemma 1.2.3. of [166]) and the iterate
x+ = x− γQT,p(∇F (x)) where x+, x ∈ Rd, we have

F (x+) ≤ F (x)− γ 〈∇F (x), QT,p(∇F (x))〉+ Lγ2

2 ‖QT,p(∇F (x))‖2.

Since ωp(T) is defined by

ωp(T) = ||∇F (x)||2

E||QT,p(∇F (x))||2 ,

taking the expectation, and using the unbiased property of QT,p(·) we get

EF (x+) ≤ EF (x)−
(
γ − Lγ2

2ωp(T)

)
E‖∇F (x)‖2.

Now taking γ = ωp(T)/L concludes the complete the proof.

6.A.7 Proof of Lemma 6.5
Consider QT,p(·) in Equation (6.4). Then,

E‖QT,p(g)‖2 =
d∑
j=1

1
pj

(gj)2.

Here, we assume without the loss of generality that each element of g ∈ Rd is
gj such that |g1| ≥ |g2| ≥ . . . ≥ |gd| (otherwise we may re-order g). Therefore,

ω(T) =
∑d
j=1(gj)2∑d

j=1
1
pj (gj)2

.

To ensure the high sparsity budget T of the compressed gradient QT,p(g),
probabilities must also have high values in some coordinates (some pj are close
to one). Therefore, ω(T) is increasing over the sparsity budget T ∈ [1, d].

Next, we assume that QT,p(·) in Equation (6.4) has pj = T/d for all j ∈
[1, d]. Then,

E‖QT,p(g)‖2 = d

T
‖g‖2.

Plugging this result into the main definition, we have ω(T) = T/d. Since we
assign p that minimizes ωp(T) = ‖g‖2/E‖g‖2, ωp(T) ≥ T/d.

Iteration Complexities of Adaptive Compressors 151

6.B Iteration Complexities of Adaptive
Compressors

In this section, we provide the iteration complexities of gradient descent (6.1)
with three main compressors: deterministic sparsification (6.2), dynamic spar-
sification together with quantization (6.3) , and stochastic sparsification (6.4).

6.B.1 Analysis for Deterministic Sparsification
We provide theoretical convergence guarantees for gradient descent using de-
terministic sparsification.

Theorem 6.1. Consider the minimization problem over the function F (x) and
the iterates {xk}k∈N generated by gradient descent with dynamic sparsification
in Equation (6.9). Suppose that there exists ᾱT ∈ [0, 1] such that αk(T) ≥
ᾱT ≥ T/d for all k. Set ε0 = F (x0)− F (x?). Then,

1. Non-convex: If F is L-smooth, then we find minl∈[0,k−1]‖∇F (xl)‖2 ≤ ε
in

k = 1
ᾱT

2Lε0
ε

iterations.

2. Convex: If F is also convex and there exists a positive constant R such
that ‖xk − x?‖ ≤ R, then we find F (xk)− F (x?) ≤ ε in

k = 1
ᾱT

2LR2

ε
iterations.

3. Strongly-convex: If F is also µ-strongly convex, then we find F (xk)−
F (x?) ≤ ε in

k = 1
ᾱT

κ log
(ε0
ε

)
iterations.

Proof. See Appendix 6.C.

6.B.2 Analysis for Dynamic Sparsification together with
Quantization

We prove convergence rate of gradient descent with dynamic sparsification
together with quantization.

Theorem 6.2. Consider the minimization problem over the function F (x)
and the iterates {xk}k∈N generated by gradient descent with sparsification to-
gether with quantization in Equation (6.10). Suppose that there exist constants
T ∈ (0, d] and β̄T ∈ (0,∞) such that Tk ≤ T and βk(Tk) ≥ β̄T for all i, re-
spectively. Set ε0 = F (x0)− F (x?). Then,

152 Adaptive Compression Framework

1. Non-convex: If F is L-smooth, then we find minl∈[0,k−1]‖∇F (xl)‖2 ≤ ε
in

k = 1
β̄T

2Lε0
ε

iterations.

2. Convex: If F is also convex and there exists a positive constant R such
that ‖xk − x?‖ ≤ R, then we find F (xk)− F (x?) ≤ ε in

k = 1
β̄T

2LR2

ε
iterations.

3. Strongly-convex: If F is also µ-strongly convex, then we find F (xk)−
F (x?) ≤ ε in

k = 1
β̄T

κ log
(ε0
ε

)
iterations.

Proof. See Appendix 6.D.

6.B.3 Analysis for Stochastic Sparsification
We prove iteration complexities of stochastic gradient descent with stochastic
sparsification in the multi-node setting.

Theorem 6.3. Consider the minimization problem over the function F (x) =∑n
i=1 F

i(x), where each F i(·) is L-smooth. Let the iterates {xk}k∈N generated
by Algorithm (6.16), and suppose that there exists ω̄T such that ωik(T ik) ≥ ω̄T
where ωik is the sparsification parameter of node i at iteration k. Set εF0 =
F (x0)− F (x?) and εX0 = ‖x0 − x?‖. Then,

1. Non-convex If
γ = ω̄T

2L
1

2σ2/ε+ 1
then we find minl∈[0,k−1] E‖∇F (xl)‖2 ≤ ε in

k = 2
ω̄T

(
1 + 2σ2

ε

)
· 2LεF0

ε
iterations.

2. Convex If F is convex and

γ = ω̄T
2

1
2σ2/ε+ L

then we find E
[
F (
∑k−1
l=0 xl/k)− F ?

]
≤ ε

k = 2
ω̄T

(
1 + 2σ2

εL

)
2LεX0
ε

iterations.

Iteration Complexities for Deterministic Sparsification 153

3. Strongly-convex If F is µ-strongly convex and

γ = ω̄T
2

1
2σ2/(µε) + L

then we find E[F (xk)− F (x?)] ≤ ε in

k = 2
ω̄T

κ

(
1 + 2σ2

µεL

)
log
(

2εF0
ε

)
iterations.

Proof. See Appendix 6.E.

6.C Iteration Complexities for Deterministic
Sparsification

In this section, we derive iteration complexities of gradient descent with de-
terministic sparsification.

Proof of Theorem 6.1-1
By recursively applying the inequality from Lemma 6.1 with x+ = xk+1 and
x = xk, we have

min
l∈[0,k−1]

‖∇F (xl)‖2 ≤
2L
k

k−1∑
l=0

1
αk(T) [F (xl)− F (xl+1)]

where the inequality follows from the fact that minl∈[0,k−1] ‖∇F (xl)‖2 ≤∑k−1
l=0 ‖∇F (xk)‖2/k. If there exists ᾱT such that αk(T) ≥ ᾱT , then

min
l∈[0,k−1]

‖∇F (xl)‖2 ≤
2L
kᾱT

[F (x0)− F (xi)].

Since F (x) ≥ F (x?) for x ∈ Rd,

min
l∈[0,k−1]

‖∇F (xl)‖2 ≤
2L
kᾱT

ε0,

where ε0 = F (x0)−F (x?). This means that to reach target solution accuracy
at ε (i.e. minl∈[0,k−1] ‖∇F (xl)‖2 ≤ ε), the sparsified gradient method (6.1)
needs at most

k ≥ 1
ᾱT

2Lε0
ε

iterations.

We also recover the iteration complexities of the sparsified gradient method
and of classical full gradient method when we let ᾱT = T/d and ᾱT = 1,
respectively.

154 Adaptive Compression Framework

Proof of Theorem 6.1-2
Before deriving the result, we introduce one useful lemma.

Lemma 6.6. The non-negative sequence {Vk}k∈N generated by

Vk+1 ≤ Vk − qV 2
k , for q > 0 (6.17)

satisfies
1
Vk
≥ 1
V0

+ kq. (6.18)

Proof. By the fact that x2 ≥ 0 for x ∈ R, clearly Vk+1 ≤ Vk. By the proper
manipulation, we rearrange the terms in Equation (6.17) as follows:

1
Vki+1

− 1
Vk
≥ q Vk

Vk+1
≥ q,

where the last inequality follows from the fact that Vk+1 ≤ Vk. By the recur-
sion, we complete the proof.

By Lemma 6.1 with x+ = xk+1 and x = xk, we have

F (xk+1) ≤ F (xk)− αk(T)
2L ‖∇F (xk)‖2

Since F is convex, i.e.

F (x)− F (x?) ≤ 〈∇F (x), x− x?〉, for x ∈ Rd

by Cauchy-Scwartz’s inequality and assuming that the iteration satisfies ‖x−
x?‖ ≤ R for R > 0 and x ∈ Rd,

‖∇F (x)‖ ≥ 1
R

[F (x)− F (x?)] .

Plugging this inequality into the main result, we have

Vk+1 ≤ Vk −
αk(T)
2LR2 V

2
k ,

where Vk = F (xk)− F (x?). If there exists ᾱT such that αk(T) ≥ ᾱT , then by
Lemma 6.6 and by using the fact that V0 ≥ 0

Vk ≤
1
ᾱT

2LR2

k
.

To reach F (xk)−F (x?) ≤ ε, the sparsified gradient methods needs the number
of iterations i satisfying

k ≥ 1
ᾱT

2LR2

ε
.

We also recover the iteration complexities of the sparsified gradient method
and of classical full gradient method when we let ᾱT = T/d and ᾱT = 1,
respectively.

Iteration Complexities for S+Q 155

Proof of Theorem 6.1-3
By Lemma 6.1 with x+ = xk+1 and x = xk, we have

F (xk+1) ≤ F (xk)− αk(T)
2L ‖∇F (xk)‖2.

Since F is µ-strongly convex, i.e. ‖∇F (x)‖2 ≥ 2µ[F (x) − F (x?)] for x ∈ Rd,
applying this inequality into the main result we have

F (xk+1)− F (x?) ≤
(

1− µαk(T)
L

)
[F (xk)− F (x?)].

If there exists ᾱT such that αk(T) ≥ ᾱT , then by the recursion we get

F (xk)− F (x?) ≤
(

1− µαT
L

)k
ε0,

where ε0 = F (x0)−F (x?). To reach F (xk)−F (x?) ≤ ε, the sparsified gradient
methods requires the number of iterations k satisfying(

1− µαT
L

)k
ε0 ≤ ε.

Taking the logarithm on both sides of the inequality and using the fact that
−1/ log(1− x) ≤ 1/x for 0 < x ≤ 1, we have

k ≥ 1
ᾱT

κ log
(ε0
ε

)
.

We also recover the iteration complexities of the sparsified gradient method
and of classical full gradient method when we let ᾱT = T/d and ᾱT = 1,
respectively.

6.D Iteration Complexities for S+Q

In this section, we prove the iteration complexities of gradient descent using
dynamic sparsification together with quantization.

Proof of Theorem 6.2-1
Suppose that there exist T and β̄T such that Tk ≤ T and βk(Tk) ≥ β̄T for all
k, respectively. Applying Lemma 6.3 with x+ = xk+1 and x = xk and using
the fact that

min
l∈[0,k−1]

‖∇F (xl)‖2 ≤
1
k

k−1∑
l=0
‖∇F (xl)‖2,

156 Adaptive Compression Framework

we then have

min
l∈[0,k−1]

‖∇F (xl)‖2 ≤
2L
β̄T · k

k−1∑
l=0

[F (xl)− F (xl+1)].

Next, by the cancellations of the telescopic series, and by the fact that F (x) ≥
F (x?) for x ∈ Rd,

min
l∈[0,k−1]

‖∇F (xl)‖2 ≤
2L
β̄T k

ε0,

where ε0 = F (x0) − F (x?). To reach minl∈[0,k−1] ‖∇F (xl)‖2 ≤ ε, gradient
descent using sparsification and quantization needs at most

k ≥ 2L
β̄T

ε0
ε

iterations.

Proof of Theorem 6.2-2
Since βk(Tk) ≥ β̄T for all k, applying Lemma 6.3 with x+ = xk+1 and x = xk
we have

[F (xk+1)− F (x?)] ≤ [F (xk)− F (x?)]− β̄T
2L‖∇F (xk)‖2.

Since F is convex, i.e.

F (x)− F (x?) ≤ 〈∇F (x), x− x?〉, for x ∈ Rd

by Cauchy-Scwartz’s inequality and assuming that the iteration satisfies ‖x−
x?‖ ≤ R for R > 0 and x ∈ Rd,

‖∇F (x)‖ ≥ 1
R

[F (x)− F (x?)] .

Plugging this inequality into the main result, we have

Vk+1 ≤ Vk −
β̄T

2LR2V
2
k ,

where Vk = F (xk) − F (x?). Applying Lemma 6.6 with V0 ≥ 0 into this
inequality we get

Vk ≤
1
β̄T

2LR2

k
.

To reach F (xk) − F (x?) ≤ ε, gradient descent using sparsification with
quantization needs the number of iterations k satisfying

k ≥ 1
β̄T

2LR2

ε
.

Iteration Complexities for Distributed Stochastic Sparsified Gradient 157

Proof of Theorem 6.2-3
Since βk(Tk) ≥ β̄T for all k, applying Lemma 6.3 with x+ = xk+1 and x = xk
we have

F (xk+1) ≤ F (xk)− β̄T
2L‖∇F (xk)‖2.

Since F is µ-strongly convex, i.e. ‖∇F (x)‖2 ≥ 2µ[F (x) − F (x?)] for x ∈ Rd,
applying this inequality into the main result we have

F (xk+1)− F (x?) ≤
(

1− µβ̄T
L

)
[F (xk)− F (x?)].

By the recursion, we get

F (xk)− F (x?) ≤
(

1− µβ̄T
L

)k
ε0,

where ε0 = F (x0)−F (x?). To reach F (xk)−F (x?) ≤ ε, the sparsified gradient
methods requires the number of iterations k satisfying(

1− µβ̄T
L

)k
ε0 ≤ ε.

Taking the logarithm on both sides of the inequality and using the fact that
−1/ log(1− x) ≤ 1/x for 0 < x ≤ 1, we have

k ≥ 1
β̄T

κ log
(ε0
ε

)
.

6.E Iteration Complexities for Distributed
Stochastic Sparsified Gradient

We prove the iteration complexities of multi-node stochastic gradient descent
with stochastic sparsification in Equation (6.16). We begin by introducing
three useful lemmas for our analysis.

Lemma 6.7. Let {xk}k∈N be the iterates generated by Algorithm (6.16) and
suppose that there exists ω̄T such that ωik(T ik) ≥ ω̄T where ωik is the sparsifi-
cation parameter of node i at iteration k. Then,

E

∥∥∥∥∥ 1
n

n∑
i=1

QT i
k

(
gi(xk; ξik)

)∥∥∥∥∥
2

≤ 2
ω̄T

(
E‖∇F (xk)‖2 + σ2) .

158 Adaptive Compression Framework

Proof. Since

E‖QT i
k
(gi(xk; ξik))‖2 = ‖gi(xk; ξik)‖2/ωik(T ik),

by using Cauchy-Scwartz’s inequality and by the fact that ωik(T ik) ≥ ω̄T where
ωik is the sparsification level of node i at iteration k, we have

E

∥∥∥∥∥ 1
n

n∑
i=1

QT i
k

(
gi(xk; ξik)

)∥∥∥∥∥
2

≤ 1
nω̄T

n∑
i=1

E
∥∥gi(xk; ξik)

∥∥2
.

After utilizing the inequality ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 with x = gi(xk; ξik)−
∇F (xk) and y = ∇F (xk),

E

∥∥∥∥∥ 1
n

n∑
i=1

QT i
k

(
gi(xk; ξik)

)∥∥∥∥∥
2

≤ 2
nω̄T

n∑
i=1

(
T + E‖∇F (xk)‖2

)
.

where T = E
∥∥gi(xk; ξik)−∇F (xk)

∥∥2. By the variance-bounded assumption
(i.e. E‖gi(x; ξi)−∇F (x)‖2 ≤ σ2), we complete the proof.

Lemma 6.8. Suppose that each component function F i(·) is L-smooth. Let
{xk}k∈N be the iterates generated by Algorithm (6.16) and assume that there
exists ω̄T such that ωik(T ik) ≥ ω̄T where ωik is the sparsification parameter of
node i at iteration k. Then,

EF (xk+1) ≤ EF (xk) + (L/ω̄T)γ2σ2 −
(
γ − (L/ω̄T)γ2)E‖∇F (xk)‖2.

Proof. By Cauchy-Scwartz’s inequality and the fact that F (x) =
∑n
i=1 F

i(x)/n,
we can easily show that F (·) is also L-smooth. From the smoothness assump-
tion of F (·) (Lemma 1.2.3. of [166]) and Equation (6.16),

F (xk+1) ≤ F (xk)− γ 〈∇F (xk), gk〉+ Lγ2

2 ‖gk‖2

where gk = (1/n)
∑n
i=1QT ik

(
gi(xk; ξik)

)
. Taking the expectation, and us-

ing Lemma 6.7 and the unbiased properties of stochastic gradient gi(·) and
stochastic sparsification QT (·), we complete the proof.

Lemma 6.9. Suppose that each component function F i(·) is L-smooth and F
is convex. Let {xk}k∈N be the iterates generated by Algorithm (6.16) and as-
sume that there exists ω̄T such that ωik(T ik) ≥ ω̄T where ωik is the sparsification
parameter of node i at iteration k. Then,

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + 2γ2σ2/ω̄T

− 2(γ − Lγ2/ω̄T)E 〈∇F (xk), xk − x?〉 .

Iteration Complexities for Distributed Stochastic Sparsified Gradient 159

Proof. From the definition of the Euclidean norm and Equation (6.16), we
have

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2γ 〈gk, xk − x?〉+ γ2‖gk‖2,

where gk = (1/n)
∑n
i=1QT ik

(
gi(xk; ξik)

)
. Taking the expectation, and us-

ing Lemma 6.7 and the unbiased properties of stochastic gradient gi(·) and
stochastic sparsification QT (·), we have

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + (2/ω̄T)γ2σ2 − 2γE 〈∇F (xk), xk − x?〉
+ (2/ω̄T)γ2E‖∇F (xk)‖2

Since F (·) is L-smooth, i.e. for x ∈ Rd

‖∇F (x)−∇F (y)‖2 ≤ L 〈∇F (x)−∇F (y), x− y〉 ,

applying this inequality with x = xk and y = x? into the main result and
recalling that ∇F (x?) = 0 we complete the proof.

Now, we prove the main results for Algorithm (6.16).

Proof of Theorem 6.3-1.
If γ < ω̄T /L, rearranging the terms from Lemma 6.7, we get

E‖∇F (xk)‖2 ≤ 1
γ − (L/ω̄T)γ2 (EF (xk)−EF (xk+1)) + (L/ω̄T)γ

1− (L/ω̄T)γ σ
2.

Since minl∈[0,k−1] E‖∇F (xl)‖2 ≤
∑k−1
l=0 E‖∇F (xl)‖2/i, we obtain

min
l∈[0,k−1]

E‖∇F (xl)‖2 ≤
EF (x0)−EF (xk)
k[γ − (L/ω̄T)γ2] + T,

where T = σ2 · (L/ω̄T)γ/[1− (L/ω̄T)γ]. By the fact that F (x) ≥ F (x?) for
x ∈ Rd, we have

min
l∈[0,k−1]

E‖∇F (xl)‖2 ≤
1

k[γ − (L/ω̄T)γ2]ε0 + T,

where ε0 = F (x0)− F (x?). If the step-size is

γ = ω̄T
2L

1
2σ2/ε+ 1 ,

then clearly γ < ω̄/L and

(L/ω̄T)γ
1− (L/ω̄T)γ σ

2 ≤ ε

2 .

160 Adaptive Compression Framework

From Lemma 6.8, Algorithm (6.16) reaches minl∈[0,k−1] E‖∇F (xl)‖2 ≤ ε for
the number of iterations k which fulfills

1
k

2Lε0
ω̄T

(2σ2/ε+ 1) · 4σ2/ε+ 2
4σ2/ε+ 1 ≤

ε

2 .

Since
(
4σ2/ε+ 2

)
/
(
4σ2/ε+ 1

)
≤ 2, the main condition can be rewritten

equivalently as

k ≥ 4
ω̄T

(
1 + 2σ2

ε

)
· 2Lε0

ε
.

Proof of Theorem 6.3-2.
If γ < ω̄T /L, by Lemma 6.9 and by the convexity of F , i.e. 〈∇F (x), x− x?〉 ≥
F (x)− F (x?) for x ∈ Rd we get

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + 2γ2σ2/ω̄T

− 2(γ − Lγ2/ω̄T)E[F (xk)− F (x?)]

By rearranging the terms and using the fact that F is convex, i.e. F (
∑k−1
l=0 xl) ≤∑k−1

l=0 F (xl), we then have

E
[
F

(
1
k

k−1∑
l=0

xl

)
− F (x?)

]
≤ 1
k

k−1∑
l=0

E[F (xl)− F (x?)]

≤ 1
k

1
2γ

ε0
1− (L/ω̄T)γ + γσ2/ω̄T

1− (L/ω̄T)γ ,

where ε0 = ‖x0 − x?‖2. The last inequality follows from the cancellations of
the telescopic series the fact that ‖x‖2 ≥ 0 for x ∈ Rd. If the step-size is

γ = ω̄T
2

1
2σ2/ε+ L

,

then clearly γ < ω̄T /L and
γσ2/ω̄T

1− (L/ω̄T)γ ≤
ε

2 .

To reach E
[
F
(∑k−1

l=0 xl/k
)
− F (x?)

]
≤ ε, Algorithm (6.16) needs the number

of iterations k satisfying
1
k

1
ω̄T

2(2σ2/ε+ L)2

4σ2/ε+ L
ε0 ≤

ε

2 .

Since
(
4σ2/ε+ 2L

)
/
(
4σ2/ε+ L

)
≤ 2, the main condition can be rewritten

equivalently as

k ≥ 2
ω̄T

(
1 + 2σ2

εL

)
2Lε0
ε

Iteration Complexities for Distributed Stochastic Sparsified Gradient 161

Proof of Theorem 6.3-3.
If γ < ω̄T /L, then by Lemma 6.8 and by the strong convexity of F (·), i.e.
‖∇F (x)‖2 ≥ 2µ[F (x)− F (x?)] for x ∈ Rd we have

E[F (xk+1)− F (x?)] ≤ ρE[F (xk)− F (x?)] + L

ω̄T
γ2σ2,

where

ρ = 1− 2µ
(
γ − L

ω̄T
γ2
)
.

By applying the inequality recursively, we get

E[F (xk+1)− F (x?)] ≤ ρkε0 + L

2µω̄T
γ

1− Lγ/ω̄T
σ2,

where ε0 = F (x0)− F (x?). If the step-size is

γ = ω̄T
2

1
2σ2/(µε) + L

,

then clearly γ < ω̄T /L and

L

2µω̄T
γ

1− Lγ/ω̄T
σ2 ≤ ε

2 .

To reach E‖xk−x?‖2 ≤ ε, Algorithm (6.16) needs the number of iterations
k which satisfies (

1− µ

2 ·
ω̄T (4σ2/(µε) + L)
(2σ2/(µε) + L)2

)k
ε0 ≤

ε

2

Taking the logarithm on both sides, and utilizing the fact that −1/ log(1−x) ≤
1/x for 0 < x ≤ 1, we have

k ≥ 2
ω̄Tµ

(
2σ2/(µε) + L

)2
4σ2/(µε) + L

log
(

2ε0
ε

)
.

Since
(
4σ2/(µε) + 2L

)
/
(
4σ2/(µε) + L

)
≤ 2, the main condition can be rewrit-

ten equivalently as

k ≥ 2
ω̄T

κ

(
1 + 2σ2

µεL

)
log
(

2ε0
ε

)
.

162 Adaptive Compression Framework

6.F Discussions on Optimizing Parameters of
Stochastic Sparsification

In this section, we show how to tune the parameters of stochastic sparsifica-
tion p to maximize the descent direction. In optimization formulation, for a
fixed sparsity budget T we obtain the optimal probabilities p? by solving the
following problem [96]

maximize
p∈[0,1]d

ωp(T)

subject to
d∑
j=1

pj = T.
(6.19)

Here, ωp(T) can be rewritten as

ωp(T) = ‖g‖2

E‖QT,p(g)‖2 = ‖g‖2∑d
j=1(gj)2/pj

.

This minimization problem (6.19) has the optimal solution

p? = ((p1)?, (p2)?, . . . , (pd)?),

which is on the form [96]

(pi)? =
{

1 if i = 1, . . . , ns
|λi|(s− ns)/

∑n
j=ns+1 |λj | if i = ns + 1, . . . , n

where λ = [λ1, . . . , λd]T is the vector mapped from the gradient g such that
|λ1| ≥ . . . ≥ |λd|, and ns is selected such that (pi)? is bounded above by 1. This
observation results in many algorithms to compute the optimal probabilities
(see e.g., Algorithm 1 in [96]).

6.G Descent Lemma for Multi-node Gradient
Methods with Stochastic Sparsification

We include a descent lemma for distributed compressed gradient methods with
stochastic sparsification in Equation (6.16), which are analogous to single-node
gradient methods using stochastic sparsification.

Lemma 6.10. Consider the problem of minimizing F (x) =
∑n
i=1 F

i(x)/n
where each F i(·) is possibly non-convex and L-smooth. Furthermore, let ω(T) =
(
∑n
i=1 1/[nωi(T i)])−1, where ωi(T i) is the sparsification parameter of node i.

Suppose that

x+ = x− γ 1
n

n∑
i=1

QT i(gi(x; ξi)), (6.20)

Additional Experiments on Logistic Regression over URL 163

where each gi(x; ξi) is unbiased and has variance with respect to ∇F (x) bounded
by σ2. If γ = ω(T)/(2L), then

EF (x+) ≤ EF (x)− ω(T)
4L E‖∇F (x)‖2 + ω(T)

4L σ2.

Proof. By Cauchy-Schwartz’s inequality, we can show F (x) =
∑n
i=1 F

i(x)/n
is also L-smooth. Using the smoothness assumption (Lemma 1.2.3. of [166])
and Equation (6.16), we have

F (x+) ≤ F (x)− γ

n

n∑
i=1
〈∇F (x), QT i(gi(x; ξi))〉+ Lγ2

2n

n∑
i=1
‖QT i(gi(x; ξi))‖2.

Since ωi(T i) is defined by

ωi(T i) = ||gi(x; ξi)||2

E||QT i(g(x; ξi))||2 ,

we can easily show that

1
n

n∑
i=1
‖QT i(gi(x; ξi))‖2 ≤ 2

ω(T)‖∇F (x)‖2 + 2
ω(T)σ

2, (6.21)

where ω(T) = (
∑n
i=1 1/[nωi(T i)])−1 and ωi(T i) is the sparsification parameter

of node i. This result follows from using the inequality ‖x + y‖2 ≤ 2‖x‖2 +
2‖y‖2 with x = gi(x; ξi) − ∇F (x) and y = ∇F (x), and from the fact that
E‖gi(x; ξi)−∇F (x)‖2 ≤ σ2.

Next, by taking the expectation and then using unbiased property of
stochastic gradients, the fact that F (x) =

∑n
i=1 F

i(x)/n, and Inequality
(6.21), we have

EF (x+) ≤ EF (x)−
(
γ − Lγ2/ω(T)

)
E‖∇F (x)‖2 + Lγ2σ2/ω(T).

Choosing γ = ω(T)/(2L), we complete the proof.

6.H Additional Experiments on Logistic
Regression over URL

In this section, we provide additional simulations of logistic regression prob-
lems over the URL data set with dimension d = 3.2·106. We fit a linear commu-
nication model based on measurements, and benchmark our CAT framework
and the heuristic from [22] on gradient descent with dynamic sparsification
together with quantization in the single-master, single-worker architecture.

164 Adaptive Compression Framework

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Components, T 1e6

0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

Data
Fit; C(T) = 10.29 + 8.93E-05*T

0 2000 4000 6000 8000 10000 12000
Number of Bytes, s (kB)

Ti
m

e
(m

s)

Data
Fit; C(s) = 10.29 + 2.23E-05*s

Network Measurements

Figure 6.H.1: Time for communicating the vector with sparsity budget T (left)
and its associated bytes (right).

0 5000 10000 15000 20000 25000 30000
Iteration (k)

100

102

104

106

108

By
te

s T
ra

ns
m

itt
ed

 [k
B]

IDENTITY
CAT-S-Q
DYNAMIC

Figure 6.H.2: Gradient transmission (bytes) in each iteration k for full gradient
descent (identity), CAT S+Q, and Alistarh’s S+Q (dynamic).

Additional Experiments on Logistic Regression over URL 165

0 5000 10000 15000 20000 25000 30000
Iteration (k)

10 3

10 1

101

103

Sp
ar

sif
ica

tio
n

Ti
m

e
[m

s]
IDENTITY
CAT-S-Q
DYNAMIC

Figure 6.H.3: Sparsification time in each iteration k for full gradient descent
(identity), CAT S+Q, and Alistarh’s S+Q (dynamic).

In Figure 6.H.1 each blue data point represents the average of ten mea-
surements of the end-to-end transmission time of a sparsified gradient with
sparsity budget T = {1000, 2000, 3000, . . . , d}. The orange lines demonstrate
that an affine communication model is able to capture the communication
cost. In retrospect, the affine behaviour should be expected, since we use
the ZMQ library which initiates TCP communication once, and then reuses
the communication together with buffers to optimize message transmission.
Our ability to capture the communication cost (time) with an affine model
indicates CAT that the framework could provide near-optimal performance in
terms of communication time. Similarly for energy-constrained applications in
IoT devices we can indeed investigate how the energy spent is related to the
information transmitted. Utilizing this characteristics, our CAT framework
can communicate information efficiently with low energy costs.

To illustrate how the CAT framework reduces communication cost and
wall-clock time to reach target solution accuracy, we compared CAT S+Q and
Alistarh’s S+Q (dynamic), against full gradient descent. From Figure 6.H.2,
CAT S+Q and Alistarh’s S+Q reduce communication costs by 4 and 5 orders
of magnitudes, respectively, compared to full gradient descent. However, we
also observe that sparsification time of CAT S+Q is higher than Alistarh’s
S+Q by roughly an order of magnitude, as shown in Figure 6.H.3. Interest-

166 Adaptive Compression Framework

0 5000 10000 15000 20000 25000 30000
Iteration (k)

10 1

100

Gr
ad

ie
nt

 N
or

m

IDENTITY
CAT-S-Q
DYNAMIC

Figure 6.H.4: Convergence performance in the gradient norm ‖∇F (xk)‖ for
full gradient descent (identity), CAT S+Q, and Alistarh’s S+Q (dynamic).

Value of Components0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Nu
m

be
r o

f C
om

po
ne

nt
s

1e6 K = 1

Value of Components

Nu
m

be
r o

f C
om

po
ne

nt
s

K = 4251

Value of Components

Nu
m

be
r o

f C
om

po
ne

nt
s

K = 8551

Value of Components

Nu
m

be
r o

f C
om

po
ne

nt
s

K = 12801

1.0 0.5 0.0 0.5 1.0
Value of Components 1e 6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Nu
m

be
r o

f C
om

po
ne

nt
s

1e6 K = 17101

1.0 0.5 0.0 0.5 1.0
Value of Components 1e 6

Nu
m

be
r o

f C
om

po
ne

nt
s

K = 21351

1.0 0.5 0.0 0.5 1.0
Value of Components 1e 6

Nu
m

be
r o

f C
om

po
ne

nt
s

K = 25651

1.0 0.5 0.0 0.5 1.0
Value of Components 1e 6

Nu
m

be
r o

f C
om

po
ne

nt
s

K = 29951

Figure 6.H.5: Histogram of the gradient elements when CAT S+Q is run for
30, 000 iterations.

Additional Experiments on Logistic Regression over URL 167

0 2000 4000 6000 8000 10000
Iteration (k)

108

109
F(

xk)
IDENTITY
CAT-S-Q
DYNAMIC
HYBRID-200

101 102 103 104 105 106

Total Communication Cost (k
C(T(k)))

108

109

F(
xk)

IDENTITY
CAT-S-Q
DYNAMIC
HYBRID-200

Figure 6.H.6: Performance with respect to iteration counts (left) and to com-
munication costs (right) for different algorithms. We evaluated full gradient
descent (identity), CAT S+Q, Alistarh’s S+Q (dynamic) and the hybrid algo-
rithm that uses CAT framework for every 200 iterations (hybrid-200).

0 2000 4000 6000 8000 10000
Iteration (k)

100

102

104

106

108

By
te

s T
ra

ns
m

itt
ed

 [k
B]

IDENTITY
CAT-S-Q
DYNAMIC
HYBRID-200

0 2000 4000 6000 8000 10000
Iteration (k)

10 3

10 1

101

103

Sp
ar

sif
ica

tio
n

Ti
m

e
[m

s]

IDENTITY
CAT-S-Q
DYNAMIC
HYBRID-200

Figure 6.H.7: Gradient transmission in bytes (left) and sparsification time
in each iteration (right) for different algorithms. We evaluated full gradient
descent (identity), CAT S+Q, Alistarh’s S+Q (dynamic) and the hybrid algo-
rithm that uses CAT framework for every 200 iterations (hybrid-200).

ingly, the sparsification times for both algorithms increase as iteration counts
grow. This happens because the sorting strategy in C++ leads to a worse per-
formance especially when the gradient elements become more homogeneous.
After running CAT S+Q for 30, 000 iterations, we observe in Figure 6.H.5 that
gradient information after iteration K = 4251 has very similar histograms. In
this case, sorting from scratch at each iteration is inefficient.

Based on these observations, we propose to let the CAT framework update
the sparsity budget every S iterations (rather than every iteration) and then
keep the sparsity budget fixed in the iterates between CAT recalculations. Fig-
ure 6.H.6 shows that this hybrid heuristic with S = 200 (i.e. rather infrequent
updates) achieves only slightly worse loss function convergence with respect to
iteration count and communication cost. From Figure 6.H.7, despite almost

168 Adaptive Compression Framework

the same data transmission size in each iteration, CAT S+Q reduces the time
to sparsify the gradients by roughly an order of magnitude.

Chapter 7

Improved Step-Size Schedules for
Noisy Gradient Methods
Optimization problems cover applications in many fields, including signal pro-
cessing, machine learning and control. These problems are always relying on
more and more data, both in terms of a number of data points and decision
variables. To solve such large-scale optimization problems quickly, parallel and
distributed optimization have become the methods of choice. Distributed op-
timization algorithms rely on splitting the computation load between multiple
nodes to cooperatively compute the optimal solution. This makes the compu-
tational burden lighter, but at the same time it introduces some coordination
challenges in the algorithms.

One of the most popular distributed algorithms is stochastic gradient de-
scent (SGD). The idea of SGD is to approximate the gradients from a few ran-
dom data points, and therefore the algorithm requires small memory footprint
and low per-iteration cost. Even though SGD reduces computation times, the
main parameter for guaranteeing fast convergence is the step-size. Several
approaches of selecting the step-size have been proposed in recent years. Us-
ing fixed step-sizes on SGD guarantees the convergence toward a sub-optimal
solution. To ensure the convergence toward the exact optimum, one common
approach is to use decreasing step-sizes. The idea is to use large step-sizes
initially, when the gradient is large compared to the noise. Then, decreas-
ing the step-sizes as the algorithm progresses enables high solution accuracy.
However, the key challenge of this approach is to decide how to decrease the
step-sizes to ensure optimal convergence behaviors. Many decreasing step-size
schedules have been studied and shown to improve the convergence of SGD
in both theory and practice. These ideas were elegantly analyzed by Polyak
(see [112, chapter 4]), and have been polished by many authors since then,
e.g., [169, 170, 171, 172, 173, 174, 38, 142].

Although SGD has been extensively studied, recent optimization algo-
rithms using gradients with noise have arisen for solving state-of-the-art learn-
ing problems. However, the benefits of diminishing step-sizes have not been
reaped in these noisy gradient algorithms. For instance, before the gradi-
ents are communicated in these algorithms, they are injected with different
types of noise, e.g., due to compression, coding schemes and function evalu-
ations. Compressed gradient algorithms use compression operators to lower
the precision of the gradients, thus reducing the costs of transmitting the
gradients among the machines connected with a power-limited digital chan-

169

170 Improved Step-Size Schedules for Noisy Gradient Methods

nel [22, 97, 175, 95, 82, 116]. Stochastic coding algorithms introduce redun-
dancy of (stochastic) gradient computations among the machines to alleviate
the impact of stragglers (or the slowest workers) on the convergence perfor-
mance [45, 176, 177]. Zeroth-order algorithms that estimate the gradients
from function values are popular in solving problems with black-box objective
functions [178, 179] or deep learning problems for finding adversarial examples
[66, 68, 180].

Contributions: The goal of this paper is to provide a theoretical justi-
fication on the benefit of using diminishing step-sizes for noisy gradient algo-
rithms in general. Our analysis is based on two classes of systems that capture
how the step-sizes influence the convergence behaviors of many algorithms.
Our key results prove that the diminishing schedules enable the algorithms
to converge at the optimal rate. We illustrate how these schedules can be
used to improve the convergence performance of three popular noisy gradient
algorithms: stochastic compression algorithms, stochastic coding algorithms
and zeroth-order optimization algorithms. Finally, numerical experiments on
stochastic compression algorithms validate the improved performance of using
the diminishing step-sizes, in terms of solution accuracy.

Notation: We let gik be a stochastic gradient with respect to the objective
function F i(xk), which is unbiased if E[gik] = ∇F i(xk) and which satisfies a
bounded gradient and bounded variance property if, respectively,

E‖gik‖2 ≤ C2, and (7.1)
E‖gik −∇F i(xk)‖2 ≤ σ2. (7.2)

7.1 Step-size Lemmas for Perturbed Sequences
In this section, we show how to tune the optimal step-size schedules for two
classes of systems that are commonly used to analyze the performance of noisy
gradient algorithms.

7.1.1 Contractive System With Noise
When the deterministic algorithm defines a contraction, noise often enters in a
way that allows the iterates to be described by a non-negative sequence {Vk}
that satisfies

Vk+1 ≤ (1−Aγk)Vk + γ2
kB, for k ∈ N. (7.3)

Here, Vk is the quantity that we want to converge (e.g. objective function
value or iterate distance to optimum), γk is a step size or learning rate, and
A,B are positive scalars. The step-size γk is the key parameter that we can
tune to influence the convergence speed of the algorithm. Ideally, we would
like to choose γk optimally to ensure that the convergence is as fast as possible.
If we know A and B and can monitor Vk, then the γk that ensures the fastest

Step-size Lemmas for Perturbed Sequences 171

decrease of Vk can be found analytically by minimizing the right hand side of
Eq. (7.3) with respect to γk. By noticing that

g(γ) = (1−Aγ)Vk + γ2B

is convex function, we see that the optimal solution is γk = AVk/(2B). By
plugging this step-size into Eq. (7.3),

Vk+1 ≤ Vk −
A2

4BV
2
k .

Applying Eq. (17) from [112, Lemma 6] with αk = A2/(4B) and p = 1, we
can therefore prove that

Vk ≤
V0

1 +A2V0k/(4B) ≤
4B
A2k

. (7.4)

This fastest O(1/k) rate needs the step-size to monitor Vk. This step-size
cannot, in general, be implemented in practice. Ideally, we would like to choose
the step-size without this knowledge while still attaining similar convergence
behavior. By using Eq. (7.4), γk is shown to satisfy

γk = AVk
2B ≤ 2A−1

k
.

We could therefore hope that setting γk = 2A−1/k would result in a conver-
gence rate proportional to 4B/(A2k). This is indeed possible in general, as
shown in the following result.

Lemma 7.1. Consider the system in Eq. (7.3) and choose the step-size γk =
min{γ, α/(k + 1)} where γ ∈ (0, 1/A) and α > 0. Let k∗ = max {0, α/γ − 1},
V ∗0 = (k∗+2)Aα((1−Aγ)(k∗+1)V0+Bγ/A), ν = (1 + 1/(k∗ + 2))2, and k > k∗.
Then,

1. if 1/A < α < 2/A, then

Vk ≤
Bα2ν

(Aα− 1)
1

(k + 1) + V ∗0
(k + 1)Aα + Bα2ν

(k + 1)2 . (7.5)

2. if α = 2/A, then

Vk ≤
4B

A2(k + 1) + V ∗0 + 2 ln(k + 1) + 2
(k + 1)2 . (7.6)

Proof. See Appendix 7.A.1.1.

172 Improved Step-Size Schedules for Noisy Gradient Methods

Lemma 7.1 establishes the O(1/k) convergence rate for Vk, and hence for
any algorithm which produces the iterates that satisfy (7.3). The step-size
schedule ensuring this convergence rate does not need to monitor Vk or to
know B from (7.3). Nevertheless, as shown in Eq. (7.6), for α = 2/A we get

Vk ≤
4B

A2(k + 1) + o

(
1
k

)
,

which is comparable to the rate in Eq. (7.4) obtained by setting γk = AVk/(2B).
Lemma 7.1 can also be applied to obtain the best known complexity bounds
of some optimization algorithms. For instance, consider stochastic gradi-
ent descent for strongly convex problems, which satisfies Eq. (7.3) with
Vk = E‖xk−x?‖2, A = µ and B = 2 maxi∈[1,n] E‖∇F i(x?)‖2. Lemma 7.1 will
then give us the O(1/k) rate, which is comparable to the best known results
in, e.g., [172, Section 3], [142] or [112, Chapter 4]. Furthermore, Lemma 7.1
extends directly to a number of other popular noisy gradient algorithms, and
can be used to improve their performance in both theory and practice (see
Section 7.2).

7.1.2 Non-expansive system with noise
Many iterative algorithms define non-expansive operators. In the presence of
noise, they can often be described by non-negative sequences {Vk} and {Wk}
that satisfy

Vk+1 ≤ Vk − γkWk + γ2
kB, for k ∈ N. (7.7)

Here,Wk is the quantity that we want to converge, and Vk is typically a related
quantity that is used to bound the convergence rate. In the applications that
we consider, Wk ≤ cVk for some positive constant c, so it makes sense to
choose γk to minimize the right-hand side of (7.7). This suggests the step-size
policy γk = Wk/(2B) and that

Vk+1 ≤ Vk −
1

4BW
2
k

Summing k + 1 consecutive inequalities of this form, dividing by 1/(k + 1)2

and taking square roots yields the bound

1
k + 1

k∑
l=0

Wl ≤
2
√
B
√
V0 − Vk+1√
k + 1

. (7.8)

The above argument has some limitations: we minimize an upper bound of
Wk+1, disregard the fact that Vk+1 must be non-negative, and obtain a step-
size policy which makes the impractical assumption that we can monitor Wk.
Nevertheless, the next result shows that the same rate is attainable with a
step-size on the form γk = α/

√
k + 1:

Step-size Lemmas for Perturbed Sequences 173

Lemma 7.2. Consider the system in Eq. (7.7) and has the step-size γk =
α/
√
k + 1 for α > 0. If Vk ≤ R2, then

1
k + 1

k∑
l=0

Wl ≤
R2/α+ αB√

k + 1
. (7.9)

Proof. See Appendix 7.A.1.2.

Lemma 7.2 proves the O(1/
√
k) rate inWk for any iterates that satisfy Eq.

(7.7) with Vk ≤ R2. The O(1/
√
k) step-size ensuring this rate does not require

the knowledge of Wk or B. In addition, from Lemma 7.2 with α = R/
√
B and

R > 0, the system in Eq. (7.7) with Vk ≤ R2 would satisfy:

1
k + 1

k∑
l=0

Wl ≤
2
√
B√

k + 1
R.

This rate at 2
√
BR/

√
k + 1 matches the one in Eq. (7.8) when Vk ≤ R2. Also

notice that the system in Eq. (7.7) with Vk ≤ R2 is satisfied by projection
algorithms for problems over bounded, closed and convex constraints. For
instance, if the system has Vk = E‖xk − x?‖2 and the constraint set X ⊂ Rd
with diameter D = maxx1,x2∈X ‖x1 − x2‖, then Vk ≤ R2 where R = D.

For the system in Eq. (7.7) in the absence of the assumption that Vk ≤ R2,
the next lemma proves that choosing the diminishing step-size can guarantee
the near O(1/

√
k) rate.

Lemma 7.3. Consider the system in Eq. (7.7) and has the step-size γk =
α/(k + 1)β for α > 0 and β ∈ [0, 1).

1. If β = 1/2, then for all k ∈ N

1
k + 1

k∑
l=0

Wl ≤
V0 − Vk+1

α
√
k + 1

+Bα
1 + ln(k + 1)√

k + 1
. (7.10)

2. If β = 1/2 + ξ and ξ ∈ (0, 1/2), then for all k ∈ N

1
k + 1

k∑
l=0

Wl ≤
V0 − Vk+1

α(k + 1)1/2−ξ +Bα
1 + 1/(2ξ)

(k + 1)1/2−ξ . (7.11)

Proof. See Appendix 7.A.1.3.

This lemma provides the near O(1/
√
k) rate for any system in Eq. (7.7)

without the condition that Vk ≤ R2. The system using γk = α/(k + 1)β
with β = 1/2 and β = 1/2 + ξ for ξ ∈ (0, 1/2) enjoys the O(ln(k)/k1/2) and

174 Improved Step-Size Schedules for Noisy Gradient Methods

O(1/k1/2−ξ) rate, respectively. These rates are thus slightly slower than the
O(1/

√
k) rate from Lemma 7.2.

Similarly to Lemma 7.1, this result can be used to recover some of the
best known complexity bounds of some noisy gradient algorithms. For ex-
ample, stochastic gradient descent for convex and L-smooth problems satis-
fies Eq. (7.7) with Vk = E‖xk − x?‖2, Wk = E[F (xk) − F (x?)] and B =
2 maxi∈[1,n] E‖∇F i(x?)‖2. By the L-smoothness assumption the algorithm
also satisfies Wk ≤ cVk with c = L/2. Thus, Lemma 7.3 guarantees an
O(ln(k)/k1/2) rate comparable to [181, Corollary 4.2], and an O(1/k1/2−ξ)
rate similar to [182, Corollary 2.4], respectively.

Next, we will show that our convergence results can be used to improve
the convergence guarantees and practical performance of several other noisy
gradient algorithms.

7.2 Applications
In this section, we will illustrate how our step-size results can be used to
improve the complexity bounds of three noisy gradient algorithms: stochastic
gradient compression, stochastic coding and zeroth-order algorithms. Through-
out this paper, we consider problems on the form:

min
x∈Rd

P (x) := F (x) + h(x), (7.12)

where F (x) is the average of many component functions, i.e.

F (x) = 1
n

n∑
i=1

F i(x) (7.13)

and h(x) is a convex but possibly non-smooth function. We also impose the
following assumptions.

Assumption 7.1. Each F i(x) is L-smooth, i.e. there exists a positive con-
stant L such that ∀x, y ∈ Rd

‖∇F i(x)−∇F i(y)‖ ≤ L‖x− y‖.

Assumption 7.1 implies that F (x) is also L-smooth.

Assumption 7.2. The function F (x) is µ-strongly convex, i.e. there exists a
positive constant µ such that ∀x, y ∈ Rd

F (y) ≥ F (x) + 〈∇F (x), y − x〉+ µ

2 ‖y − x‖
2.

Applications 175

7.2.1 Proximal Stochastic Compression Algorithms
When gradient algorithms are distributed in an attempt to deal with larger
problem instances, communication of gradient information between nodes quickly
becomes the bottleneck. This is particularly apparent in neural network train-
ing, where state-of-the art models can have millions of parameters. In the
training of neural network models such as AlexNet, VGG and LSTM, gradi-
ent communication can account for up to 80% of the total running time [22].
To reduce this communication overhead, gradients are often compressed be-
fore transmission. In particular, we consider proximal stochastic compression
algorithms (Prox-SComp) that update the iterate xk via:

xk+1 = proxγkh

(
xk −

γk
n

n∑
i=1

Q(gik)
)
. (7.14)

Here, γk is a positive step-size and gik is the stochastic gradient with respect
to the local objective function F i(xk). Also, the operator Q : Rd → Rd is the
unbiased random quantizer, which satisfies unbiased and variance-bounded
properties, i.e. there exists a positive scalar q such that for all x ∈ Rd

E[Q(x)] = x, and E‖Q(x)‖2 ≤ q‖x‖2. (7.15)

The variance-bounded condition implies high precision of the compressor when
q is close to 1. Examples of the stochastic compressors include stochastic
sparsification:

[Qp(v)]i = (vi/pi)ξi, ∀i ∈ {1, 2, . . . , d} (7.16)

where ξi ∼ Bernouli(pi). The stochastic sparsification in Eq. (7.16) satisfies
the unbiased and variance-bounded conditions in Eq. (7.15) with q = 1/pmin
and pmin = mini∈[1,d] p

i [30]. There are many choices to tune pi. For instance,
we obtain QSGD in [22] with s = 1, TernGrad in [95] and the `q-quantizer in [96],
when we set pi = |vi|/‖v‖r with r = 2, r = ∞, and r ∈ (0,∞], respectively.
The probabilities pi can also be fine-tuned adaptively to maximize the solution
accuracy [96], or the communication efficiency [183].

The next result demonstrates how the convergence results in Section 7.1
can be used to suggest effective step-size policies for Prox-SComp.

Theorem 7.1. Consider the sequence {xk}k∈N generated by Prox-SComp in
Eq. (7.14) for solving Problem (7.12) under Assumption 7.1.

1. (Non-convex problems) If E[P1/ρ̄(xk)− P1/ρ̄(x?)] ≤ R2, gki satisfies Eq.
(7.1), and γk = (ρ̄− L)−1/

√
k + 1 with ρ̄ > L, then

min
l∈[0,k]

E‖∇P1/ρ̄(xl)‖2 ≤
2ρ̄2R2 + ρ̄qC2

(ρ̄− L)
√
k + 1

.

176 Improved Step-Size Schedules for Noisy Gradient Methods

2. (Strongly convex problems) If Assumption 7.2 also holds, gki satisfies Eq.
(7.2), and γk = min{γ, α/(k+1)} with γ = (3q+1)−1/(2L) and α = 2/µ,
then

E‖xk − x?‖2 ≤
4B

µ2(k + 1) + V ∗0 + 2 ln(k + 1) + 2
(k + 1)2 ,

for k > k∗. Here, k∗ and V ∗0 are defined in Lemma 7.1-2) with A = µ
and B = 3q[σ2 +

∑n
i=1 E‖∇F i(x?)‖2/n].

Proof. See Appendix 7.A.3.

This theorem characterizes the impact of the compression level q and the
problem parameters µ,L on the convergence rate for Prox-SComp. The al-
gorithms enjoy the O(k−1) and O(k−1/2) rate for strongly convex and non-
convex problems, respectively. Diminishing step-sizes attaining these rates
can improve existing convergence results for state-of-the-art compression al-
gorithms that use often fixed step-size schedules [22, 183, 117]. To show this,
consider strongly convex problems. On the one hand, from Theorem 7.1-2),
Prox-SComp with γk = min{γ, 2µ−1/(k+ 1)} and γ = (3q+ 1)−1/(2L) reaches
the ε-accurate solution by running at least

max
(

16C2/µ
2 + 4

ε
,

√
2V ∗0 + 4

ε

)
iterations.

On the other hand, from [183, Theorem 3] Prox-SComp with h(x) = 0 using
the fixed step-size γk = 0.5/(q(β + L)) and β = 2σ2/(µε) requires at least

2qL
µ

log
(

2ε0
ε

)
+ 4qσ2

µ2 ·
1
ε

log
(

2ε0
ε

)
iterations

where ε0 = F (x0) − F (x?). The algorithm using our proposed diminishing
step-size ensures the exact optimum unlike [117, Theorem 5.2], and obtains
the O(1/ε) iteration complexity that is lower than the O((1/ε) log(1/ε)) com-
plexity of the algorithm without the proximal operator that uses the fixed
step-size by [183, Theorem 3-3.]. The benefit of using the diminishing step-size
over the fixed one is also confirmed by our numerical experiments in Section
7.3.

7.2.2 Proximal Stochastic Coding Algorithms
When distributed algorithms are executed in a synchronous manner, their per-
formance is determined by the slowest nodes, sometimes referred to as strag-
glers. To mitigate the impact of stragglers, various coding schemes have been
introduced [45, 176, 177]. These schemes assign redundant data across the

Applications 177

nodes, and enable the synchronous methods to approximate the full gradient
aggregated only from non-straggling nodes [45, 176, 177]. In some scenarios,
these coding algorithms can attain a significantly faster convergence rate than
traditional synchronous algorithms.

To this end, we consider proximal stochastic coding algorithms (Prox-SCod).
At each iteration k of the algorithms, each node computes the coded gradient

Gj =
n∑
i=1

Dij

ᾱi
gik,

where gik is the stochastic gradient with respect to F i(xk). Here, ᾱi =∑m
j=1Dij and D ∈ Rn×m is an assignment matrix of data points to nodes,

i.e. Dij 6= 0 if data point i is available on node j for i = 1, 2, . . . , n and
j = 1, 2, . . . ,m, and Dij = 0 otherwise. Then, the server aggregates the
gradients from the nodes with probability 1 − p, and updates the iterate xk
according to:

xk+1 = proxγkh

xk − γk
n(1− p)

m∑
j=1

wjGj

 . (7.17)

Here, w ∈ Rm represents a decoding coefficient vector where wj = 1 if the
server receives the gradient from node j, and 0 otherwise. Prox-SCod in Eq.
(7.17) can be expressed equivalently as:

xk+1 = proxγkh

(
xk −

γk
n(1− p)

n∑
i=1

αi
ᾱi
gik

)
, (7.18)

where αi =
∑m
j=1Dijwj . Also notice that the coded gradient information is

unbiased, i.e.

E
{

1
n(1− p)

n∑
i=1

αi
ᾱi
gik

}
= ∇F (xk).

Similarly to Prox-SComp, we can obtain the convergence results for Prox-SCod
by using the lemmas in Section 7.1.

Theorem 7.2. Consider the sequence {xk}k∈N generated by Prox-SCod in
Eq. (7.18) for Problem (7.12) under Assumption 7.1. Denote β = mmaxi αi
and αi =

∑m
j=1D

2
ij/(

∑m
j=1Dij)2 for the matrix D ∈ Rm×n.

1. (Non-convex problems) If E[P1/ρ̄(xk)− P1/ρ̄(x?)] ≤ R2, gki satisfies Eq.
(7.1) and γk = (ρ̄− L)−1/

√
k + 1 with ρ̄ > L, then

min
l∈[0,k]

E‖∇P1/ρ̄(xl)‖2 ≤
2ρ̄2R2 + ρ̄β(1− p)−1C2

(ρ̄− L)
√
k + 1

.

178 Improved Step-Size Schedules for Noisy Gradient Methods

2. (Strongly convex problems) If Assumption 7.2 also holds, gki satisfies Eq.
(7.2), and γk = min{γ, α/(k+ 1)} with γ = (3β/(1−p) + 1)−1/(2L) and
α = 2/µ, then

E‖xk − x?‖2 ≤
4B

µ2(k + 1) + V ∗0 + 2 ln(k + 1) + 2
(k + 1)2 ,

for k > k∗. Here, k∗ and V ∗0 are defined in Lemma 7.1-2) with A = µ
and B = (3β/(1− p))[σ2 +

∑n
i=1 E‖∇F i(x?)‖2/n].

Proof. See Appendix 7.A.4.

Theorem 7.2 shows dependency of the convergence rate for Prox-SCod on
the stochastic coding scheme β and the communication model p. From Theo-
rem 7.2-2), Prox-SCod obtains the same O(k−1) rate as the stochastic coding
algorithms without the proximal operator for strongly convex problems by
Theorem 2 and 4 in [47]. Furthermore, to the best of our knowledge, Theo-
rem 7.2-1) is the first result establishing the O(k−1/2) rate for the proximal
stochastic coding algorithms using the decaying step-size on non-convex prob-
lems.

7.2.3 Proximal Zeroth-Order Algorithms
In some applications, gradients are very expensive to compute or even infeasi-
ble to obtain. This is the case when the objective function is computed from
simulations, or in model-free approaches to decision-making where we only
observe the objective function value for the actions that we take. In these
applications it is common to use zeroth-order optimization techniques that
estimate directional derivatives using finite differences. Here, we will consider
proximal zeroth-order algorithms [178] which progress as follows:

xk+1 = proxγkh (xk − γkGτk(xk)) for k ∈ N (7.19)

Here,

Gτk(xk) = F (xk + τkuk)− F (xk)
τk

uk

is the finite difference estimation of the derivative in the direction uk ∈ Rd gen-
erated from the Gaussian distribution with zero mean and unit variance, with
a positive scalar τk. One can prove (cf. [178, 179]) that the finite difference
derivative Gτ (x) satisfies

Eu[Gτ (x)] = ∇Fτ (x), and (7.20)

Eu‖Gτ (x)‖2 ≤ τ2L2(d+ 6)3

2 + 2(d+ 4)‖∇F (x)‖2, (7.21)

Applications 179

where Fτ (x) = Eu[F (x+ τu)].
Although zeroth-order algorithms have been studied extensively (e.g. in

[178, 179, 184]), very few convergence results exist for proximal zeroth-order
algorithms. By applying the step-size lemmas in Section 7.1, we provide the
following convergence results for these algorithms.

Theorem 7.3. Consider the sequence {xk}k∈N generated by the proximal
zeroth-order algorithms (7.19) with τk = ηγk and η > 0 for Problem (7.12)
under Assumption 7.1 and the condition that ‖∇F (x)‖2 ≤ C2 for x ∈ Rd.

1. (Non-convex problems) If E[P1/ρ̄(xk)−P1/ρ̄(x?)] ≤ R2, and choose γk =
(2ρ̄
√
d+ 6)−1/(k + 1)1/2 with ρ̄ ∈ (L− 1/2, 2L+ 1], then

min
l∈[0,k]

E‖∇P1/ρ̄(xl)‖2 ≤
ρ̄

ρ̄− L− 1/2
R2/α+ α2C̃√

k + 1
,

where C̃ = η2L2(d+ 3)2/(16ρ̄) + η2L2(d+ 6)2/(8ρ̄2) + (2d+ 9)C2.

2. (Strongly convex problems) If Assumption 7.2 also holds, and choose
γk = min{γ, α/(k + 1)} with γ = 1/[(d+ 6)L] and α = 2/µ, then

E‖xk − x?‖2 ≤
4B

µ2(k + 1) + V ∗0 + 2 ln(k + 1) + 2
(k + 1)2 ,

for k > k∗. Here, k∗ and V ∗0 are defined in Lemma 7.1-2) with A = µ
and B = η2L(d+ 3)2/(4µ) + η2(d+ 6) + 2(2d+ 9)C2.

Proof. See Appendix 7.A.5.

From this theorem, proximal zeroth-order algorithms (7.19) with τk =
ηγk and η > 0 enjoy the O(k−1) and O(k−1/2) rate for strongly convex and
non-convex problems, respectively. Furthermore, the methods for non-convex
deterministic problems from Theorem 7.3-1) have tighter convergence bounds
than the counterparts for non-convex stochastic problems by [185, Theorem
1]. We can illustrate this by setting φ1/ρ̄(x0)−φ? ≤ R2, and αk = α(k+1)−1/2

for k ∈ N into Eq. (15) from [185, Theorem 1], which yields

min
l∈[0,k]

E‖∇P1/ρ̄(xl)‖2 ≤
2ρ̄

ρ̄− L
R2/α+ C1(1 + ln(k + 1))√

k + 1
,

for some positive scalars C. By using the step-size γk = α(k+1)−1/2 for α > 0,
the O(k−1/2) rate from Theorem 7.3-1) is faster than the O(ln(k)k−1/2) rate
from [185, Theorem 1].

180 Improved Step-Size Schedules for Noisy Gradient Methods

In addition, from Theorem 7.3-1), the proximal zeroth-order algorithms
(7.19) with γk = (2ρ̄

√
d+ 6)−1(k + 1)−1/2 and η = 1/

√
d+ 6 for non-convex

problems can reach the ε-accuracy within

O
(
d+ 6
ε2

)
iterations.

This O(d/ε2) complexity is the same as the complexity for the zeroth-order
methods without the proximal operator on non-convex problems by Nesterov
[178, Case 1. in Section 7].

7.3 Experimental Results
We now illustrate the convergence rate results for the suggested step-size
schemes. In particular, we focus on Prox-SComp given in (7.14) in Section 7.2.1
with the QSGD quantizer [22] with quantization level s. We consider both
strongly-convex logistic regression and non-convex robust linear regression
problems. The results are averaged over three Monte Carlo runs using the
RCV1 data set [140] (with 20242 data points and 47236 features), which is uni-
formly distributed across n = 3 workers. We set the initial solution x0 = 0
and the mini-batch size b = 2 for each worker. The compression parameter for
QSGD is q = 1 + min(d/s2,

√
d/s) where d is the problem dimension, similar as

in [22, 117].

7.3.1 Strongly-convex Regularized Logistic Regression
Consider the strongly-convex regularized logistic regression problem, that is
Problem (7.12) with h(x) = λ1‖x‖1 and

F i(x) = 1
m

m∑
j=1

log(1 + exp(−yij · 〈zij , x〉) + λ2

2 ‖x‖
2.

Here, zij ∈ Rd is a feature vector for sample j ∈ [1,m] at worker i with
its associated label yij ∈ {−1, 1}. We set the quantization level s = 100,
and regularization parameters λ1 = 10−5 and λ2 = 10−4. We compared our
proposed diminishing step-size from Theorem 7.1-2) against the fixed step-
size γk = (3q + 1)−1/(2L) and the step-size γk = 1/(L · k) proposed in [112,
Theorem 3].

From Figure 7.1, Prox-SComp (7.14) with the step-size in Theorem 7.1-
2) outperforms that with other step-sizes in terms of solution accuracy. At
k = 6 · 105, the step-size in Theorem 7.1-2) achieves the accuracy 5 times
higher than the step-size γk = (3q + 1)−1/(2L) and 5 · 103 times better than
the step-size γk = 1/(L · k) from the step-size γk = 1/(L · k) in [112, Theorem
3].

Experimental Results 181

0 2 4 6

·105

10−4

10−3

10−2

10−1

100

Iterations [k]

P
(x

k
)
−
P
(x

?
)

γk = (3q + 1)−1/(2L) γk = 1/(L · k); [2, Theorem 3]

γk from Theorem 1-2)

Figure 7.1: The performance of stochastic compression algorithms using differ-
ent step-sizes and QSGD with 100 quantization levels for solving strongly-convex
logistic regression on RCV1.

0 0.5 1 1.5 2

·105

10−2

10−1

100

Iterations [k]

P
(x

k
)
−

P
(x

?
)

γk = 0.1/L γk from Theorem 1-1) with ρ̄ = 2.2L

Figure 7.2: The performance of stochastic compression algorithms using dif-
ferent step-sizes and QSGD with 50 quantization levels for solving non-convex
robust linear regression on RCV1.

182 Improved Step-Size Schedules for Noisy Gradient Methods

7.3.2 Non-convex Robust Linear Regression
Next, consider the non-convex robust linear regression problem [138, 139], i.e.
Problem (7.12) with h(x) = λ1‖x‖1 and

F i(x) = 1
m

m∑
j=1

(〈zji , x〉 − y
j
i)

2/(1 + (〈zji , x〉 − y
j
i)

2).

Here, we set s = 50 and λ1 = 10−5, and compared the proposed step-size from
Theorem 7.1-1) with ρ̄ = 2.2L against the fixed step-size γk = 0.1/L.

Figure 7.2 indicates a higher solution accuracy from Prox-SComp (7.14)
using the step-size from Theorem 7.1-1) with ρ̄ = 2.2L than the fixed step-size
γk = 0.1/L. At k = 2 · 105, the the accuracy attained by the fixed step-size
γk = 0.1/L is 5 times worse than the step-size from Theorem 7.1-1) with
ρ̄ = 2.2L.

Appendix

7.A Proofs
7.A.1 Proof of Central Lemmas
In this section, we prove Lemmas 7.1, 7.2 and 7.3 for analyzing the convergence
results of two main systems that characterize the performance of proximal
noisy gradient algorithms.

7.A.1.1 Proof of Lemma 7.1

Let k∗ = max {0, α/γ − 1}. We can show that γk = γ for 0 ≤ k ≤ k∗, while
γk = α/(k + 1) for k > k∗. For 0 ≤ k ≤ k∗, applying the step size γk = γ in
Eq. (7.3) recursively gives

Vk∗+1 ≤ (1−Aγ)(k∗+1)V0 + Bγ

A
. (7.22)

For k > k∗, plugging the step-size γk = α/(k + 1) into Eq. (7.3) yields

Vk+1 ≤
(

1− Aα

k + 1

)
Vk + Bα2

(k + 1)2 .

By applying the inequality recursively and utilizing 1 + x ≤ exp(x) for x ∈ R,

Vk+1 ≤ exp
(
−Aα

k∑
l=k∗+1

1
l + 1

)
Vk∗+1

+Bα2
k∑

l=k∗+1

1
(l + 1)2 exp

(
−Aα

k∑
i=l+1

1
i+1

)
. (7.23)

Since 1/(s+ 1) is decreasing in s, we have

k∑
i=l+1

1
i+ 1 ≥

∫ k+1

i=l+1

di

i+ 1 = ln(k + 2)− ln(l + 2).

Plugging these inequalities into Eq. (7.23) yields

Vk+1 ≤
(k∗ + 2)AαVk∗+1

(k + 2)Aα + Bα2

(k + 2)Aα
k∑

l=k∗+1

(l + 2)Aα

(l + 1)2 .

183

184 Improved Step-Size Schedules for Noisy Gradient Methods

By Eq. (7.22) and the above inequality, for k > k∗

Vk+1 ≤
V ∗0

(k + 2)Aα + Bα2

(k + 2)Aα
k∑

l=k∗+1

(l + 2)Aα

(l + 1)2 , (7.24)

where V ∗0 = (k∗ + 2)Aα((1−Aγ)(k∗+1)V0 +Bγ/A). Hence, for Aα > 1

k∑
l=k∗+1

(l + 2)Aα

(l + 1)2 ≤ ν
k∑

l=k∗+1
(l + 2)Aα−2

≤ ν
∫ k

l=k∗+1
(l+2)Aα−2dl + ν(k+2)Aα−2

≤ ν(k + 2)Aα−1

Aα− 1 + ν(k + 2)Aα−2,

where ν = (1 + 1/(k∗ + 2))2. Incorporating the above inequality into Eq. (7.24),
we have

Vk+1 ≤
V ∗0

(k + 2)Aα + Bα2ν

(Aα− 1)
1

(k + 2) + Bα2ν

(k + 2)2 .

Finally, if we choose α = 2/A, then Eq. (7.24) can be improved by the
follow procedure:

Vk+1 ≤
V ∗0

(k+2)2 + Bα2

(k+2)2

k∑
l=k∗+1

(
1+ 2

l+1+ 1
(l+1)2

)

≤ V ∗0
(k + 2)2 + Bα2

(k + 2)2

(
k−k∗+3+2

∫ k+1

l=k∗+1

dl

l
+
∫ k+1

l=k∗+1

dl

l2

)

≤ V ∗0
(k + 2)2 +

Bα2(k+3+2 ln(k+1)+ 1
k∗+1−k

∗)
(k + 2)2

≤ V ∗0 + 2 ln(k + 1) + 2
(k + 2)2 + Bα2

k + 2 .

We thus complete the proof.

7.A.1.2 Proof of Lemma 7.2

The recursion (7.7) can be equivalently expressed as

1
γk
Wk ≤

1
γ2
k

(Vk − Vk+1) +B. (7.25)

Proofs 185

By summing (7.25) over l = 0, 1, . . . , k,

k∑
l=0

1
γl
Wl ≤

1
γ2

0
V0 +

(
1
γ2

1
− 1
γ2

0

)
V1 +

(
1
γ2

2
− 1
γ2

1

)
V2 + . . .

+
(

1
γ2
k

− 1
γ2
k−1

)
Vk −

1
γ2
k

Vk+1 +B(k + 1). (7.26)

Since α > 0 and η ≥ 1, γk is monotonically decreasing in k, i.e. 1/γ2
k+1 ≥ 1/γ2

k

for all k ≥ 0. By the fact that Vk ≤ R2 for all k ≥ 0 and by the consequence
of the telescopic series, we have from (7.26) that

k∑
l=0

1
γl
Wl ≤

1
γ2
k

R2 − 1
γ2
k

Vk+1 +B(k + 1).

Next, since Vk,Wk are non-negative functions and γk is decreasing in k, by
re-arranging the terms we have

1
k + 1

k∑
l=0

Wl ≤
1

γk(k + 1)R
2 + γkB. (7.27)

Finally, by plugging γk = α/
√
k + 1 into (7.27),

1
k + 1

k∑
l=0

Wl ≤
1

α
√
k + 1

R2 + αB√
k + 1

.

7.A.1.3 Proof of Lemma 7.3

We can rewrite the recursion (7.7) equivalently as:

γkWk ≤ (Vk − Vk+1) + γ2
kB. (7.28)

By summing (7.7) over l = 0, 1, . . . , k, by the monotonically decreasing func-
tion γk in k, and by the non-negativity of Wk,

γk

k∑
l=0

Wl ≤
k∑
l=0

γlWl ≤ (V0 − Vk+1) +B
k∑
l=0

γ2
l . (7.29)

If γk = α/(k + 1)β for α > 0 and β ∈ (0, 1], then by re-arranging the terms

1
k + 1

k∑
l=0

Wl ≤
V0 − Vk+1

α(k + 1)1−β + Bα

(k + 1)1−β

k∑
l=0

1
(l + 1)2β .

186 Improved Step-Size Schedules for Noisy Gradient Methods

Finally, if β = 1/2, then 1/(l + 1) is decreasing in l and

k∑
l=0

1
(l + 1)2β ≤ 1 +

∫ k

l=0

1
l + 1dl = 1 + ln(k + 1),

and therefore we reach (7.10).
If β = 1/2 + ξ for ξ ∈ (0, 1/2), then

k∑
l=0

1
(l + 1)2β ≤ 1 +

∫ k

l=0

1
(l + 1)1+2ξ dl ≤ 1 + 1

2ξ .

and thus we obtain (7.11).

7.A.2 Useful Lemmas for Applications
In this section, we provide useful lemmas for our analysis. We first prove one
lemma, which states the property of the Moreau envelope P1/ρ̄(x).

Lemma 7.4. Consider the problem of minimizing P (x) = F (x) + h(x) where
F (·) is L-smooth and h(·) is convex. Then, for ρ̄ > 0

1
2ρ̄‖∇P1/ρ̄(x)‖2 ≤ P1/ρ̄(x)− P1/ρ̄(x?). (7.30)

where x? = argminx∈RdP (x).

Proof. Let x? = argminx∈RdP (x) and x̂ = proxP/ρ̄(x). Then,

P1/ρ̄(x)− P (x̂) = ρ

2‖x− x̂‖
2 = 1

2ρ̄‖∇P1/ρ̄(x)‖2.

Next, by the fact that P (x̂) ≥ P (x?),

P1/ρ̄(x)− P (x?) ≥ 1
2ρ̄‖∇P1/ρ̄(x)‖2.

Since x? = proxP/ρ̄(x?), i.e.

x? = argmin
x∈Rd

[
P (x) + ρ̄

2‖x− x
?‖2
]
,

we have P (x?) = P1/ρ̄(x?). Finally, using this fact we complete the proof.

Next, we derive the upper-bounds of E‖ek‖2 for proximal stochastic com-
pression and stochastic coding methods under the gradient-bounded and variance-
bounded assumptions.

Proofs 187

Lemma 7.5. Consider the iterates {xk}k∈N generated by the Prox-SComp in
Eq. (7.14) or equivalently (7.38).

1. If E‖gik‖2 ≤ C2, then E‖ek‖2 ≤ C̃ where C̃ = qC2.

2. If E‖gik − ∇F i(xk)‖2 ≤ σ2, then E‖ek‖2 ≤ C1T + C2 where C1 =
3q, C2 = 3q[σ2 +

∑n
i=1 E‖∇F i(x?)‖2]/n, and T =

∑n
i=1 E‖∇F i(xk) −

∇F i(x?)‖2/n.

Proof. Recalling the definition of ek in (7.38), and using the fact that E‖ξ −
Eξ‖2 = E‖ξ‖2 − ‖Eξ‖2 for any random vector ξ ∈ Rd and that ‖x‖2 ≥ 0, we
have

E‖ek‖2 ≤ E

∥∥∥∥∥ 1
n

n∑
i=1

Q(gik)

∥∥∥∥∥
2

.

Since E‖Q(v)‖2 ≤ q‖v‖2 for v ∈ Rd, we next have

E‖ek‖2 ≤
q

n

n∑
i=1

E
∥∥gik∥∥2

. (7.31)

If E‖gik‖2 ≤ C2, then by (7.31) we prove the first statement.
If E‖gik −∇F i(xk)‖2 ≤ σ2, then by utilizing the fact that ‖x+ y + z‖2 ≤

3‖x‖2 + 3‖y‖2 + 3‖z‖2 with x = gik −∇F i(xk), y = ∇F i(xk)−∇F i(x?) and
z = ∇F i(x?) we prove the second statement.

Lemma 7.6. Consider the iterates {xk}k∈N generated by Prox-SCod in Eq.
(7.18) or equivalently (7.39). Let β = mmaxi τi and τi =

∑m
j=1D

2
ij/(

∑m
j=1Dij)2

for the data assignment matrix D ∈ Rm×n.

1. If E‖gik‖2 ≤ C2, then E‖ek‖2 ≤ C̃ where C̃ = βC2/(1− p).

2. If E‖gik − ∇F i(xk)‖2 ≤ σ2, then E‖ek‖2 ≤ C1T + C2 where C1 =
3β/(1 − p), C2 = 3β[σ2 +

∑n
i=1 E‖∇F i(x?)‖2/n]/(1 − p), and T =∑n

i=1 E‖∇F i(xk)−∇F i(x?)‖2/n.

Proof. Recalling the definition of ek in (7.39), and using the fact that E‖ξ −
Eξ‖2 = E‖ξ‖2 − ‖Eξ‖2 for any random vector ξ ∈ Rd and that ‖x‖2 ≥ 0,

E‖ek‖2 ≤
1

n(1− p)2

n∑
i=1

E
{
α2
i

ᾱ2
i

‖gik‖2
}
,

where αi =
∑m
j=1Dijwj and ᾱi =

∑m
j=1Dij . Since wj is 1 with probability

1− p, i.e.

Eα2
i ≤ m

m∑
j=1

E[D2
ijw

2
j] = m(1− p)

m∑
j=1

D2
ij ,

188 Improved Step-Size Schedules for Noisy Gradient Methods

we have

E‖ek‖2 ≤
m

n(1− p) max
i

{
βi
ᾱ2
i

} n∑
i=1

E‖gik‖2, (7.32)

where βi =
∑m
j=1D

2
ij .

If E‖gik‖2 ≤ C2, then by (7.32) we prove the first statement.
If E‖gik −∇F i(xk)‖2 ≤ σ2, then by utilizing the fact that ‖x+ y + z‖2 ≤

3‖x‖2 + 3‖y‖2 + 3‖z‖2 with x = gik −∇F i(xk), y = ∇F i(xk)−∇F i(x?) and
z = ∇F i(x?) we prove the second statement.

From Lemma 7.5 and 7.6, the problems under the gradient-bounded as-
sumption implies E‖ek‖2 ≤ C̃ with a positive constant C̃, while the problems
under the variance-bounded condition implies E‖ek‖2 ≤ C1

∑n
i=1 E‖∇F i(xk)−

∇F i(x?)‖2/n+ C2 with positive constants C1, C2.
By using the assumption that E‖ek‖2 ≤ C̃ for a positive constant C̃, the

next lemma establishes the main inequality for deriving the results for proximal
noisy gradient algorithms on non-convex problems.

Lemma 7.7. Consider the problem of minimizing P (x) = F (x) + h(x) where
F (·) is L-smooth and h(·) is convex. Then, the iterates {xk}k∈N by the proxi-
mal noisy gradient algorithm: Given x0 ∈ Rd

xk+1 = proxγkh (xk − γk[∇F (xk) + ek]) , (7.33)

where E[ek] = 0 and E‖ek‖2 ≤ C̃ for C̃ ≥ 0. If γk ≤ 1/(ρ̄ − L) and ρ̄ > L,
then

E[P1/ρ̄(xk+1)] ≤ E[P1/ρ̄(xk)] + ρ̄

2γ
2
kC̃ −

γk(ρ̄− L)
2ρ̄ E‖∇P1/ρ̄(xk)‖2. (7.34)

Proof. Since P1/ρ̄(x) = miny{P (y) + (ρ̄/2)‖y − x‖2},

P1/ρ̄(xk+1) ≤ P (x̂k) + ρ̄

2‖x̂k − xk+1‖2,

where x̂k = proxP/ρ̄(xk). By taking the expectation,

E[P1/ρ̄(xk+1)] ≤ E[P (x̂k)] + ρ̄

2E‖x̂k − xk+1‖2. (7.35)

To complete the proof, we need to find the upper-bound for E‖x̂k − xk+1‖2.
From the definition of the Euclidean norm, from Lemma [186, Lemma 3.2] (i.e.
x̂k = proxγkh(γkρ̄xk − γk∇F (x̂k) + (1 − γkρ̄)x̂k)), and by the non-expansive
property of the proximal operator,

‖xk+1 − x̂k‖2 ≤ ‖δk(xk − x̂k)− γk[∇F (xk)−∇F (x̂k)]− γkek‖2,

Proofs 189

where δk = 1−γkρ̄. Next, taking the expectation, using the fact that E[ek] = 0
and expanding the terms yield

E‖xk+1 − x̂k‖2 ≤ δ2
kE‖xk − x̂k‖2 + γ2

kE‖∇F (xk)−∇F (x̂k)‖2

− 2γkδkE〈xk − x̂k,∇F (xk)−∇F (x̂k)〉+ γ2
kE‖ek‖2.

Since F (x) is L-smooth, we can conclude that

E‖xk+1 − x̂k‖2 ≤ βkE‖xk − x̂k‖2 + γ2
kE‖ek‖2,

where βk = δ2
k + 2γkδkL + γ2

kL
2. Next, if γk ≤ 1/(ρ̄ − L) with ρ̄ > L, then

βk ≤ 1− γk(ρ̄− L). Since E‖ek‖2 ≤ C̃ for a positive constant C̃,

E‖xk+1 − x̂k‖2 ≤ E‖xk − x̂k‖2 + γ2
kC̃ − γk(ρ̄− L)E‖xk − x̂k‖2.

Plugging this inequality into Eq. (7.35) yields

E[P1/ρ̄(xk+1)] ≤ E
[
P (x̂k) + ρ̄

2‖x̂k − xk‖
2
]

+ ρ̄

2γ
2
kC̃

− ρ̄γk(ρ̄− L)
2 E‖xk − x̂k‖2.

Since x̂k = proxP/ρ̄(xk), we can prove that

P1/ρ̄(xk) = P (x̂k) + (ρ̄/2)‖x̂k − xk‖2,

and that

E[P1/ρ̄(xk+1)] ≤ E
[
P1/ρ̄(xk)

]
+ ρ̄

2γ
2
kC̃ −

ρ̄γk(ρ̄− L)
2 E‖xk − x̂k‖2.

Finally, since ∇P1/ρ̄(x) = ρ̄(x− proxP/ρ̄(x)), we obtain (7.34).

Finally, by utilizing the assumption that E‖ek‖2 ≤ C1
∑n
i=1 E‖∇F i(xk)−

∇F i(x?)‖2/n + C2 for positive constants C1, C2, the next lemma proves the
convergence of proximal noisy gradient algorithms for strongly convex prob-
lems.

Lemma 7.8. Consider the problem of minimizing P (x) = F (x) + h(x) where
F (·) is µ-strongly convex and L-smooth, and h(·) is convex, and the proximal
noisy gradient algorithm: Given x0 ∈ Rd

xk+1 = proxγkh (xk − γk[∇F (xk) + ek]) , (7.36)

where E[ek] = 0 and E‖ek‖2 ≤ C1
∑n
i=1 E‖∇F i(xk)−∇F i(x?)‖2/n+ C2 for

positive constants C1, C2. If γk ≤ (C1 + 1)−1/L, then

E‖xk+1 − x?‖2 ≤ (1−Aγk) E‖xk − x?‖2 + γ2
kB, (7.37)

where A = µ and B = C2.

190 Improved Step-Size Schedules for Noisy Gradient Methods

Proof. Since x? = argminxP (x), we can show that x? = proxγkh(x?−γk∇F (x?)).
By the definition of the Euclidean norm and the non-expansive property of the
proximal operator,

‖xk+1 − x?‖2 ≤ ‖xk − x? − γk[∇F (xk) + ek −∇F (x?)]‖2.

Next, taking the expectation and using E[ek] = 0

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + γ2
kE‖ek‖2 − 2γkE〈∇F (xk)−∇F (x?), xk − x?〉

+ γ2
kE‖∇F (xk)−∇F (x?)‖2.

If E‖ek‖2 ≤ C1
∑n
i=1 E‖∇F i(xk) − ∇F i(x?)‖2/n + C2 for positive constants

C1, C2, then

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + γ2
kC2 − 2γkE〈∇F (xk)−∇F (x?), xk − x?〉

+ γ2
kE‖∇F (xk)−∇F (x?)‖2

+ γ2
kC1

n

n∑
i=1

E‖∇F i(xk)−∇F i(x?)‖2.

Next, by the co-coercivity of F i(·), i.e. for all x, y ∈ Rd

‖∇F i(x)−∇F i(y)‖2 ≤ L〈∇F i(x)−∇F i(y), x− y〉,

and by the fact that F (x) =
∑n
i=1 F

i(x)/n, we have

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + γ2
kC2 − 2γkβkE〈∇F (xk)−∇F (x?), xk − x?〉,

where βk = 1 − γk(C1 + 1)L/2. Next, by using the strong convexity of F (·),
i.e. for all x, y ∈ Rd

〈∇F (x)−∇F (y), x− y〉 ≥ µ‖x− y‖2,

we get

E‖xk+1 − x?‖2 ≤ ρkE‖xk − x?‖2 + γ2
kC2,

where ρk = 1− 2µγkβk. Finally, if γk ≤ (C1 + 1)−1/L, then ρk ≤ 1−µγk. We
thus complete the proof.

7.A.3 Proof of Theorem 7.1
We can write Prox-SComp in Eq. (7.14) equivalently as

xk+1 = proxγkh(xk − γk[∇F (xk) + ek]), (7.38)

where

ek = 1
n

n∑
i=1

Q(gik)−∇F (xk).

Here, ek satisfies E[ek] = 0 and now we prove the results.

Proofs 191

Proof of Theorem 7.1-1)

Since E‖gik‖2 ≤ C2 and E[ek] = 0, Lemma 7.5-1) holds. Lemma 7.4 and
Lemma 7.7 with C̃ = qC2 imply that Prox-SComp for Problem (7.12) un-
der Assumption 7.1 satisfies (7.7) with Vk = E[P1/ρ̄(xk) − P1/ρ̄(x?)], Wk =
(ρ̄ − L)E‖∇P1/ρ̄(xk)‖2/(2ρ̄) and B = ρ̄qC2/2, for ρ̄ > L. Also note that
Prox-SComp satisfies Wk ≤ cVk with c = 1/(ρ̄ − L). Finally, if 0 ≤ Vk ≤ R2,
then from Lemma 7.2 with α = ρ̄− L we complete the proof.

Proof of Theorem 7.1-2)

Since E‖gik − ∇F (xk)‖2 ≤ σ2 and E[ek] = 0, Lemma 7.5-2) holds. Lemma
7.8 with C1 = 3q and C2 = 3q[(1/n)

∑n
i=1 E‖∇F i(x?)‖2 + σ2] implies that

Prox-SComp for Problem (7.12) under Assumptions 7.1 and 7.2 satisfies (7.3)
with Vk = E‖xk−x?‖2, A = µ, and B = C2. Finally, if α = 2/A, from Lemma
7.1-2) we complete the proof.

7.A.4 Proof of Theorem 7.2
We can express Prox-SCod in Eq. (7.18) equivalently as

xk+1 = proxγkh(xk − γk[∇F (xk) + ek]), (7.39)

where

ek = 1
n(1− p)

n∑
i=1

αi
ᾱi
gik −∇F (xk).

Here, ek satisfies E[ek] = 0 and now we prove the results.

Proof of Theorem 7.2-1)

Since E‖gik‖2 ≤ C2 and E[ek] = 0, Lemma 7.6-1) holds. Lemma 7.4 and
Lemma 7.7 with C̃ = βC2/(1 − p) imply that Prox-SCod for Problem (7.12)
under Assumption 7.1 satisfies (7.7) with Vk = E[P1/ρ̄(xk)− P1/ρ̄(x?)], Wk =
(ρ̄ − L)E‖∇P1/ρ̄(xk)‖2/(2ρ̄) and B = ρ̄βC2/[2(1 − p)], for ρ̄ > L. Also note
that Prox-SCod satisfiesWk ≤ cVk with c = 1/(ρ̄−L). Finally, if 0 ≤ Vk ≤ R2,
then from Lemma 7.2 with α = ρ̄− L we complete the proof.

Proof of Theorem 7.2-2)

Since E‖gik − ∇F (xk)‖2 ≤ σ2 and E[ek] = 0, Lemma 7.5-2) holds. Lemma
7.8 with C1 = 3β/(1− p) and C2 = 3β[(1/n)

∑n
i=1 E‖∇F i(x?)‖2 +σ2]/(1− p)

implies that Prox-SCod for Problem (7.12) under Assumptions 7.1 and 7.2
satisfies (7.3) with Vk = E‖xk − x?‖2, A = µ, and B = C2. Finally, if
α = 2/A, from Lemma 7.1-2) we complete the proof.

192 Improved Step-Size Schedules for Noisy Gradient Methods

7.A.5 Proof of Theorem 7.3
We derive the main results for the proximal zeroth-order algorithms (7.19) for
Problem (7.12).

7.A.5.1 Proof of Theorem 7.3-1)

Since P1/ρ̄(x) = miny{P (y) + (ρ̄/2)‖y − x‖2},

P1/ρ̄(xk+1) ≤ P (x̂k) + ρ̄

2‖x̂k − xk+1‖2,

where x̂k = proxP/ρ̄(xk). By taking the expectation,

E[P1/ρ̄(xk+1)] ≤ E[P (x̂k)] + ρ̄

2E‖x̂k − xk+1‖2. (7.40)

To complete the proof, we need to find the upper-bound for E‖x̂k − xk+1‖2.
From the definition of the Euclidean norm, from Lemma [186, Lemma 3.2] (i.e.
x̂k = proxγkh(γkρ̄xk − γk∇F (x̂k) + (1 − γkρ̄)x̂k)), and by the non-expansive
property of the proximal operator,

‖xk+1 − x̂k‖2 ≤ ‖δk(xk − x̂k)− γk[Gτk(xk)−∇F (x̂k)]‖2,

where δk = 1 − γkρ̄. Next, by taking the expectation, expanding the terms
and using the fact that E[Gτk(xk)] = ∇Fτk(xk) where Fτ (x) = Eu[F (x+ τu)],

E‖xk+1 − x̂k‖2 ≤ δ2
kE‖xk − x̂k‖2 + γ2

kE‖Gτk(xk)−∇F (x̂k)‖2

− 2δkγkE〈xk − x̂k,∇F (xk)−∇F (x̂k)〉
+ 2δkγkE〈xk − x̂k,∇Fτk(xk)−∇F (xk)〉.

Since the fact that F (x) is L-smooth implies that F (x) is L-weakly convex
[186], i.e.

〈∇F (x)−∇F (y), x− y〉 ≥ −L‖x− y‖2,
and since we have by Cauchy-Schwarz’s inequality

2〈xk − x̂k,∇Fτk(xk)−∇F (xk)〉 ≤ ‖xk − x̂k‖2 + ‖∇Fτk(xk)−∇F (xk)‖2,

then

E‖xk+1 − x̂k‖2 ≤ βkE‖xk − x̂k‖2 + γ2
kE‖Gτk(xk)−∇F (x̂k)‖2

+ δkγkE‖∇Fτk(xk)−∇F (xk)‖2,

where βk = δ2
k + (2L + 1)δkγk. Next, from Eq. (27) of [178, Lemma 3], i.e.

‖∇Fτ (x)−∇F (x)‖ ≤ τ2L2(d+ 3)3/4,

E‖xk+1 − x̂k‖2 ≤ βkE‖xk − x̂k‖2 + δkγkτ
2
kL

2(d+ 3)3

4
+ γ2

kE‖Gτk(xk)−∇F (x̂k)‖2.

Proofs 193

To complete the proof, we need to derive the bound for E‖Gτk(xk)−∇F (x̂k)‖2.
If ‖∇F (x)‖2 ≤ C2, then

E‖Gτk(xk)−∇F (x̂k)‖2 ≤ 2E‖Gτk(xk)‖2 + 2C2

≤ τ2
kL

2(d+ 6)3 + 2(2d+ 9)C2,

where we reach the first inequality by the fact that ‖x+y‖2 ≤ 2‖x‖2+2‖y‖2 for
x, y ∈ Rd, and the second inequality by Lemma 4 from [178]. Next, plugging
this result into the main inequality yields

E‖xk+1 − x̂k‖2 ≤ βkE‖xk − x̂k‖2 + δkγkτ
2
kL

2(d+ 3)3

4
+ γ2

k[τ2
kL

2(d+ 6)3 + 2(2d+ 9)C2].

If ρ̄ ∈ (L− 1/2, 2L+ 1], then

E‖xk+1 − x̂k‖2 ≤ E‖xk − x̂k‖2 − 2γk(ρ̄− L− 1/2)E‖xk − x̂k‖2

+ γ2
k[τ2

kL
2(d+ 6)3 + 2(2d+ 9)C2] + δkγkτ

2
kL

2(d+ 3)3

4 .

If γk = (2ρ̄
√
d+ 6)−1/

√
k + 1 and τk = ηγk for η > 0, then γk ≤ 1/(2ρ̄

√
d+ 6)

and

E‖xk+1 − x̂k‖2 ≤ E‖xk − x̂k‖2 + γ2
kC̃ − 2γk(ρ̄− L− 1/2)E‖xk − x̂k‖2,

where C̃ = η2L2(d+ 3)2/(8ρ̄) + η2L2(d+ 6)2/(4ρ̄2) + 2(2d + 9)C2. Next,
substituting this inequality into Eq. (7.40), we have

E[P1/ρ̄(xk+1)] ≤ E
[
P (x̂k) + ρ̄

2‖x̂k − xk‖
2
]

+ ρ̄

2γ
2
kC̃ − ρ̄γk(ρ̄− L− 1/2)E‖xk − x̂k‖2.

Since x̂k = proxP/ρ̄(xk), i.e. P1/ρ̄(xk) = P (x̂k) + (ρ̄/2)‖x̂k − xk‖2,

E[P1/ρ̄(xk+1)] ≤ E
[
P1/ρ̄(xk)

]
+ ρ̄

2γ
2
kC̃ − ρ̄γk(ρ̄− L− 1/2)E‖xk − x̂k‖2.

Next, by the fact that ∇P1/ρ̄(x) = ρ̄(x − proxP/ρ̄(x)) and Lemma 7.4, the
proximal zeroth-order algorithms (7.19) for Problem (7.12) under Assump-
tion 7.1 satisfies (7.7) with Vk = E[P1/ρ̄(xk) − P1/ρ̄(x?)], Wk = (ρ̄ − L −
1/2)E‖∇P1/ρ̄(xk)‖2/ρ̄ and B = ρ̄C̃/2, for ρ̄ ∈ (L − 1/2, 2L + 1]. Also note
that Algorithm (7.19) satisfy Wk ≤ cVk with c = 1/(2ρ̄ − 2L− 1). Finally, if
0 ≤ Vk ≤ R2, then from Lemma 7.2 with α ≥ 1/(2ρ̄) we complete the proof.

194 Improved Step-Size Schedules for Noisy Gradient Methods

7.A.5.2 Proof of Theorem 7.3-2)

From the definition of the Euclidean norm and from Eq. (7.19), and also by the
fact that x? = proxγkh (x? − γk∇F (x?)) and by the non-expansive property
of proxγkh(y),

r2
k+1 ≤ r2

k + γ2
k‖Gτk(xk)−∇F (x?)‖2 − 2γk〈Gτk(xk)−∇F (x?), xk − x?〉,

where rk = ‖xk − x?‖. Next, by taking the expectation and using the fact
that E[Gτk(xk)] = ∇Fτk(xk), where Fτ (x) = Eu[F (x+ τu)]

E[r2
k+1] ≤ E[r2

k] + γ2
kE‖Gτk(xk)−∇F (x?)‖2

− 2γkE〈∇Fτk(xk)−∇F (x?), xk − x?〉.

By using the fact that ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2 for x, y ∈ Rd and by re-
arranging the terms,

E[r2
k+1] ≤ E[r2

k] + 2γ2
kE‖Gτk(xk)‖2 + 2γ2

k‖∇F (x?)‖2

− 2γkE〈∇F (xk)−∇F (x?), xk − x?〉
− 2γkE〈∇Fτk(xk)−∇F (xk), xk − x?〉.

Next, since F (x) is µ-strongly convex, i.e.

〈∇F (xk)−∇F (x?), xk − x?〉 ≥ µ‖xk − x?‖2,

and

γkE〈∇F (xk)−∇Fτk(xk), xk − x?〉 ≤
µγk

2 E‖xk − x?‖2

+ γk
2µE‖∇F (xk)−∇Fτk(xk)‖2,

we get

E[r2
k+1] ≤ (1− µγk)E[r2

k] + γk
µ

E‖∇F (xk)−∇Fτk(xk)‖2

+ 2γ2
kE‖Gτk(xk)‖2 + 2γ2

k‖∇F (x?)‖2.

Next, from Eq. (27) and (29) in [178], we obtain

E[r2
k+1] ≤ (1− µγk)E[r2

k] + γkβk

+ 4γ2
k(d+ 4)E‖∇F (xk)‖2 + 2γ2

k‖∇F (x?)‖2,

where βk = τ2
kL

2(d+ 3)3/(4µ) + γkτ
2
kL

2(d+ 6)3.
If ‖∇F (x)‖2 ≤ C2, then

E[r2
k+1] ≤ (1− µγk)E[r2

k] + γkβk + 2γ2
k(2d+ 9)C2.

Proofs 195

If γk = 1/[L(d + 6)] and τk = ηγk for η > 0, then βk ≤ γk[η2L(d +
3)2/(4µ) + η2(d+ 6)] and

E[r2
k+1] ≤ (1− µγk)E[r2

k] + γ2
kβ̃,

where β̃ = 0.25η2L(d + 3)2µ−1 + η2(d + 6) + 2(2d + 9)C2. To conclude, the
proximal zeroth-order algorithms (7.19) for Problem (7.12) under Assumptions
7.1 and 7.2 satisfies (7.3) with Vk = E‖xk − x?‖2, A = µ, and B = β̃. Finally,
if α = 2/A, then from Lemma 7.1-2) we complete the proof.

Chapter 8

Conclusion and Future Outlook
In this thesis, we have explored first-order algorithms for communication effi-
cient learning. In particular, we have developed theoretical frameworks for an-
alyzing and improving convergence behaviors of algorithms using compressed
information on two types of communication architectures: full gradient com-
munication (or the single-node setting) and partial gradient communication
(or the multiple-node setting). In the first part, we have provided unified
convergence analysis frameworks for first-order algorithms using direct com-
pression and error compensation. In the second part, we have designed flexible
parameter-tuning frameworks that enable the algorithms to attain strong con-
vergence performance and high communication efficiency.

Next, we briefly summarize the contributions and provide a future outlook.

Summary
In Chapter 3, we investigated how various compression schemes impact itera-
tion and communication complexity of the first-order algorithms. In particu-
lar, we presented the unified convergence analysis for several families of com-
pression algorithms under full and/or partial gradient communication. The
tuning parameters and convergence rates have explicit formulas for how com-
pression accuracy and staleness bounds due to asynchrony affect the expected
time to reach an ε-accurate solution. These results allow us to characterize
the trade-off between iteration and communication complexity of compressed
first-order algorithms.

To improve the performance of compression algortithms, we explored er-
ror compensation strategies in Chapter 4. In essence, we provided a the-
oretical justification on why error compensation can avoid all accumulated
compression errors in compressed gradient methods, and provide significant
solution accuracy gains on ill-conditioned quadratic problems. In addition,
we established strong convergence guarantees of decentralized stochastic gra-
dient methods using Hessian-free and Hessian-aided error compensation. We
have presented the first theoretical analysis of sparsified methods with the
Hessian-free compensation scheme for non-convex optimization. We have also
shown the effect of Hessian-aided compensation on stochastic gradient meth-
ods on both convex and nonconvex problems. Compared to direct compression
methods, the error compensation methods exhibit superior convergence per-
formance in terms of speed and solution accuracy, as illustrated numerically on

197

198 Conclusion and Future Outlook

classification problems using large benchmark data-sets in machine learning.
Next, we extended a theoretical support for error compensation to a class of
federated learning algorithms called Eco-FedSplit, and demonstrated signif-
icantly improved communication efficiency and solution accuracy in Chapter
5. Unlike direct compression, error-compensated compression helps FedSplit
to converge towards the approximate solution with arbitrarily high accuracy
as we reduce the value of the federated averaging parameter λ. The superior
performance of Eco-FedSplit compared to other compressed algorithms in
federated learning was illustrated empirically on logistic regression problems
on several benchmark data-sets.

In Chapter 6, we proposed a communication-aware adaptive tuning that
optimizes the communication-efficiency of gradient sparsification. The adap-
tive tuning relies on a data-dependent measure of an objective function im-
provement, and adapts the compression level to maximize the descent per
communicated bit. Unlike existing heuristics, our tuning rules are guaranteed
to reduce communication in realistic communication models. In particular,
our rules are more communication-efficient when communication overhead or
packet transmissions are accounted for. We experimentally showed how CAT
can be used to optimize both transmission time and communicated bits. More-
over, we illustrated the promise of CAT in multi-node settings with all con-
sidered compressions. From the theoretical point of view , we demonstrated
that worst-case analysis of gradient compression does not guarantee any ad-
vantages or provide insight into why compression improves communication
efficiency. In contrast, our problem/data dependent convergence results that
demonstrate these benefits. Our theoretical results cover multi-node settings
if the compression is stochastic and unbiased, and single-node settings if the
compression is deterministic. To the best of our knowledge, all analytical re-
sults on multi-node compression use either such assumptions or assumptions
on the similarity of the nodes’ loss functions.

In addition to the adaptive tuning strategies for different compressionl lev-
els, we investigated step-size policies for contractive and non-expansive itera-
tions under noise in Chapter 7. We derived closed-loop policies that maximize
the expected progress per iteration, and proposed diminishing step-size sched-
ules with matching convergence rates. Our theoretical results suggest that
decaying step-sizes enable these iterations to converge at an optimal O(1/k)
and O(1/

√
k) rate, respectively. We then applied the results to a number of

noisy proximal gradient algorithms that were so far lacking a complete theo-
retical understanding. Numerical experiments validated our results.

Future Outlook
Now, we outline the following possible future research directions.

199

Adaptive step-size schedules for high-performance systems
A step-size is a critical tuning parameter that controls convergence speed of
general distributed and federated optimization algorithms. In Chapter 7, we
illustrated the benefits of using diminishing step-sizes over fixed step-sizes for
general noisy gradient descent. However, these diminishing step-size schedules
may lead to too slow convergence in practice since they decrease the step-size
too early. To improve the performance, a number of adaptive step decay poli-
cies [187, 188, 189, 190] have been recently proposed. The key idea of these
approaches is to start with a large step-size and then reduce it after the algo-
rithm reaches stationarity detected by statistical tests (e.g. by optimization
analysis tools [187, 188] or by the characterizations of stationary stochastic
processes [189, 190]). However, these policies improve the convergence only
for stochastic gradient algorithms, and theory confirming the results for gen-
eral noisy gradient algorithms (e.g. compression algorithms, delayed gradient
algorithms, zeroth-order optimization algorithms, etc.) are currently lacking.
It would be interesting to explore and develop analysis tools that can be used
as a guideline to fine-tune step-size schedules to maximize the convergence
rate, thus saving communication costs.

Problem-dependent complexity of compression algorithms
In Chapter 6 we provided data-dependent complexity and automatic tuning
strategies for centralized compression algorithms. However, theoretical results
for general distributed and federated compression algorithms are lacking, and
current tuning strategies need the gradient to compute the optimal compres-
sion level at every iteration. Therefore, one possible extension is to explore the
statistical distributions of gradients in machine learning models (see e.g., in
[191]). This could potentially allow us to better characterize closed-form data-
dependent complexity and find the almost optimal compression level before
training. Another interesting direction is to explore an average-case analy-
sis framework that is used to analyze the exact convergence behaviors for
stochastic gradient methods [192, 193, 194]. This framework may enable us
to characterize tight convergence bounds for stochastic compression methods,
which can lead to tunable parameters (the step-size and compression level)
that guarantee near-optimal convergence in practice. These directions are still
under its infancy and it would be interesting to investigate whether state-of-
the-art tools can be developed in building fast compression algorithms with
optimally tuned hyparameters.

Resource-aware distributed communication strategies
Throughout the thesis, we have explored how to tune hyperparameters (i.e.
step-sizes and compression levels) for communication-efficient optimization al-

200 Conclusion and Future Outlook

gorithms. These hyperparameters are however tuned separately according to
different aims (e.g. to maximize the convergence rate [160] or communication
efficiency, e.g., in Chapter 5). Algorithms using all of these parameter tunings
that are optimized individually may attain sub-optimal convergence perfor-
mance and communication efficiency. This necessitates the development of a
systematic framework to tune interrelated hyperparameters for general dis-
tributed and federated optimization algorithms [195, 196]. However, this re-
search direction is currently underexplored. It would be interesting to develop
a unified framework for fine-tuning key hyperparameters simultaneously to at-
tain high convergence speed, solution accuracy, and communication efficiency.
In this direction, we need to develop performance and efficiency measures,
and then to investigate unified formulation to optimize the hyperparameters
jointly to satisfy these measures.

Compression methods for improved differentially-private
training
State-of-the-art distributed and federated systems are susceptible to privacy
leakage by recent inference attacks [197, 198]. To address this issue, many
privacy-preserving strategies have been proposed. In addition to introducing
additive noise, one recent strategy is compressing transmitted information to
guarantee differential privacy on optimization algorithms in privacy analysis
[199, 200]. All stated privacy-preserving approaches however lead to a trade-
off between high privacy and fast convergence speed. This necessitates the
development of privacy-aware optimization algorithms that can strike the op-
timal balance to attain high privacy and convergence performance. It would be
interesting to investigate if and how well-known compression strategies (such
as error compensation in Chapter 4 and 5, and dithered compression [201])
can guarantee high privacy and communication efficiency without sacrificing
convergence performance.

References
[1] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for

large-scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311,
2018.

[2] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning so-
cial etiquette: Human trajectory understanding in crowded scenes,” in
European conference on computer vision, pp. 549–565, Springer, 2016.

[3] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
an ASR corpus based on public domain audio books,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5206–5210, IEEE, 2015.

[4] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The mil-
lion song dataset,” in Proceedings of the 12th International Conference
on Music Information Retrieval (ISMIR 2011), 2011.

[5] G.-Y. Wei, D. Brooks, et al., “Benchmarking TPU, GPU, and CPU
platforms for deep learning,” arXiv preprint arXiv:1907.10701, 2019.

[6] J. H. Park, S. Kim, J. Lee, M. Jeon, and S. H. Noh, “Accelerated training
for cnn distributed deep learning through automatic resource-aware layer
placement,” arXiv preprint arXiv:1901.05803, 2019.

[7] J. Dongarra et al., “MPI: a message-passing interface standard version
3.0,” High Performance Computing Center Stuttgart (HLRS), 2013.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[9] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[10] A. Aytekin and M. Johansson, “Harnessing the power of serverless run-
times for large-scale optimization,” arXiv preprint arXiv:1901.03161,
2019.

[11] A. Aytekin, Asynchronous First-Order Algorithms for Large-Scale Opti-
mization: Analysis and Implementation. PhD thesis, KTH Royal Insti-
tute of Technology, 2019.

201

202 References

[12] L. Dagum and R. Menon, “Openmp: an industry standard api for
shared-memory programming,” IEEE computational science and engi-
neering, vol. 5, no. 1, pp. 46–55, 1998.

[13] J. Protic, M. Tomasevic, and V. Milutinovic, “Distributed shared mem-
ory: Concepts and systems,” IEEE Parallel & Distributed Technology:
Systems & Applications, vol. 4, no. 2, pp. 63–71, 1996.

[14] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al.,
“Open mpi: Goals, concept, and design of a next generation mpi im-
plementation,” in European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting, pp. 97–104, Springer, 2004.

[15] P. Hintjens, ZeroMQ: messaging for many applications. " O’Reilly Me-
dia, Inc.", 2013.

[16] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training system,”
in 11th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 14), pp. 571–582, 2014.

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[18] R. Gu, S. Yang, and F. Wu, “Distributed machine learning on mobile
devices: A survey,” arXiv preprint arXiv:1909.08329, 2019.

[19] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan, “SystemML: declarative
machine learning on mapreduce,” in 2011 IEEE 27th International Con-
ference on Data Engineering, pp. 231–242, IEEE, 2011.

[20] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[21] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[22] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, pp. 1709–1720,
2017.

References 203

[23] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” arXiv preprint arXiv:1711.07128, 2017.

[24] K. Bhardwaj, C.-Y. Lin, A. Sartor, and R. Marculescu, “Memory-and
communication-aware model compression for distributed deep learning
inference on iot,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 5s, p. 82, 2019.

[25] T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggregated
gradient for communication-efficient distributed learning,” in Advances
in Neural Information Processing Systems, pp. 5050–5060, 2018.

[26] A. Aytekin, H. R. Feyzmahdavian, and M. Johansson, “Analysis and
implementation of an asynchronous optimization algorithm for the pa-
rameter server,” arXiv preprint arXiv:1610.05507, 2016.

[27] M. Gurbuzbalaban, A. Ozdaglar, and P. A. Parrilo, “On the convergence
rate of incremental aggregated gradient algorithms,” SIAM Journal on
Optimization, vol. 27, no. 2, pp. 1035–1048, 2017.

[28] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in Fifteenth Annual Conference of the International Speech Com-
munication Association, 2014.

[29] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” in International
Conference on Machine Learning, pp. 3252–3261, PMLR, 2019.

[30] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Advances in
Neural Information Processing Systems, pp. 1299–1309, 2018.

[31] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantiza-
tion,” arXiv preprint arXiv:1612.01064, 2016.

[32] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[33] Y. Nesterov, “Introductory lectures on convex programming volume i:
Basic course,” Lecture notes, vol. 3, no. 4, p. 5, 1998.

[34] B. T. Polyak, “Introduction to optimization. optimization software,”
Inc., Publications Division, New York, vol. 1, 1987.

[35] D. P. Bertsekas, “Incremental gradient, subgradient, and proximal meth-
ods for convex optimization: A survey,” Optimization for Machine
Learning, vol. 2010, no. 1-38, p. 3, 2011.

204 References

[36] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010, pp. 177–186, Springer, 2010.

[37] X. Qian, P. Richtarik, R. Gower, A. Sailanbayev, N. Loizou, and
E. Shulgin, “SGD with arbitrary sampling: General analysis and
improved rates,” in International Conference on Machine Learning,
pp. 5200–5209, 2019.

[38] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and
P. Richtárik, “SGD: General analysis and improved rates,” in Inter-
national Conference on Machine Learning, pp. 5200–5209, 2019.

[39] S. Khirirat, “Randomized first-order methods for convex optimization:
Improved convergence rate bounds and experimental evaluations,” 2016.

[40] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal dis-
tributed online prediction using mini-batches,” Journal of Machine
Learning Research, vol. 13, no. Jan, pp. 165–202, 2012.

[41] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent us-
ing predictive variance reduction,” in Advances in neural information
processing systems, pp. 315–323, 2013.

[42] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental
gradient method with support for non-strongly convex composite objec-
tives,” in Advances in neural information processing systems, pp. 1646–
1654, 2014.

[43] Z. Charles and D. Papailiopoulos, “Gradient coding using the stochastic
block model,” in 2018 IEEE International Symposium on Information
Theory (ISIT), pp. 1998–2002, IEEE, 2018.

[44] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic mds codes and expander graphs,” IEEE Transactions on
Information Theory, vol. 66, no. 12, pp. 7475–7489, 2020.

[45] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, pp. 3368–3376, 2017.

[46] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Advances in Neural
Information Processing Systems, pp. 5434–5442, 2017.

[47] R. Bitar, M. Wootters, and S. El Rouayheb, “Stochastic gradient cod-
ing for straggler mitigation in distributed learning,” IEEE Journal on
Selected Areas in Information Theory, vol. 1, no. 1, pp. 277–291, 2020.

References 205

[48] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2017.

[49] G. B. Passty, “Ergodic convergence to a zero of the sum of monotone
operators in hilbert space,” Journal of Mathematical Analysis and Ap-
plications, vol. 72, no. 2, pp. 383–390, 1979.

[50] D. Davis and W. Yin, “Faster convergence rates of relaxed peaceman-
rachford and ADMM under regularity assumptions,” Mathematics of
Operations Research, vol. 42, no. 3, pp. 783–805, 2017.

[51] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[52] L. Xiao and T. Zhang, “A proximal stochastic gradient method with
progressive variance reduction,” SIAM Journal on Optimization, vol. 24,
no. 4, pp. 2057–2075, 2014.

[53] J. C. Duchi and Y. Singer, “Efficient learning using forward-backward
splitting.,” in NIPS, vol. 22, pp. 495–503, 2009.

[54] X. Wang, S. Wang, and H. Zhang, “Inexact proximal stochastic gradient
method for convex composite optimization,” Computational Optimiza-
tion and Applications, vol. 68, no. 3, pp. 579–618, 2017.

[55] A. Nitanda, “Stochastic proximal gradient descent with accelera-
tion techniques,” Advances in Neural Information Processing Systems,
vol. 27, pp. 1574–1582, 2014.

[56] J. Konečnỳ, J. Liu, P. Richtárik, and M. Takáč, “Mini-batch semi-
stochastic gradient descent in the proximal setting,” IEEE Journal of
Selected Topics in Signal Processing, vol. 10, no. 2, pp. 242–255, 2015.

[57] N. D. Vanli, M. Gurbuzbalaban, and A. Ozdaglar, “Global convergence
rate of proximal incremental aggregated gradient methods,” SIAM Jour-
nal on Optimization, vol. 28, no. 2, pp. 1282–1300, 2018.

[58] W. Peng, H. Zhang, and X. Zhang, “Nonconvex proximal incremental
aggregated gradient method with linear convergence,” Journal of Opti-
mization Theory and Applications, vol. 183, no. 1, pp. 230–245, 2019.

[59] J. Douglas and H. H. Rachford, “On the numerical solution of heat
conduction problems in two and three space variables,” Transactions of
the American mathematical Society, vol. 82, no. 2, pp. 421–439, 1956.

206 References

[60] D. W. Peaceman and H. H. Rachford, Jr, “The numerical solution of
parabolic and elliptic differential equations,” Journal of the Society for
industrial and Applied Mathematics, vol. 3, no. 1, pp. 28–41, 1955.

[61] S. Liu, S. P. Chepuri, M. Fardad, E. Maşazade, G. Leus, and P. K.
Varshney, “Sensor selection for estimation with correlated measure-
ment noise,” IEEE Transactions on Signal Processing, vol. 64, no. 13,
pp. 3509–3522, 2016.

[62] A. O. Hero and D. Cochran, “Sensor management: Past, present, and
future,” IEEE Sensors Journal, vol. 11, no. 12, pp. 3064–3075, 2011.

[63] S. Liu, J. Chen, P.-Y. Chen, and A. Hero, “Zeroth-order online alter-
nating direction method of multipliers: Convergence analysis and ap-
plications,” in International Conference on Artificial Intelligence and
Statistics, pp. 288–297, PMLR, 2018.

[64] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

[65] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing sys-
tems, vol. 24, 2011.

[66] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Ze-
roth order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proceedings of the 10th ACM
workshop on artificial intelligence and security, pp. 15–26, 2017.

[67] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and com-
munications security, pp. 506–519, 2017.

[68] W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on GAN,” arXiv preprint arXiv:1702.05983, 2017.

[69] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial at-
tacks with limited queries and information,” in International Conference
on Machine Learning, pp. 2137–2146, PMLR, 2018.

[70] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimiza-
tion,” The Computer Journal, vol. 7, pp. 308–313, 01 1965.

[71] C. Audet and J. E. Dennis, “Mesh adaptive direct search algorithms
for constrained optimization,” SIAM Journal on Optimization, vol. 17,
no. 1, pp. 188–217, 2006.

References 207

[72] B. Polyak, Introduction to Optimization. 07 2020.

[73] Y. Nesterov, Introductory lectures on convex optimization: A basic
course, vol. 87. Springer Science & Business Media, 2013.

[74] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.

[75] J. N. Tsitsiklis and Z.-Q. Luo, “Communication complexity of convex
optimization,” Journal of Complexity, vol. 3, no. 3, pp. 231–243, 1987.

[76] N. Li, L. Chen, and S. H. Low, “Optimal demand response based on
utility maximization in power networks,” in 2011 IEEE power and energy
society general meeting, pp. 1–8, IEEE, 2011.

[77] R. Madan and S. Lall, “Distributed algorithms for maximum lifetime
routing in wireless sensor networks,” IEEE Transactions on wireless
communications, vol. 5, no. 8, pp. 2185–2193, 2006.

[78] S. H. Low and D. E. Lapsley, “Optimization flow control. i. basic al-
gorithm and convergence,” IEEE/ACM Transactions on Networking
(TON), vol. 7, no. 6, pp. 861–874, 1999.

[79] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition: A mathematical theory of network archi-
tectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312, 2007.

[80] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[81] C. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-
side primary frequency control in power systems,” IEEE Transactions
on Automatic Control, vol. 59, no. 5, pp. 1177–1189, 2014.

[82] S. Magnússon, C. Enyioha, N. Li, C. Fischione, and V. Tarokh, “Conver-
gence of limited communications gradient methods,” IEEE Transactions
on Automatic Control, 2017.

[83] S. Magnússon, C. Enyioha, K. Heal, N. Li, C. Fischione, and V. Tarokh,
“Distributed resource allocation using one-way communication with ap-
plications to power networks,” in 2016 Annual Conference on Informa-
tion Science and Systems (CISS), pp. 631–636, IEEE, 2016.

[84] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous SGD,” arXiv preprint arXiv:1604.00981, 2016.

208 References

[85] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu, “Asynchronous
stochastic gradient descent for DNN training,” in 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pp. 6660–
6663, IEEE, 2013.

[86] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed
SGD,” in International Conference on Artificial Intelligence and Statis-
tics, pp. 803–812, PMLR, 2018.

[87] A. Aytekin, M. Biel, and M. Johansson, “POLO: a policy-based opti-
mization library,” arXiv preprint arXiv:1810.03417, 2018.

[88] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Advances in Neural Informa-
tion Processing Systems, pp. 2737–2745, 2015.

[89] Y. Ma, F. Rusu, and M. Torres, “Stochastic gradient descent on highly-
parallel architectures,” arXiv preprint arXiv:1802.08800, 2018.

[90] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, pp. 1273–1282, PMLR,
2017.

[91] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on Non-IID data,” in International Conference on Learning
Representations, 2020.

[92] S. U. Stich, “Local SGD converges fast and communicates little,” in
International Conference on Learning Representations, 2019.

[93] A. Khaled, K. Mishchenko, and P. Richtárik, “First analysis of local GD
on heterogeneous data,” arXiv preprint arXiv:1909.04715, 2019.

[94] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of Ma-
chine Learning and Systems, vol. 2, pp. 429–450, 2020.

[95] W.Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learn-
ing,” in Advances in neural information processing systems, pp. 1509–
1519, 2017.

[96] H. Wang, S. Sievert, Z. Charles, D. Papailiopoulos, and S. Wright,
“Atomo: Communication-efficient learning via atomic sparsification,”
arXiv preprint arXiv:1806.04090, 2018.

References 209

[97] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signSGD: Compressed optimisation for non-convex problems,” pp. 560–
569, 2018.

[98] R. Zhang and J. Kwok, “Asynchronous distributed ADMM for consen-
sus optimization,” in International Conference on Machine Learning,
pp. 1701–1709, 2014.

[99] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication ef-
ficient distributed machine learning with the parameter server,” in Ad-
vances in Neural Information Processing Systems, pp. 19–27, 2014.

[100] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental gra-
dient method with a constant step size,” SIAM Journal on Optimization,
vol. 18, no. 1, pp. 29–51, 2007.

[101] P. Tseng and S. Yun, “Incrementally updated gradient methods for con-
strained and regularized optimization,” J. Optimization Theory and Ap-
plications, vol. 160, no. 3, pp. 832–853, 2014.

[102] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization:
analysis, algorithms, and engineering applications, vol. 2. Siam, 2001.

[103] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Advances in
Neural Information Processing Systems, vol. 31, 2018.

[104] S. Khirirat, M. Johansson, and D. Alistarh, “Gradient compression for
communication-limited convex optimization,” in 2018 IEEE Conference
on Decision and Control (CDC), pp. 166–171, IEEE, 2018.

[105] C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré, “Taming the wild:
A unified analysis of hogwild-style algorithms,” in Advances in neural
information processing systems, pp. 2674–2682, 2015.

[106] M. F. Balcan, A. Blum, S. Fine, and Y. Mansour, “Distributed learn-
ing, communication complexity and privacy,” in Conference on Learning
Theory, pp. 26–1, 2012.

[107] J. N. Tsitsiklis and Z.-Q. Luo, “Communication complexity of convex
optimization,” Journal of Complexity, vol. 3, no. 3, pp. 231–243, 1987.

[108] Y. Arjevani and O. Shamir, “Communication complexity of distributed
convex learning and optimization,” in Advances in neural information
processing systems, pp. 1756–1764, 2015.

210 References

[109] A. Bellet, Y. Liang, A. B. Garakani, M.-F. Balcan, and F. Sha, “A dis-
tributed frank-wolfe algorithm for communication-efficient sparse learn-
ing,” in Proceedings of the 2015 SIAM International Conference on Data
Mining, pp. 478–486, SIAM, 2015.

[110] J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke, “Co-
ordinate descent converges faster with the gauss-southwell rule than
random selection,” in International Conference on Machine Learning,
pp. 1632–1641, 2015.

[111] E. J. Candès and B. Recht, “Exact matrix completion via convex op-
timization,” Foundations of Computational mathematics, vol. 9, no. 6,
p. 717, 2009.

[112] B. T. Polyak, “Introduction to optimization. translations series in math-
ematics and engineering,” Optimization Software, 1987.

[113] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, “Mini-batch gra-
dient descent: Faster convergence under data sparsity,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pp. 2880–2887,
IEEE, 2017.

[114] A. Aytekin, H. R. Feyzmahdavian, and M. Johansson, “Asynchronous
incremental block-coordinate descent,” in Communication, Control,
and Computing (Allerton), 2014 52nd Annual Allerton Conference on,
pp. 19–24, IEEE, 2014.

[115] Sarit Khirirat, Mikael Johansson, and Dan Alistarh, “Gradient com-
pression for communication-limited convex optimization,” in 2018 IEEE
Conference on Decision and Control (CDC), pp. 166–171, Dec 2018.

[116] S. Magnússon, H. Shokri-Ghadikolaei, and N. Li, “On maintaining lin-
ear convergence of distributed learning and optimization under limited
communication,” in 2019 53rd Asilomar Conference on Signals, Systems,
and Computers, pp. 432–436, IEEE, 2019.

[117] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, “Distributed
learning with compressed gradients,” arXiv preprint arXiv:1806.06573,
2018.

[118] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic opti-
mization and gossip algorithms with compressed communication,” in
International Conference on Machine Learning, pp. 3478–3487, PMLR,
2019.

[119] T. T. Doan, S. T. Maguluri, and J. Romberg, “Fast convergence rates
of distributed subgradient methods with adaptive quantization,” IEEE
Transactions on Automatic Control, 2020.

References 211

[120] A. Reisizadeh, H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani,
“Robust and communication-efficient collaborative learning,” in Ad-
vances in Neural Information Processing Systems, pp. 8386–8397, 2019.

[121] X. Zhang, J. Liu, Z. Zhu, and E. S. Bentley, “Compressed distributed
gradient descent: Communication-efficient consensus over networks,”
in IEEE INFOCOM 2019-IEEE Conference on Computer Communi-
cations, pp. 2431–2439, IEEE, 2019.

[122] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “An exact
quantized decentralized gradient descent algorithm,” IEEE Transactions
on Signal Processing, vol. 67, no. 19, pp. 4934–4947, 2019.

[123] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[124] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and
C. Renggli, “The convergence of sparsified gradient methods,” in Ad-
vances in Neural Information Processing Systems, pp. 5977–5987, 2018.

[125] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated
quantized SGD and its applications to large-scale distributed optimiza-
tion,” in International Conference on Machine Learning, pp. 5325–5333,
PMLR, 2018.

[126] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with mem-
ory,” in Advances in Neural Information Processing Systems, pp. 4452–
4463, 2018.

[127] S. Praneeth Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error
Feedback Fixes SignSGD and other Gradient Compression Schemes,”
arXiv preprint arXiv:1901.09847, 2019.

[128] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE Journal on Selected Areas in Commu-
nications, vol. 23, no. 4, pp. 798–808, 2005.

[129] S. Zhu, M. Hong, and B. Chen, “Quantized consensus ADMM for multi-
agent distributed optimization,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2016 IEEE International Conference on, pp. 4134–4138,
IEEE, 2016.

[130] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Train-
ing quantized nets: A deeper understanding,” in Advances in Neural
Information Processing Systems, pp. 5811–5821, 2017.

212 References

[131] C. De Sa, M. Leszczynski, J. Zhang, A. Marzoev, C. R. Aberger,
K. Olukotun, and C. Ré, “High-accuracy low-precision training,” arXiv
preprint arXiv:1803.03383, 2018.

[132] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson, “An asynchronous
mini-batch algorithm for regularized stochastic optimization,” IEEE
Transactions on Automatic Control, vol. 61, no. 12, pp. 3740–3754, 2016.

[133] S. Khirirat, S. Magnússon, and M. Johansson, “Convergence bounds
for compressed gradient methods with memory based error compensa-
tion,” in ICASSP 2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 2857–2861, IEEE,
2019.

[134] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new benchmark
collection for text categorization research,” Journal of machine learning
research, vol. 5, no. Apr, pp. 361–397, 2004.

[135] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu, “Doublesqueeze: Paral-
lel stochastic gradient descent with double-pass error-compensated com-
pression,” in International Conference on Machine Learning, pp. 6155–
6165, PMLR, 2019.

[136] H. Tang, X. Lian, S. Qiu, L. Yuan, C. Zhang, T. Zhang, and J. Liu,
“DeepSqueeze: Decentralization meets error-compensated compression,”
arXiv preprint arXiv:1907.07346, 2019.

[137] J. Nocedal and S. Wright, Numerical optimization. Springer Science &
Business Media, 2006.

[138] P. Xu, F. Roosta, and M. W. Mahoney, “Newton-type methods for non-
convex optimization under inexact hessian information,” Mathematical
Programming, pp. 1–36, 2019.

[139] A. E. Beaton and J. W. Tukey, “The fitting of power series, meaning
polynomials, illustrated on band-spectroscopic data,” Technometrics,
vol. 16, no. 2, pp. 147–185, 1974.

[140] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[141] A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent op-
timal for strongly convex stochastic optimization,” in Proceedings of the
29th International Coference on International Conference on Machine
Learning, pp. 1571–1578, 2012.

References 213

[142] L. Nguyen, P. H. Nguyen, M. Dijk, P. Richtárik, K. Scheinberg, and
M. Takác, “SGD and hogwild! convergence without the bounded gra-
dients assumption,” in International Conference on Machine Learning,
pp. 3750–3758, PMLR, 2018.

[143] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with
the stochastic average gradient,” Mathematical Programming, vol. 162,
no. 1-2, pp. 83–112, 2017.

[144] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-
Julien, “Painless stochastic gradient: Interpolation, line-search, and con-
vergence rates,” in Advances in Neural Information Processing Systems,
pp. 3732–3745, 2019.

[145] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[146] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[147] J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier, “An energy effi-
cient IoT data compression approach for edge machine learning,” Future
Generation Computer Systems, vol. 96, pp. 168–175, 2019.

[148] M. A. Razzaque, C. Bleakley, and S. Dobson, “Compression in wireless
sensor networks: A survey and comparative evaluation,” ACM Transac-
tions on Sensor Networks (TOSN), vol. 10, no. 1, pp. 1–44, 2013.

[149] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “FetchSGD: Communication-efficient feder-
ated learning with sketching,” in International Conference on Machine
Learning, pp. 8253–8265, PMLR, 2020.

[150] R. Pathak and M. J. Wainwright, “Fedsplit: an algorithmic framework
for fast federated optimization,” in Advances in Neural Information Pro-
cessing Systems, vol. 33, 2020.

[151] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with mem-
ory,” in Advances in Neural Information Processing Systems, pp. 4447–
4458, 2018.

[152] S. Khirirat, S. Magnússon, and M. Johansson, “Compressed gradient
methods with hessian-aided error compensation,” IEEE Transactions
on Signal Processing, vol. 69, pp. 998–1011, 2020.

214 References

[153] J. Eckstein, Splitting methods for monotone operators with applications
to parallel optimization. PhD thesis, Massachusetts Institute of Tech-
nology, 1989.

[154] S. Zhu and B. Chen, “Quantized consensus by the ADMM: Probabilistic
versus deterministic quantizers,” IEEE Transactions on Signal Process-
ing, vol. 64, no. 7, pp. 1700–1713, 2015.

[155] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[156] S. Pu and A. Nedić, “Distributed stochastic gradient tracking methods,”
Mathematical Programming, pp. 1–49, 2020.

[157] T. Vogels, S. P. Karimireddy, and M. Jaggi, “Practical low-rank com-
munication compression in decentralized deep learning,” Advances in
Neural Information Processing Systems, vol. 33, pp. 14171–14181, 2020.

[158] S. Magnússon, H. Shokri-Ghadikolaei, and N. Li, “On maintaining linear
convergence of distributed learning and optimization under limited com-
munication,” IEEE Transactions on Signal Processing, vol. 68, pp. 6101–
6116, 2020.

[159] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 5693–5700, 2019.

[160] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for the
design and analysis of local-update sgd algorithms,” Journal of Machine
Learning Research, vol. 22, no. 213, pp. 1–50, 2021.

[161] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Proceedings of
Machine Learning and Systems (A. Talwalkar, V. Smith, and M. Za-
haria, eds.), vol. 1, pp. 212–229, 2019.

[162] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A
distributed synchronous SGD algorithm with global top-k sparsification
for low bandwidth networks,” arXiv preprint arXiv:1901.04359, 2019.

[163] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed sgd with communication-efficient gradient sparsification,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pp. 3411–3417, 7 2019.

References 215

[164] A. Kozłowski and J. Sosnowski, “Analysing efficiency of IPv6 packet
transmission over 6LoWPAN network,” in Photonics Applications in
Astronomy, Communications, Industry, and High Energy Physics Ex-
periments 2017 (R. S. Romaniuk and M. Linczuk, eds.), pp. 456 – 467,
SPIE, 2017.

[165] D. P. Bertsekas, Nonlinear programming: 2nd Edition. Athena Scientific,
1999.

[166] Y. Nesterov, Lectures on convex optimization, vol. 137. Springer, 2018.

[167] S. Schaible, Fractional programming, pp. 605–608. Boston, MA: Springer
US, 2013.

[168] M. Avriel, W. E. Diewert, S. Schaible, and I. Zang, Generalized concavity.
Society for Industrial and Applied Mathematics, 2010.

[169] E. Moulines and F. R. Bach, “Non-asymptotic analysis of stochastic
approximation algorithms for machine learning,” in Advances in Neural
Information Processing Systems, pp. 451–459, 2011.

[170] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM Journal on
optimization, vol. 19, no. 4, pp. 1574–1609, 2009.

[171] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[172] A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent op-
timal for strongly convex stochastic optimization,” in Proceedings of the
29th International Coference on International Conference on Machine
Learning, pp. 1571–1578, 2012.

[173] S. Lacoste-Julien, M. Schmidt, and F. Bach, “A simpler approach to
obtaining an o (1/t) convergence rate for the projected stochastic sub-
gradient method,” arXiv preprint arXiv:1212.2002, 2012.

[174] O. Shamir and T. Zhang, “Stochastic gradient descent for non-smooth
optimization: Convergence results and optimal averaging schemes,” in
International conference on machine learning, pp. 71–79, 2013.

[175] A. Albasyoni, M. Safaryan, L. Condat, and P. Richtárik, “Optimal gradi-
ent compression for distributed and federated learning,” arXiv preprint
arXiv:2010.03246, 2020.

[176] C. Karakus, Y. Sun, S. N. Diggavi, and W. Yin, “Redundancy techniques
for straggler mitigation in distributed optimization and learning.,” Jour-
nal of Machine Learning Research, vol. 20, no. 72, pp. 1–47, 2019.

216 References

[177] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” arXiv preprint arXiv:1802.03475, 2018.

[178] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of
convex functions,” Foundations of Computational Mathematics, vol. 17,
no. 2, pp. 527–566, 2017.

[179] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for
nonconvex stochastic programming,” SIAM Journal on Optimization,
vol. 23, no. 4, pp. 2341–2368, 2013.

[180] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1765–1773, 2017.

[181] A. Khaled, O. Sebbouh, N. Loizou, R. M. Gower, and P. Richtárik,
“Unified analysis of stochastic gradient methods for composite convex
and smooth optimization,” arXiv preprint arXiv:2006.11573, 2020.

[182] O. Sebbouh, R. M. Gower, and A. Defazio, “Almost sure convergence
rates for stochastic gradient descent and stochastic heavy ball,” in Con-
ference on Learning Theory, pp. 3935–3971, PMLR, 2021.

[183] S. Khirirat, S. Magnússon, A. Aytekin, and M. Johansson, “A flexible
framework for communication-efficient machine learning,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8101–8109,
May 2021.

[184] H. Ye, Z. Huang, C. Fang, C. J. Li, and T. Zhang, “Hessian-aware zeroth-
order optimization for black-box adversarial attack,” arXiv preprint
arXiv:1812.11377, 2018.

[185] V. Kungurtsev and F. Rinaldi, “A zeroth order method for stochastic
weakly convex optimization,” Computational Optimization and Applica-
tions, pp. 1–23, 2021.

[186] D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of
weakly convex functions,” SIAM Journal on Optimization, vol. 29, no. 1,
pp. 207–239, 2019.

[187] S. Pesme, A. Dieuleveut, and N. Flammarion, “On convergence-
diagnostic based step sizes for stochastic gradient descent,” in Interna-
tional Conference on Machine Learning, pp. 7641–7651, PMLR, 2020.

[188] M. Sordello, H. He, and W. Su, “Robust learning rate selection
for stochastic optimization via splitting diagnostic,” arXiv preprint
arXiv:1910.08597, 2019.

References 217

[189] H. Lang, L. Xiao, and P. Zhang, “Using statistics to automate stochas-
tic optimization,” Advances in Neural Information Processing Systems,
vol. 32, pp. 9540–9550, 2019.

[190] P. Zhang, H. Lang, Q. Liu, and L. Xiao, “Statistical adaptive stochastic
gradient methods,” arXiv preprint arXiv:2002.10597, 2020.

[191] B. Chmiel, L. Ben-Uri, M. Shkolnik, E. Hoffer, R. Banner, and
D. Soudry, “Neural gradients are near-lognormal: improved quantized
and sparse training,” arXiv preprint arXiv:2006.08173, 2020.

[192] C. Paquette, K. Lee, F. Pedregosa, and E. Paquette, “SGD in the large:
Average-case analysis, asymptotics, and stepsize criticality,” in Confer-
ence on Learning Theory, pp. 3548–3626, PMLR, 2021.

[193] C. Paquette and E. Paquette, “Dynamics of stochastic momentum meth-
ods on large-scale, quadratic models,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[194] M. Velikanov and D. Yarotsky, “Explicit loss asymptotics in the gradi-
ent descent training of neural networks,” in Thirty-Fifth Conference on
Neural Information Processing Systems, 2021.

[195] M. Khodak, R. Tu, T. Li, L. Li, M.-F. Balcan, V. Smith, and A. Tal-
walkar, “Federated hyperparameter tuning: Challenges, baselines, and
connections to weight-sharing,” arXiv preprint arXiv:2106.04502, 2021.

[196] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge comput-
ing,” in IEEE INFOCOM 2021-IEEE Conference on Computer Commu-
nications, pp. 1–10, IEEE, 2021.

[197] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proceed-
ings of the 22nd ACM SIGSAC conference on computer and communi-
cations security, pp. 1322–1333, 2015.

[198] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” in 2017 IEEE Sympo-
sium on Security and Privacy (SP), pp. 3–18, IEEE, 2017.

[199] F. Farokhi, “Gradient sparsification can improve performance of
differentially-private convex machine learning,” in 2021 60th IEEE Con-
ference on Decision and Control (CDC), pp. 1695–1700, IEEE, 2021.

[200] T. Li, Z. Liu, V. Sekar, and V. Smith, “Privacy for free: Communication-
efficient learning with differential privacy using sketches,” arXiv preprint
arXiv:1911.00972, 2019.

218 References

[201] A. Abdi and F. Fekri, “Nested dithered quantization for communica-
tion reduction in distributed training,” arXiv preprint arXiv:1904.01197,
2019.

