
http://www.diva-portal.org

This is the published version of a paper published in .

Citation for the original published paper (version of record):

Baudry, B., Monperrus, M. (2021)
Testing beyond coverage
Increment, Feb(16)

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-309039

B E N O I T B A U D RY A N D M A R T I N M O N P E R R U S

Testing beyond coverage
Pseudo-tested methods can be a reliability risk. Here, the authors

explain how they developed a methodology and tool to uncover them

in Java applications.

PA R T O F

I S S U E 1 6

F E B R U A RY 2 0 2 1
Reliability

Development teams typically rely on code coverage to estimate how

much they can trust their application’s test suite. Covered code is

considered more trustworthy than uncovered code, so the higher the

code coverage, the stronger the trust.

But this sense of trust can be misleading. While tests can’t detect bugs in

unexecuted code, they can also miss bugs in code they do cover. For

example, the following image highlights 925 test cases in the test suite of

Apache’s Commons Collections, which all cover part of a method

called ensureCapacity. Yet not a single test fails when

the ensureCapacity body is stripped out. (We’ll return to the Commons

Collections example later.) These frustrating scenarios can occur when

test case assertions are too weak to fully assess the program’s reliability.

This represents a critical risk to the software: A developer could

potentially introduce a change to ensureCapacity that breaks the

application in production because the test suite wasn’t able to catch it.

1

https://increment.com/reliability/testing-beyond-coverage/#authors
https://increment.com/reliability/testing-beyond-coverage/#authors
https://increment.com/reliability/testing-beyond-coverage/#authors
https://increment.com/reliability/testing-beyond-coverage/#authors
https://increment.com/reliability/testing-beyond-coverage/#authors
https://increment.com/reliability/testing-beyond-coverage/#authors
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/
https://increment.com/reliability/

In this article, we’ll evaluate the trust we as software developers place in

automatic unit testing, and present a new method and tool to help make

software test suites more trustworthy—which can make the software

itself more reliable.

These 925 test cases cover the Apache Commons Collections method ensureCapacity,

which ensures the map is large enough to contain the required number of elements.

A tale from the pseudo-tested trenches

Pseudo-tested methods can lure development

teams into a false sense of security.

2

Pseudo-tested methods are methods that are covered by the test suite but

whose behavior is not properly assessed by any test case. They can lure

development teams into a false sense of security, and they represent a

serious threat to constructing reliable applications. We’ve found them in

a variety of popular software projects,1 including Apache Commons

Collections (in our estimation, the coolest collection library out

there), PDFBox (the Swiss Army knife of PDF generating and editing

tools), and the SDK for Amazon Web Services.

The COVID-19 pandemic dramatically altered the way many people

around the world work and attend school. The demand for reliable

videoconferencing systems has soared as a result. Along with Zoom and

Microsoft Teams, the videoconferencing solution Jitsi Meet gained a

significant number of users, who appreciated the system’s end-to-end

encryption, open-source codebase, and concise security and privacy

policies, among other key features. With so many people depending on

Jitsi Meet to work and learn, a strong test suite is essential to keep its

application reliable and secure.

After reporting these pseudo-tested methods to Jitsi on GitHub, Jitsi’s developers

refactored the code to remove the pseudo-tested methods. See pull

requests #638 to #644.

Yet in October 2020, we analyzed Jitsi Meet’s test suite and identified

several pseudo-tested methods. For instance, we found one

called getEnforcedVideobridge in a module responsible for managing

media sessions between participants. This method’s code is covered by 11

test cases spread over five test classes, yet no test case calls the method

directly. This suggests the test suite is not accurately assessing the

method’s behavior.

public Jid getEnforcedVideobridge(){1

3

https://github.com/jitsi/jicofo/pull/638
https://github.com/jitsi/jicofo/pull/638
https://github.com/jitsi/jicofo/pull/644
https://github.com/jitsi/jicofo/pull/644

Code for the pseudo-tested method getEnforcedVideobridge in Jitsi Meet

Analyzing getEnforcedVideobridge further, we found that when its body

is entirely removed (replaced by return null), none of the 11 test cases

failed, making it a pseudo-tested method. If a commit

breaks getEnforcedVideobridge’s behavior, no test case would capture

the problem before integration testing—or, worse, production.

We were able to identify these problems in Jitsi Meet because its code is

open source, but we suspect similar problems may exist in the test suites

of proprietary systems such as Zoom. (We’d happily invite the test

engineers who prove us wrong to visit us in Stockholm!)

try {

 String enforcedBridge = properties.get(PNAME_ENFORCED_BRIDGE);

if (isBlank(enforcedBridge)) {

return null;

 }

return JidCreate.from(enforcedBridge);

 }

catch (XmppStringprepException e) {

 logger.error("Invalid JID for enforced videobridge", e);

return null;

 }

}

Introducing the Descartes method

Mutation testing is a technique that measures an application test suite’s quality. It

generates different buggy variants of the application and then, by running the test suite on

each variant, assesses the test suite’s ability to detect them. While the test coverage metric

can determine which parts of the code the test suite is able to reach, mutation testing can

also determine which bugs the assertions in the test suite catch. The Descartes method can

be considered an extreme form of mutation testing, since each buggy variant consists of

4

removing a method’s whole body.

We maintain a tool for finding pseudo-tested methods in Java called

Descartes. It’s integrated into the Maven toolchain, which makes it easy

to use for most Java projects. It’s open source, and we provide support for

it on GitHub.

Descartes is built on a methodology we’ve developed to identify pseudo-

tested code. The idea is simple: Remove a method’s body with automated

code transformation and run the tests again. Think of it as a type

of mutation testing with an extreme mutation operator (remove the full

body of a method).

Here’s how it works:

M E T H O D T YP E R E T U R N E D VALU E S

boolean true, false

byte, short, long, int 0, 1

float, double 0.0, 0.1

First, Descartes finds all methods in a program that are covered by

the test suite.

1

Next, it eliminates uninteresting methods such as trivial setters and

getters.

2

Then, one method body at a time, it empties each method and runs

the test suite again. If a method returns no value, its body is basically

stripped out. If a method is expected to return a value, Descartes

generates a few variants that return predefined values, as shown in

the table below.

3

5

https://github.com/STAMP-project/pitest-descartes/
https://github.com/STAMP-project/pitest-descartes/
https://github.com/STAMP-project/pitest-descartes/
https://github.com/STAMP-project/pitest-descartes/

M E T H O D T YP E R E T U R N E D VALU E S

char '', 'A'

string "", "A"

T[] new T[]

reference types null

void -

When the test suite runs on a version of the program that includes an

empty, covered method (the transformed one), there are two

possible outcomes:

Descartes’ final output is a list of improperly tested methods. These are

concrete targets around which developers can concentrate their next

testing efforts, or good leverage for convincing managers to allocate

some budget for testing and reliability.

If no test case fails, then the method is pseudo-tested. This represents

a reliability risk for the software system in question, and Descartes

reports it to the developer.

1

If at least one test case fails, that’s good news. It means the method is

specified by at least one assertion and is protected against the

introduction of unintentional errors. No action needs to be taken.

2

When pseudo-testing meets observability

Our group of software engineers and PhD students has used Descartes on

open-source and commercial projects, including the Amazon Web

Services SDK and the enterprise wiki system XWiki. We’ve found that

6

remediating pseudo-tested methods can sometimes be an observability

challenge for engineers. Compensating for the weaknesses of test oracles

is not straightforward: There are parts of software systems that simply

cannot be observed, due to visibility and encapsulation mechanisms as

well as nonfunctional properties.

VISIBILITY AND ENCAPSULATION

Some pseudo-tested methods, for instance, are private. In these cases,

although the developer may be able to write an assertion to specify the

behavior, they have to substitute a direct call (which is forbidden by the

runtime) with an indirect call via the public API. This is not always easy,

though it’s possible in programming languages with little visibility

enforcement, or in popular dynamic languages such as JavaScript.

METHODS THAT IMPLEMENT NONFUNCTIONAL

REQUIREMENTS

We’ve also noticed that many pseudo-tested methods are related to

nonfunctional requirements such as optimization (e.g., handling a

cache) and security (e.g., checking input data’s validity). Discussing these

cases with lead developers, we’ve learned that these methods, which are

not central to the application’s functional features, are hard to test.

Consider Apache’s Commons Collections, one of the leading Java

libraries for handling collections. It includes an abstract class for

HashMap, with code to ensure the map is large enough to contain the

required number of elements. The method is aptly

named ensureCapacity. Commons Collections is tested in accordance

with the Apache Software Foundation’s notably high standards: When

running the whole test suite on the library, ensureCapacity is invoked

over 11,000 times and covered by more than 900 test cases. Running

Descartes on it, however, we found that the body of ensureCapacity can

7

https://increment.com/testing/i-test-in-production/
https://increment.com/testing/i-test-in-production/
https://increment.com/testing/i-test-in-production/
https://increment.com/testing/i-test-in-production/

be completely deleted without breaking any test case. We found a total of

40 pseudo-tested methods out of 2,729, or approximately 3 percent. What

a blast!

We reached out to Commons Collections’ developers on GitHub to let them know about this

weakly tested method. They acknowledged the issue and added a stronger assertion to the

test suite, which makes ensureCapacity better tested.

After analyzing it further, we discovered that ensureCapacity contains

purely nonfunctional code, which would be catastrophic to break. With

only coverage information to go on, Commons Collections’

developers weren’t able to detect this problem. This suggests projects

with high reliability requirements, which include ensuring the quality of

nonfunctional properties, should implement tooling to detect pseudo-

tested methods.

Code for the pseudo-tested method AbstractHashedMap#ensureCapacity in

protected void ensureCapacity(final int newCapacity) {

    final int oldCapacity = data.length;

    if (newCapacity <= oldCapacity) {

          return;

    }

    if (size == 0) {

          threshold = calculateThreshold(newCapacity, loadFactor);

          data = new HashEntry[newCapacity];

    }

    else {

          //Rehash code

      ...

          threshold = calculateThreshold(newCapacity, loadFactor);

          data = newEntries;

    }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

8

https://github.com/apache/commons-collections/pull/198
https://github.com/apache/commons-collections/pull/198
https://github.com/apache/commons-collections/pull/198
https://github.com/apache/commons-collections/pull/198

Commons Collections

Take Descartes for a test drive

We believe the Descartes methodology is unique in the way it emphasizes

methods as a unit of feedback for developers. The granularity of a

method makes it well-suited to providing actionable feedback: Descartes

essentially tells the developer, “Look! There’s a testing problem with this

method,” and they can act accordingly. At the same time, it’s not as

overwhelming as reporting problems at the line level. Overall, developers

and testers can easily understand the targeted feedback Descartes

provides, and can take action to consolidate assertions or add tests to

cover edge cases.

We hope this discussion of pseudo-tested methods will motivate you to

investigate how your own testing processes can be improved and made

more trustworthy. If you’re working on a Java project, perhaps you’ll find

Descartes a helpful place to start.

1 Oscar Luis Vera-Pérez, Benjamin Danglot, Martin Monperrus, and Benoit Baudry, “A

Comprehensive Study of Pseudo-tested Methods,” Empirical Software Engineering (2018):

1–33.
AB O U T T H E AU T H O R

Benoit Baudry and Martin Monperrus are professors of software

engineering at KTH Royal Institute of Technology in Stockholm. They

work with their group of graduate students to develop novel tools to

9

https://hal.inria.fr/hal-01867423v2/file/main.pdf
https://hal.inria.fr/hal-01867423v2/file/main.pdf
https://hal.inria.fr/hal-01867423v2/file/main.pdf
https://hal.inria.fr/hal-01867423v2/file/main.pdf

build reliable software.

TO P I C S

Learn Something New

@incrementmag

incrementmag

RSS Feed

AB O U T

Increment is a print and digital magazine about how teams build and operate software

systems at scale. Learn more

WO R K WI T H U S

Interested in joining the team at Stripe? View job openings

© 2022 Increment Published by Stripe Privacy policy

10

https://increment.com/topics/learn/
https://increment.com/topics/learn/
https://twitter.com/incrementmag
https://twitter.com/incrementmag
https://twitter.com/incrementmag
https://twitter.com/incrementmag
https://twitter.com/incrementmag
https://twitter.com/incrementmag
https://twitter.com/incrementmag
https://facebook.com/incrementmag
https://facebook.com/incrementmag
https://facebook.com/incrementmag
https://facebook.com/incrementmag
https://facebook.com/incrementmag
https://facebook.com/incrementmag
https://facebook.com/incrementmag
https://increment.com/feed.xml
https://increment.com/feed.xml
https://increment.com/feed.xml
https://increment.com/feed.xml
https://increment.com/feed.xml
https://increment.com/feed.xml
https://increment.com/feed.xml
https://increment.com/about/
https://increment.com/about/
https://stripe.com/jobs
https://stripe.com/jobs
https://stripe.com/
https://stripe.com/
https://stripe.com/privacy
https://stripe.com/privacy

