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Abstract

Transcriptomics techniques, whether in the form of bulk, single cell/nuclei, or spatial
methods have fueled a substantial expansion of our knowledge about the biological sys-
tems within and around us. In addition, the rate of innovation has accelerated over the last
decade, resulting in a multitude of technological advances and new methods for generation
of transcriptomics data. In 2009, isolating and characterizing the transcriptome of a single
cell was seen as a major achievement, ten years later, in 2019, studies surveying a hundred
thousand cells were commonplace. The field of spatial transcriptomics went through an
equally transformative phase; from struggling with simultaneous characterization of a few
targets, to seamlessly provide spatially resolved maps of the full transcriptome. Inevitably,
we’re approaching an inflection point where the generation of data is no longer the bottle-
neck, but rather its analysis. Alas, with standardized commercial products, high-quality
spatial transcriptomics data can now be generated en masse. Hence, questions about data
analysis have started to replace those of data generation. The work in this thesis seeks
to address some of these emerging questions; the five articles it encompasses presents new
methods for analysis of spatial transcriptomics data and examples of their application.
Furthermore, it contains an introduction to current experimental and computational spa-
tial transcriptomics techniques, as well as a section about data modeling.

In Article I, a probabilistic model for integration of single cell/nuclei and spatial tran-
scriptomics data is presented. In short, the method allows for mixed signals – present in
certain spatial transcriptomics platforms – to be decomposed into contributions from bio-
logically relevant cell types or states derived from single cell/nuclei data. The model was
implemented in code as a software, stereoscope, which is open source and publicly avail-
able. The same policy of open source and high transparency holds true for all software or
code associated with this thesis. The stereoscope method has been used in several studies,
one example being Article II, where we examined the spatial transcriptomics landscape
of HER2-positive breast cancer patients. By integrating single cell and spatial transcrip-
tomics data, several intriguing co-localization signals emerged. These signals allowed us to
identify a signature for tertiary lymphoid structures and evidence of a trifold interaction
involving: type I interferon signals, a T-cell subset, and a macrophage subset. However,
the work also included other forms of explorative data analysis, such as unsupervised
expression-based clustering. The clusters from this analysis, once annotated, exhibited
high concordance with annotations provided by a pathologist and the tissue morphology.
Taken together, this makes a compelling case for the use of spatial transcriptomics in the
age of “digital pathology.” Finally, we also derived “core signatures” from the expression-
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based clusters, representing common expression profiles shared across the patients.

In Article III, we present a computational method, sepal, designed to identify genes
with distinct spatial patterns, often referred to as “spatially variable genes.” The method
uses Fick’s second law to simulate diffusion of transcripts in the tissue, measuring the time
until convergence (a spatially uniform and homogeneous state). It then ranks the genes by
their “diffusion time.” The assumption being that genes exhibiting strong spatial patterns
will take longer time to converge compared to genes with no pattern, thus relating the
diffusion time to the degree of spatial structure.

Article IV constitutes a study of the mouse liver using spatial transcriptomics. As be-
fore, we employed stereoscope for the purpose of single cell integration, but realized more
tailored computational tools – towards the specific tissue – were required to address cer-
tain questions. Thus, we developed two computational methods, one devoted to vein type
identity prediction, the other enabling a change of data representation. In essence, to pre-
dict the vein identities, we first assembled spatially weighted composite expression profiles
from – to the vein – neighboring observations. Then, a logistic classifier was trained using
the composite profiles. Once the model was trained, it could be used to assign vein type
identities to ambiguous or unannotated veins. In the second method, the two-dimensional
spatial data was recast into a more informative one-dimensional representation by treating
gene expression as a function of an observation’s distance to its nearest vein structure.

The final work, Article V, expands the idea of recasting data into a more informative
or helpful representation. More precisely, we present a method, eggplant, that allows the
user to transfer spatial transcriptomics data from multiple sources to a common coordi-
nate framework (CCF). Transfer of information to a CCF means spatial signals can be
compared across conditions and time points, unlocking a plethora of valuable downstream
analyses. For example, we perform spatiotemporal modeling of a synthetic system, and
introduce the concept of “spatial arithmetics” to study local expression differences. With
a growing corpus of spatial trancsriptomics data and ambitious international efforts like
the Human Cell Atlas, we deem these sort of methods essential to leverage the data’s full
potential.
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Sammanfattning

Transkriptomiktekniker, både i form av bulk, single cell/nuclei och spatiala metoder har
tillåtit oss att utvidga vår kunskap om de biologiska system omkring likväl som inom
oss. Under det senaste decenniet så har mängden innovationer inom området ökat på ett
lavinartat sätt, och en uppsjö teknologiska avancemang har gjorts. Resultatet av detta
är flertalet nya experimentella metoder. År 2009 så sågs isolering och karaktärisering av
en enda cells transkriptom som ett stort framsteg, tio år senare (2019) så var studier med
kartläggning av transkriptomet hos var och en av hundratusentals celler närmast osen-
sationellt. Fältet som benämns spatial transcriptomics (sv. spatial transkriptomik) har
genomgått en likvärdigt transformativ fas; det har gått från att kämpa med att uppskatta
uttrycket av ett fåtal gener samtidigt till att kunna producera en spatial bild av samtliga
gener i transkriptomet. Inte oväntat så närmar vi oss en inflektionspunkt där analys,
istället för produktion av data, är den begränsande faktorn. Med standardiserade kom-
mersiella produkter så kan högkvalitativ spatial transcriptomics data effektivt genereras
i stor skala. Således har frågor kring analys av data börjat ersätta dem som berör dess
framställning. Denna avhandling ämnar behandla vissa av dessa nya frågor; de fem ar-
tiklarna som den innefattar presenterar nya metoder för analys av spatial transcriptomics
data samt exempel på deras applikationsområden. Avhandlingen ger även en överskådlig
beskrivning av existerande metoder för produktion och analys av spatial transcriptomics
data samt innehåller ett avsnitt om datamodellering.

I Artikel I så presenteras en probabilistisk modell för integration av single cell/nuclei
och spatial transcriptomics data. Metoden möjliggör en dekomposering av de blandade
signaler som är karaktäristiska för data från vissa spatial transcriptomics tekniker. Detta
gör det möjligt att beskriva observationer utifrån deras sammansättning av biologiskt
relevanta celltyper, definierade i single cell/nuclei data, istället för enbart genuttryck.
Modellen implementerades även i kod som mjukvara och lanserades, med öppen källkod
samt full tillgänglighet för allmänheten, under namnet stereoscope. Samma riktlinjer kring
öppenhet och transparens gäller för all mjukvara och kod som är associerad med denna
avhandling. Metoden, stereoscope, har använts i flertalet studier varav Artikel II är ett
exempel. I detta arbete så undersökte vi det spatiala expressionslandskapet hos HER2-
positiva bröstcancerpatienter. Genom att integra spatial och single cell data identifierade
vi flertalet intressanta kolokaliseringssignaler. Från dessa signaler kunde vi definiera en
signatur för tertiära lymfstrukturer samt se indikationer på en trevägsinteraktion mellan
en interferon I signal, ett T-cell subset, och ett makrofag subset. Arbetet innefattade
även ytterligare dataanalys, där vi nyttjade icke-vägledd (eng. unsupervised) klustring
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av genexpressionsdatan. De resulterande klustrena, efter annotering, stämde väl överens
med morfologin och annoteringar som tillhandahållits från en patolog. Sammantaget så
bekräftar dessa resultat värdet i att använda spatial transcriptomics för “digital patologi”.
Slutligen, från genexpressionsklustren så kunde även “kärnsignaturer” identifieras, vilka
representerar generella expressionsprofiler som delas av flertalet patienter.

I Artikel III så presenterar vi ytterligare en analysmetod, sepal, vilken är utvecklad
för att identifiera gener med distinkta spatiala mönster, ofta refererade till som “spatialt
variabla gener” (eng. spatially variable genes). Metoden använder först Ficks andra lag
för att simulera diffusion av transkript i vävnaden, samtidigt som tiden till konvergens
(ett spatialt homogent tillstånd) mäts. Sedan rankas varje gen baserat på dess “diffusion-
stid”. Metoden bygger på antagandet att gener som uppvisar spatiala mönster generellt
tar längre tid att konvergera jämfört med gener utan struktur.

Artikel IV redogör för en studie av muslevern genom användandet av spatial transcrip-
tomics. Vi använde stereoscope med syfte att integrera single cell data även i detta pro-
jekt, men upplevde ett behov av mer skräddarsydda metoder för analys av den specifika
vävnaden. Således introducerade vi två nya analysmetoder, en avsedd för predicering
av venidentitet, den andra för att representera expressionsdatan på ett mer informativt
sätt. För att predicera venidentiteter så skapade vi sammansatta och spatialt viktade
genexpressionsprofiler baserat på observationer från respektive vens närliggande område.
Därefter tränade vi en logistisk klassificerare med syfte att kunna identifiera huruvida en
ven tillhörde klassen “centralven” eller “portalven” givet dess sammansatta genexpression-
sprofil. Efter att modellen tränats så kunde den användas för att tillskriva oannoterade
eller svårannoterade vener en av de två nämnda identiteterna. I den andra metoden så
förflyttar vi tvådimensionell spatial transcriptomics data till en mer informativ endimen-
sionell representation, detta genom att behandla genexpressionsuttrycket som en funktion
av avståndet till en observations närmaste venstruktur.

I det sista arbetet, Artikel V, så vidareutvecklar vi idéen om att förflytta data till en
mer informativ eller användbar representation. Mer exakt så presenterar vi en metod, egg-
plant, som tillåter användaren att projicera data från flertalet prover eller experiment till
ett gemensamt koordinatsystem (eng. common coordinate framework, kort CCF). Genom
att förflytta information till ett CCF så kan spatiala signaler jämföras mellan olika tillstånd
och tidpunkter, vilket är nödvändigt för flertalet värdefulla sekundäranalyser. Exempel på
sådana analyser i vår studie är: spatiotemporal modellering av ett syntetiskt system, och
“spatial aritmetik” applicerad på experimentellt inhämtad vävnadsdata. Med en växande
mängd av spatial transcriptomics data och ambitiösa internationella initiativ som “the
Human Cell Atlas”, så anser vi att liknande metoder är essentiella för att kunna nyttja
datan till dess fulla potential.
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Chapter 1 :: Introduction

1.1 Research interests

In his foreword to the iconic novel “A brave new world,” Aldeous Huxley states that: “It is
only by means of the sciences of life that the quality of life can be radically changed.” This
statement immediately resonated with me and feels just as true today as when I first read
it several years ago. Mainly because I firmly believe that it is not until we understand
the systems that constitute the fabric of life that we will be able to successfully use them
to our advantage. Today, the “sciences of life” are rather referred to as the field of “life
science,” a collection of multiple disciplines ranging from mycology to quantum biology. It
is within this hyper-diverse space of life science that I’ve spent the last years exploring a
particular niche known as transcriptomics; which is the study of the transcriptional land-
scape in living organisms. I find this branch of life science particularly alluring because
the associated technologies permit us to study the fundamental units of life – the cells – at
an unprecedented level of detail and scale. While cells can be described as units, it’s when
they are assembled into larger structures, like organs or complete organisms, that we see
their true power. In these complex structures, cells rarely operate in isolation, but rather
as a part of the whole. Thus, to fully comprehend these systems, cells should ideally be
studied in their native context. The particular flavor of transcriptomics prefixed with the
term “spatial” seeks to do precisely this – study cells in their natural environment – by
preserving the spatial relationship between the surveyed targets (e.g., cells or single RNA
molecules). Spatial transcriptomics alone will not be sufficient to answer all the questions
pertaining to life; such a statement borders to absurd. However, it is an instrumental tool
in the collective effort to expand the boundaries of our knowledge.

If understanding is our primary goal, we must first accumulate knowledge, as this naturally
precedes the former – we cannot understand what we do not know. Quite often, gathering
of knowledge follows an iterative process: we propose an initial hypothesis, then develop
the necessary tools to refute or confirm our beliefs, and update our models accordingly.
These steps are repeated ad infinitum in a process we commonly refer to as learning. The
effort required to keep the process alive doesn’t remain constant through time, but tends
to grow with the corpus of knowledge. While a single person might initially be able to
contribute to all parts of the iterative cycle, most domains experience a distribution of
labor; some individuals develop tools to test hypotheses, others apply these tools and
interpret the results to either accept/reject a hypothesis or generate new ones. I con-
sider myself a member of the first group; a developer of methods, models, and software
for others to use in their pursuit of answers to questions relating to spatial transcriptomics.

My passion has always been in the abstract and theoretical, but I also desire purpose
in the shape of a clear application of my work. At the time of my entry into the field,
spatial transcriptomics offered a combination of all these components. It was vibrant,
exciting, and in dire need of new tools to analyze the generated data. Thus, my ambition
has been to design frameworks and mathematical methods that would allow the users to
extract relevant information from their spatial transcriptomics data. As a consequence,
my research interests have all been very general and pertained to fundamental aspects of
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the data. Although broad in their character, these interests can be summarized in three
main questions:

1. How can spatial transcriptomics be leveraged to gain new biological insights?

2. How do we, mathematically and statistically, model spatial transcriptomics data in
a befitting way?

3. What are meaningful metrics and representations of features derived from spatial
transcripomics data?

For (1), I want to clarify that I’ve never had any interest to pursue these insights myself.
I pose this question because I want to understand what questions spatial transcriptomics
data is capable of addressing – which is necessary to know before any form of method
development can be initiated. In contrast, for (2), this is a topic I’m deeply invested in, as
I believe it’s imperative to contemplate such questions whenever we seek to model data.
If we don’t, we’re at great risk of producing faulty models. Finally, (3) is relevant from
an analysis perspective, as the choice of representation influences our conclusions. These
three questions permeate the majority of my work, and I hope that presenting them in
this way illuminates some of the themes that span across my projects.

1.2 Thesis themes and content

From the nature of my research interests, it should be fairly clear to the reader that the
focus of this thesis will not be of a biological character. Instead, the content will touch upon
ideas of data modeling, probabilistic inference, and analysis of count data. Nevertheless,
since modeling of a system requires some basic understanding of its mechanisms, I’ve tried
to provide the reader with sufficient information to: (i) put the methods into context, (ii)
gauge whether our assumptions and method designs are justified and credible, and also
(iii) understand why the research questions are relevant.

1.3 Thesis outline

This thesis is composed of a total of four chapters, all of which will be described in
brief below. The first – and current – chapter is the “Introduction,” where I seek to
introduce my interests, motivation, and attitude to the thesis work. The purpose of the
second chapter, “Background,” is to provide the most basic and necessary information
to put the presented work into context. The Background is not comprehensive, but it
should at least familiarize the reader to some of the most essential concepts presented
in the articles included in this thesis. It is written with a somewhat broad audience in
mind, thus, anyone with exposure to high school biology and university-level math should
be able to follow without much difficulty. The “Epilogue” accommodates some personal
and highly subjective reflections on what has been and what I believe is yet to come.
Finally, the “Present Investigations” chapter includes both the complete work and a
short summary of the publications and manuscripts included in this thesis. While I’ve put
a lot of effort into each chapter, the Epilogue lies closest to my heart and I’ll encourage
the curious reader to pay it a visit.
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Chapter 2 :: Background

2.1 DNA, RNA, and protein - from information to action

As mentioned in the Introduction, biology is the stage rather than the act in this thesis,
but certain aspects of biology are so integral to the spatial transcriptomics techniques that
it merits them a brief description. The first concept I’d like to introduce, as is standard
in most textbooks on molecular biology, is the central dogma together with its three main
components: DNA, RNA, and protein molecules.

The central dogma essentially outlines the flow of information in the context of genetic ma-
terial, thus describing how static information (DNA) can be used to produce a functional
entity (protein), through an intermediary medium (RNA). DNA is a stable molecule that
consists of two complementary sequences built from the four nucleotides: adenine (A),
guanine (G), thymine (T), and cytosine (C). The process of “casting” information held by
the DNA into RNA is referred to as transcription. When an amino acid chain (protein)
is assembled according to the sequence specified by an RNA molecule, we call the action
translation. These concepts will be elaborated on in more detail below, but are presented
now for clarity, see Figure 2.1 for a schematic overview of the central dogma.

Figure 2.1: A schematic overview of the central dogma. The arrows indicate the direction of the infor-
mational flow.

The human genome consists of circa 3.2 ·109bp (base pairs, two paired nucleotides), or the
double if both sets of chromosomes are counted. This number makes us blatantly unre-
markable in terms of genome size.[1] For comparison, the Australian lungfish (N.forsteri)
has an estimated genome size of 4.3 · 1010bp,[2] the nematode C.elegans’s genome con-
sists of approximately 1.0 · 108bp,[3] while 4.6 · 106bp make up the genetic material of the
prokaryote E.coli (K12 strain).[4]

Out of the 3.2 · 109bp in the human genome, only 1-2% encode information that can
be transcribed and then translated into a functional protein, meaning that 98-99% of
our genetic material is “non-coding”.[5, 6] Initially, upon this discovery, terms like “junk-
DNA” were coined for the non-coding elements; which reflects the attitude towards them
at that moment in time.[7] Later, as the non-coding regions have been more thoroughly
studied, we’ve come to realize that far from all non-coding sequences are junk, some are
even imperative for vital processes in our cells.[8, 9] While non-coding DNA might be
foreign to individuals outside the scientific community, the genomic entity we call “gene”
is a concept successfully disseminated to the broader public. This is in spite of the fact
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that, in most eukaryotic cells, genes consist of a mixture of non-coding (e.g., promoter,
introns, UTRs) and coding components (coding sequence).[10] Nevertheless, it is common
to mainly associate genes with their coding part, and more specifically the protein they
are destined to be translated into. It is often this “protein centric” view that tends to be
conveyed to the non-scientific crowd, and also how genes will be treated throughout this
thesis; even though it fails to do the complex nature of our genome full justice. Although
somewhat dependent on the definition of what constitutes a gene, the estimated number
of protein coding genes in humans is usually quoted to be in the magnitude of 2.0 ·104.[11]

In a normal (non-disease) state, the DNA is considered static in the sense that the infor-
mation that it stores remains fixed; though, depending on the organism, its accessibility
might vary over time – this is referred to as epigenetic changes. Here, accessibility means
the ease by which the transcription complex can access particular regions of the DNA. The
accessibility is regulated by how tightly the DNA is wound up around structural complexes
built from a set of proteins known as histones. An epigenetic profile can be assigned to
the DNA based on which regions that are more (euchromatin) or less (heterochromatin)
exposed.

In contrast to the static DNA, RNA exhibits a more dynamic behavior where molecules
are constantly transcribed and degraded within the cell.[12] RNA uses the same kind of
fundamental constituents as DNA, four nucleotides, the only difference to DNA being
that uracil (U) replaces the thymine (T) nucleotide. RNA exists in many different func-
tional flavors, where the three main ones are: rRNA (r: ribosomal), tRNA (t: transfer),
and mRNA (m: messenger). When genes are transcribed, the resulting product will be
an immature mRNA molecule, that after certain processing – for example, splicing and
polyadenylation – will reach a mature state. The processed mRNA molecules can then be
translated into an amino acid sequence with the help of “translational machines” called
ribosomes. The ribosomes are large complexes formed by rRNA and proteins. Just as the
name indicates, an amino acid chain consists of multiple chemically (by a covalent peptide
bond) linked amino acids. Amino acids are transported to the ribosomes by specific tRNA
molecules which ensure that the amino acids are linked together in the correct order.[13]
Perhaps somewhat unsurprisingly given the earlier protein centric statement, this thesis
focuses exclusively on the cells’ mRNA population.

In eukaryotes, there are 21 different amino acids that can be combined into an amino
acid chain of any desired length. A majority of the amino acids (20) are immediately
encoded by sequences in the DNA, but the 21st (selenocysteine) follows a slightly different
regimen.[14] What might seem like a small pool of amino acids to sample from results in
extreme diversity; if we were to construct a sequence of 10 amino acids, there would be
approximately 1.66·1013 alternative ways of doing this, a number that grows exponentially
with the sequence length. Still, from the enormous space of potential amino acid sequences
that we could synthesize, only a small subset is functional.[15] Rather than using the term
“amino acid sequence,” smaller chains (2-50 amino acids) are referred to as peptides, while
the term protein is reserved for longer chains ( > 50 amino acids).1 In general, pro-
teins tend to exhibit more intricate 3D structures than peptides. In fact, the structural
configuration is so essential to a protein’s function, that there exist specific helper pro-

1This 50 amino acid cutoff is taken from the US Food and Drug Adminstration’s (FDA) policy document
“Definition of the Term ’Biological Product’ ” (Docket ID. FDA-2018-N-2732). Other definitions exist,
but are usually in the same order of magnitude.
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teins (chaperones) with the sole purpose of making sure that an amino acid sequence is
correctly folded.[16] Similar to mRNA molecules, the peptides and proteins can be sub-
jected to modifications after their synthesis, referred to as post-translational modifications
(PTMs). The PTMs often include the attachment of a second type of compound to the
protein or peptide, with some examples being: phosphorylation (addition of a phosphate
group), glycosylation (addition of sugar moieties), and lipidation (addition of lipids). The
introduction of PTMs can have a wide range of effects on the proteins. PTMs could, for ex-
ample, be added to improve stability or to activate/inactivate a protein.[17] Proteins (and
to some extent peptides) are heavily involved in almost every aspect of cellular life, they
orchestrate cell motility, provide structure, catalyze chemical reactions, cleanup waste,
maintain the cell’s environment, and much more. Proteins and peptides are not limited
to intracellular mechanisms, but also partake in intercellular interaction and communica-
tion, as well as long-range signaling between organs; insulin being an example of the latter.

The man who introduced the notion of the central dogma in 1956, Francis Crick2, was
certain that the presumed DNA → RNA → Protein flow of information existed.[18] He
also conceived a bidirectional flow of information between RNA and DNA. Chemically he
saw no reason as to why RNA couldn’t figure as a template for DNA, but was lacking both
evidence and a clear application where it would be useful. This changed in the 1970’s when
Howard Temin and David Baltimore discovered and managed to isolate an enzyme (a cat-
alytic protein) known as reverse transcriptase from members of the retrovirus family.[19]
Reverse transcriptases (RTs) are capable of synthesizing DNA from an RNA template,
meaning that they “reverse” the transcription process, hence the name. RTs are used by
retroviruses to make a DNA copy of their genetic material (RNA-based) which then can
be inserted into the infected host’s DNA. The existence of RTs could easily be taken for
another obscure oddity of the “virus world,” but its discovery had a massive impact on
the world of molecular biology, partially enabling a paradigm shift in the generation of
transcriptomics data – this will be further expanded on in section 2.3.

In contrast to what have been presented so far, the central dogma also includes parts that
don’t cast information from one medium to another, but rather increase the amount of
existing material. DNA replication, where a new copy of the DNA is made, is one such
part. The key enzyme in DNA replication, synthesizing the new copy, is the DNA poly-
merase. Although not as common as DNA replication, RNA replication does occur, but
seems to be a process exclusively present among viruses.[20] During RNA replication, a
special kind of RNA polymerase is used.

The above description is an extremely simplified account of the different processes that
comprise the central dogma, and while it does outline the main themes, it also neglects
many of the more intricate aspects. For example, from this summary, it’s easy to assume
that the number of mRNA molecules found in a cell should correlate with the number of
proteins associated with the transcribed gene; but this only holds true for some proteins
– for others we may even observe an inverse relationship.[21, 22, 23] Such insights allude
to the impact that regulatory mechanisms have on the molecular composition of the cell.

2Francis Crick is a complicated character. He indubitably made valuable contributions to the field
of molecular biology. However, in later years several controversies concerning his behavior have surfaced.
These include accusations of sexual harassment, clear evidence that he held pro-eugenics beliefs, and
failure to properly credit other researchers. Such actions are, in my opinion, deplorable and should taint
his reputation. Thus, while he deserves some credit, his less tasteful sides should also be highlighted.
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Indeed, which pathways that are active in a cell have a huge influence over its identity.
Two cells can share genomic profiles, but – depending on which processes that are active –
behave and present as vastly different individuals. This phenomenon of different cell types
or states is further examined in the next section.

2.2 Cells - the basic units of life

2.2.1 The essentials

Without DNA, RNA, and protein, there would be no life, but simply bringing these ele-
ments together will not create life. mRNA molecules need to interact with the ribosomes
to be translated, the biochemical conditions (e.g., pH and osmolarity) must be correct
for the proteins to fold and function correctly, and nucleotides must be present to en-
able transcription of the DNA.[13] To meet all of the necessary conditions, evolution has
produced a closed compartment attuned to facilitate specific biochemical processes, this
compartment is what we refer to as a cell. There’s a huge variability in the architecture
and composition of cells across different species, but there are also several shared features,
of which some examples will be given below.

Perhaps the most essential feature of the cells is their protective barrier, the cell mem-
brane, consisting of a lipid bilayer that separates the environment inside the cell from its
surrounding. The viscous liquid found within the membrane is named the cytosol, and
it envelops several intracellular pockets known as organelles.[24] Some of the organelles
found in mammals are: mitochondria, the nucleus, the endoplasmic reticulum, the Golgi
apparatus, and lysosomes. The mitochondria are colloquially described as – somewhat
clichéd – the “powerhouses of the cell.” The expression intends to convey how the elec-
tron transport chain – found in the mitochondrial membranes – produces most of a cell’s
“energy currency” ATP (adenosine triphosphate) in aerobic conditions.[25] The nucleus
holds most of the genomic material (a small portion is also present in the mitochondria),
meaning that transcription mainly occurs within the nucleus. In general, mRNA produced
in the nucleus will eventually be transported through the nucleic membrane, and carried
to parts of the endoplasmatic reticulum to which ribosomes are bound. As mentioned
earlier, the ribosomes use the mRNA as a template and amino acids as ingredients to pro-
duce peptide or protein molecules. If the produced peptides/proteins are destined for the
membrane or the extracellular region, they often pass through the Golgi apparatus, which
packages the proteins in transport capsules (vesicles). In addition to acting as a trafficking
hub, the Golgi apparatus sometimes performs post-translational modification. Lysosomes
are involved in degradative processes, such as breaking down old cell parts. The cytosol is
a crowded space filled with proteins, RNA molecules, organelles, metabolites, etc. Many
of the cell’s biochemical reactions occur in the cytosol, for example the ATP-generating
glycolysis.[24] Having outlined some of the most basal aspects of cells, we’ll next explore
some of their finer nuances and attributes.
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2.2: Cells - the basic units of life

2.2.2 Cell types and states

Akin to how the atomic elements listed in the periodic system figure as building blocks of
our physical world, cells can be considered as the basic units of life. Indeed, just like the
atom, a single cell possesses distinct properties and a certain amount of integrity. Cells
can also be gathered in communities to form new entities (e.g., organs or tissues), anal-
ogous to the molecules that atoms comprise.3 The simile between cells and atoms also
captures the idea of there being different cell types (e.g., immune cells, neurons, muscle
cells, etc.) that depending on how, w.r.t. ratios and organization, they are combined
result in different outcomes. Variance and differences are present even among cells within
the same cell types, less stark than between the types, but still present. Continuing with
the atomistic narrative, one might think of these cell states as equivalent to the atoms’
isotopes. Ideally, if we understand how the different cell types locate within their peri-
odic system, we should be able to predict yet undiscovered cell types whose existence is
implicated by the structure of the system; similar to how Dmitri Mendeleev predicted
eka-aluminium (gallium), eka-silicon (germanium), and other elements before they were
experimentally confirmed.[26] Although the “periodic system of cells” is an attractive and
helpful representation, I want to acquaint the reader with a – to me – compelling and
complementary alternative.

Around the same time (1957) as the central dogma was conceptualized by Crick, an-
other scientist named Conrad Hal Waddington proposed a model designed to describe the
cellular differentiation process during development.[27] Waddington postulated that the
different cell types along the differentiation trajectory all could be positioned in an energy
landscape. The stable cell types would correspond to low energy states while the more
transient transitional states between them would have a higher energy. For clarity, just
as in molecular systems, low energy states are favored and “desired” by the cells. The
more differentiated (specialized) a cell type is, the lower its energy. This model also made
Waddington describe the developmental process as unidirectional; a cell becoming more
differentiated would be similar to a marble rolling down a hill, while a cell spontaneously
dedifferentiating is equivalent to the marble rolling uphill by itself, i.e., nonsensical. Im-
portantly, this model does not prohibit dedifferentation, but rather posits that without
any external stimuli “pushing” the marble back up, we are unlikely to observe this in a
natural setting. An example of such a stimuli being how the addition of Yamanaka factors
to differentiated somatic cells can revert the differentiation process and convert them into
stem cells (induced pluripotent stem cells, iPSCs).[28] While rare, unaided dedifferenta-
tion has been proven to occur in natural systems, especially in regenerative processes,
thus invalidating Waddington’s unidirectional assumption – but not nullifying the model
at large.[29] In his research, Waddington related the energy of a cell’s state to its epige-
nomic profile, but since then other modes of information – like the transcriptional state –
have been used to map cell states to energy levels.[30, 31, 32] The Waddington landscape
has also been employed to describe non-developmental processes. In fact, the landscape
could be extended to harbor the complete set of states that a cell may reach, where “en-
ergy barriers” act as bulwarks separating one class of types from others.

3Comparing cells with atoms and the concept of a “periodic system of cells” is far from my own
conception. I first encountered these ideas in a talk by Aviv Regev, and found the analogy very appealing
as it aligned well with my chemistry background. To me, it offers a powerful way to convey the complexity
of the cell type landscape in more familiar terms. Of course, I’ve adapted parts of it to my own liking, but
I want to credit the source that made me aware of this perspective on cell types.
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The model founded in Waddington’s ideas treats cell types as points along a multidi-
mensional continuum rather than discrete entities, as in the atom-like model; which may
resonate better with someone from a biological background. The models are different, but
not contradictory, and can each be helpful when pondering on questions about cell types
and their relations. When attempting to model the transitional processes, the cell type
space, and the effect of perturbations, I personally find it slightly more helpful to look at
the system through Waddington’s lense. The energy landscape model encompasses the
intermediary states between the well-defined cell types, provides a clear explanation of cell
type transitions, and can also easily capture hierarchical relationships between cell types.
Furthermore, the energy landscape model casts concepts like cell states and transitions
into a language that befits other quantitative fields like statistical mechanics, which have
developed an extensive toolbox for analysis of similar systems.[33]

Here, a brief explanation, by an example, of what is meant by “relating a cell state to an
energy level” will follow. Imagine a much simplified cell that only expresses two different
genes (Gene 1 and Gene 2), the expression of each gene resides within the range of zero to
one. The cell’s state is exactly described by the tuple (x, y) ∈ [0, 1] × [0, 1], where x and
y represents the expression levels of Gene 1 and Gene 2 respectively. Using the function
f(x, y), any given state (x, y) can be associated with a specific energy level. By applying
f to every combination of possible cell states, a representation of the full energy landscape
is obtained. The energy landscape can be modified by the introduction of a perturbation
(g) to the system, changing the character of the mapping between cell state and energy
level. A visual interpretation of this explanation is presented in Figure 2.2.

Figure 2.2: A simplified representation of the Waddington landscape. In a cell system only expressing
two genes, Gene 1 (x) and Gene 2 (y), a function f(x, y) can be used to map each cell state to an energy
level. The image of f represents the energy landscape of the cell. By introducing some pertrubation g to
the system, the energy landscape changes. Likewise, the map between state and energy level is updated
according to f∗(x, y) = g(f(x, y)).

Assuming that the energy landscape contains all the states a cell could possibly occupy,
disease and other aberrant states must also be represented. With cancer as an example,
one might envision how a transition to the cancerous state requires the normal cells to
climb an energy barrier. However, the introduction of a mutation (the hallmark of cancer)
might suddenly disrupt the landscape, for example lowering the barrier or increasing the
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energy of the normal state. The modifications to the energy landscape and disruption
of relative energy between the healthy and disease state might then promote the migra-
tion from the former to the latter. In this case it’s an internal (to the cell) process that
modifies the energy landscape and permits the transition, but the alterant could just as
well be external.[34, 35] For example, the cell’s environment might aid in the reconfigura-
tion of the energy landscape, creating new paths for the cell to travel along. Recently, it
has been shown that cell-to-cell communication are critical for cell-fate decisions and how
fluctuations in external signals have a large influence over the outcome of the differentia-
tion process.[36] The implications being that one should not only study the cells’ internal
state, but also their environment and interactions. Experimental techniques that chart the
molecular composition of cells without relating these signals to each other in the physical
domain remain largely oblivious to the external factors that might exhibit influence over
the cells. Thus, there’s an obvious value to methods that enable the collection of molecular
signals while also preserving their spatial context; enter spatial-omics techniques.

2.3 Spatial Transcriptomics - when context matters

The “-omics” suffix has become increasingly popular, and its use more liberal. A slew of
exotic terms like “foodomics” or “museomics” have now been added to the set of more
traditional fields like genomics and proteomics.[37, 38] Still, there’s an apparent lack of
consensus regarding the exact definition of omics. Every researcher, more or less, have
his/her/their own interpretation of the term. In my opinion, the definition provided by
Wikipedia (entry: “Omics”, date: 2022-02-08) manages to convey the general ideas of the
omics concept in a short and concise manner:

“Omics aims at the collective characterization and quantifica-
tion of pools of biological molecules that translate into the struc-
ture, function, and dynamics of an organism or organisms.

”
I’ve chosen to highlight the “collective” part of this definition to emphasize how the term
omics is strongly associated with, and often imply, studies where plenty of molecular signals
are surveyed simultaneously. Omics-studies can be executed at different scales, ranging
from sub-cellular resolution to whole organisms. The type of signals that an omics-field
focuses on can often be deduced from its name: genomics → genomic material, transcrip-
tomics → transcripts, and proteomics → proteins. The addition of “spatial” to an omics
technique or field, indicates that the information collected to some extent preserves spatial
relationships.

The work in this thesis belongs to the transcriptomics sphere, and more specifically, the
niche of spatial transcriptomics. Thus, even though the other omics-fields offer a plethora
of relevant insights, henceforth, they will only figure as peripheral elements of this thesis.

This “Spatial Transcriptomics” section will summarize the field both from an experi-
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mental and a computational perspective. The subsections are written to give the reader
an overview of its associated topic, for more detailed accounts I refer to any of the many
reviews on the subject. However, before entering the realm of spatial transcriptomics, it’s
fit to first present some of the technical advancements that enabled the current-era spatial
methods.

2.3.1 A prelude

The main objective in spatial transcriptomics is to elucidate both the position and iden-
tity of the transcripts present in the system of interest (e.g., a tissue sample). Multiple
strategies exist for this purpose, but a majority of them rely on some integral concepts
that will be, briefly, introduced here.

2.3.1.1 Sequencing-based identification

Having located or isolated a transcript, the subsequent task in transcriptomics studies is
to determine its identity. One way of doing this is to sequence it, either in situ or ex situ.
The basic premise of sequencing is, as the name indicates, to determine the nucleotide
sequence of the target transcript.

One of the earliest and most successful sequencing approaches is Sanger sequencing, orig-
inally developed in the late 1970’s for DNA sequencing by the (then to be) twofold Nobel
laureate and eponym Frederick Sanger.[39] What follows here is a simplified explanation
of the method. In Sanger sequencing, the target sequence (to be identified) is mixed with
a pool of different components including: standard nucleotides, modified nucleotides, a
DNA polymerase, and primers (to a single site). Often, the amount of target sequence is
increased in an amplification step, which essentially makes several copies of the existing
sequences. The primers will hybridize to a region of the target, allowing the polymerase
to attach. Once attached, the polymerase can use the nucleotides to synthesize a, to the
target, complementary strand. Under normal circumstances, the polymerase would extend
the complementary strand until the end of the target is reached, incorporating the pro-
vided nucleotides in the nascent strand. What makes this setting deviant is the presence
of the modified nucleotides, which will be inserted into the synthesized strand after a ran-
dom number of unmodified nucleotides have been added. The modified nucleotides do not
permit further extension, and thus terminates the elongation process. At the technique’s
inception, the modified nucleotides were identically labeled, requiring the reaction to be
executed four times, one for each nucleotide type. Concurrent analysis of all four bases
in a single reaction would later be enabled by technical advancements that allowed each
nucleotide type to be colored by a uniquely colored fluorophore.

Assuming that the reagents are present in sufficient amounts, the elongation will ter-
minate at each position in the target sequence, creating fragments of varying lengths.
Next, the generated fragments will be separated by size, for example, using capillary gel
electrophoresis. When using the refined approach with multiple fluorophores, the iden-
tity of each fragment is determined as it exits the size separation step by registering the
fluorescent signal from its label. The result is a chromatogram that displays the final
base identity as a function of sequence length, from which the original sequence easily
can be reconstructed.[40] This solution is ingenious, but also very low throughput – it’s
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a tedious and cumbersome process that only determines the sequence of one target at a
time. Furthermore, it assumes that the user knows or can guess at least some parts of
the sequence prior to the experiment (to which the primer can bind). Thus, while useful,
Sanger sequencing could never support the form of high throughput processing that the
current omics-fields require. Despite the many drawbacks of Sanger sequencing, it leaves
a huge heritage and represents a seminal point in the era of molecular biology. Indeed,
Sanger sequencing fueled one of the largest collaborative science efforts in history: the
human genome project.

Sanger sequencing belongs to the set of first generation sequencing techniques, which ex-
ecuted the sequencing task successfully but had several limitations (as mentioned above).
Thus a series of improved second generation sequencing or next generation sequencing
(NGS) techniques were invented in the mid to late 1990’s, from which commercial prod-
ucts started to emerge around the mid-2000’s.[41, 42] To illustrate the impact of these
innovations: between 2005 and 2010, the per-base sequencing cost was halved every fifth
month. This is more than three times faster than the microchip transistor capacity in-
crease predicted by Moore’s law.[43] One of the key characteristics of NGS techniques is
how they allow massively parallel sequencing (MPS), meaning that several targets can
be processed at once. The parallelization is often achieved by physical separation of the
targets in a flow cell, which prevents signal cross-contamination in the sequencing pro-
cesses. Of course, the various NGS platforms exploit different schemes for the sequencing,
and they are all examples of impressive technical advancements from the first generation
techniques. On a rudimentary level, the NGS methods use the same idea that the first
generation methods introduced, being to somehow register the target sequence by either
adding a single or multiple bases that elicit an informative signal (e.g., light emission) that
can be registered and used to decipher the sequence. When working with RNA targets,
they are typically converted to cDNA (complementary DNA) by reverse transcriptase en-
zymes before sequencing. The conversion step is implemented in the protocol because
RNA molecules are unstable compared to DNA/cDNA and prone to degradation.[13] In
addition to cDNA conversion, many NGS platforms also use sequencing adapters which
are short oligonucleotide sequences that are ligated to the targets (usually after fragmen-
tation). The adapters differ depending on the sequencing platform, but often contain sites
for primers to attach to, a sequence to bind to a flow cell or equivalent, and potential
sample indices if material from multiple samples are to be run together.[41]

In order to produce sufficiently strong signals, both first generation and NGS techniques
require a certain amount of target material as input. This constitutes a challenge, because
the required amount is often higher than what the source(s) can provide. Fortunately,
another Nobel Prize awarded (1993) method – the polymerase chain reaction (PCR) – can
be used to circumvent this seemingly insurmountable issue. PCR employs a protocol of
repeated cycles where, in each cycle, complementary strands (DNA or cDNA) are dena-
tured, primers bind (anneal) to the denatured strands, and new complementary strands
are synthesized by a polymerase (extension) using the primed strands as templates.[44]
Depending on which primers that are included among the reagents, PCR can be linear
(primarily used in Sanger sequencing) or exponential (primarily used in NGS) in its am-
plification. While invaluable, PCR also comes at a cost, being that of unwanted PCR bias.
It has repeatedly been observed how the PCR efficacy differs between targets, something
that has serious consequences in quantitative studies where multiple targets are examined
in parallel.[45, 46] With a difference in efficiency, the resulting pool of amplified mate-
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rial does not necessarily preserve the proportional abundances between targets, and thus
change their relative (as well as absolute) expression values. Nowadays, to mitigate PCR
bias, a construct known as “unique molecular identifier”’ (UMI) is usually attached to
the targets before amplification. The UMI assigns a specific identity to each molecule,
allowing all PCR products with the same UMI to be collapsed into a single observation
after being sequenced.[47]

NGS techniques are fairly limited in the number of bases they can successfully sequence
with high confidence; their ranges are usually in the magnitude of 20-400bp.[48] Hence, for
most targets, only a fraction of their content is sequenced. For context and comparison,
the average (human) mRNA molecule is 3392bp,[49] and Sanger sequencing can sequence
up to 900bp.[50] Given the low numbers of sequenced bases in NGS techniques, they might
seem to have been developed in vain, but clever computational strategies make them highly
effective. By either: aligning the sequenced data to an existing reference genome/tran-
scriptome, or assembling a reference de novo; the short sequences, known as reads, are
sufficient to determine the origin of the target they represent. Naturally, if identification
of isoforms or mutations is desired, the short sequence lengths become an issue, as they
might not cover the variable regions.

Unsurprisingly, a third generation of sequencing techniques was introduced to not only
provide high throughput, but also access to longer sequences, often operating at single
molecule level. At the moment of writing, the set of third generation sequencing (TGS)
techniques have not replaced the NGS techniques, like the latter did with those of the
first generation; instead they co-exists and are often used as complementary tools. The
TGS techniques are continuously being refined and improved, but they still have some
disadvantages compared to NGS techniques, such as: relatively low accuracy, decreased
throughput, and higher cost.[51]

In the forthcoming sections there will be examples of how sequencing techniques can be
employed in a spatial context, but we’ll first explore an alternative strategy for transcript
identification and a non-spatial application of modern sequencing techniques.

2.3.1.2 Probe-based identification

Sequencing based strategies for transcript identification are excellent to use when there’s
an interest in the whole transcript population of a specimen, but this is not always the
case. There are plenty of instances when only a subset of the transcripts is of relevance,
and where this set is known a priori to the experiment. In such a scenario, sequencing of
all transcripts easily becomes redundant and a more targeted approach is justified.

When charting the spatial position of a select set of transcripts is the primary objec-
tive, we can design complementary (to the target) probes – tagged with a marker (e.g.,
fluorophore) – that will hybridize with the target sequences in the specimen. The marker
will then emit a signal that can be registered and used to map the spatial distribution of
the target transcripts. Methods of this class, relying on hybridization between a probe and
target, are known as in situ hybridization (ISH) techniques.[52] To be noted is how ISH
methods give immediate information about the spatial location of the targets. Meanwhile,
in sequencing-based methods, an extra encoding (e.g., by the inclusion of a barcode or
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tag) step is often required to associate a spatial location with a target.

ISH methods have a long history, already in 1969 Pardue and Gall used rRNA probes
(tagged with a heavy hydrogen isotope) to visualize an rRNA encoding gene in oocytes
from the African clawed frog (Xenopus laevis).[53] Soon thereafter, fluorescent labels were
introduced as alternatives to the radioisotopes. Circa 30 years after Pardue and Gall, in
1998, Femino et al. showed how fluorescent in situ hybridization (FISH) could be used to
detect mRNA in tissue.[54]

Conceptually, probe-based identification might seem more straightforward than sequenc-
ing of transcripts to determine their identity; it’s easy to execute in situ and relies on
fewer chemical reactions. For very few, or a single, kind of target transcripts, the ISH
methods are effective, but once multiplexing is attempted, issues start to emerge. With
a limited number of fluorophores available, spectral overlap fast becomes a problem and
prevents concurrent visualization of multiple targets (but, as we shall see, this can be
circumvented). Targets can, of course, be visualized one-by-one, but this soon becomes
ineffective and time consuming. Also, the more probes that are used, the more care and
effort is required during the probe-design step to avoid unwanted probe-probe binding.
Thus, one of the big challenges when using ISH for spatial transcriptomics is to increase
throughput and multiplex capacity.

2.3.1.3 Single cell/nuclei RNA-sequencing

Despite techniques like ISH being present for more than 50 years, the spatial transcriptomics
field remained dormant until the mid-2010’s when several high throughput techniques were
launched. In fact, the current era of spatial transcriptomics techniques was preceded by
the emergence and rise of another related field, being single cell transcriptomics often
abbreviated as scRNA-seq. Figure 2.3 illustrates how the different fields exhibit similar
growth trends, but with a slight translation to the right on the time axis for spatial tran-
scriptomics. Single cell transcriptomics protocols, by design, tend to disrupt the spatial
structure of a sample and eliminate the majority of spatial information, but it still pio-
neered many of the concepts used in analysis of spatial transcriptomics data. Furthermore,
single cell and spatial transcriptomics data are often combined (computationally) by in-
tegrative means to obtain a more comprehensive understanding of the target specimen.
Thus, despite its somewhat disparate nature, the single cell transcriptomics field has paved
the way for spatial transcriptomics and played a crucial role in its development.

With the introduction of NGS techniques, transcriptomics studies – here referring to near
transcriptome-wide surveys of a sample’s expression landscape – became gradually more
common. At this time, the modus operandi was to use bulk approaches, where the collected
tissue specimen was treated as a singular observation. To clarify, with bulk methods, the
tissue is processed experimentally and computationally, finally resulting in information
about the abundance of the various transcripts across the whole tissue.[56] While informa-
tive, there’s an evident issue with this approach: it lacks resolution. Tissues are inherently
diverse, and rarely consist of a single cell type, but rather tend to host multiple cell com-
munities. Still, with bulk-sequencing techniques, the origin of a transcript (i.e., which
cell or cell type that produced it) remains unknown. Consequently, the bulk-methods
convolve signals from different sources (cells), and mask nuances – such as multimodal
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Figure 2.3: PubMed trends of different transcriptomics fields. The graph shows the (normalized) number
of results per year for each of the terms: “Spatial Transcriptomics” (black), “Single Cell Transcriptomics”
(dark gray), and “Transcriptomics” (light gray). The result is normalized to adjust for changes in general
publication trends over time. The data was collected using the online service “PubMed by Year”.[55]

gene expression distributions or contributions from rare cell types – that may exist among
the cells. In spite of not being able to resolve individual cell profiles, bulk sequencing
has proven tremendously valuable to advance our understanding in plenty of biological
fields.[56] Though, for certain questions, single cell resolution is necessary, making bulk
methods inadequate. The need for methods with higher cellular resolution was quickly
identified and addressed. Already in 2009, Tang et al. showed how the transcriptional
profile of a single cell could be charted.[57] With an existing proof of concept, it was just
a matter of time before the concepts could be scaled to a larger set of cells, ushering in
the era of single cell transcriptomics. In the years that followed, several strategies were
proposed, resulting in an avalanche of new single cell transcriptomics methods. In 2012
Smart-seq was published by Ramsköld et al., where they outlined how full-length mRNA
sequences could be retrieved for multiple single cells.[58] Two years later (2014), single-
cell sequencing was selected as the “Method of the Year 2013” by Nature Methods.[59]
Next, two seminal papers were published in 2015 and 2017 by Macosko et al. and Zheng
et al. respectively, both describing how individual cells could be isolated in a single mi-
crofluidic droplet, where the necessary steps to tag (with a cell specific barcode) and
amplify transcripts could be executed without intermixing of transcripts from different
cells.[60, 61]. The experimental techniques quickly transitioned from the academic sphere
to the industry, and today several commercial products for single cell sequencing exists.
The launch of (relatively) easy and robust protocols for single cell sequencing accelerated
the field, and plenty of studies have now used these techniques to address relevant biolog-
ical questions.[62, 63, 64, 65, 66]

Like every experimental technique, single cell sequencing has its inherent biases. For
example, certain cell types (e.g., adipocytes and neutrophils) are sensitive to the prepara-
tion steps and thus “burst” before entering a droplet, hence no data for these cell types are
collected.[67, 68] Fortunately, a very similar but slightly different alternative to single cell
sequencing exists, which sometimes (but not always) can capture the transcriptomics pro-
files from the sensitive cell types. This alternative technique is single nuclei RNA sequenc-
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ing (sNuc-seq), which isolates each cell’s nucleus and then sequence its mRNA content.[69]
Together, single cell/nuclei sequencing act as some of the primary modalities in huge in-
ternational research efforts such as the Human Cell Atlas and Tabula Sapiens.[70, 71] The
single cell field in many ways laid the foundation for the spatial transcriptomics field,
creating a precedent for what is expected from larger transcriptomics studies.

2.3.2 Experimental techniques

The field of spatial transcriptomics has already accumulated an impressive mass of ex-
perimental methods despite its young age. In 2021, Nature Methods granted spatial
transcriptomics the same title (Method of the Year) as single cell sequencing received in
2014, which serves as an indicator of the increased interest in the associated techniques.[72]
As is custom when a “new” field reaches beyond its origins and spreads to the broader
public, plenty of reviews have been written on the topic, attempting to describe the differ-
ent flavors of spatial transcriptomics.[73, 74, 75, 76] The aim of this section is somewhat
more banausic: to provide the reader with a very primitive introduction of the different
tactics used to generate spatial transcriptomics data. The interested reader is encouraged
to visit any of the referenced reviews for a more comprehensive overview of the techniques.

With such an assorted set of spatial transcriptomics techniques, there’s no obvious way
to arrange them into discrete categories. One coarse grained way of classifying experi-
mental methods is the binary split between sequencing-based and image-based methods.
Here, I’ve decided to use a slightly more fine grained classification scheme, consisting of
five different groups, inspired by the work of Asp et al. and Moses et al.[73, 74] The five
categories are:

1. ROI selection techniques

2. in situ hybridization techniques

3. in situ sequencing techniques

4. in silico spatial reconstruction techniques

5. in situ capture techniques

More information about each category will be found in the subsections below.

2.3.2.1 ROI selection

The ROI selection techniques could be considered as the most “brute force” approaches
to obtain spatial transcriptomics data. Their core principle is to excise a single or several
regions of interest (ROIs) from a tissue specimen, separate them physically, and deter-
mine the transcriptional profile of the ROIs one-by-one. With this approach, the spatial
resolution is fully determined by how fine ROIs one can select and separate from the rest
of the tissue. Examples of manual tissue microdissection exist, but the application of
lasers to cut out the ROIs followed by extraction – a procedure referred to as laser cap-
ture microdissection (LCM) – is generally preferred. In later years, refined versions of the
ROI selection techniques have been developed, where the focus has shifted from physical
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removal of the ROI to collecting the target transcripts within the ROI. To exemplify, in
TIVA (transcriptome in vivo analysis tag), a photocleavable tag is introduced into live
cells. Then, the cells of interest are exposed to light of the correct wavelength (405nm),
which activates the tag and allows it to bind to the polyA-tail of the transcripts.[77] The
tag contains a biotin molecule, making it easy to capture the hybridized tag-target complex
with the help of streptavidin. Once captured, the mRNA can be released and sequenced,
generating a transcriptional profile exclusively originating from the chosen cells. Another
example of a more “modern” technique is the GeoMX Digital Spatial Profiling (DSP) plat-
form from the company NanoString.[78] The GeoMX DSP platform uses a set of probes
targeted towards a specific set of transcripts, and each of the probes has an oligonucleotide
(oligo) tag encoding the probe identity. Once the probes have bound to the targets, the
ROI is beamed with UV (ultra violet) light to release the oligos. The oligos are captured
and registered as belonging to the examined ROI. In this case, the number of oligos is
related to the number of target transcripts found within the tissue. As expected, the
probe set limits the multiplexing capacity, and the first DSP platform didn’t operate at
the whole-transcriptome level, but the newer GeoMX Whole Transcriptome Atlas (WTA)
platform supports panels in the magnitude of 18000 genes.[79] Other methods that will
not be described in detail, but which belong to this category are: NICHE-seq, tomo-seq,
and STRP-seq.[80, 81, 82]

2.3.2.2 in situ hybridization techniques

Instead of extracting the transcripts from an ROI and identifying them by sequencing
their identity can be resolved in situ with the help of targeted probes (see section 2.3.1.2).
The approach that Femino et al. used in 1998 utilized a set of at least five probes (50
nucleotides long) each designed for neighboring parts of the target transcript and labeled
with five fluorophores.[54] The use of multiple shorter probes in the ISH context is re-
ferred to as single molecule FISH (smFISH). When interpreting the signal in smFISH
experiments, the intensity is proportional to the number of bound target sequences. The
large number of “fluorophores per probe” was required to provide a signal strong enough
to be confidently detected. While successful, this approach was burdened with several
issues such as self-quenching and difficulties with the synthesis of multilabeled probes.[83]
In 2008, Raj et al. presented a new procedure for in situ identification of transcripts,
which can be considered an upgrade of the 1998 approach. The new method utilized 48
or more probes (17-22 nucleotides long) binding to adjacent sequences, each with a single
fluorophore, creating a sufficiently strong signal but without the drawbacks mentioned
for the older method.[83] Despite its enhancements, the 2008 method still struggled with
multiplexing, since only a few fluorophores are available and there are tens of thousands
of potential targets in the transcriptome. Albeit not ideal for full-scale omics studies,
smFISH and its derivatives are still seen as a “gold standard” for transcript identification,
and often used to validate specific findings from more recent techniques.[84]

The true breakthrough of ISH-related methods came when the smFISH techniques were
combined with combinatorial barcoding, which increased the multiplexing capacity man-
ifold. With combinatorial barcoding, a target is no longer assigned a single color as its
identifier but rather a given sequence of colors (representing a barcode). To give a simple
example, if three probes are used and each is tagged with one of five different fluorophores,
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transcripts of 53 = 125 different genes could theoretically be targeted. In 2014, Lubeck et
al. presented sequential FISH (seqFISH) which combined combinatorial barcoding with
smFISH, allowing them to examine the spatial location of 12 different mRNA targets in
37 cells. The seqFISH technique uses several sequential rounds of probe hybridization and
signal imaging, where each kind of target transcript is assigned a unique code.[85] While
being able to multiplex, seqFISH is a fairly slow technique that have compatibility issues
with highly autofluorescent tissue types. Notably, parts of the technology that seqFISH
builds upon had already been presented by the same group two years earlier (2012).[86]

A caveat of relying on combinatorial barcodes is that that the techniques become sen-
sitive to errors, if just a single misread is introduced in the imaging process, the identity
of the target immediately becomes ambiguous. This can be partially remedied by adding
redundant information and extra decoding rounds, but such actions come at the price
of an increased number of probes and more hybridization rounds. Other error correcting
schemes were introduced in techniques such as single molecule hybridization chain reaction
(smHCR) and seqFISH+.[87, 88]

Efficient and a high level of error correction were key objectives in the method multi-
plex error robust FISH, or MERFISH for short, launched in 2016. Two different kinds of
probes are used in MERFISH, signal bearing and non-signal bearing. First the non-signal
bearing probes – with non-binding flanking regions – are bound to the target sequence.
Next, in multiple rounds, signal bearing probes will bind to, and be released from, the
flanking regions. Signal bearing probes will not bind to the flanking regions of each target
in every round, meaning a binary response of non-bound and bound can be registered.
From the set of binary patterns (barcodes) that can be generated (the cardinality is 2N ,
where N is the number of rounds) a subset is selected with great care. The selected bar-
codes must all have a large discrepancy (Hamming distance ≥ 4), with the result that
even if a round fails, a transcript’s identity can still be determined.[52] Depending on the
number of fluorophores used and the length of the barcodes, up to 10000 different target
transcripts can be assessed.[89] The MERFISH method is currently available as a com-
mercial platform, MERSCOPE™, distributed by the company Vizgen.

Other techniques belonging to this category are: split-FISH, osmFISH, EASI-FISH, RNAscope,
and DNAMicroscopy.[90, 91, 92, 93, 94] Since the targets tend to be single molecules, these
methods are in general said to be operating at a subcellular resolution. With the help of
computational means, transcripts are usually assigned to the cells present in the tissue,
to create spatial single cell expression profiles; however, this is a non-trivial task that
introduces an extra layer of effort into the protocol.

2.3.2.3 in situ sequencing techniques

This category could almost be considered a chimera of sequencing and probe-based tech-
niques; in in situ sequencing (ISS), the transcripts’ identities are determined by sequencing,
but without removing them from the tissue. While the in situ aspect gives subcellular
resolution, one of the main obstacles for ISS techniques is the limited space within the
cell. The first example of ISS was presented in 2013 by Ke et al., the process begins with
a conversion of mRNA to cDNA, then padlock probes are used to determine the cDNAs’
identities.[95] These probes can, somewhat simplified, be described as circular sequences
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being cut open, allowing the circle to unfold into a linear segment. The regions flanking
the “cut”, the ends in the linear sequence, are designed to bind to a specific region of their
target. In the 2013 publication, two different strategies were proposed: (i) the probes
would bind and form a gap between the flanking regions, which was to be filled in with
nucleotides by a DNA polymerase followed by a ligation step; (ii) there would be no gap
between the two binding flanks, just the cut, which could be closed by a single ligation
step. In either strategy, the aim is to close the loop, making the linear probes circular.
Once closed, to increase the signal strength, the padlock probes’ sequences are amplified
using rolling circle amplification (RCA). Finally, a procedure known as sequencing by lig-
ation is applied to determine either the gap-filled sequence or a barcode sequence of the
padlock probe. The ligation-only strategy has a higher sensitivy, but gap-filling allows for
detection of transcript variants like isoforms or single-nucleotide variants (SNVs). In 2017
this particular ISS technique became commercialized by the company Cartana, which was
later acquired by 10x Genomics in 2020. Following the acquisition, 10x Genomics later
announced that the ISS technique would be launched in 2022 as the Xenium platform.

Other methods build upon similar principles as the 2013 method, both barcode in situ
targeted sequencing (BaristaSeq) and spatially resolved transcript amplicon readout map-
ping (STARmap) use similar padlock probes but also introduce hydrogels or crosslinking
with the cellular matrix to improve sequencing performance.[96, 97] All of the aforemen-
tioned ISS techniques are targeted in their character, i.e., the targets must be known
prior to the experiment, but this is not an inherent feature of ISS techniques. Lee et al.
presented fluorescent in situ RNA sequencing (FISSEQ), which uses random primers and
matrix crosslinking to sequence transcripts from several thousand different genes.[98] The
FISSEQ technology was commercialized in 2016 by ReadCoor Inc. and later acquired by
10x Genomics about the same time as Cartana.

2.3.2.4 in silico spatial reconstruction techniques

In most texts contrasting spatial transcriptomics and single cell sequencing methods, the
reader can expect to encounter some version of the statement “while single cell sequenc-
ing is informative, all spatial information is lost”. In essence, this statement is correct,
the dissociation step during sample preparation will indeed remove any immediate spatial
information from the data. In contrast to, for example, the ISS techniques – where each
observed signal is associated with a set of spatial coordinates – single cell (or nuclei) data
will carry no such intelligence. Interestingly, the single cell data still possesses some inher-
ent spatial information, encoded in the data itself. If properly distilled, this information
can be utilized to reconstruct the spatial structure of a dissociated tissue; at least to some
extent. The spatial reconstruction techniques aim to do exactly this, i.e., they collect non-
spatial data and then use different computational algorithms to infer its original structure.

Already in 2015, two methods for spatial reconstruction were proposed by Achim et al. and
Satija et al., both of them using reference maps of the biological system of interest.[99, 100]
The latter (Satija et al.) was released in conjunction with the first version (v.1.0) of the
now popular analysis framework Seurat. In the simpler version of the Seurat approach,
a total of 47 landmark genes with distinct spatial expression are used to assign each cell
to one of several bins in the spatial domain. For each of the 47 genes, a spatial bin is
classified as “on” (expressed) or “off” (not expressed) based on ISH reference data of the
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same structure. The on and off expression values are then inferred from single cell data, by
using a bimodal mixture model. The expression of the landmark genes are modeled using
a multivariate Gaussian distribution (with complete independence between the genes, i.e.,
a diagonal covariance matrix). The means and diagonal elements of the covariance ma-
trix (the variances) are taken from the bimodal model. Next, for every cell, the posterior
probability of it originating from a given bin is calculated and a probabilistic map across
the bins is obtained. A cell can also be mapped to a specific bin, based on the spatial
centroid of the probability map. To improve the performance of their model, they used
a slightly more sophisticated model which relaxed the independence assumption, thus al-
lowing landmark genes to covary.

Other methods subscribe to the idea of using a similarity measure between spatial tran-
scriptomics and single cell data. For example, Peng et al. suggest that single cell data
can be projected to a spatial domain using spatially variable genes and Spearman rank
correlation.[101] More recently, deep learning methods have been proposed to solve the
reconstruction task.[102]

In 2019, Nitzan et al. presented the method novoSpaRc for de novo spatial reconstruc-
tion, compatible with data where no reference is available, but also with the ability to
leverage such information if accessible.[103] The key assumption in novoSpaRc is that
cells neighboring in gene expression space likely reside at nearby positions in the physical
space. Thus, the authors formulate an optimization task, cast in the form of an optimal
transport problem, where a transition matrix that probabilisticly maps cells to spatial
locations is the target variable. The transition matrix is optimized to minimize the dis-
crepancy between distances in gene expression space and physical space between cells. If
a reference is available, it may be incorporated into the inference process; the influence
of the reference versus the observed data can be weighted according to the user’s pref-
erence. The objective function also includes an entropy-based regularization term which
favors less deterministic mapping of cells. The authors showcased their method by recon-
structing several different tissues from both non-spatial (scRNA-seq) data and spatial data
(Slide-seq) made non-spatial. By using originally spatial data, the reconstructions could
be compared with the true spatial structure, thus being ideal for evaluation of the method.

Shortly after novoSpaRc was published, another method using an optimal transport prob-
lem was presented as SpaOTsc. Rather than using an entropy penalty term, SpaOTsc
permits unbalanced transport.[104] Another method, CSOmap, uses ligand-receptor inter-
actions and t-stochastic neighborhood embedding (t-SNE) to reconstruct the tissue.[105]

2.3.2.5 in situ capture techniques

One of the more appealing aspects of scRNA-seq is how it operates at a near full-
transcriptome level and provides a fairly unbiased (compared to targeted methods) image
of a cell’s transcriptome. The in situ capture techniques attempts to leverage the same
benefits of NGS by capturing transcripts in situ but sequencing them ex situ. To succeed,
spatial information needs to be coupled with the transcript identities before they are re-
moved from their capture location. Several research groups have approached the capture
and coupling tasks from different angles, and the combination of strategies they prefer is
mainly what sets the methods apart.
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The in situ capture techniques entered the scene in 2016 when Ståhl et al. via their
Science publication presented a method named “Spatial Transcriptomics” ; to avoid con-
fusion with the field itself, this will be exclusively referred to as ST.[106] The ST method
uses a solid glass surface onto which oligonucleotide capture probes are printed in clus-
ters (spots) arranged in an equidistant regular grid with circa 1000 nodes. The spots are
positioned with a center-to-center distance of 200µm and have a diameter of 100µm. Ap-
proximately 2.0 · 108 probes are found in each spot, all sharing the same spatial barcode.
The purpose of the spatial barcode is to couple each probe with its physical position in
the array. In addition to the spatial barcode, the probes contain: a cleavage site, am-
plification and sequencing handles, a UMI, and an mRNA capture region consisting of a
polyT-sequence (complementary to the polyA-tail of eukaryotic mRNA). The tissue spec-
imen to be examined is cryosectioned to thin slices (often 10µm) and placed upon the
ST array, to then be fixated and stained, followed by a brightfield imaging step of the
whole tissue slice. Next, the tissue slice is permeabilized to release transcripts from the
cell, which diffuse toward the glass surface and bind to the polyT-region of the capture
probes. Once the transcripts are captured, reverse transcription is initiated. The reverse
transcriptase uses the captured transcript as a template to extend the probe sequence.
Finally, the probes are removed from the surface, using the cleavage site, and sequenced
(after library preparation) with NGS. With the help of bioinformatic tools, the identity
and capture location of every cDNA molecule is registered.

The first version of ST is commonly referred to as ST1K, distinguishing it from the up-
dated ST2K version.[107] The difference between the two is how a denser sampling was
implemented in the latter by hosting about 2000 spots, rather than 1000, in the same
array area. ST was commercialized by the company Spatial Transcriptomics AB, from
which 10x Genomics obtained the IP rights in late 2018. A year after the acquisition, in
late 2019, 10x Genomics began shipping the product Visium. The Visium platform is a
second upgrade of the ST technique, using approximately 5000 spots with a diameter of
55µm and a center-to-center distance of 100µm arranged according to the orange crate
packing system.[108] With 10x Genomics being an established distributor of products in
the genomics field, Visium spread fast and became one of the most widely used platforms
for spatial transcriptomics studies in 2021.[74] None of the ST or Visium platforms have,
so far, reached single cell resolution. As a consequence, transcripts captured at a given
spot could originate from multiple cells, not all necessarily of the same cell type or state.
Depending on the tissue and platform, the number of cells contributing with material to
a spot could range from one to somewhere in the hundreds.[109] Furthermore, capturing
transcripts by their polyA-sequence makes the technique fairly unbiased, as no prior target
selection is required. Of course, this comes at the cost of only capturing polyadenylated
transcripts, excluding specimens such as tRNA, rRNA, miRNA (micro RNA), snRNA
(small nuclear RNA), piwi-interacting RNA (piRNA), etc. By only sequencing a small
fraction of the captured mRNA, queries into isoform populations are very limited, al-
though attempts to circumvent this have been made.[110]

Increased spatial resolution fast became the feature to optimize among developers of in
situ capture methods. In 2019, two techniques with improved resolution compared to the
ST1K and ST2K arrays were published close in time, Slide-seqV1 and high density spa-
tial transcriptomics (HDST).[111, 112] Both techniques used beads rather than printed
probes, allowing them to achieve higher resolution, but also requiring them to do a decod-
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ing step to determine the spatial position of each bead as this is not known beforehand.
In Slide-seqV1 SOLiD sequencing is used to couple spatial barcodes with position, while
HDST relies on FISH for decoding. The beads in Slide-seqV1 are 10µm in diameter, five
times the size of the beads in HDST (2µm). A common consequence of increased resolu-
tion is reduced capture efficiency, the implication being that fewer transcripts per capture
location are registered. Both Slide-seqV1 and HDST suffer from efficiency issues, although
HDST reports worse performance than Slide-seqV1. In an attempt to improve the cap-
ture efficiency, Slide-seqV2 was launched in late 2020, presenting a platform with a more
than 9x efficiency improvement from the first version and a performance that matched
droplet-based single cell techniques, as well as outperforming Visium.[113]

DBiT-seq (2020), Seq-Scope (2021), PIXEL-seq (2021), Stereo-seq (2021) are examples
of other techniques that also belong to the set of in situ capture methods, however, these
will not be discussed in more detail here.[114, 115, 116, 117] Of all the listed methods in
this category, Stereo-seq holds the most impressive resolution (spot diameter) of 220nm,
with an efficiency that – according to the authors’ benchmark – is competitive with Vi-
sium’s.

Working in a group so intertwined with the inception of ST and development of the in
situ capture technologies, certain influence on my work is inevitable. Hence, many of the
computational methods presented in this thesis have been developed for data produced
by the ST or Visium platform, although frequently generalized to other techniques. With
Visium’s widespread use and the increasing amount of data generated from the platform,
this preference is not completely unwarranted, but I still want to make the reader aware
of it.[74]

2.3.3 Computational methods

This section serves to introduce the reader to some of the computational methods used
for analysis of spatial transcriptomics data. Thus, I’ve intentionally chosen to keep the
discussion at a superficial non-technical level. Instead, section 2.4 provides a more exten-
sive account of concepts that relate to data modeling and analysis relevant to the work
presented in this thesis.

2.3.3.1 Data character and content

All spatial transcriptomics techniques partly rely on computational methods to translate
raw experimental data into a mature format that is informative, interpretable, and suitable
for downstream analyses; one may even venture as far as to say that these methods are
parts of the techniques themselves. The exact procedures for curation of data are dictated
by the experimental platform, but tend to encompass one or more of the following actions:
cell segmentation, assignment of transcripts to a donor cell, barcode demultiplexing, and
mapping to a reference genome. This thesis focuses on analysis rather than processing of
spatial transcriptomics data, hence, methods for pre-processing will not be discussed in
any further detail here.

After the appropriate pre-processing steps have been applied to raw data, the product
is usually an object that associates observed features of interest with spatial coordinates.
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In capture-based techniques and those relying on microdissection (e.g., Visium, Slide-seq,
HDST, and LCM), these features are gene expression vectors listing the number of unique
transcripts from each gene observed at a given capture location or region; the expres-
sion vectors generally span over the whole transcriptome as a priori selection of targets
is not required. For techniques based on in situ sequencing or hybridization (e.g., ISS,
MERFISH, seqFISH, and FISSEQ), similar expression vectors can be assembled for each
cell (though limited to the set of targets studied), alternatively one may only report the
identity and spatial position of the target molecules without assigning them to a donor
cell. In contrast to the latter set of techniques, the expression vectors of the sequencing-
based methods can all be considered as mixtures with contributions from multiple cells,
potentially heterogeneous w.r.t. cell types, a property with strong implications for the
downstream analysis.

2.3.3.2 Drawing inspiration from the single cell sphere

Some statements regarding expression patterns can often be postulated by mere visual
inspection of the curated data. However, more sophisticated methods to capture general
trends and mine latent information from the data are frequently applied. Many of these
methods are immediately borrowed from the single cell field, for example: clustering of
datapoints (e.g., capture locations or cells), differential expression analysis between re-
gions of interest or identified clusters, factor analysis, etc.[118] Consequently, several of
the bioinformatic suites originally developed for single cell data analysis (e.g., Seurat and
scanpy) have expanded their ecosystems to support handling of spatial data,[119, 120] but
new tools specific to this particular kind of data are also available (e.g., STUtility, Giotto,
stLearn and squidpy).[121, 122, 123, 124]

For the mixed data (e.g., Visium and Slide-seq), different schemes to decompose this
into entities like factors or expression programs have been proposed; some cast this as a
standard matrix factorization problem, others use probabilistic models with the aim to
better account for different sources of variability in the data.[121, 125, 126] Attempts to
delineate cell state dynamics using trajectory inference or velocities are staple elements in
single cell studies, and application of these ideas to spatial data is alluring, but not without
certain challenges. Adhering to the definition of RNA velocities presented by La Manno
et al. (velocyto), information required to fit the dynamical model – abundance of spliced
and unspliced reads – is hard to extract from spatial techniques, unless experiments are
specifically designed for it.[127] To circumvent this issue when working with MERFISH
data Xia et al. proposed a slightly modified model.[128] To order cells in pseudotime,
they made a distinction between transcripts located in the nucleus and cytoplasm, instead
of splice variants. Splicing information may be more accessible in the sequencing-based
methods if TGS long-read sequencing is used, but even then, the characteristic mixed ob-
servations adds a layer of complexity to the velocity estimation; cells contributing to the
same capture location do not necessarily populate similar positions in pseudotime.[110]
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2.3.3.3 Taking context into consideration with spatially aware methods

Despite their broad applicability, single cell analysis methods discard information con-
tained within the data, for example omitting notions of spatial coherence and correlation.
Inevitably, development of “spatially aware” methods thus followed the surge in spatial
data. One question that has been revisited at multiple occasions is how spatially variable
genes can be identified. The strategy of Edsgard et al. (trendsceek) was to treat the ex-
pression data as a marked point process, then compute certain spatial summary statistics,
and finally compare these statistics with those obtained from a set of null-distributions
generated by “spatial shuffling” of expression values; this allowed genes with non-random
spatial arrangement to be extracted.[129] Svensson et al. took a slightly different approach
to find spatially variable genes with SpatialDE, using Gaussian Processes (GP) to model
the (normalized) data.[130] For every gene, SpatialDE fits a full GP model with both a
spatial and non-spatial term to explain the variance. The full model is then compared
to a reduced model lacking the spatial term. Genes where the full model significantly
outperforms the reduced one – accounting for the additional parameter – are considered
spatially variable. More recently, the method SPARK, which uses a generalized linear
spatial model (GLSM), was introduced by Sun et al.[131] In SPARK, observed expres-
sion values are taken as Poisson distributed, with the Poisson rate dependent on: certain
explanatory variables (e.g., batch or replicate), random residual noise, and spatial corre-
lation between signal locations. Here, the third term (spatial correlation) is described by
a stationary GP. Analogously to SpatialDE, spatially variable genes are found by testing
whether the term accounting for spatial correlations adds significant explanatory power
to the model. In 2021 SpatialDE2 was released, which extends the SpatialDE model to
a more general form. SpatialDE2 also supports GPU acceleration and spatial domain
segmentation using HMRFs (Hidden Markov Random Fields).[132] An updated version of
SPARK, named SPARK-X, was also released in 2021. SPARK-X is designed for computa-
tional efficiency and scaling to large spatial data sets, objectives achieved by implementing
a non-parametric model.[133]

Arnol et al. also adopted the idea of using GPs to model spatial data in their method
SVCA, this time extended to account for multiple types of effects (intrinsic, environmen-
tal, and cell-cell interactions) that might influence the gene expression.[134] From SVCA’s
design, different degrees of contribution to the observed variance in gene expression are
attributed to the aforementioned effects. Both Walter et al. (FISHFactor) and Townes et
al. (NSF) leverage the flexibility of GPs to achieve a form of spatial factorization. FISH-
Factor is tailored for single molecule data (e.g., from ISH or ISS techniques) while NSF is
better suited for data produced using in situ capture methods.[135, 136] Ghazanfar et al.
also explored means of examining spatial patterns and presented one solution with their
method scHOT, although the gene-gene interplay rather than singular patterns was their
focus.[137] In scHOT, weighted estimates of gene variance and gene-pair correlations are
used to infer local interaction patterns within the spatial data, exposing genes that are
differentially correlated across space.

Spatial expression data can easily be described using concepts borrowed from the field
of graph theory; with every source of a signal (e.g., capture location or cell) interpreted
as a node in a graph and edges connecting nodes to their neighbors (defined by physical
distance). This interpretation was conceptualized by Zhu et al. who used HMRFs to ex-
tract spatial domains from ISS data.[138] Domain membership of each cell was treated as
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a latent (hidden) variable to be inferred under the assumptions that: (i) members of the
same domain should have similar gene expression profiles, and (ii) neighboring cells likely
belong to the same domain. HMRFs have also been applied to infer spatial organization
of tumor clones – defined by a set of CNAs (copy number aberrations) – in ST data. The
referenced method, STARCH, assumes that nearby capture-locations are inclined to share
genetic profiles, and takes advantage of the presumed spatial correlations to strengthen
CNA-signals.[139]

2.3.3.4 Combining spatial and single cell-or nuclei data

Plenty of attention has been given to the area of data integration, perhaps most intensively
how information from single cell/nuclei RNA-seq studies could be transferred to data
derived from spatial experiments. Thus, single cell/nuclei data – where no mixing of
cells occurs – has repeatedly been used to deconvolve the expression profiles found in ST,
Visium, and Slide-seq; producing estimates of cell type abundance at the capture locations.
Examples of some deconvolution strategies together with their release dates are:

• NMFReg – March 2019, a method that decomposes the single cell data into sig-
natures by non-negative matrix factorization (NMF), then assigns a signature to
each cell type, and finally uses a non-negative least-squares approach to estimate
the loadings (contributions) of respective signature to the observed expression data
at the capture locations.[111]

• stereoscope – December 2019 (preprint), a probabilistic method presented in Arti-
cle I which assumes that both single cell/nuclei and spatial data follows a negative
binomial distribution. Importantly, the expression of a gene within a cell is con-
ditioned on the cell’s identity (cell type). In the spatial data, for every capture
location, stereoscope tries to find the combination (proportions) of cell types that –
based on the cell type specific parameters estimated from the single cell data – best
explains the observed expression values. This is evaluated by computing the data
likelihood given the compound distribution generated by combining cell type specific
distributions according to the proportions. stereoscope is implemented in PyTorch,
which supports GPU acceleration. The model does not use the mean-dispersion
parameterization of the negative binomial, but the “rate and success probability”
parametrization.

• MIA (Multimodal Intersection Analysis) – January 2020, where representative cell
type gene sets derived from single cell data (e.g., marker genes) are compared to the
gene expression in the spatial observations. The statistical significance (based on a
hypergeometric test) of the overlap is then used to assess enrichment and depletion
of types within the specific region or observation.[140]

• cell2location – November 2020 (preprint), akin to stereoscope, models both single
cell/nuclei and spatial data as negative binomial distributed, but uses a Bayesian
framework to infer latent parameters that can be related to cell type abundance.[141]
In contrast to stereoscope and RCTD (see below), which employ penalized maxi-
mum likelihood approach for parameter inference, cell2location relies on variational
inference, which reportedly makes it superior w.r.t. computational time. In the
implementation, the more common mean-dispersion parametrization is used for the
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negative binomial distribution. cell2location also supports two ways of estimating
the single cell/nuclei signatures used to guide the decomposition of spatial data into
contributions from cell types: (i) one highly efficient strategy where the mean for
each cell type is computed immediately from the observations, and (ii) a more com-
putationally demanding approach where regularized negative binomial regression is
used to account for batch differences.

• RCTD – February 2021, is a probabilistic method developed for Slide-seq data but
generalized to all in situ capture platforms with mixed signals.[142] In contrast to
stereoscope and cell2location, RCTD models the UMI count data using a hierarchical
Poisson-lognormal mixture. The choice of a Poisson-lognormal mixture model for
UMI count data is not as common as the Gamma-Poisson mixture (effectively pro-
ducing a negative binomial model), but definitely not unheard of, see section 2.4.2.
RCTD extensively models, and tries to account for, platform effects that otherwise
could mask relevant biological signals or confound the result. In addition, it supports
different “inference modes” relating to the expected number of cell types that are
present at each capture location. Having decomposed the spatial data, RCTD – by
conditioning on cell type – provides means to identify spatially variable genes where
the variation is not driven by the spatial cell type distribution.

• Tangram – October 2021, does not assume that the gene expression follows a spe-
cific distribution, but rather aims to find an optimal mapping between cells from
single cell/nuclei data to the spatial observations, though still using a probabilis-
tic strategy.[143] Tangram attempts to simultaneously maximize agreement between
cell densities and the expression profiles, comparing the observed spatial data to the
mapped single cell/nuclei data. To measure agreement they use Kullback-Leibler di-
vergence (KLD) between the densities and cosine distance for the expression profiles.
If cell numbers are unknown, the KLD term can be excluded. An optional entropy
regularizer can be utilized to make the cell assignments more localized. Data-driven
cell filtering is also included as an optional feature of the model. The filtering only
keeps the “best” cells, where fitness is learnt from the data. Tangram is platform-
agnostic and compatible with a majority of the spatial transcriptomics techniques.
For those spatial techniques where only a few targets are surveyed, Tangram has a
module for imputation of gene expression.

Projection of single cell/nuclei annotation labels to spatial data are relevant even if de-
convolution is not necessary. This is exemplified by Qian et al. who, in conjunction
with presenting a probabilistic method for the task (pciSeq), showed how it enabled finer
cell type calling in mouse brain ISS data.[144] pciSeq treats the data as realizations of a
Gamma-Poisson mixture (i.e., a negative binomial distribution). Probabilities of each cell
belonging to a specific cell type are obtained from pciSeq after approximating the posterior
over cell types. The Seurat suite also offers single cell data integration by embedding the
two data types in a joint space where “anchors” (similar objects from respective type) are
identified and used to transfer labels.[145]

2.3.3.5 Methods with influences from deep learning

Other modalities than sequencing data can of course be integrated with spatial data. For
example, He et al. illustrated how morphological cues contained in images of a tissue can
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be leveraged to predict gene expression in ST data once a mapping (here, a neural net-
work) between the two is established.[146] With their deep generative model Bergenstråhle
et al. further explored how tissue images enable computational enhancement of the gene
expression resolution, referred to as inferred super-resolution. In the model, image and
gene expression are considered as generated by a latent tissue state. The posterior over
the latent state and a set of other hidden variables, given the image and expression, is
approximated by variational inference where the variational parameters of the latent state
are encoded by a convolutional neural network (a.k.a. recognition network) that takes the
image as an input.[147] The network architecture has some resemblance with U-Net,[148]
allowing information to be shared across different levels of granularity. After training the
model, expression levels at all pixels in the image can be inferred, thus, increasing the res-
olution significantly. This model also uses a negative binomial distribution to describe the
expression data, while the image intensities are assumed to be sampled from a Gaussian
distribution.

More methods relying on deep learning have started to emerge in the later years, likely
due to a combination of increased access to data and a growing interest in the field. For
example, SpaGCN uses a graph convolutional network (GCN) to integrate gene expres-
sion, histology, and spatial information to identify spatial domains within the samples.
The framework CoSTA relies on the more traditional convolutional networks to find fam-
ilies of genes with similar spatial patterns.[149] Most likely, integration of spatial data
with one or more modalities (e.g., protein, genome, metabolome or epigenome data) will
emerge as a topic of intensive research. Given its success in other fields and versatility,
deep learning will likely become an indispensable tool for advancements in the domain of
computational biology. For my personal thoughts on the topics of multimodal integration
and deep learning, I refer the reader to the Epilogue (section: “What I predict”).

2.4 Modeling gene expression - a mathematical perspective

Despite us being surrounded by the same systems, the language we use to describe them
tends to vary profoundly. A medical doctor might use schematic images to outline the
intricate anatomy of the heart while an engineer finds it more appealing to describe the
flow of blood using Navier–Stokes equation. Neither approach is wrong, they each serve a
particular purposes and highlights aspects of the system most relevant to their respective
user. When modeling gene expression or transcriptomics data, my language of preference
has been statistics. Biological systems are inherently noisy and uncertain, which makes
the non-deterministic nature of statistics a perfect fit for them. This section will introduce
some basic concepts relating to modeling of gene expression and spatial data.

2.4.1 The basics - setting the scene

Sequencing-based data, like that originating from scRNA-seq or in situ capture spatial
transcriptomics methods, is usually presented as count data. The name stems from the
fact that we count the number of observations from each feature. Since we can’t ob-
serve “a fraction of an observation”, the count data always consist of non-negative integer
values. The canonical way to represent count data is by tabulation, or through a ma-
trix, listing observations along one dimension and features along the other. While raw
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count data exclusively contains non-negative integer values, it’s commonplace to – when
working with gene expression data – transform these values (e.g., to reduce variance or
account for certain biases), resulting in values that can span the whole real domain.[150]
Several distributions could theoretically be used to model gene expression data, perhaps
the most natural options being: the binomial distribution, the multinomial distribution,
the Poisson distribution, the negative binomial distribution, the normal distribution, and
non-parametric distributions. Below, each of these will be briefly described. After the dis-
tributions have been introduced, a discussion regarding their aptitude for modeling gene
expression will follow.

2.4.1.1 The binomial distribution

The binomial distribution is a discrete univariate distribution with two parameters, the
success probability (p) and the number of independent experiments (n). If a stochasitc
variable X is distributed according to a binomial distribution, one may consider X as
representing the number of successes in n independent trials, where the probability of
success in each trial is equal to p. Formally we have:

X ∼ Bin(n, p)→ P (X = x) =
(
n

x

)
px(1− p)(n−x) (2.1)

For the expected value and variance, the following relationships hold true:

E[X] = np, V ar[X] = np(1− p) (2.2)

For large n, the binomial can be approximated with a normal distribution (see section
2.4.1.5) according to:

Bin(n, p) n7→∞∼ N (np, np(1− p)) (2.3)

If n is large while p is small, the binomial can be approximated with a Poisson distribution
(see section 2.4.1.3) according to:

Bin(n, p) n7→∞,p7→0∼ Poi(np) (2.4)

2.4.1.2 The multinomial distribution

The multinomial distribution is the multivariate version of the binomial distribution.
While the binomial distribution models repeated trials with a binary outcome, the tri-
als in the multinomial can take any of k different outcomes. The multinomial is given
as:

X ∼Mul(n,p)→ P (X = {x1, · · · , xk}) = n!
x1! · · ·xk!

∏
i

pxii ,
∑
i

pi = 1 (2.5)

The expected value and variance for an outcome i over all n trials are similar to those
of the binomial distribution. The covariance between outcomes is always negative. The
following identities hold true for the multinomial:

E[Xi] = npi, V ar[Xi] = npi(1− pi), Cov[Xi, Xj ] = −npipj (2.6)
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2.4.1.3 The Poisson distribution

The Poisson distribution, just like the binomial, is a univariate discrete distribution. The
Poisson has a single parameter, the rate or mean parameter λ. The distribution is designed
to describe the number of independent events within a set unit of time or space. For a
Poisson distributed variable X, the following holds true:

X ∼ Poi(λ)→ P (X = x) = λxe−λ

x! (2.7)

The mean and variance are given as:

E[X] = λ, V ar[X] = λ (2.8)

As is evident from the above expression, there’s a clear dependency between the mean
and the variance: a one unit increase in the mean will result in a one unit increase in the
variance, i.e., they are equal.

Superficially, the Poisson and binomial distributions share many features, but there are
some key differences. The binomial models discrete occurances over a discrete set of trials
(domain), while the domain is continuous for the Poisson. There’s a limited number of
attempts (n) where a success could occur in the binomial, each with a probability p. In
contrast, the Poisson permits an infinite number of attempts over an interval of time or
given space, but all with a minuscule chance of success – as manifested in the binomial to
Poisson approximation.

2.4.1.4 The negative binomial distribution

The negative binomial is yet another univariate discrete distribution, that relates to the
binomial, but with some important alterations. The reader will notice how the negative
binomial is discussed in greater detail than many of the other distributions, this is because
it is one of the most common choices of distributions when attempting to model count
data; this preference will be explained in later sections.

The negative binomial, rather than modeling the number of successes given n trials and
a success probability p, models the number of failures before the r:th success. Other
interpretations exist as well, for example where one measures the number of successes
before a given number of failures. Using the first alternative, the negative binomial can
be described as:

X ∼ NegBin(p, r)→ P (X = x) =
(
r + x− 1

x

)
(1− p)xpr (2.9)

Where x represents the number of failures. With this parametrization, the expected value
and variance become:

E[X] = pr

1− p, V ar[X] = pr

(1− p)2 (2.10)
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Using the gamma function (Γ) the negative binomial can be extended to support all non-
negative real values of r, the expression being:

P (X = x) = Γ(x+ r)
Γ(x+ 1)Γ(r)(1− p)xpr (2.11)

Popular suites for probablistic modeling like PyTorch and Tensorflow tend to replace the
success probability p with an odds parameter (o). When logged, as is common during opti-
mization, the odds parameter is mapped to the whole real domain, and no constraints have
to be imposed during optimization. Using the odds parameter, the expression becomes:

P (X = x) = Γ(x+ r)
Γ(x+ 1)Γ(r)

ox

(o+ 1)r+x , o = p

(1− p) (2.12)

In regression problems, another parametrization is usually preferred, using the mean (µ)
and dispersion (φ), defined as below:

µ = pr

(1− p) , φ = r (2.13)

With the resulting form:

P (X = x) = Γ(x+ φ)
Γ(x+ 1)Γ(φ)

( µ

φ+ µ

)x( φ

φ+ µ

)φ
(2.14)

Where the mean and variance can be described as:

E[X] = µ, V ar[X] = µ+ µ2

φ
(2.15)

From these expressions of the mean and variance it becomes clear that the negative bino-
mial can accommodate overdispersion, where the variance is larger than the mean. In this
thesis, the notation NegBin2(µ, φ) is used to indicate usage of the mean and dispersion
parametrization.

Interestingly, the negative binomial relates to the Poisson distribution, as the latter rep-
resents a limiting case of the former when φ 7→ ∞. Hence, the negative binomial can
be considered a generalization of the Poisson, where φ controls the amount of additional
spread compared to a Poisson distribution with the same mean. A brief proof of this state-
ment for the case φ ∈ N can be seen in Appendix A.1. However, there is an even deeper
relation between the two, the negative binomial can be seen as an hierarchical Gamma-
Poission mixture, where the rate parameter in the Poisson is distributed according to a
Gamma distribution. That is, if:

X ∼ Poi(λ)
λ ∼ Gamma(φ, φ/µ) (2.16)

Then, the marginal distribution of X is:

X ∼ NegBin2(µ, φ) (2.17)

For a proof of this relationship, see Appendix A.2.
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2.4.1.5 Uni and multivariate Gaussian

The univariate Gaussian differs from the previously discussed distributions, as it models
continuous variables in the whole real domain. The univariate Gaussian is not suitable
for modeling of raw counts, but could be a candidate distribution if the counts have been
normalized. If a variable X follows a univariate Gaussian distribution, then:

X ∼ N (µ, σ)→ P (X = x) = 1√
2πσ2

exp(−1
2
[x− µ

σ

]2
) (2.18)

With the expected value and variance:

E[X] = µ, V ar[X] = σ2 (2.19)

The multivariate case has a similar form, but uses vectors rather than scalars:

X ∼ MVN(µ,Σ)→ P (X = x) = 1
(2π|Σ|)1/2 exp(−1

2(x− µ)TΣ−1(x− µ)) (2.20)

With the expected value and variance for an outcome i and covariance between outcome
i and j being:

E[Xi] = µi, V ar[Xi] = σ2
i , Cov[Xi, Xj ] = σiσj (2.21)

2.4.1.6 Non-parametric distributions

With non-parametric distributions there are no explicit assumptions about their shape
and character, instead they adapt to the data. Non-parametric distributions aim to find
a shape of the distribution that matches the observed data without introducing too much
volatility, and they can be constructed in several ways of varying complexity. To illustrate
the concept, one of the most common methods for estimation of probability density func-
tions is described below, more specifically kernel density estimation (KDE). For simplicity,
we’ll study the univariate case.

In KDE, the observed data is assumed to be independent and identically distributed.
To estimate the shape of the distribution, the following estimator is used:

f̂(x) = 1
n

n∑
i

K(x, xi) (2.22)

Where K(., .) is a kernel. There exist several kernel functions, but a popular choice is the
Gaussian kernel (KGauss):

KGauss(x, x′) = 1√
2πσ2

exp(−1
2
[x− x′

σ

]2
) (2.23)

2.4.2 Model construction

Here, the process of measuring transcripts within a given cell or at a certain location us-
ing sequencing-based techniques will be examined from a statistical perspective. Note, in
this discussion we assume that the observations consist of UMI counts and not raw reads.
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Here, I’ve opted to use the general term “source” to describe the origin of the transcripts;
however, this is interchangeable with for example: a cell, a Visium spot, or a Slide-seq bead.

At the source, there will be a large pool of transcripts of varying identity (i.e., tran-
scribed from different genes), this represents the source’s total transcript load. Ideally
we’d like to characterize all transcripts in the pool, but most techniques will only allow
the source to be represented by a small fraction of the larger population. For example, it’s
estimated that a single mammalian cell holds circa 2 · 105 transcripts, while the number
of UMI counts used to represent cells when using scRNA-seq protocols tends to be in the
range of 1 · 103 − 1 · 104 UMI counts.[151, 60, 61] The lower value from the experimen-
tal methods can be explained by several factors, such as the efficacy of both the capture
medium and downstream biochemical reactions (e.g., reverse transcription).[152]

Which transcripts in the pool that will be successfully captured and processed is deter-
mined by a random process. In the simplest of models, we can assume that the probability
of a certain type of transcript being captured solely depends on its relative abundance.
This model is “simple” in the sense that “all transcripts are treated as equals,”, meaning
that the presence of potential bias in the measurement process is ignored. However, such
bias is known to exist in real systems, for example, transcripts locate to different positions
and organelles in the cell, which may impact their chance of successfully being measured.
Also, certain transcripts are more sensitive to the processing compared to others, and
thus have a lower chance of “surviving”.[153] Although not exhibiting the highest degree
of verisimilitude, the simple model offers valuable insights and will suffice to build an
understanding of the underlying processes dictating the character of the observed gene
expression. Though, the simple model will not be fully spared from critique in this thesis;
after its introduction, there will follow a commentary on some of its flaws.

2.4.2.1 The simple model

In a distilled version of the measurement process, one may consider it as a case of “picking
transcripts” from the large pool of total transcripts and placing them in a “UMI count
bucket,” which is used to represent the source. Importantly, this means that we do not
replace the transcripts removed from the pool. This scenario is best described using the
multivariate hypergeometric distribution, as it gives the probability of k successes in n
trials – without replacement – where there are multiple different outcomes. Though, given
how only a small fraction of the transcripts are sampled, one may consider the probability
of selecting a certain type of transcript as unaffected by removal of the corresponding
transcript from the pool. With fixed success probabilities, one may treat the process as if
replacement does occur, making the multinomial distribution a valid choice of distribution
to describe the measurement process.

Let xij symbolize the total counts of transcript type j in source i, and ti =
∑
j xij the

total transcript load in source i. Note, hereafter, the term gene will be used instead of
“transcript type.” For the UMI counts, let yij be the analog to xij and ni to ti. Using the
multinomial model, we then have:

yi = {yi1, . . . , y1M} ∼Mul(ni,πi), πi = {πi1, . . . , πiM},
∑
j

πij = 1 (2.24)
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Where πij = xij/ti. Thus, πij represents the relative expression of gene j in source i. Note
that the πi values are unknown, i.e., they cannot be immediately determined from the UMI
count data. Assuming that ni is a random variable following a Poisson distribution with
rate λi, the probability of observing a given expression vector yi is given as:

P (y = yi) = Mul(yi|ni,πi)Poi(ni|λi) =
= ni!∏

j
yij !

∏
j π

yij
j ·

λ
ni
i e−λi

ni! =

=
(∏

j
(λiπj)yij
yij !

)
e−λi =

(∏
j

(λiπj)yij
yij !

)
e−λi·1 =

(∏
j

(λiπj)yij
yij !

)
e
−λi·

∑
j
πij =

=
(∏

j
(λiπj)yij
yij !

)(∏
j e
−λiπij

)
=
∏
j

(λiπj)yij
yij ! e−λiπij =

=
∏
j Poi(yij |λiπij)

(2.25)
The final expression in Eq. 2.25 represents the joint probability of several independent
Poisson distributions (one for each gene). The rate parameter for the j:th Poisson distri-
bution being λiπij . With only one observation of the total UMI counts in a source (ni),
λi = ni becomes the natural choice.[142] Thus, rather than looking at the joint expression
vector yi for cell i, we can also operate with the individual observations yij . Hence, the
measurement step – capturing the transcripts expressed in a source – can be modeled with
a Poisson distribution. Still, this model only encompass parts of the process generating
the observed UMI counts; the biological variability remains – so far – unaccounted for.

To elaborate and exemplify, we’ll examine Figure 2.4, where the variance of a gene’s
expression – across a set of cells annotated as Memory B-cells – is plotted as a function of
its mean. Upon studying the figure, it’s evident how the variance is not linearly related
to the mean. If the UMI counts were distributed according to the Poisson measurement
model presented above, a one-to-one linear relationship would be expected between the
mean and variance, but the data clearly shows signs of overdispersion.

The presence of this overdispersion can be attributed to biological variance; despite all
cells belonging to the same cell type, they are individual entities. As a consequence, the
product niπij should also be considered a stochastic variable. A valid expression model
can be obtained by assuming νij = niπij ∼ Gamma(a, b). This model assumes that πi
follows a Dirichlet distribution generated by sampling values from a Gamma distribution
followed by normalization, see Appendix A.3 for a more elaborate explanation. A com-
plete model of the UMI counts is formed by combining the expression and measurement
model accordingly:

yij |ni, πij ∼ Poi(niπij) = Poi(νij)
νij ∼ Gamma(φij , φij/µij)

(2.26)

Which is a Gamma-Poisson mixture and thus equates the marginal distribution of yij to
a negative binomial distribution with mean µ and dispersion φ, given as:

yij ∼ NegBin2(µij , φij) (2.27)

Hence, using a negative binomial distribution to model UMI count data, as many methods
do,[155, 156, 150, 157] can be considered as somewhat theoretically justified. Revisiting
Figure 2.4, it’s clear how an assumed quadratic relationship (which the negative bino-
mial induce) between the mean and variance outperforms a linear relationship associated
with the Poisson. Having advocated for the Gamma-Poisson mixture model, it should
be said that other combinations of measurement and expression models have also been
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Figure 2.4: Mean-variance relationship in UMI count data. Each data point represents a gene, where
the the position on the x and y-axis correspond to the mean (µ) respectively variance (σ2) taken across
all observations in the data set. The data set consists of all cells annotated as “Memory B-cells” in
the publication by Wu et al.[154] Two curves representing different relationships between the mean and
variance are visualized in the graph: a linear (yellow dashed line) and a quadratic (blue dashed line). The
quadratic curve was fitted using least squares.

used; for example, replacing the Gamma distribution with a lognormal.[142, 158] Still, the
Gamma-Poisson is an attractive option, as the integrals in the expression for the marginal
distribution have a analytical solution represented by the negative binomial.

2.4.2.2 Flaws of the simple model

As mentioned in the previous section, the simple model assumes unbiased sampling of
transcripts from the pool during measurement; a relatively unlikely scenario. If bias is
present, and not able to be accounted for, the inferred values π̃ij does not estimate the true
expressivity (πij) of a gene j within a source i, but rather its biased counterpart. That
is, π̃ij =̂ bijπij , where bij is a bias term.[153] If the bias is source independent and only
depends on the gene (bij = bj), differential gene expression analysis can still be conducted
with the condition that ratios are used. Ratios are required because the bias terms cancel
out, while they would remain if differences in absolute values were used instead:

π̃ij/π̃i′j = πijbj/πi′jbj = πij/πi′j (2.28)

Complications arise when the bias is source dependent (bij 6= bi′j), and requires a more
complex model together with further assumptions. Using the simpler model despite
bias being present will likely result in an overestimation of the cell-to-cell expression
variation.[153]

Additionally, using the Gamma distribution for the expression model might be too re-
strictive. For example, Sarkar and Stephens showed that a non-parametric model was
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favored over the Gamma model for 20-69% of genes across several data sets. Another
issue arise if transcripts from certain genes are present in very low amounts, as this in-
validates the assumption that the sampling of transcripts (without replacement) can be
approximated by a process that assumes replacement (i.e., the multinomial).[153]

Despite the aforementioned flaws, the negative binomial model is still popular to use
when modeling UMI count data. With a parametric model, interpretable parameters can
be inferred and it’s convenient to use in regression models or optimization frameworks.

2.4.2.3 Modeling transformed data

So far the discussion has pertained to modeling of raw UMI counts, but another approach
is to transform the data prior to model construction. It’s common practice to apply scaling
(often relating to a source’s library size) and log-transformation to UMI count data, as
illustrated in Eq. 2.29.

ytrans
ij = log(

yobs
ij∑
k y

obs
ik

+ c) (2.29)

Where c represents a pseudocount to prevent zero values. Log-transformations are preva-
lent in statistical analysis because it tends to have a variance stabilizing effect and –
sometimes – makes the data more normally distributed.[159] Both of these properties,
homogeneous variance and normal distribution, are often requirements for statistical tests
and models. However, concerns about log-transforming count data have been raised and
even advised against.[160] In their method SpatialDE, Svensson et al. used Anscombe’s
transformation instead of the log-transform; which is better adapted for data following
a negative binomial distribution.[130] The reason Svensson et al. does not immediately
model the data as negative binomial is because they use a Gaussian Process to capture
spatial relationships, where the observed data is assumed to follow a multivariate normal
distribution. For more details on the Gaussian Process, see Methods of Article V.

2.4.2.4 A word on zero inflation

Single cell and spatial transcriptomics data is often referred to as being “sparse,” which
aims to convey the large abundance of zeros in the count matrices used to represent
experimental data. Due to the stochastic nature of the sampling in the measurement
process, a certain part of the target population will remain unobserved. Thus, zero-
observations, or sparse data, are not inherently disruptive to any analysis. They only
become problematic if present in excess, i.e., if they are more abundant than expected
from the sampling process. Excessive zeros would imply the presence of dropouts caused
by technical issues. Such issues could have several negative consequences, for example:
estimates of differential gene expression might be convoluted, and true biological variation
masked. The phenomenon of excessive zeros is usually referred to as zero inflation, see
Eq. 2.30 for a mathematical definition.

P (x) =
{

(1− π)f(x; θ) + π if x = 0
(1− π)f(x; θ) else (2.30)
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f is the pdf/pmf of the underlying (non zero-inflated) distribution, θ the parameters of f ,
and π the probability of extra zeros. The debate about whether sequencing data exhibits
zero inflation or not has split the single cell field into two different camps: those who
model data as zero inflated, and those who oppose this practice.

There exist several methods where the idea of zero inflation has been incorporated into
their core architecture, two examples being: ZIFA and ZINB-WaVE.[161, 162] In ZINB-
WaVE the authors claim superiority to the standard negative binomial model, and support
this by comparing their method to others relying on a standard negative binomial model.
The other camp argues that the observed zeros aren’t excessive and their presence can be
explained with an appropriate statistical model. In his correspondence letter (to Nature
Biotechnology) titled “Droplet scRNA-seq is not zero-inflated,” Svensson takes a clear
stance in the question while also presenting compelling evidence in favor of his opinion.
Svensson shows how observed frequencies of zero counts agree with those expected from
a negative binomial distribution, and how deviations from this can be explained by bio-
logical variance.[163] Similarly, Sarkar and Stephens calls for the abolishment of the term
“dropout” and state that there’s a lack of evidence for the need of zero-inflated models,
but acknowledge that there might be a use of it given the right circumstances. When
comparing different combinations of measurement and expression models, they evaluate
the performance of a point-Gamma expression model (rendering a zero-inflated negative
binomial distribution), but only find a small percentage (2-16%) of genes that have even
weak support for this observation model.[153]

Personally, without having investigated the issue thoroughly myself, I consider the ar-
guments presented by the opponents to zero-inflated models stronger than those who are
in favor of them; especially because the proponents have failed to produce a robust expla-
nation of the mechanism that would produce the supposedly excessive zeros. The question
of zero inflation has not been as widely discussed in the context of spatial transcriptomics
techniques, but I see no reason to assume, by default, that expression of a gene would be
zero-inflated among these methods. Nevertheless, issues with permeabilization or other
technical aspects could motivate its application to a select set of genes.
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Chapter 3 :: Epilogue

Science is a precise art where guesses and hypotheticals are often frowned upon; when
comments of this kind are made, they are usually confined to the last few sentences in
the discussion section of our publications. Review articles are the rare exception, in these
the authors sometimes make predictions about the future, though they take caution to
not be overtly visionary. However, as a young scientist without much prestige, you’re
unlikely to be given an outlet where your thoughts and ideas can be voiced – but the
Doctoral thesis presents one such platform. Therefore, I’m much inclined to take this
opportunity and share some personal reflections. These include what I’ve learnt so far, a
few predictions about what I expect, and what I hope to see in the future. The reader
may do as he/she/they pleases and skip this part if it’s deemed too unscientific, but if
some degree of speculation and subjectivity is accepted, it might offer an interesting read.

3.1 What I’ve learnt

The “end of history illusion” is a phenomenon in psychology where individuals agree that
up until the current point in time they’ve experienced continuous and significant growth,
but believe that, henceforth, they will not change by any considerable amount. This il-
lusion is persistent across all ages, and repeatedly proven to be incorrect. We humans
are malleable and never seem to solidify. No matter where in life we are, we continue to
develop, change, and grow.

I was convinced that I’d learn a lot during my PhD, scientifically – but would I be affected
on a personal level? Most likely not. Despite me being aware of the aforementioned illu-
sion, I was impermeable to the idea that this experience would leave much of an imprint
on me. I guess that this is at its best described as arrogance and at its worst as stupidity.

Starting my PhD on the 12:th of June 2019, I’ve spent exactly 1010 days – or 2 years,
9 months, and 6 days – pursuing my degree. This time has been nothing short of trans-
formative. Agreeably, approximately three years is not a huge amount of time, but these
years have been densely packed with new experiences, encounters, and impressions. I’ve
acquired many new skills, but I also leave this era of my life as a very different person
than the one who entered it. Below follows a curated list of insights that I’ve collected
over the course of my PhD, relating to science as well as personal topics.

• A high level of complexity does not equal a high level of success. Among
computational methods, it’s rarely the most advanced methods that surface as the
most popular ones. If you desire spread and impact, study the field, seek questions
that are frequently being asked but rarely answered; then tailor your method towards
this. Never develop a method and then invent a question for it to address.

• Develop for you audience, not yourself. If you’re capable of formulating a
statistical or mathematical model, and then implement it in code, you are likely
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more proficient in these areas than the average user of your tool. Therefore, if you
want people to use your software, make the interface intuitive and provide a layman’s
explanation of how it works. Good documentation with loads of examples is key to
success. If possible, integrate your method into already existing frameworks, this
makes it easy for users to explore without having to learn a new syntax. From my
experience, methods that are easy to operate are often favored over less user friendly
ones, even though the latter might have much better performance.

• Listen to people when they complain. If someone expresses that they are
struggling with something, they are likely not alone. Embrace the opportunity and
be the one to deliver the solution. This is one of the easiest ways to identify areas
where you can make a useful contribution.

• Seek diversity and honor others’ expertise. The best collaborations are those
where the people involved have complementary strengths and show mutual respect
for each other’s skills. There’s a difference to being proud of your expertise and
being arrogant about it. A project thrives when the members don’t consider their
own contribution more (or less) important than anyone else’s, but acknowledge that
everyone is essential for the process to move forward.

• Time spent planning is often doubly rewarded. I’m addicted to fast progress,
but have learnt that a short pause can save plenty of time. Making informed design
choices, and not just blindly throwing yourself at the first idea, almost always results
in a more pleasant and faster overall process. A quick fix for the situation at hand
might seem tempting, but adapting general solutions usually pays off in the end.

• Garbage data will give you garbage results. You wouldn’t pick up a roadkill,
cook it, and then expect it to taste like a dish from a Michelin star restaurant.
The same should hold true for data; one needs to have reasonable expectations
about what information that can be derived from it. There’s a difference between
a bioinformatician and a magician, the latter can turn nothing into something,
the former cannot. Sometimes, the data is just not good enough to answer certain
questions, if such is the case, there are only two reasonable options: (i) ask a different
question, or (ii) generate new data.

• Don’t bring nuclear weapons to a gun fight. Sometimes enthusiasm and
excitement about new powerful methods makes us blind to the fact that the problem
at hand likely could be solved with simpler means. For some questions, a simple
regression model will do just as fine – and possibly even better – than a fancy deep
learning model. It’s easy to be caught up in the storm of buzz words, but take some
time to contemplate what level of complexity your problem actually requires.

• Aim to be the dumbest person in the room. The best way to grow is to
position yourself in an environment where people are more skilled than yourself,
it accelerates learning and forces you to be alert. Comfort is truly the enemy of
improvement.

• Don’t set yourself on fire to keep others warm. I believe one should always
strive to help others when we can, but at some point, it can also become problematic.
If you consistently are the one who does the extra work, covers for others, and stays
late – then you’re not helping, you’re being taken advantage of. We’re all familiar
with the airplane safety instructions telling us to put on our own masks before
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helping someone else, this is equally applicable to the workplace. If you want to
have a positive impact on the people around you, the most important thing is that
you feel good about your own situation.

• Never compromise on health. In January 2021 I experienced something close to
a physical collapse, my body simply quit on me. I could barely walk for two months,
and for six more months, every day of my life felt like a living hell – I did not
enjoy living. Every morning, I put on an alarm that counted down the hours that
I had left to be awake and aware of my situation. Still, when night came, I barely
slept. Instead, I woke up multiple times having issues breathing or in a state of
complete sleep paralysis. A combination of bad nutrition, an extreme (according to
some people) amount of exercise, and working ten to twelve hours a day (including
weekends) put me in a state of severe exhaustion. It was not until I became a
prisoner of my own body that I realized how much my previous freedom meant to
me. It’s hard realizing that you’re not an exception, but just as human as everyone
else. However, in the end, this realization is healthy. If there’s one thing I will bring
with me from these years, it’s that nothing is worth sacrificing one’s well-being or
health for.

• Perspective is everything. There’s a quote from the, truly awful, series “Pirates
of the Caribbean” that reads: “The problem is not the problem. The problem is your
attitude about the problem.” Even though I cringe just by thinking about Captain
Jack Sparrow, these words have stayed with me. I’ve experienced first hand how
you can’t plan every aspect of life. Unexpected things can, and will, happen. Our
attitude determines how we experience these events, whether it becomes a tragedy
or a lesson. I’ve tried to adopt more of a “gratitude mindset”; instead of being
frustrated when things don’t go my way, I try to celebrate what has gone right
so far. This attitude is not always easy to maintain, and one is of course allowed
to feel anger, but it’s a feeling that becomes toxic if we let it linger for too long.
Implementing this mindset have made me a much happier individual and helped me
through some really dark times.

3.2 What I predict

In 2016, when the Spatial Transcriptomics (ST) technique was published, I had just fin-
ished the second year of my bachelor and was yet to hear the term “transcriptomics”.
Thus, I’m acutely aware of the fact that I belong to the younger generation of the tran-
scriptomics field, and do not have the same experience as many of my peers. Still, having
worked somewhat intensively in the niche of computational method development for spa-
tial transcriptomics, I have a few predictions about the future, which I’ll take the freedom
to share here.

• Deep learning methods will become staple goods. Although I’m fascinated
by deep learning (DL) methods, none of my works have so far exploited the power
of these architectures – mainly because I’ve felt as if the questions I had could be
addressed with simpler methods, or because the data wasn’t there. However, the
trend of access to more data, increasingly sophisticated and user friendly frameworks
– paired with the development of new kinds of models – makes me certain that DL
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will revolutionize the single cell and spatial transcriptomics fields, just as it has many
other aspects of our life. Currently, a lot of the DL-based methods simply apply
existing general models (e.g., taken from the natural language processing field) to a
problem in the transcriptomics sphere. However, I believe we’ll migrate from this
approach towards using bespoke models, where prior information about the biological
systems are integrated into the model architecture. In the very near future, methods
leveraging graph convolutional networks (GCNs) and their aptitude for irregular
data will likely become a popular element in many methods for analysis of spatial
transcriptomics data.

• Emergence of perturbation studies. The majority of publications and projects
that include spatial transcriptomics data have so far been observational. A sample
is collected, analyzed, and relevant observations presented. At some rare occasions,
samples representing case and control exist, but usually with limited meta data
and no control over confounding variables. While interesting, this setup mainly
permits exploratory data analysis (EDA), but does not lend itself well to infer causal
relationships. To go beyond mere associations or correlations, an intervention or
perturbation of the system is necessary. Thus, I’m certain that it’s just a question of
time until techniques to the likes of Perturb-seq are combined with spatial assays.
With the introduction of perturbations, we’ll be able to deduce how gene expression
impacts spatial structure, and potentially also the reciprocal relationships. With
access to such data, causal inference will likely become an essential tool for modeling
and understanding causative effects. This is something I’m genuinely excited about.

• Preference of generative models. Many of the models we currently employ
are of a discriminative nature, but I anticipate a shift towards generative models.
Discriminative models assumes some functional form of the posterior, in contrast,
generative models learns the joint probability distribution over all variables. Gen-
erative models are more susceptible to incorporation of prior information about the
systems being studied, and better at representing causal relationships. Thus, they
neatly tie together the two previous statement about a need for bespoke models and
causal links.

• Challenges of multimodal analysis. To me, the trend in technology develop-
ment can best be summarized with the Pokémon slogan: “Gotta Catch ’Em All.”
The transcriptome, epigenome, proteome, and metabolome – we want them all, at
the same time, from the same cell. Alas, 10x Genomics already have an assay where
RNA-seq and ATAC-seq data from the same cell can be obtained, as well as an sec-
ond assay where spatial RNA-seq information and protein abundance are collected
simultaneously. Except for increased ability to resolve cell types and states, very
few examples where multimodal data is superior to unimodal data have so far been
presented, but there’s no lack of ideas.

One of the commonly mentioned aspirations is to learn relationships between the
different modalities, which can be used to predict one modality from another, for
example, deducing protein levels from gene expression. Here, I will take a somewhat
controversial and conservative stance by stating that: prediction of one modality
from another will prove to be more challenging than many expect. I base this state-
ment on two concepts: temporal delays and missing information. I’ll elaborate on
both these issues below.
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Changes to one part of the central dogma usually don’t manifest immediately in
other parts, some form of delay tends to be present. Thus, data (xt) collected from
one modality at time t isn’t necessarily informative about the feature values (yt) of
a different modality at the same time point. Instead – due to the lag – xt relates
to the values (yt′) at a later point t′. This discrepancy causes an issue in learning,
because the two modalities are related according to:

yt′ = f(xt) (3.1)

However, in most multimodal assays, we observe (xt,yt), meaning the data required
to learn f is not available. Potentially, yt′ could be inferred from yt by learning a
second map g such that yt′ = g(yt). Then f can be learnt by first transforming
yt through g. Now, to find g, the derivative ∂yt/∂t must likely be deduced. To
estimate this derivative, at least one more data point close in time (w.r.t. protein
turnover timescales) is required. Unfortunately, experimental assays only capture a
single snapshot of the system at a particular time. As a consequence, estimation of
such derivatives is usually infeasible. The dilemma described above is what I refer
to as temporal delay.

Next, I’ll address the second caveat, that of missing data. The path from one
modality to another often involves several steps and regulatory mechanisms, not
exclusively relying on elements of the observed modality. Thus, Eq. 3.1 should be
updated to:

yt′ = f(xt,ut) (3.2)

Where ut represent entities with an influence over the regulatory mechanisms (e.g.,
enzyme levels or metabolic concentrations). Note that it’s possible that ut and yt
overlaps. Assuming Eq. 3.2 is true, data must also be collected on ut for predictions
about yt′ to be made, solely relying on xt is not sufficient. Thus, xt does not contain
all the information needed to predict yt. Of course, if t ≈ t′ and f(xt,ut) ≈ f(xt),
the problem is reduced to a much simpler one. Still, when such is not the case, we
should accept that the prediction task is challenging. I definitely don’t think it’s
beyond our capabilities, but while I expect methods for integration of different data
modalities to emerge soon after the experimental technologies, general methods to
model intermodal relationships will take more time to mature.

• The group before the individual. As mentioned in section 2.2.2, both internal
and external factors influence a cell’s state. In my opinion, there’s still a need for
general methods that tries to model how the local environment of a cell affects its
behavior. Conditional models for gene expression already exist, one example being
those that condition on cell type, often resulting in sets of marker genes or gene
signatures. These models could be expanded to also include conditioning on the
local environment of a cell, for example, the proportion of different cell types in its
neighborhood. Such models add a new, interconnected, layer of information to our
understanding of how cells operate in biological systems. Indeed, early attempts to
construct models of this kind have already been made (e.g., node-centric expression
modeling by the Theis Lab), and I dare to predict an abundance of them in a couple
of years from now.
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3.3 What I hope

Having outlined the lessons I’ve learnt and my predictions for the future, only one thing
remains: listing some of the thing I hope for, but am less certain of.

• Revised educational programs. In genomics, almost every new technological
method is accompanied by a suite of computational tools to analyze the data. Ever
more frequently, high impact journals publish purely computational methods de-
signed to unveil previously occluded insights that only emerge by clever modeling
of the data. Thus, it’s evident that computational expertise is just as important to
advance life science as biological and technical knowledge. If further proof is needed,
in 2021, SciLifeLab and the Wallenberg National Program announced several DDLS
(data driven life science) fellowships, acknowledging the importance of computa-
tional competence. Still, the essential skills needed in computational biology, such
as: statistics, mathematics, probability theory, modeling, and programming, are
severely underrepresented in many of the biotechnology programs at Swedish uni-
versities. We need to step up our game if we want maintain our status within
the life sciences as an innovative and leading nation, and remain competitive with
international institutions like the Broad or the Wellcome Trust Sanger Institute.
The foundation must be laid early on, educating PhD students is not good enough,
computational biology tracks should be instituted already at the Master level and
potentially even seep into the bachelor programs. I sincerely hope that the educa-
tional programs will be updated, to also prepare students – with an interest – for
the challenges a computational biologist faces.

• Increased diversity. If there’s one thing I’m not stoked about, it’s gender quota-
tion and female-exclusive events; to me they have an opposite effect of their intended
purpose. These actions belittle women’s competence and give the impression that
we need extra help or special rules to succeed. However, women are clearly under-
represented in the computational field; at many hackathons or meetings, I’ve found
myself – as a woman – in a very small minority, and am often assumed to be someone
representing the wet-lab side. I’m not upset by this, and have never been met with
anything but respect when correcting people, but I don’t think it has to be like this.
Girls and young women should be equally encouraged to purse STEM subjects as
their male counterparts, and all of us – me included – should probably revise or abol-
ish some of our stereotypes. So, I dearly hope for a future where the computational
fields become more diverse and inclusive. Of course, diversity extends beyond gen-
der, the same arguments can – and should – be made about ethnicity, age, religion,
sexual identity, etc. Being a white woman living in Sweden, I fully acknowledge my
privileges, and that my encounters with prejudice are probably dwarfed by those
from other – less fortunate – groups. Still, I can only speak of my own experiences
and observations.

• Breaking the limit. My third, and final, wish for the future is to pass the qualifying
time for the Boston Marathon. To then – of course – complete the race.
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Chapter 4 :: Present Investigations

4.1 Summary

Article I describes a method to integrate single cell RNA-seq and in situ capture-based
spatial transcriptomics data, effectively allowing the user to map cell types found in the
former to the spatial domain characterized by the latter. The method is probabilistic in
its character and models both data modalities as negative binomial distributed. In short,
it leverages the annotated single cell data to learn cell type specific parameters, which are
used to decompose the spatial gene expression profiles into contributions from said cell
types. In this project, I formulated the theoretical model which the method relies upon,
implemented the method in code (as a tool called stereoscope), analyzed the data as well
as interpreted the results, and wrote the manuscript with input from all the contributing
authors.

The method presented in Article I has been utilized in several projects both in-house
and by other labs. One example being the study outlined in Article II, where we relied
heavily on spatial mapping of single cell data to answer questions related to co-localization
and regional enrichment of cell types. This study focused on HER2-positive breast cancer
samples, surveyed with the first generation Spatial Transcriptomics (ST1K) technique. By
combining the information obtained from the single cell mapping with an unsupervised
gene expression-based analysis we managed to: (i) extract a set of core signatures rep-
resentative of the samples in the study; (ii) define a TLS (tertiary lymphoid structure)
specific gene signature with predictive power and clinical relevance; and (iii) identify a
trifold interaction between two cell type subsets and a chemokine signal, which was also
confirmed to be present in several external data sets. My role was to coordinate the
project, but I also conducted the cell type related analysis, interpreted the complete set of
results with help from an immunologist (Camilla Engblom), and wrote the majority of the
manuscript. Entering the project at a later stage, I was not involved in the experimental
design or sample collection.

The findings and work of Article II emphasized the importance of spatial patterns of
cell types, sparking an interest in ways of finding genes with distinct spatial structures.
While methods for finding spatially variable genes already existed, we wanted to approach
the task from a slightly different angle. To us, a spatial pattern is defined by its lack
of randomness, the more random a feature’s spatial organization is, the less of a pat-
tern it exhibits. From this definition, the fundamental concepts resulting in Article III
emerged. In the paper, we present a method to find spatially variable features in an unsu-
pervised manner by applying a numerical method (finite differences) to simulate diffusion
of molecules in spatial transcriptomics data. To quantify initial randomness, the method
measures the time until the system convergences (a homogeneous random state). Oper-
ating on the premise that expression profiles with a structured initial configuration will
require more time to converge than those with a random spatial distribution, we are able
to rank genes by their “patternedness”. In the study we show competitive results with
existing methods w.r.t. both accuracy and computational performance. In this project, I
conceived the model, implemented it in code, analyzed the data as well as interpreted the
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results, and wrote the manuscript with input from the other co-author.

In Article IV, we again used stereoscope to delineate the spatial distribution of cell
types in mouse liver. However, we also sought to address more tissue specific questions
and thus devised a method to investigate the features’ dynamical signals (e.g., gene ex-
pression or cell type abundance) with respect to certain vein structures in the tissue. In
brief, this strategy modeled the feature values as a function of the distance to the nearest
vein structure, allowing us to further investigate so called zonation-patterns in the liver.
In addition, a classifier (based on logistic regression) was constructed to predict the type
of vein based on its (spatial) neighborhood expression profile, allowing us to computation-
ally annotate ambiguous vein structures. I designed and implemented the aforementioned
methods in this project, as well as being heavily involved in the writing process. Still, my
role was secondary to the main author who interpreted the results, produced the data,
and wrote most of the text.

In the final paper, Article V, we propose a new method to construct so-called com-
mon coordinate frameworks (CCFs) for spatial transcriptomics data. This is achieved by
using a statistical approach relying on landmark annotation and Gaussian Process Regres-
sion. More specifically, a function relating gene expression to landmark distances is learnt
and then used to transfer the observed data to any reference of choice. By this transfer, it
is possible to compare local changes in gene expression between conditions or time points
as well as performing more sophisticated forms of spatiotemporal modeling. A CCF also
allows spatial gene expression from multiple samples to be represented jointly in a sin-
gle reference, facilitating the identification of canonical structures or patterns. Similar to
the other method development projects, I designed the underlying model, implemented
it in code, conducted the analyses, and wrote the manuscript with input from all other
authors. All the synthetic data was generated by me, but the new (unpublished) develop-
mental heart data belongs to a larger project, where I was not involved in the experimental
design or collection of data.
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