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Abstract
The ability to handle large scale variations is crucial for many real-world visual tasks. A straightforward approach for handling
scale in a deep network is to process an image at several scales simultaneously in a set of scale channels. Scale invariance
can then, in principle, be achieved by using weight sharing between the scale channels together with max or average pooling
over the outputs from the scale channels. The ability of such scale-channel networks to generalise to scales not present in the
training set over significant scale ranges has, however, not previously been explored. In this paper, we present a systematic
study of this methodology by implementing different types of scale-channel networks and evaluating their ability to generalise
to previously unseen scales. We develop a formalism for analysing the covariance and invariance properties of scale-channel
networks, including exploring their relations to scale-space theory, and exploring how different design choices, unique to
scaling transformations, affect the overall performance of scale-channel networks. We first show that two previously proposed
scale-channel network designs, in one case, generalise no better than a standard CNN to scales not present in the training set,
and in the second case, have limited scale generalisation ability. We explain theoretically and demonstrate experimentally
why generalisation fails or is limited in these cases. We then propose a new type of foveated scale-channel architecture, where
the scale channels process increasingly larger parts of the image with decreasing resolution. This new type of scale-channel
network is shown to generalise extremely well, provided sufficient image resolution and the absence of boundary effects. Our
proposed FovMax and FovAvg networks perform almost identically over a scale range of 8, also when training on single-scale
training data, and do also give improved performance when learning from data sets with large scale variations in the small
sample regime.

Keywords Deep learning · Convolutional neural networks · Invariant neural networks · Scale covariance · Scale invariance ·
Scale generalisation · Scale space

1 Introduction

Scaling transformations are as pervasive in natural imagedata
as translations. In any natural scene, the size of the projection
of an object on the retina or a digital sensor varies continu-
ously with the distance between the object and the observer.
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Compared to translations, scale variability is in some sense
harder to handle for a biological or artificial agent. It is pos-
sible to fixate an object, thus centring it on the retina. The
equivalence for scaling, which would be to ensure a con-
stant distance to objects before further processing, is not a
viable solution. A human observer can nonetheless recog-
nise an object at a range of scales, from a single observation,
and there is, indeed, experimental evidence demonstrating
scale-invariant processing in the primate visual cortex [1–6].
Convolutional neural networks (CNNs) already encode struc-
tural assumptions about translation invariance and locality,
which by the successful application of CNNs for com-
puter vision tasks has been demonstrated to constitute useful
priors for processing visual data. We propose that struc-
tural assumptions about scale could, similarly to translation
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covariance, be a useful prior in convolutional neural net-
works.

Encoding structural priors about a larger group of visual
transformations, including scaling transformations and affine
transformations, is an integrated part of a range of successful
classical computer vision approaches [7–18] and in a the-
ory for explaining the computational function of early visual
receptive fields [19,20]. There is a growing body of work on
invariant CNNs, especially concerning invariance to 2D/3D
rotations andflips [21–36]. There has been some recentworks
on scale-covariant and scale-invariant recognition in CNNs,
where recent approaches [37–41] have shown improvements
compared to standard CNNs for scale variability present both
in the training and in the testing sets. These approaches have,
however, either not been evaluated for the task of generalisa-
tion to scales not present in the training set [38,39,41,42] or
only across a very limited scale range [37,40]. Thus, the pos-
sibilities for CNNs to generalise to previously unseen scales
have so far not been well explored.

The structure of a standard CNN implies a preferred scale
as decided by the fixed size of the filters (often 3×3 or 5×5
kernels) together with the depth and max pooling strategy
applied. This determines the resolution at which the image
is processed and the size of the receptive fields of individual
units at different depths. A vanilla CNN is, therefore, not
designed for multi-scale processing. Because of this, state-
of-the-art object detection approaches that are exposed to
larger-scale variability employ differentmechanisms, such as
branching off classifiers at different depths [43,44], learning
to transform the input or the filters [45–47], or by combining
the deep network with different types of image pyramids
[48–53].

The goal of these approaches has, however, not been to
generalise between scales and even though they enablemulti-
scale processing, they lack the type of structure necessary
for true scale invariance. Thus, it is not possible to predict
how they will react to objects appearing at new scales in the
testing set or a to real world scenario. This can lead to unde-
sirable effects, as shown in the rich literature on adversarial
examples, where it has been demonstrated that CNNs suf-
fer from unintuitive failure modes when presented with data
outside the training distribution [54–60]. This includes adver-
sarial examples constructed by means of small translations,
rotations and scalings [61,62], that is transformations that
are partially represented in a training set of natural images.
Scale-invariant CNNs could enable bothmulti-scale process-
ing and predictable behaviour when encountering objects at
novel scales, without the need to fully span all possible scales
in the training set.

Most likely, a set of different strategies will be needed
to handle the full-scale variability in the natural world. Full
invariance over scale factors of 100 or more, as present in
natural images, might not be viable in a network with similar

type of processing at fine and coarse scales.1 We argue, how-
ever, that a deep learning-based approach that is invariant
over a significant scale range could be an important part of
the solution to handling also such large scale variations. Note
that the term scale invariance has sometimes, in the computer
vision literature, been used in a weaker sense of “the ability
to process objects of varying sizes” or “learn in the presence
of scale variability”. We will here use the term in a stricter
classical sense of a classifier/feature extractor whose output
does not change when the input is transformed.

One of the simplest CNN architectures used for covariant
and invariant image processing is a channel network (also
referred to as siamese network) [26,63,64]. In such an archi-
tecture, transformed copies of the input image are processed
in parallel by different “channels” (subnetworks) corre-
sponding to a set of image transformations. This approach
can together with weight sharing andmax or average pooling
over the output from the channels enable invariant recog-
nition for finite transformation groups, such as 90 degree
rotations and flips. An invariant scale-channel network is a
natural extension of invariant channel networks as previously
explored for rotations in [26]. It can equivalently be seen as a
way of extending ideas underlying the classical scale-space
methodology to deep learning [65–75], in the sense that in
the absence of further information, the image data are pro-
cessed at all scales simultaneously, and that the outputs from
the scale channels will constitute a nonlinear scale-covariant
multi-scale representation of the input image.

1.1 Contribution and Novelty

The subject of this paper is to investigate the possibility to
construct a scale-invariant CNN based on a scale-channel
architecture. The key contributions of our work are to imple-
ment different possible types of scale-channel networks and
to evaluate the ability of these networks to generalise to pre-
viously unseen scales, so that we can train a network at some
scale(s) and test it at other scales, without complementary use
of data augmentation. It should be noted that previous scale-
channel networks exist, but those are explicitly designed for
multi-scale processing [76,77] rather than scale invariance or
have not been evaluated with regard to their ability to gener-
alise to unseen scales over any significant scale range [37].
We here implement and evaluate networks based on prin-
ciples similar to these previous approaches, but also a new

1 When analysing image data with very large scale variations, the finite
receptive field of any detector and the difference in image resolution
between objects observed at different scales will imply a large dif-
ference in appearance between very small and very large objects. This
implies that fully invariant processing over suchwide scale rangesmight
not be an applicable strategy. Instead, different strategies will likely be
needed to recognise objects at very low resolution from those needed
to recognise objects at very high resolution.
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type of foveated scale-channel network, where the individual
scale channels process increasingly larger parts of the image
with decreasing resolution.

To enable testing each approach over a large range of
scales, we create a new variation of the MNIST data set,
referred to as the MNIST Large Scale data set, with scale
variations up to a factor of 8. This represents a data set with
sufficient resolution and image size to enable invariant recog-
nition over a wide range of scale factors. We also rescale the
CIFAR-10 data set over a scale factor of 4, which is a wider
scale range than has previously been evaluated for this data
set. This rescaled CIFAR-10 data set is used to test if scale-
invariant networks can still give significant improvements in
generalisation to new scales, in the presence of limited image
resolution and for small image sizes. We evaluate the abil-
ity to generalise to previously unseen scales for the different
types of channel networks, by first training on a single scale
or a limited range of scales and then testing recognition for
scales not present in the training set. The results are compared
to a vanilla CNN baseline.

Our experiments on theMNIST Large Scale data set show
that two previously used scale-channel network designs or
methodologies, in one case, do not generalise any better than
a standard CNN to scales not present in the training set or,
in the second case, have limited generalisation ability. The
first type of method is based on concatenating the outputs
from the scale channels and using this as input to a fully con-
nected layer (as opposed to applying max or average pooling
over the scale-dimension).We show that such a network does
not learn to combine the output from the scale channels in
a correct way so as to enable generalisation to previously
unseen scales. The reason for this is the absence of a struc-
ture to enforce scale invariance. The second type ofmethod is
to handle the difference in image size between the rescaled
images in the scale channels, by applying the subnetwork
corresponding to each channel in a sliding window manner.
This methodology, however, implies that the rescaled copies
of an image are not processed in the same way, since for
an object processed in scale channels corresponding to an
upscaled image, a wide range of different, (e.g. non-centred)
object views, will be processed, compared to only processing
the central view for an object in a downscaled image. This
implies that full invariance cannot be achieved, since max
(or average) pooling will be performed over different views
of the objects for different scales, which implies that the max
(or average) over the scale dimension is not guaranteed to be
stable when the input is transformed.

We do, instead, propose a new type of foveated scale-
channel architecture, where the scale channels process
increasingly larger parts of the imagewith decreasing resolu-
tion. Together with max or average pooling, this leads to our
FovMax and FovAvg networks. We show that this approach
enables extremely good generalisation, when the image res-

olution is sufficient and there is an absence of boundary
effects. Notably, for rescalings of MNIST, almost identical
performance over a scale range of 8 is achieved, when train-
ing on single size training data. We further show that, also
on the CIFAR-10 data set, in the presence of severe limita-
tions regarding image resolution and image size, the foveated
scale-channel networks still provide considerably better gen-
eralisation ability compared to both a standard CNN and an
alternative scale-channel approach.We also demonstrate that
the FovMax and FovAvg networks give improved perfor-
mance for data sets with large scale variations in both the
training and testing data, in the small sample regime.

We propose that the presented foveated scale-channel
networks will prove useful in situations where a simple
approach that can generalise to unseen scales or learning
from small data sets with large scale variations is needed. Our
study also highlights possibilities and limitations for scale-
invariant CNNs and provides a simple baseline to evaluate
other approaches against. Finally, we see possibilities to inte-
grate the foveated scale-channel network, or similar types
of foveated scale-invariant processing, as subparts in more
complex frameworks dealing with large scale variations.

1.2 Relations to Previous Contribution

This paper constitutes a substantially extended version of a
conference paper presented at the ICPR2020 conference [78]
and with substantial additions concerning:

– The motivations underlying this work and the impor-
tance of a scale generalisation ability for deep networks
(Sect. 1),

– A wider overview of related work (Sects. 1 and 2),
– Theoretical relationships between the presented scale-
channel networks and the notion of scale-space repre-
sentation, including theoretical relationships between the
presented scale-channel networks and scale-normalised
derivatives with associated methods for scale selection
(Sect. 4),

– More extensive experimental results on theMNISTLarge
Scale data set, specifically new experiments that inves-
tigate (i) the dependency on the scale range spanned
by the scale channels, (ii) the dependency on the sam-
pling density of the scale levels in the scale channels,
(iii) the influence of multi-scale learning over different
scale intervals, and (iv) an analysis of the scale selec-
tion properties over the multiple scale channels for the
different types of scale-channel networks (Sect. 6),

– Experimental results for the CIFAR-10 data set subject
to scaling transformations of the testing data (Sect. 7),

– Details about the data set creation for the MNIST Large
Scale data set (“Appendix A”).
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In relation to the ICPR 2020 paper, this paper there-
fore (i) gives a more general motivation for scale-channel
networks in relation to the topic of scale generalisation,
(ii) presents more experimental results for further use cases
and an additional data set, (iii) gives deeper theoretical rela-
tionships between scale-channel networks and scale-space
theory and (iv) gives overall better descriptions of several of
the subjects treated in the paper, including (v) more extensive
references to related literature.

2 Relations to PreviousWork

In the area of scale-space theory [65–75], a multi-scale rep-
resentation of an input image is created by convolving the
image with a set of rescaled Gaussian kernels and Gaussian
derivative filters, which are then often combined in nonlin-
ear ways. In this way, a powerful methodology has been
developed to handle scaling transformations in classical com-
puter vision [7–11,13–16,18]. The scale-channel networks
described in this paper can be seen as an extension of this
philosophy of processing an image at all scales simultane-
ously, as a means of achieving scale invariance, but instead
using deep nonlinear feature extractors learned from data, as
opposed to handcrafted image features or image descriptors.

CNNs can give impressive performance, but they are sen-
sitive to scale variations. Provided that the architecture of
the deep network is sufficiently flexible, a moderate increase
in the robustness to scaling transformations can be obtained
by augmenting the training images with multiple rescaled
copies of each training image (scale jittering) [79,80]. The
performance does, however, degrade for scales not present
in the training set [62,81,82], and different network struc-
ture may be optimal for small versus large images [82]. It
is furthermore possible to construct adversarial examples by
means of small translations, rotations and scalings [61,62].

State-of-the-art CNN-based object detection approaches
all employ different mechanisms to deal with scale vari-
ability, e.g. branching off classifiers at different depths
[44], learning to transform the input or the filters [45–47],
using different types of image pyramids [48–53], or other
approaches, where the image is rescaled to different res-
olutions, possibly combined with interactions or pooling
between the layers [82–85]. There are also deep networks that
somehow handle the notion of scale by approaches such as
dilated convolutions [86–88], scale-dependent pooling [89],
scale-adaptive convolutions [90], by spatially warping the
image data by a log-polar transformation prior to image
filtering [42,47], or adding additional branches of down-
samplings and/or up-samplings in each layer of the network
[91,92]. The goal of these approaches has, however, not been
to generalise to previously unseen scales and they lack the
structure necessary for true scale invariance.

Examples of handcrafted scale-invariant hierarchical
descriptors are [93,94]. We are, here, interested in com-
bining scale invariance with learning. There exist some
previous works aimed explicitly at scale-invariant recog-
nition in CNNs [37–41] These approaches have, however,
either not been evaluated for the task of generalisation to
scales not present in the training set [38,39,41] or only across
a very limited scale range [37,40]. Previous scale-channel
networks exist, but are explicitly designed for multi-scale
processing [76,77] rather than scale invariance, or have not
been evaluated with regard to their ability to generalise to
unseen scales over any significant scale range [37,48]. A
dual approach to scale-covariant scale-channel networks that,
however, allows for scale invariance and scale generalisation,
is presented in [95,96], based on transforming continuous
CNNs expressed in terms of continuous functions for the
filter weights with respect to scaling transformations. Other
scale-covariant or scale-equivariant approaches to deep net-
works have also been recently proposed in [97–100].

There is large literature on approaches to achieve rotation-
covariant and rotation-invariant networks [25–34]with appli-
cations to different domains, including astronomy [64],
remote sensing [101], medical image analysis [102–104]
and texture classification [105]. There are also approaches
to invariant networks based on formalism from group theory
[24,106,107].

3 Theory of Continuous Scale-Channel
Networks

In this section, we will introduce a mathematical framework
formodelling and analysing scale-channel networks based on
a continuous model of the image space. This model enables
straightforward analysis of the covariance and invariance
properties of the channel networks, that are later approx-
imated in a discrete implementation. We, here, generalise
previous analysis of invariance properties of channel net-
works [26] to scale-channel networks. We further analyse
covariance properties and additional options for aggregating
information across transformation channels.

3.1 Images and Image Transformations

We consider images f : RN → R that are measurable func-
tions in L∞(RN ) and denote this space of images as V . A
group of image transformations corresponding to a group G
is a family of image transformations Tg (g ∈ G) with a group
structure, i.e. fulfilling the group axioms of closure, identity,
associativity and inverse. We denote the combination of two
group elements g, h ∈ G by gh and the cardinality of G
as |G|. Formally, a group G induces an action on functions
by acting on the underlying space on which the function is
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defined (here the image domain). We are here interested in
the group of uniform scalings around x0 with the group action

(Ss,x0 f )(x
′) = f (x), x ′ = Ss(x − x0) + x0, (1)

where Ss = diag(s). For simplicity, we often assume x0 = 0
and denote Ss,0 as Ss corresponding to

(Ss f )(x) = f (S−1
s x) = fs(x). (2)

We will also consider the translation group with the action
(where δ ∈ R

N )

(Dδ f )(x
′) = f (x), x ′ = x + δ. (3)

3.2 Invariance and Covariance

Consider a general feature extractor Λ : V → K that maps
an image f ∈ V to a feature representation y ∈ K. In our
continuous model, K will typically correspond to a set of
M feature maps (functions) so that Λ f ∈ V M . This is a
continuous analogue of a discrete convolutional feature map
with M features.

A feature extractor 2 Λ is covariant 3 to a transformation
group G (formally to the group action) if there exists an
input independent transformation T̃g that can align the feature
maps of a transformed imagewith those of the original image

Λ(Tg f ) = T̃g(Λ f ) ∀g ∈ G, f ∈ V . (4)

Thus, for a covariant feature extractor it is possible to predict
the feature maps of a transformed image from the feature
maps of the original image or, in other words, the order
between feature extraction and transformation does not mat-
ter, as illustrated in the commutative diagram in Fig. 1.

A feature extractor Λ is invariant to a transformation
group G if the feature representation of a transformed image
is equal to the feature representation of the original image

Λ(Tg f ) = Λ( f ) ∀g ∈ G, f ∈ V . (5)

Invariance is thus a special case of covariance, where T̃g is
the identity transformation.

2 With regard to the scale-channel networks that we develop later in
this paper, note that Λ should be seen as representing the entire family
of scale channels, not a single-scale channel in isolation. An invariant
feature extractor Λ will then correspond to the result of max pooling or
average pooling over all the scale channels.
3 In the deep learning literature, the notion of “equivariance” is also
often used for this relationship, which is referred to as “covariance” in
scale-space theory. In this paper, we use the terminology “covariance”
to maintain consistency with the earlier scale-space literature [108].

Λ f
T̃g−−−−−→ Λ(Tgf) = T̃g(Λf)

�
⏐
⏐Λ

�
⏐
⏐Λ

f
Tg−−−−−→ Tgf

Fig. 1 Commutative diagram for a covariant feature extractorΛ, show-
ing how the feature map of the transformed image can be matched to
the feature map of the original image by a transformation of the feature
space. Note that T̃g will correspond to the same transformation as Tg ,
but might take a different form in the feature space

3.3 Continuous Model of a CNN

Let φ : V → V Mk denote a continuous CNN with k layers
and Mi feature channels in layer i . Let θ(i) represent the
transformation between layers i − 1 and i such that

(φ(i) f )(x, c) = (θ(i)θ (i−1) · · · θ(2)θ (1) f )(x, c), (6)

where c ∈ {1, 2, . . . Mk} denotes the feature channel and
φ = φ(k). We model the transformation θ(i) between two
adjacent layers φ(i−1) f and φ(i) f as a convolution followed
by the addition of a bias term bi,c ∈ R and the application of
a pointwise nonlinearity σi : R → R:

(φ(i) f )(x, c)

= σi

⎛
⎝

Mi−1∑
m=1

∫
ξ∈RN

(φ(i−1) f )(x−ξ,m) g(i)
m,c(ξ) dξ+bi,c

⎞
⎠

(7)

where g(i)
m,c ∈ L1(R

N ) denotes the convolution kernel that
propagates information from feature channelm in layer i −1
to output feature channel c in layer i . A final fully connected
classification layer with compact support can also be mod-
elled as a convolution combined with a nonlinearity σk that
represents a softmax operation over the feature channels.

3.4 Scale-Channel Networks

The key idea underlying channel networks is to process trans-
formed copies of an input image in parallel, in a set of network
“channels” (subnetworks) with shared weights. For finite
transformation groups, such as discrete rotations, using one
channel corresponding to each group element and applying
max pooling over the channel dimension can give an invari-
ant output. For continuous but compact groups, invariance
can instead be achieved for a discrete subgroup.

The scaling group is, however, neither finite nor compact.
The key question that we address here is whether a scale-
channel network can still support invariant recognition.

We define a multi-column scale-channel network Λ :
V → V Mk for the group of scaling transformations S by
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(a) (b) (c)

Fig. 2 Foveated scale-channel networks. a Foveated scale-channel net-
work that processes an image of the digit 2. Each scale channel has
a fixed size receptive field/support region in relation to its rescaled
image copy, but they will together process input regions corresponding
to varying sizes in the original image (circles of corresponding colors).
b This corresponds to a type of foveated processing, where the cen-
tre of the image is processed with high resolution, which works well

to detect small objects, while larger regions are processed using grad-
ually reduced resolution, which enables detection of larger objects. c
There is a close similarity between this model and the foveal scale space
model [109], which was motivated by a combination of regular scale
space axioms with a complementary assumption of a uniform limited
processing capacity at all scales

using a single base network φ : V → V Mk to define a set of
scale channels {φs}s∈S

(φs f )(x, c) = (φ Ss f )(x, c) = (φ fs)(x, c), (8)

where each channel thus applies exactly the sameoperation to
a scaled copy of the input image (see Fig. 2a). We denote the
mapping from the input image to the scale-channel feature
maps at depth i as Γ (i) : V → V Mi |S|

(Γ (i) f )(x, c, s) = (φ(i)
s f )(x, c) = (φ(i)Ss f )(x, c). (9)

A scale-channel network that is invariant to the continuous
group of uniform scaling transformations S = {s ∈ R+} can
be constructed using an infinite set of scale channels {φs}s∈S .
The following analysis also holds for a set of scale channels
corresponding to a discrete subgroup of the group of uniform
scaling transformations, such that S = {γ i |i ∈ Z} for some
γ > 1.

The final output Λ f from the scale-channel network is
an aggregation across the scale dimension of the last layer
scale-channel feature maps. In our theoretical treatment, we
combine the output of the scale channels by the supremum

(Λsup f )(x, c) = sup
s∈S

[(φs f )(x, c)] . (10)

Other permutation invariant operators, such as averaging
operations, could also be used. For this construction, the net-
work output will be invariant to rescalings around x0 = 0
(global scale invariance). This architecture is appropriate
when characterising a single centred object that might vary
in scale and it is the main architecture that we explore in this
paper. Alternatively, one may instead pool over correspond-

ing image points in the original image by operations of the
form

(Λlocal
sup f )(x, c) = sup

s∈S
{(φs f )(Ssx, c)}. (11)

This descriptor instead has the invariance property

(Λlocal
sup f )(x0, c) = (Λlocal

sup Ss,x0 f )(x0, c) for all x0, (12)

i.e. when scaling around an arbitrary image point, the output
at that specific point does not change (local scale invariance).
This property makes it more suitable to describe scenes with
multiple objects.

3.4.1 Scale Covariance

Consider a scale-channel network Λ (10) that expands the
input over the group of uniform scaling transformations S.
We can relate the featuremap representationΓ (i) for a scaled
image copy St f for t ∈ S and its original f in terms of
operator notation as

(Γ (i)St f )(x, c, s) = (φ(i)
s St f )(x, c)

= (φ(i) Ss St f )(x, c) = (φ(i) Sst f )(x, c)

= (φ
(i)
st f )(x, c) = (Γ (i) f )(x, c, st), (13)

where we have used the definitions (8) and (9) together with
the fact that S is a group. A scaling of an image thus only
results in a multiplicative shift in the scale dimension of the
feature maps. A more general and more rigorous proof using
an integral representation of the scale-channel network is
given in Sect. 3.5.
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3.4.2 Scale Invariance

Consider a scale-channel network Λsup (10) that selects the
supremumover scales.Wewill show thatΛsup is scale invari-
ant, i.e. that

(Λsup St f )(x, c) = (Λsup f )(x, c). (14)

First, (13) gives {φ(i)
s (St f )}s∈S = {φ(i)

st ( f )}s∈S . Then, we
note that {st}s∈S = St = S. This holds both in the case
when S = R+ and in the case when S = {γ i |i ∈ Z}. Thus,
we have

{(φ(i)
s St f )(x, c)}s∈S = {(φ(i)

st f )(x, c)}s∈S
= {(φ(i)

s f )(x, c)}s∈S, (15)

i.e. the set of outputs from the scale channels for a trans-
formed image is equal to the set of outputs from the scale
channels for its original image. For any permutation invari-
ant aggregation operator, such as the supremum, we have
that

(Λsup St f )(x, c) = sup
s∈S

{(φ(k)
st f )(x, c)}

= sup
s∈S

{(φ(k)
s f )(x, c)} = (Λsup f )(x, c), (16)

and, thus, Λ is invariant to uniform rescalings.

3.5 Proof of Scale and Translation Covariance Using
an Integral Representation of a Scale-Channel
Network

We, here, prove the transformation property

(Γ (i)h)(x, s, c) = (Γ (i) f )(x + Ss St x1 − St x2, st, c) (17)

of the scale-channel feature maps under a more general com-
bined scaling transformation and translation of the form

h(x ′) = f (x) for x ′ = St (x − x1) + x2 (18)

corresponding to

h(x) = f (S−1
t (x − x2) + x1) (19)

using an integral representation of the deep network. In the
special case when x1 = x2 = x0, this corresponds to a
uniform scaling transformation around x0 (i.e. Sx0,s). With
x1 = x0 and x2 = x0 + δ, this corresponds to a scaling
transformation around x0 followed by a translation Dδ .

Consider a deep network φ(i) (6) and assume the inte-
gral representation (7), where we for simplicity of notation
incorporate the offsets bi,c into the nonlinearities σi,c. By

expanding the integral representation of the rescaled image
h (19), we have that the feature representation in the scale-
channel network is given by (with M0 = 1 for a scalar input
image):

(Γ (i)h)(x, s, c) = {definition (9)} = (φ(i)
s h)(x, c)

= {definition (8)} = (φ(i) hs)(x, c) = {equation (6)}
= (θ(i)θ (i−1) . . . θ (2)θ (1)hs)(x, c) = {equation (7)}

= σi,c

⎛
⎝

Mi−1∑
mi=1

∫
ξi∈RN

σi−1,mi

⎛
⎝

Mi−2∑
mi−1=1

∫
ξi−1∈RN

. . .

σ1,m2

⎛
⎝

M0∑
m1=1

∫
ξ1∈RN

hs(x − ξi − ξi−1 − · · · − ξ1)

×g(1)
m1,m2

(ξ1) dξ1

)
. . . g(i−1)

mi−1,mi
(ξi−1) dξi−1

)

g(i)
mi ,c(ξi ) dξi

)
. (20)

Under the scaling transformation (18), the part of the inte-
grand hs(x − ξi − ξi−1 − · · · − ξ1) transforms as follows:

hs(x − ξi − ξi−1 − · · · − ξ1)

= {hs(x) = h(S−1
s x) according to definition (2)}

= h(S−1
s (x − ξi − ξi−1 − · · · − ξ1))

= {h(x) = f (S−1
t (x − x2) + x1) according to (19)}

= f (S−1
t S−1

s ((x − ξi − ξi−1 − · · · − ξ1)

− Ssx2 + Ss St x1)

= {Ss St = Sst for scaling transformations}
= f (S−1

st ((x + Ss St x1 − Ssx2 − ξi − ξi−1 − · · · − ξ1))

= { fst (x) = f (S−1
st x) according to definition (2)}

= fst (x + Ss St x1 − Ssx2 − ξi − ξi−1 − · · · − ξ1).

(21)

Inserting this transformed integrand into the integral repre-
sentation (20) gives

(Γ (i)h)(x, s, c)

= σi,c

⎛
⎝

Mi−1∑
mi=1

∫
ξi∈RN

σi−1,mi

⎛
⎝

Mi−2∑
mi−1=1

∫
ξi−1∈RN

. . .

σ1,m2

⎛
⎝

M0∑
m1=1

∫
ξ1∈RN

fst (x + Ss St x1 − Ssx2

−ξi − ξi−1 − · · · − ξ1)

×g(1)
m1,m2

(ξ1) dξ1

)
. . . g(i−1)

mi−1,mi
(ξi−1) dξi−1

)

g(i)
mi ,c(ξi ) dξi

)
, (22)
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which we recognise as

(Γ (i)h)(x, s, c)

= (θ(i)θ (i−1) . . . θ (2)θ (1) fst )(x + Ss St x1 − Ssx2, c)

= (φ(i) fst )(x + Ss St x1 − Ssx2, c)

= (φ
(i)
st f )(x + Ss St x1 − Ssx2, c)

= (Γ (i) f )(x + Ss St x1 − Ssx2, st, c) (23)

and which proves the result. Note that for a pure translation
(St = I , x1 = x0 and x2 = x0 + δ) this gives

(Γ (i) Dδ f )(x, c, s) = (Γ (i) f )(x − Ssδ, s, c). (24)

Thus, translation covariance is preserved in the scale-channel
network, but the magnitude of the spatial shift in the feature
maps will depend on the scale channel. The discrete imple-
mentation and some additional design choices for discrete
scale-channel networks are discussed in Sect. 5, but, first,
we will consider the relationship between continuous scale-
channel networks and scale-space theory.

4 Relations Between Scale-Channel
Networks and Scale-Space Theory

This section describes relations between the presented scale-
channel networks and concepts in scale-space theory, specif-
ically (i) a mapping between scaling the input image using
multiple scaling factors, as used in scale-channel networks,
or instead scaling the filters multiple times, as done in scale-
space theory, and (ii) a relationship to the normalisation over
scales of scale-normalised derivatives, which holds if the
learning algorithm for a scale-channel network would learn
filters corresponding to Gaussian derivatives.

4.1 Preliminaries 1: The Gaussian Scale Space

In classical scale-space theory [65–75], a multi-scale rep-
resentation of an input image is created by convolving the
image with a set of rescaled and normalised Gaussian ker-
nels. The resulting scale-space representation of an input
image f : RN → R is defined as [69]:

L(x; σ) =
∫
u∈RN

f (x − u) g(u; σ) du, (25)

where g : RN ×R
+ → R denotes the (rotationally symmet-

ric) Gaussian kernel

g(x; σ) = 1

(
√
2πσ)N

e
−x2

2σ2 , (26)

and we use σ as the scale parameter compared to the more
commonly used t = σ 2. The original image/function is thus
embedded into a family of functions parameterised by scale.
The scale-space representation is scale covariant, and the
representation of an original image can be matched to that of
a rescaled image by a spatial rescaling and a multiplicative
shift along the scale dimension. From this representation, a
family of Gaussian derivatives can be computed as

Lxα (x; σ) = ∂xα L(x; σ) = ((∂xαg(·; σ)) ∗ f (·))(x), (27)

where we use multi-index notation α = (α1, · · · αN ) such
that ∂xα = ∂xα

1
· · · ∂xα

N
with αxi ∈ Z.

The scale covariance property also transfers to suchGaus-
sian derivatives, and these visual primitives have beenwidely
used within the classical computer vision paradigm to con-
struct scale-covariant and scale-invariant feature detectors
and image descriptors [7,8,10,11,13–16,18,108].

4.2 Scaling the ImageVersus Scaling the Filter

The scale-channel networks described in this paper are based
on a similar philosophy of processing an image at all scales
simultaneously, although the input image, as opposed to the
filter, is expanded over scales. We, here, consider the rela-
tionship between multi-scale representations computed by
applying a set of rescaled kernels to a single-scale image and
representations computed by applying the same kernel to a
set of rescaled images. Since the scale-space representation
can be computed using a single convolutional layer, we com-
pare with a single-layer scale-channel network. We consider
the relationship between representations computed by:

(i) Applying a set of rescaled and scale-normalised filters
(this corresponds to normalising filters to constant L1-
norm over scales) h : RN → R

hs(x) = 1

sN
h(

x

s
) (28)

to a fixed size input image f (x):

Lh(x; s) = ( f ∗ hs)(x) =
∫
u∈RN

f (u) hs(x − u) du,

(29)

where the subscript indicates that h might not neces-
sarily be a Gaussian kernel. If h is a Gaussian kernel
then Lh = L .

(ii) Applying a fixed size filter h to a set of rescaled input
images

Mh(x; s) = ( fs ∗ h)(x) =
∫
u∈RN

fs(u) h(x − u) du,

(30)
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with

fs(x) = f
( x
s

)
. (31)

This is the representation computed by a single layer
in a (continuous) scale-channel network.

It is straightforward to show that these representations are
computationally equivalent and related by a family of scale-
dependent scaling transformations. We compute using the
change of variables u = s v, du = sNdv:

Lh(x; s) = ( f ∗ hs)(x)

=
∫
u∈RN

f (x − u)
1

sN
h

(u
s

)
du

=
∫
u∈RN

f (x − sv)
1

sN
h(v) sNdv

=
∫
u∈RN

f
(
s
( x
s

− v
))

h(v) dv

=
∫
u∈RN

fs−1

( x
s

− v
)
h(v) dv

= (
fs−1 ∗ h

) ( x
s
, s−1

)
. (32)

Comparing this with (30), we see that the two representations
are related according to

Lh(x; s) = Mh

( x
s
; s−1

)
. (33)

We note that the relation (33) preserves the relative scale
between the filter and the image for each scale and that both
representations are scale covariant. Thus, to convolve a set
of rescaled images with a single-scale filter is computation-
ally equivalent to convolving an image with a set of rescaled
filters that are L1-normalised over scale. The two represen-
tations are related through a spatial rescaling and an inverse
mapping of the scale parameter s 	→ s−1. Note that it is
straightforward to show, using the integral representation of
a scale-channel network (7), that a corresponding relation
between scaling the image and scaling the filters holds for a
multi-layer scale-channel network as well.

The result (33) implies that if a scale-channel network
learns a feature corresponding to a Gaussian kernel with
standard deviation σ , then the representation computed by
the scale-channel network is computationally equivalent to
applying the family of kernels

hs(x) = 1

sN
h

( x
s

)
= 1

(
√
2πsσ)N

e
−x2

2(sσ)2 (34)

to the original image, given the complementary scaling trans-
formation (33) with its associated inverse mapping of the

scale parameters s 	→ s−1. Since this is a family of rescaled
and L1-normalised Gaussians, the scale-channel network
will compute a representation computationally equivalent to
a Gaussian scale-space representation. For discrete image
data, a similar relation holds approximately, provided that
the discrete rescaling operation is a sufficiently good approx-
imation of the continuous rescaling operation.

4.3 Relation Between Scale-Channel Networks and
Scale-Normalised Derivatives

One way to achieve scale invariance within the Gaussian
scale-space concept is to first perform scale selection, i.e.
identify the relevant scale/scales, and then, e.g. extract fea-
tures at the identified scale/scales. Scale selection can be
done by comparing the magnitudes of γ -normalised deriva-
tives [7,8]:

∂ξα = ∂xα,γ -norm = t |α|γ /2 ∂xα = σ |α|γ ∂xα (35)

over scales with γ ∈ [0, 1] as a free parameter and |α| =
α1 + · · · + αN . Such derivatives are likely to take max-
ima at scales corresponding to the relevant physical scales of
objects in the image. Although a multi-layer scale-channel
network will compute more complex nonlinear features, it
is enlightening to investigate whether the network can learn
to express operations similar to scale-normalised derivatives.
This would increase our confidence that scale-channel net-
works could be expected to workwell together with, e.g.max
pooling over scales.

Wewill, here, consider themaximally scale-invariant case
for scale-normalised derivatives with γ = 1

∂ξα = σ |α|∂xα . (36)

and show that scale-channel networks can indeed learn fea-
tures equivalent to such scale-normalised derivatives.

4.3.1 Preliminaries II: Gaussian Derivatives in Terms of
Hermite Polynomials

As a preparation for the intended result, wewill first establish
a relationship betweenGaussian derivatives and probabilistic
Hermite polynomials. The probabilistic Hermite polynomi-
als Hen(x) are in 1-D defined by the relationship

Hen(x) = (−1)nex
2/2 ∂xn

(
e−x2/2

)
(37)

implying that

∂xn
(
e−x2/2

)
= (−1)nHen(x) e

−x2/2 (38)
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and

∂xn
(
e−x2/2σ 2

)
= (−1)nHen(

x

σ
) e−x2/2σ 2 1

σ n
. (39)

Applied to a Gaussian function in 1-D, this implies that

∂xn (g(x; σ))

= 1√
2πσ

∂xn
(
e−x2/2σ 2

)

= 1√
2πσ

(−1)n

σ n
Hen

( x

σ

)
e−x2/2σ 2

= (−1)n

σ n
Hen

( x

σ

)
g(x; σ). (40)

4.3.2 Scaling Relationship for Gaussian Derivative Kernels

We, here, describe the relationship between scale-channel
networks and scale-normalised derivatives. Let us assume
that the scale-channel network at some layer learns a kernel
that corresponds to aGaussian partial derivative at some scale
σ :

∂xαg(x; σ)

= ∂x
α1
1 x

α2
2 ...x

αN
N

g(x; σ) = gxα1
1 x

α2
2 ...x

αN
N

(x; σ). (41)

We will show that when this kernel is applied to all the scale
channels, this corresponds to a normalisation over scales that
is equivalent to scale normalisation of Gaussian derivatives.

For later convenience, we write this learned kernel as a
scale-normalised derivative at scale σ for γ = 1 multiplied
by some constant C :

h(x) = C σα1+α2+···+αN gxα1
1 x

α2
2 ...x

αN
N

(x; σ). (42)

Then, the corresponding family of equivalent kernels hs(x)
in the dual representation (29), which represents the same
effect on the original image as applying the kernel h(x) to a
set of rescaled images fs(x) = f (x/s), provided that a com-
plementary scaling transformation and the inverse mapping
of the scale parameter s 	→ s−1 are performed, is given by

hs(x) = 1

sN
h

( x
s

)

= C

sN
σα1+α2+···+αN gxα1

1 x
α2
2 ...x

αN
N

( x
s
; σ

)
. (43)

Using Equation (40) with

g(x; σ) = 1

(
√
2πσ)N

e−(x21+x22+···+x2N )/2σ 2
(44)

in N dimensions, we obtain

hs(x) = C

sN
σα1+α2+···+αN (−1)α1+α2+···+αN

Heα1

( x1
sσ

)
Heα2

( x2
sσ

)
. . . HeαN

( xN
sσ

)

1

(
√
2πσ)N

e−(x21+x22+···+x2N )/2s2σ 2 1

σα1+α2+···+αN

= C (sσ)α1+α2+···+αN (−1)α1+α2+···+αN

Heα1

( x1
sσ

)
Heα2

( x2
sσ

)
. . . HeαN

( xN
sσ

)

1

(
√
2πsσ)N

e−(x21+x22+···+x2N )/2s2σ 2

1

(sσ)α1+α2+···+αN
. (45)

Comparing with (40), we recognise this expression as the
scale-normalised derivative

hs(x) = C (sσ)α1+α2+···+αN gxα1
1 x

α2
2 ...x

αN
N

(x; sσ) (46)

of order α = (α1, α2, . . . αN ) at scale sσ .
This means that if the scale-channel network learns a par-

tial Gaussian derivative of some order, then the application of
that filter to all the scale channels is computationally equiv-
alent to applying corresponding scale-normalised Gaussian
derivatives to the original image at all scales.

While this result has been expressed for partial derivatives,
a corresponding result holds also for derivative operators that
correspond to directional derivatives of Gaussian kernels in
arbitrary directions. This result can be easily understood from
the expression for a directional derivative operator ∂en of
ordern = n1+n2+· · ·+nN in direction e = (e1, e2, . . . , eN )

with |e| =
√
e21 + e22 + · · · + e2N = 1:

∂en g(x; σ)

= (e1 ∂x1 + e2 ∂x2 + · · · + eN ∂xN )ng(x; σ)

=
∑

α1+α2+···+αN=n

(
n

α1! α2! . . . αN !
)

eα1
1 eα2

2 . . . eαN
N ∂α1

x1 ∂α2
x2 . . . ∂αN

xN g(x; σ)

=
∑

α1+α2+···+αN=n

(
n

α1! α2! . . . αN !
)

eα1
1 eα2

2 . . . eαN
N gxα1

1 x
α2
2 ...x

αN
N

(x; σ). (47)

Since the scale normalisation factors σ |α| for all scale-
normalised partial derivatives of the same order |α| = α1 +
α2 + · · · + αN = n are the same, it follows that all lin-
ear combinations of partial derivatives of the same order are
transformed by the same multiplicative scale normalisation
factor, which proves the result.
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4.4 Relations to Classical Scale SelectionMethods

Specifically, the scaling result for Gaussian derivative ker-
nels implies that a scale-channel network that combines the
multiple scale channels by supremum, or for a discrete set
of scale channels, max pooling (see further Sect. 5), will
be structurally similar to classical methods for scale selec-
tion, which detect maxima over scale of scale-normalised
filter responses [7,8,110]. In the scale-channel networks,
max pooling is, however, done over more complex feature
responses, already adapted to detect specific objects, while
classical scale selection is performed in a class-agnostic way
based on low-level features. This makes max pooling in the
scale-channel networks also closely related to more spe-
cialised classical methods that detect maxima from the scales
at which a supervised classifier delivers class labels with
the highest posterior [111,112]. Average pooling over the
outputs of a discrete set of scale channels (Sect. 5) is struc-
turally similar to methods for scale selection that are based
on weighted averages of filter responses at different scales
[18,113].Although there is no guarantee that the learned non-
linear features will, indeed, take maxima for relevant scales,
one might expect training to promote this, since a failure to
do so should be detrimental to the classification performance
of these networks.

5 Discrete Scale-Channel Networks

Discrete scale-channel networks are implemented by using a
standard discrete CNN as the base network φ. For practical
applications, it is also necessary to restrict the network to
include a finite number of scale channels

Ŝ = {γ i }−Kmin≤i≤Kmax . (48)

The input image f : Z
2 → R is assumed to be of finite

support. The outputs from the scale channels are, here, aggre-
gated using, e.g. max pooling

(Λmax f )(x, c) = max
s∈Ŝ

{(φs f )(x, c, s)} (49)

or average pooling

(Λavg f )(x, c) = avg
s∈Ŝ

{(φs f )(x, c, s)}. (50)

We will also implement discrete scale-channel networks that
concatenate the outputs from the scale channels, followed by

an additional transformation ϕ : RMi |Ŝ| → R
Mi that mixes

the information from the different channels

(Λconc f )(x, c)

= ϕ
(
[(φs1 f )(x, c), (φs2 f )(x, c) · · · (φs|Ŝ| f )(x, c)]

)
.

(51)

Λconc does not have any theoretical guarantees of invari-
ance, but since scale concatenation of outputs from the scale
channels has been previously used with the explicit aim
of scale-invariant recognition [37], we will evaluate that
approach also here.

5.1 Foveated Processing

A standard convolutional neural network φ has a finite sup-
port regionΩ in the input. When rescaling an input image of
fixed size/finite support in the scale channels, it is necessary
to decide how to process the resulting images of varying size
using a feature extractor with fixed support. One option is to
process regions of constant size in the scale channels, corre-
sponding to regions of different sizes in the input image. This
results in foveated image operations, where a smaller region
around the centre of the input image is processed at high res-
olution, while gradually larger regions of the input image are
processed at gradually reduced resolution (see Fig. 2b, c).
Note how this implies that the scale channels will together
process a covariant set of regions, so that for any object size
there is always a scale channel with a support matching the
size of the object.Wewill refer to the foveated network archi-
tectures Λmax, Λavg and Λconc as the FovMax network, the
FovAvg network and the FovConc network, respectively.

5.2 Approximation of Scale Invariance

Foveated processing combined with max or average pool-
ing will give an approximation of scale invariance in the
continuous model (Sect. 3.4.2) over a limited scale range.
The numerical scale warpings of the input images in the
scale channels approximate continuous scaling transforma-
tions. A discrete set of scale channels will approximate the
representation for a continuous scale parameter, where the
approximation will be better with a denser sampling of the
scaling group.

A possible source of problems will, however, arise due
to boundary effects, caused by a finite scale interval. True
scale invariance is only guaranteed for an infinite number of
scale channels. In the case of max pooling over a finite set of
scale channels, there is a risk that the maximum value over
the scale channels moves in or out of the finite scale range
covered by the scale channels. Correspondingly, for aver-
age pooling, there is a risk that a substantial part of mass of
the feature responses from the different scale channels may
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Fig. 3 An illustration of how discrete scale-channel networks approx-
imate scale invariance over a finite scale range. Consider a foveated
scale-channel network combined with max or average pooling over the
output from the scale channels. Since the same operation is performed
in all the scale channels, when comparing the output for an original
image (left) and a rescaled copy of this image (right), we see that the
output code is just shifted along the scale dimension. Thus, if the values
taken at the edge of the scale range are small enough, then themaximum

over scales will still be preserved between an original and a rescaled
image. Correspondingly, for average pooling, there will in this case be
no significant change of themass of the feature responsewithin the scale
range spanned by the scale channels. Here, we illustrate the idea for a
network that produces a scalar output, but the same argument is valid for
vector valued output, where the only difference is that the pooling over
the scale dimension is performed for each vector element separately

Fig. 4 Samples from the MNIST Large Scale data set: The MNIST
Large Scale data set is derived from the original MNIST data set [114]
and contains 112 × 112 sized images of handwritten digits with scale

variations of a factor of 16. The scale factors relative to the original
MNIST data set are in the range 1

2 (top left) to 8 (bottom right)

move in or out of a finite scale interval. The risk for such
boundary effects would, however, be mitigated if the net-
work learns to suppress responses for both very zoomed-in
and very zoomed-out objects, so that the contributions from
such image structures are close to zero. As a design criterion
for scale-channel networks, we therefore propose to include
at least a small number of scale channels both below and
above the effective training scales of the relevant image struc-
tures. Further, we suggest training the network from scratch
as opposed to using pretrainedweights for the scale channels.
Then, we propose that it should be likely that the network
will learn to suppress responses for image structures that are
far off in scale, since the network would otherwise classify

based on use of object views that will hardly provide any
useful information. An illustration providing the intuition for
how invariance can be achieved in the discrete scale-channel
networks is presented in Fig. 3.

5.3 SlidingWindow Processing in the Scale Channels

An alternative option for dealing with varying image sizes is
to, in each scale channel, process the entire rescaled image by
applying the base network in a sliding window manner. We,
here, evaluate this option, but instead of evaluating the full
network anew at each image position, we slide the classifier
part of the network (i.e. the last layer) across the convolu-
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tional feature map. This is considerably less computationally
expensive, and, in the case of a network without subsampling
by means of strided convolutions (or max pooling), the two
approaches are equivalent. Since strided convolution is used
in the network, it implies that we here trade some resolution
in the output for computational efficiency, where it can be
noted that a similar choice is made in the OverFeat detector
[48]. 4

Concerning max pooling over space versus over scale,
where according to the most original formulation, a sliding
window approach in a scale-space setting would mean that
the base network that performs integration over scale should
be applied and evaluated anew at all the visited image posi-
tions, we, again for reasons of computational efficiency, swap
the ordering between max pooling over space versus over
scale and perform themax pooling over space before themax
pooling over scale, sincewe can then avoid the need for incor-
porating an explicit mechanism for a skewed/non-vertical
pooling operation between corresponding image points at
different levels of scale according to (11).

The output from the scale channels can then be combined
by max (or average) pooling over space followed by max (or
average) pooling over scales 5

(Λsw,max f )(c) = max
s∈S max

x∈Ω
{(φs f )(x, c, s)}. (52)

We will here only evaluate this architecture using max
pooling only, which is structurally similar to the popular
multi-scale OverFeat detector [48]. This network will be
referred to as the SWMax network.

For this scale-channel network to support invariance, it
is not sufficient that boundary effects resulting from using
a finite number of scale channels are mitigated. When pro-
cessing regions in the scale channels corresponding to only a
single region in the input image, new structures can appear (or
disappear) in this region for a rescaled version of the original
image. With a linear approach, this might be expected to not
cause problems, 6 since the best matching pattern will be the

4 A main difference between the OverFeat detector [48] and our
approach, however, is that the OverFeat detector uses a total effective
stride of 32, whereas our network has a total effective stride of 4 (2
convolutional layers with stride 2 each). Because of the larger effective
stride in the OverFeat detector, they apply their subsampling operation
for every spatial offset in the last convolutional layer, whereas we with
our smaller effective stride do not need to, since the subsampled image
representations are still at a satisfactory resolution.
5 Concerning images of finite size, we make use of all the available
image data for computing the scale-channel representations used for
the sliding window approach, implying that more pixels are processed
at a fine scale compared to a coarse scale. This is in contrast to the
foveated representations, which are based on using the same number
pixels in the scale channels for every resolution.
6 When using linear template matching, the best matching pattern for
a template learned during training will be a very similar image patch.

one corresponding to the template learned during training.
For a deep neural network, however, there is no guarantee
that there cannot be strong erroneous responses for, e.g. a
partial view of a zoomed-in object. We are, here, interested
in studying the effects that this has on generalisation in the
deep learning context.

6 Experiments on theMNIST Large Scale
Data Set

6.1 TheMNIST Large Scale Data Set

To evaluate the ability of standard CNNs and scale-channel
networks to generalise to unseen scales over a wide scale
range, we have created a new version of the standardMNIST
data set [114]. This new data set,MNIST Large Scale, which
is available online [115], is composed of images of size
112 × 112 with scale variations of a factor 16 for scale fac-
tors s ∈ [0.5, 8] relative to the original MNIST data set
(see Fig. 4). The training and testing sets for the different
scale factors are created by resampling the original MNIST
training and testing sets using bicubic interpolation followed
by smoothing and soft thresholding to reduce discretisation
effects. Note that for scale factors> 4, the full digit might not
be visible in the image. These scale values are nonetheless
included to study the limits of generalisation. More details
concerning this data set are given in “Appendix A”.

6.2 Network and Training Details

In the experimental evaluation, we will compare five types
of network designs: (i) a (deeper) standard CNN, (ii) Fov-
Max (max-pooling over the outputs from the scale channels),
(iii) FovAvg (average pooling over the outputs from the scale
channels), (iv) FovConc (concatenating the outputs from the
scale channels) and (v) SWMax (sliding window processing
in the scale channels combined with max-pooling over both
space and scale).

The standard CNN is composed of 8 conv-batchnorm-
ReLU blocks with 3×3 filters followed by a fully connected
layer and a final softmax layer. The number of features/filters
in each layer is 16–16–16–16–32–32–32–32–100–10. A
stride of 2 is used in convolutional layers 2, 4, 6 and 8. Note
that this network is deeper and has more parameters than the
networks used as base networks for the scale-channel net-
works. The reason for using a quite deep network is to avoid

Footnote 6 Continued
Thus, when sliding a template across a matching object, it will take the
maximum response when centred on the object.When using a nonlinear
method, however, there is no reason there could not be large responses
for non-centred views of familiar objects or completely novel patterns.
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(a) Standard CNN. (b) The FovConc network.

(c) The FovMax and FovAvg networks (d) The SWMax network

Fig. 5 Generalisation ability to unseen scales for a standard CNN and
the different scale-channel network architectures for the MNIST Large
Scale data set. The networks are trained on digits of size 1 (tr1), size 2
(tr2) or size 4 (tr4) and evaluated for varying rescalings of the testing
set. We note that the CNN (a) and the FovConc network (b) have poor

generalisation ability to unseen scales, while the FovMax and FovAvg
networks (c) generalise extremely well. The SWMax network (d) gen-
eralises considerably better than a standard CNN, but there is some drop
in performance for scales not seen during training

a network structure that is heavily biased towards recognising
either small or large digits. A more shallow network would
simply not have a receptive field large enough to enable
recognising very large objects. The need for extra depth is
thus a consequence of the scale preference built into a vanilla
CNN architecture. Here, we are aware of this more structural
problem of CNNs, but specifically aim to test scale general-
isation for a network with a structure that would at least in
principle enable scale generalisation.

The FovMax, FovAvg, FovConc and SWMax scale-
channel networks are constructed using base networks for
the scale channels with 4 conv-batchnorm-ReLU blocks with
3 × 3 filters followed by a fully connected layer and a final
softmax layer. The number of features/filters in each layer
is 16–16–32–32–100–10. A stride of 2 is used in convolu-
tional layers 2 and 4. Rescaling within the scale channels is
done with bilinear interpolation and applying border padding
or cropping as needed. The batch normalisation layers are
shared between the scale channels for the FovMax, FovAvg
and FovConc networks. This implies that the same operation

is performed for all scales, to preserve scale covariance and
enable scale invariance after max or average pooling.

We do not apply batch normalisation to the SW network,
since this was shown to impair the performance. We believe
that this is because the sliding window approach implies a
change in the feature distribution for this network when pro-
cessing data of different sizes. For the batch normalisation to
function optimally, the data/feature distribution should stay
approximately the same,which is not the case for the SWMax
network. 7

7 Note that for the OverFeat detector [48] networks pretrained on Ima-
geNet use a pretrained base network which precludes the problem with
training a sliding window scale-channel network with batch normalisa-
tion from scratch. For the larger-scale ranges evaluated here, however,
using networks with pretrained weights for the scale channels gives
considerably worse generalisation performance. We, here, tested two
versions of batch normalisation: (i) normalising the feature responses
jointly across all feature maps and (ii) normalising each channel sep-
arately. Neither of these options is scale invariant, the first because
of the change in the feature distribution for the joint set of feature
maps between inputs of different sizes and the second because the same
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For the FovAvg and FovMax networks, max pooling and
average pooling, respectively, are performed across the log-
its outputs from the scale channels before the final softmax
transformation and cross-entropy loss. For the FovConc net-
work, there is a fully connected layer that combines the logits
outputs from the multiple scale channels before applying a
final softmax transformation and cross-entropy loss.

All the scale-channel architectures have around 70k
parameters, whereas the baseline CNN has around 90k
parameters.

All the networks are trained with 50,000 training samples
from the MNIST Large Scale data set for 20 epochs using
the Adam optimiser with default parameters in PyTorch:
β1 = 0.9 and β2 = 0.999. During training, 15 % dropout is
applied to the first fully connected layer. The learning rate
starts at 3e−3 and decays with a factor 1/e every second
epoch towards a minimum learning rate of 5e−5. For the
SWMax network, the learning rate instead starts at 3e−4,
since this produced better results in the absence of batch nor-
malisation. Results are reported for the MNIST Large Scale
testing set (10,000 samples) as the average of training each
network using three different random seeds. The remaining
10,000 samples constitute a validation set, which was used
for parameter tuning. Parameter tuning was performed for a
single-channel network, and the same parameters were used
for the multi-channel networks and for the standard CNN.

Numerical performance scores for the results in some of
the figures to be reported are given in [116].

6.3 Generalisation to Unseen Scales

We, first, evaluate the ability of the standard CNN and the
different scale-channel networks to generalise to previously
unseen scales. We train each network on either of the sizes 1,
2, and4 from theMNISTLargeScale data set and evaluate the
performance on the testing set for scale factors between 1/2
and 8. The FovMax, FovAvg and SWMax networks have 17
scale channels spanning the scale range [ 12 , 8]. The FovConc
network has 3 scale channels spanning the scale range [1, 4].
8 The results are presented in Fig. 5. We, first, note that all
the networks achieve similar top performance for the scales
seen during training. There are, however, large differences in
the abilities of the networks to generalise to unseen scales:

Footnote 7 Continued
operation is not applied for all feature channels. Both impaired the per-
formance. We thus opt for evaluating the SWMax network with the
best configuration we found, which corresponds to training the network
from scratch without batch normalisation.
8 The FovConc network has worse generalisation performance when
including too many scale channels or spanning a too wide scale range.
Since we are more interested in the best case rather than the worst
case scenario, we, here, picked the best network out of a large range of
configurations.

6.3.1 Standard CNN

The standard CNN shows limited generalisation ability to
unseen scales with a large drop in accuracy for scale varia-
tions larger than a factor

√
2. This illustrates that, while the

network can recognise digits of all sizes, a standard CNN
includes no structural prior to promote scale invariance.

6.3.2 The FovConc Network

The scale generalisation ability of the FovConc network is
quite similar to that of the standard CNN, sometimes slightly
worse. The reason why the scale generalisation is limited is
that although the scale channels share their weights and thus
produce a scale-covariant output, when simply concatenating
these outputs from the scale channels, there is no structural
constraint to support scale invariance. This is consistent with
our observation that spanning a too wide scale range (Sect.
6.4) or using too many channels, the scale generalisation
degrades for the FovConc network (Sect. 6.5). For scales not
present during training, there is, simply, no useful training
signal to learn the correct weights in the fully connected layer
that combines the outputs from the different scale channels.
Note that our results are not contradictory to those previously
reported for a similar network structure [37], since they train
on data that contain natural scale variations and test over
a quite narrow scale range. What we do show, however, is
that this network structure, although it enables multi-scale
processing, is not scale invariant.

6.3.3 The FovAvg and FovMax Networks

We note that the FovMax and FovAvg networks generalise
very well, independently of what size the network is trained
on. Themaximumdifference in performance in the size range
[1, 4] between training on size 1, size 2 or size 4 is less than
0.2 percentage points for these network architectures. Impor-
tantly, this shows that, if including a large enough number
of sufficiently densely distributed scale channels and train-
ing the networks from scratch, boundary effects at the scale
boundaries do not prohibit invariant recognition.

6.3.4 The SWMax Network

We note that the SWMax network generalises considerably
better than a standard CNN, but there is some drop in perfor-
mance for sizes not seen during training. We believe that the
main reason for this is, here, that since all the scale channels
are processing a fixed-sized region in the input image (as
opposed to for foveated processing), new structures might
leave or enter this region when an image is rescaled. This
might lead to erroneous high responses for unfamiliar views
(see Sect. 5.3). We also noted that the SWMax networks are
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(a) The FovAvg network (b) The FovMax network

(c) The SWMax network (d) The FovConc network

Fig. 6 Dependency of the scale generalisation property on the scale
range spanned by the scale channels: a, b For the FovAvg and FovMax
networks, the scale generalisation property is directly proportional to
the scale range spanned by the scale channels, and there is no need to
include training data for more than a single scale. c For the SWMax net-
work, the scale generalisation is improved when including more scale

channels, but the network does not generalise as well as the FovAvg and
the FovMax networks. d For theFovConc network, the scale generalisa-
tion does actually become worse when including more scale channels
(in the case of single-scale training), because there is no mechanism
to support scale invariance when training the weights in the final fully
connected layer that combines the different scale channels

harder to train (more sensitive to learning rate etc.) compared
to the foveated network architectures as well as more compu-
tationally expensive. Thus, while the FovMax and FovAvg
networks still are easy to train and the performance is not
degraded when spanning a wide scale range, the SWMax
network seems to work best for spanning a more limited
scale range, where fewer scale channels are needed (as was
indeed the use case in [48]).

6.4 Dependency on the Scale Range Spanned by the
Scale Channels

Figure 6 shows the result of experiments to investigate the
sensitivity of the scale generalisation properties to how wide
range of scale values is spanned by the scale channels. For
all the experiments, we have used a scale sampling ratio
of

√
2 between adjacent scale channels. All the networks

were trained on the single size 2 and were tested for all sizes

between 1
2 and 8. The scale interval was varied between the

four choices [√2, 2
√
2], [1, 4], [1/√2, 4

√
2] and [ 12 , 8].

6.4.1 The FovAvg and FovMax Networks

For the FovAvg and FovMax networks, the scale generali-
sation properties are directly connected to how wide a scale
range is spanned by the scale channels. By including more
scale channels, these networks generalise over a wider scale
range, without any need to include training data for more
than a single scale. The scale generalisation property will,
however, be limited by the image resolution for small testing
sizes and by the fact that the full object is not visible in the
image for larger testing sizes.
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(a) The FovAvg network (b) The FovMax network

(c) The SWMax network (d) The FovConc network

Fig. 7 Dependency of the scale generalisation property on the scale
sampling density: a, b For the FovAvg and FovMax networks, the over-
all scale generalisation is very good for all the studied scale sampling
rates, although it becomes noticeably better for 21/2 compared to 2. For
a more close up look regarding the FovAvg and FovMax networks, see
Fig. 8. cThe SWMax network ismore sensitive to howdensely the scales

are sampled compared to the FovAvg and the FovMax networks, and
the sensitivity to the scale sampling density is larger when observing
objects that are larger than those seen during training, as compared to
when observing objects that are smaller than those seen during train-
ing. d The FovConc network actually generalises worse with a denser
sampling of scales

(a) The FovAvg network (b) The FovMax network

Fig. 8 Dependency of the scale generalisation property on the scale
sampling density for the FovAvg and FovMax networks: FovMax and
FovAvg networks spanning the scale range [ 14 , 8] were trained with
varying spacing between the scale channels, either 2, 21/2 or 21/4. All

the networks were trained on size 2. There is a significant increase in
the performance when reducing the spacing between the scale channels
from 2 to 21/2, while the effect of a further reduction to 21/4 is very
small

123



Journal of Mathematical Imaging and Vision (2022) 64:506–536 523

6.4.2 The SWMax Network

For the SWMax network, the scale generalisation property
is improved when including more scale channels, but the
network does not generalise as well as the FovAvg and the
FovMax networks. It is also noticeable that scale generalisa-
tion is harder when for large testing sizes compared to small
testing sizes. This is probably because of the problem with
unfamiliar partial views present for sliding window process-
ing becoming more pronounced for large testing sizes.

6.4.3 The FovConc Network

For the FovConc network, the scale generalisation is actu-
ally worse when including more scale channels. This phe-
nomenon can be understood by considering that the weights
in the fully connected layer, which combines information
from the concatenated scale channels output, are not con-
trolled by any invariance mechanism. Indeed, the weights
corresponding to scales not present during training may take
arbitrary values without any significant impact on the train-
ing error. Incorrect weights for unseen scales will, however,
imply very poor generalisation to those scales.

6.5 Dependency on the Scale Sampling Density

Figures 7 and 8 show the result of experiments to investi-
gate the sensitivity of the scale generalisation property to the
sampling density of the scale channels. All the networkswere
trained on size 2, with the scale channels spanning the scale
range [ 12 , 8], and with a varying spacing between the scale
channels: either 2, 21/2 or 21/4. For the FovConc network,
we also included the spacing 22.

The number of scale channels for the different sampling
densities were for the 22 spacing: 3 channels, for the 2 spac-
ing: 5 channels, for the 21/2 spacing: 9 channels and for the
21/4 spacing: 17 channels.

6.5.1 The FovAvg and FovMax Networks

For both the FovAvg and FovMax networks, the accuracy is
considerably improved when decreasing the ratio between
adjacent scale levels from a factor 2 to a factor of 21/2, while
a further reduction to 21/4 provides very low additional ben-
efits. 9

9 This result is consistent with results about scale sampling in classical
scale-space theory, where it is known that uniform scale sampling in
units of effective scale τ = log σ [117] is the natural scale sampling
strategy, and a scale sampling ratio of

√
2 often leads to substantially

better performance than a scale sampling ratio of 2 in classical scale-
space algorithms.

Fig. 9 Comparing multi-scale versus single-scale training for a vanilla
CNN. Training is here performed over the size ranges [1, 2] and [2, 4],
respectively. The scale generalisation when trained on single size train-
ing data is presented as dashed grey lines for training sizes 1, 2 and 4,
respectively. As can be seen from the results, training on multi-scale
training data does not improve the scale generalisation ability of the
CNN for sizes outside the size range the network is trained on

6.5.2 The SWMax Network

The SWMax network is more sensitive to how densely the
scale levels are sampled compared to the FovAvg and Fov-
Max networks. This sensitivity to the scale sampling density
is larger, when observing objects of larger size than those
seen during training, as compared to when observing objects
of smaller size than those seen during training.

This, again, illustrates the problem due to partial views
of objects, which will be present at some scales but not at
others, are more severe when observing larger size objects
than seen during training.

6.5.3 The FovConc Network

The FovConc network does actually generalise worse with
a denser sampling of scales. In fact, none of the network
versions generalises better than a standard CNN. The reason
for this is probably that for a dense sampling of scales, there is
no need for the last fully connected layer, which processes the
concatenated outputs from all the scale channels, to include
information from scales further away from the training scale.
Thus, the weights corresponding to such scales may take
arbitrary values without affecting the accuracy during the
training process, thereby implying very poor generalisation
to previously unseen scales.

6.6 Multi-Scale Versus Single-Scale Training

All the scale-channel architectures support multi-scale pro-
cessing although they might not support scale invariance.
We, here, test the performance of the different scale-channel
networks when training on multi-scale training data. For the
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Fig. 10 Results of multi-scale training for the scale-channel networks
with training sizes uniformly distributed on the size range [1, 4] (with
the uniform distribution on a logarithmic scale). These two figures show
the same experimental results, where the second figure is zoomed in, to
make comparisons between the networks more visible. The presence of
multi-scale training data substantially improves the performance of the
CNN, the FovConc network and the SWMax network. The difference
in performance between single-scale training andmulti-scale training is
almost indiscernable for the FovAvg and FovMax networks. The overall
best performance is obtained for the FovAvg network

standard CNN, we also explicitly explore how generalisation
is affected when training on a smaller scale range to see how
this affects generalisation outside the scale range trained on.

6.6.1 Limits of Generalisation for a Standard CNN

If including multi-scale data within a some range, could a
CNN learn to “extrapolate” outside this scale range? Figure 9
shows the result of training the standard CNN on training
data with multiple sizes uniformly distributed over the scale
ranges [1, 2] and [2, 4], respectively, and testing on all sizes
over the range [ 12 , 8]. (The size distributions are uniform on
a logarithmic scale.)

Training on multi-scale training data does not improve
the scale generalisation ability of the CNN for scales outside
the scale range the network is trained on. The network can,
indeed, learn to recognise digits of different sizes. But just
because it might learn that an object of size 1 is the same as
the same object of size 2, this does not at all imply that it

will recognise the same object if it has size 4. In other words,
the scale generalisation ability within a subrange does not
transfer to outside that range.

6.6.2 Multi-Scale Training

Figure 10 shows the result of performingmulti-scale training
over the size range [1, 4] for the scale-channel networks Fov-
Max, FovAvg, FovConc and SWMax as well as the standard
CNN. Here, the same scale-channel setup with 17 channels
spanning the scale range [ 12 , 8] is used for all the scale-
channel architectures.Whenmulti-scale training data is used,
the advantage of using scale channels spanning a larger scale
range no longer incurs a penalty for the FovConc network,
since the correctweights can be learned in the fully connected
layer.

We note that the difference between training on multi-
scale and single-scale data is striking both for the FovConc
network and the standard CNN. It can, however, be noted that
the FovConc network works well in this scenario, especially
for the scale range included in the training set. Outside this
scale range, we note somewhat better generalisation com-
pared to the CNN, while the generalisation is still worse than
for theFovAvg andFovMaxnetworks. TheFovConcnetwork
does, after all, include a mechanism for multi-scale process-
ing and when trained on multi-scale training data, the lack of
invariance mechanism in the fully connected layer is less of
a problem.

For the SWMax network, including multi-scale data
improves the scale generalisation somewhat compared to
single-scale training. The SWMax network does, however,
have worse performance for spanning larger scale ranges
compared to the other networks. The reason behind this is
probably that the multiple views produced in the different
scale channels indeed makes the problem harder for this net-
work compared to the foveated networks, which only need
to process centred digit views.

The difference in scale generalisation ability between
training on a single scale or multi-scale image data is on the
other hand almost indiscernible for the FovMax and FovAvg
networks (less than 0.1%difference in accuracy), illustrating
the strong scale invariance properties of these networks.

6.7 Compact Benchmarks Regarding the Scale
Generalisation Performance

Table 1 gives compact performance measures of the gen-
eralisation performance of the different types of networks
considered in the experiments on the MNIST Large Scale
data set. For each type of network (FovAvg, FovMax, Fov-
Conc, SW or CNN), the table gives the average classification
accuracy over different ranges of the size of the testing data,
for networks trained by single-scale training, for either of the
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Table 1 Compact performance
measures regarding scale
generalisation on the MNIST
Large Scale data set: Average
classification accuracy (%) over
different size ranges of the
testing data

Scale range [1/2, 1] [1, 4] [4, 8] [1/2, 4] [1/2, 8]
FovAvg 17ch tr1 99.15 99.27 90.82 99.22 96.76

FovAvg 17ch tr2 99.14 99.36 96.55 99.27 98.47

FovAvg 17ch tr4 98.78 99.31 96.61 99.11 98.36

FovAvg 17ch mean(tr1, tr2, tr4) 99.02 99.32 94.66 99.20 97.86

FovAvg 17ch tr14 99.20 99.40 96.50 99.32 98.49

FovMax 17ch tr1 99.15 99.35 93.70 99.27 97.63

FovMax 17ch tr2 99.15 99.31 92.72 99.25 97.32

FovMax 17ch tr4 99.03 99.30 93.26 99.20 97.45

FovMax 17ch mean(tr1, tr2, tr4) 99.11 99.32 93.23 99.24 97.47

FovMax 17ch tr14 99.16 99.32 94.37 99.26 97.82

FovConc 3ch tr1 80.76 48.64 4.61 57.10 44.68

FovConc 3ch tr2 22.35 78.17 22.71 59.12 49.55

FovConc 3ch tr4 2.57 50.20 82.36 35.64 45.63

FovConc 3ch mean(tr1, tr2, tr4) 35.23 59.00 36.56 50.62 46.62

FovConc 17ch tr14 89.70 99.33 89.54 95.63 93.63

SWMax 17ch tr1 95.06 97.60 69.52 96.53 88.77

SWMax 17ch tr2 96.87 97.96 69.28 97.48 89.44

SWMax 17ch tr4 91.40 97.23 82.21 95.02 91.04

SWMax 17ch mean(tr1, tr2, tr4) 94.44 97.60 73.67 96.34 89.75

SWMax 17ch tr14 97.05 98.82 79.40 98.13 92.60

CNN tr1 88.26 50.78 11.85 61.46 49.64

CNN tr2 27.87 79.88 26.08 61.90 52.60

CNN tr4 11.45 54.35 82.59 40.99 49.79

CNN mean(tr1, tr2, tr4) 42.53 61.67 40.17 54.78 50.68

CNN tr14 88.23 99.09 73.98 94.94 88.57

For each type of network (FovAvg, FovMax, FovConc, SWMax or CNN), this table shows the average
classification accuracy over different ranges of the size of the testing data in the MNIST Large Scale data sets,
for networks trained by single-scale training for either of the training sizes 1, 2 or 4 (denoted tr1, tr2, tr4) or
multi-scale training data spanning the scale range [1, 4] (denoted tr14)
The rows labelled “mean(tr1, tr2, tr4)” give the average value for the training sizes 1, 2 and 4
The reported accuracy is the average of the accuracy for multiple test sizes within the size ranges
[1/2, 1], [1, 4], [4, 8], [1/2, 4] and [1/2, 8] with spacing 21/4 between consecutive sizes

training sizes 1, 2 or 4 or multi-scale training data spanning
the scale range [1, 4].

Tables 2, 3, 4, and 5 gives relative ranking of the dif-
ferent networks on specific subsets of this data, which can
be treated as benchmarks regarding scale generalisation for
the MNIST Large Scale data set. As can be seen from these
tables, the FovAvg and FovMax networks have the overall
best performance scores of these networks, both for the cases
of single-scale training and multi-scale training.

The FovConc, CNN and SWMax networks are very much
improved by multi-scale training, whereas the FovAvg and
FovMax networks perform almost as well for single-scale
training as for multi-scale training.

6.8 Generalisation from Fewer Training Samples

Another scenario of interest is when the training data does
span a relevant range of scales, but there are few training
samples. Theory would predict a correlation between the
performance in this scenario and the ability to generalise
to unseen scales.

To test this prediction, we trained the standard CNN and
the different scale-channel networks on multi-scale training
data spanning the size range [1, 4], while gradually reducing
the number of samples in the training set. Here, the same
scale-channel setup with 17 channels spanning the scale
range [ 12 , 8] was used for all the architectures. The results
are presented in Fig. 11. We can note that the FovConc net-
work shows some improvement over the standard CNN. The
SWMaxnetwork, on the other hand, does not, andwehypoth-
esise that when using fewer samples, the problemwith partial
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Table 2 Relative ranking of the different networks for single-scale
training at either of the training sizes 1, 2 or 4 evaluated over the testing
size interval [1, 4]
Single-scale training evaluated over testing sizes in [1, 4]
FovAvg mean(tr1, tr2, tr4) 99.32 %

FovMax mean(tr1, tr2, tr4) 99.32 %

SWMax mean(tr1, tr2, tr4) 97.60 %

CNN mean(tr1, tr2, tr4) 61.67 %

FovConc mean(tr1, tr2, tr4) 59.00 %

Table 3 Relative ranking of the different networks formulti-scale train-
ing over the training size interval [1, 4] evaluated over the testing size
interval [1, 4]
Multi-scale training evaluated over testing sizes in [1, 4]
FovAvg tr14 99.40 %

FovConc tr14 99.33 %

FovMax tr14 99.32 %

CNN tr14 99.09 %

SWMax tr14 98.82 %

views of objects (see Sect. 5.3) might be more severe. Note
that theway theOverFeat detector is used in the original study
[48] is more similar to our single-scale training scenario,
since they use base networks pre-trained on ImageNet. The
FovAvg and FovMax networks show the highest robustness
also in this scenario. This illustrates that these networks can
give improvements when multi-scale training data is avail-
able, but there are few training samples.

6.9 Scale Selection Properties

One may ask, how do the scales “selected” by the networks,
i.e. the scales that contribute the most to the feature response
of the winning digit class, vary with the size of the object
in the image? We, here, investigate the relative contributions
from the different scale channels to the classification deci-
sion and how they vary with the object size. For this purpose,
we train the FovAvg, FovMax, FovConc and SWMax net-
works on the MNIST Large Scale data set for each one of
the different training sizes 1, 2 and 4 and then accumulate
histograms that quantify the contribution from the different
scale channels over a range of image sizes in the testing data.

The histograms are constructed as follows:

– FovMax We identify the scale channel that provides the
maximumvalue for thewinning digit class and increment
the histogram bin corresponding to this scale channel
with a unit increment.

– FovAvg The FovAvg network aggregates contributions
frommultiple scale channels for each classification deci-

Table 4 Relative ranking of the different networks for single-scale
training at either of the training sizes 1, 2 or 4 evaluated over the testing
size interval [1/2, 4]
Single-scale training evaluated over testing sizes in [1/2, 4]
FovMax mean(tr1, tr2, tr4) 99.24 %

FovAvg mean(tr1, tr2, tr4) 99.20 %

SWMax mean(tr1, tr2, tr4) 96.34 %

CNN mean(tr1, tr2, tr4) 54.78 %

FovConc mean(tr1, tr2, tr4) 50.62 %

Table 5 Relative ranking of the different networks formulti-scale train-
ing over the training size interval [1, 4] evaluated over the testing size
interval [1/2, 4]
Multi-scale training evaluated over testing sizes in [1/2, 4]
FovAvg tr14 99.32 %

FovMax tr14 99.26 %

SWMax tr14 98.13 %

FovConc tr14 95.63 %

FovConc tr14 96.32 %

CNN tr14 94.94 %
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Fig. 11 Training with smaller training sets with large scale variations.
All the network architectures are evaluated on their ability to classify
data with large scale variations, while reducing the number of train-
ing samples. Both the training and the testing sets here span the size
range [1, 4]. The FovAvg network shows the highest robustness when
decreasing the number of training samples followed by the FovMax
network. The FovConc network also shows a small improvement over
the standard CNN

sion. For the winning digit class, we consider the relative
contributions from the different scale channels and incre-
ment each histogram bin with the corresponding fraction
of unity of this contribution. The contribution is mea-
sured as the absolute value of the feature response before
average pooling.

– FovConc Wecompute the relative contribution from each
scale channel as the sum of the weights in the fully con-
nected layer corresponding to the winning digit class and
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Fig. 12 Visualisation of the
scale selection properties of the
scale-invariant FovAvg and
FovMax networks, when
training the network for each
one of the sizes 1, 2 and 4. For
each testing size, shown on the
horizontal axis with increasing
testing sizes towards the right,
the vertical axis displays a
histogram of the relative
contribution of the scale
channels to the winning
classification, with the lowest
scale at the bottom and the
highest scale at the top. As can
be seen from the figures, there is
a general tendency of the
composed classification scheme
to select coarser scale levels
with increasing size of the
image structures, in agreement
with the conceptual similarity to
classical methods for scale
selection based on detecting
local extrema over scale or
performing weighted averaging
over scale of scale-normalised
derivative responses. (In these
figures, the resolution parameter
on the vertical axis represents
the inverse of scale. Note that
the grey-levels in the histograms
are not directly comparable,
since the grey-levels for each
histogram are normalised with
respect to the maximum and
minimum values in that
histogram)

the specific scale channel, multiplied by the feature val-
ues corresponding to the output from that scale channel.
We increment each histogram bin with the fraction of
unity corresponding to the absolute value of the relative
contribution from each scale channel.

– SWMax We identify the scale channel that provides the
maximumvalue for thewinning digit class and increment
the histogram bin corresponding to this scale channel
with a unit increment.

The procedure is repeated for all the testing sizes in the
MNIST Large Scale data set, resulting in two-dimensional
scale selection histograms, which show what scale channels
contribute to the classification output as a function of the size
of the image structures in the testing data. The histograms are
presented in Figs. 12 and 13. As can be seen in Fig. 12, for the
FovAvg and FovMax networks, the selected scale levels do
very well follow a linear trend in the sense that the selected
scale levels are proportional to the size of the image struc-
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Fig. 13 Visualisation of the
scale selection properties of the
not scale-invariant FovConc and
SWMax networks, when
training the network for each
one of the sizes 1, 2 and 4. For
each testing size, shown on the
horizontal axis with increasing
testing sizes towards the right,
the vertical axis displays a
histogram of the relative
contribution of the scale
channels to the winning
classification, with the lowest
scale at the bottom and the
highest scale at the top. As can
be seen from the figures, the
relative contributions from the
different scale levels do not as
well follow a linear dependency
on the size of the input structures
as for the scale-invariant
FovAvg and FovMax networks.
Instead, for the FocConc
network, there is a bias towards
the size of image structures used
for training, whereas for the
SWMax network some scale
levels dominate for fine-scale or
coarse-scale sizes in the testing
data. (In these figures, the
resolution parameter on the
vertical axis represents the
inverse of scale. Note that the
grey-levels in the histograms are
not directly comparable, since
the grey-levels for each
histogram are normalised with
respect to the maximum and
minimum values in that
histogram)

tures in the testing data. 10 The scale selection histograms
are also largely similar, irrespective of whether the training

10 A certain bias that can be observed for the FovMax and SWMax net-
works, is that there is a stronger peak in the histogram scale channels
for scale channel 1 for small testing sizes, than for the neighbouring
scale channels. A possible explanation for this effect is that for scale
channel 1 there will not be any effective initial interpolation stage as
for the other scale channels, which implies that there is no additional
interpolation blur for this scale channel as for the other scale channels,
in turn implying a stronger response for this scale channel compared
to the neighbouring scale channels. A certain bias towards scale chan-
nel 1 can also be observed for the FovConc network. For the FovAvg
network, which is also the network that performs clearly best out of

is performed for size 1, 2 or 4, illustrating that the scale-
invariant properties of the FovAvg and FovMax networks in
the continuous case transfer very well to the discrete imple-
mentation.

Footnote 10 Continued
these four networks, the bias towards scale channel 1 is, however, very
minor. In retrospect, the bias towards scale channel 1 for the other net-
works could point to replacing the initial bilinear interpolation stage by
some other interpolation method, and/or to add a small complementary
smoothing stage after the interpolation stage, to ensure that the sum
of the effective interpolation blur and the added complementary blur
remains approximately the same for neighbouring scale channels.
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In this respect, the resulting scale selection properties of
the FovAvg and FovMax networks share similarities to clas-
sical methods for scale selection based on local extrema over
scale or weighted averaging over scale of scale-normalised
derivative responses [7,8,18,110,113]. This makes sense in
light of the result that the scaling properties of the fil-
ters applied to the scale channels are similar to the scaling
properties of scale-normalised Gaussian derivatives (see
Sect. 4.3.2). The approach for the FovMax network is also
closely related to the scale selection approach in [112,118]
based on choosing the scales at which a supervised classifier
delivers class labels with the highest posterior.

As can be seen in Fig. 13, the behaviour is different for
the not scale-invariant FovConc and SWMax networks. For
the FovConc network, there is a bias in that the selected
scales are more concentrated towards the size of the train-
ing data. The contributions from the different scale channels
are also much less concentrated around the linear trend com-
pared to the FovAvg and FovMax networks. Without access
to multi-scale training, the FovConc network does not learn
scale invariance although this would in principle be possible,
e.g. by learning to use equal weights for all the scales, which
would implement average pooling over scales.

For the SWMax network, although the resulting scale
selection histogram is largely centred around a linear trend,
consistent with the relative robustness to scaling transforma-
tions that this network shows, the linear trend is not as clean
as for the FovAvg and FovMax networks. For the coarsest
scale testing structures, the SWMax network largely fails
to activate corresponding scale channels beyond a certain
value. This is consistent with the previous problems of not
being able to generalise to larger testing scales and is likely
related to the previously discussed problem of interference
from zoomed-in previously unseen partial views that might
give stronger feature responses than the zoomed-out overall
shape. Furthermore, for finer or coarser scale testing struc-
tures, there are some scale channels for the SWMax network
that contributemore to the output thanothers and thus demon-
strate a lack of true scale invariance.

In the quantitative scale generalisation experiments pre-
sented earlier, it was seen that the lack of scale invariance for
the SWMax network leads to lower accuracy when general-
ising to unseen scales and, for the FovConc network, which
here shows the worst scale selection properties, no marked
improvement at all over a standard CNN. For the truly scale-
invariant FovAvg and FovMax networks, on the other hand,
the ability of the networks to correctly identify the scale of
the object in a scale-covariant way imply excellent scale gen-
eralisation properties.

7 Experiments on Rescalings of the CIFAR-10
Data Set

7.1 Data Set

To investigate if a scale-channel network can still provide a
clear advantage over a standard CNN in a more challenging
scenario, we use the CIFAR-10 data set [119]. We train on
the original training set and test on synthetically rescaled
copies of the test set with relative scale factors in the range
s ∈ [0.5, 2.0]. CIFAR-10 represents a data set, where the
conditions for invariance using a scale-channel network are
not fulfilled, in the sense that the transformations between
different training and testing sizes are not well modelled by
continuous scaling transformations, as underlie the presented
theory for scale-invariant scale channel networks, based on
continuous models of both the image data and the image
filtering operations.

Because already the original data set is at the limit of being
undersampled, reducing the image size further for scale fac-
tors s < 1 results in additional loss of object details. The
images are also tightly cropped, which implies that increas-
ing the image size for scale factors s > 1 implies a loss
of information towards the image boundaries, and that sam-
pling artefacts in the original image data will be amplified.
Further, when reducing the image size, we extend the image
by mirroring at the image boundaries, adding artefacts in the
image structures, caused by the image padding operations.
What we evaluate here is thus the limits of the scale-channel
networks, near or beyond the limits of image resolution, to
see if this approach can still provide a clear advantage over
a standard CNN.

Figure 14 shows a few images from the rescaled testing
set, with examples of two out of the 10 object classes in the
data set: “airplanes”, “cars”, “birds”, “cats”, “deer”, “dogs”,
“frogs”, “horses”, “ships”, and “trucks”.

7.2 Network and Training Details

For the CIFAR-10 data set, we will compare the FovMax,
FovAvg and FovConc networks to a standard CNN. 11 We
use the same network for the CNN as for the individual scale
channels, a 7-layer network with conv + batchnorm + ReLU
layers with 3× 3 kernels and zero padding with width 1. We
do not use any spatial max pooling, but use a stride of 2 for
convolutional layers 3, 5 and 7. After the final convolutional
layer, spatial average pooling is performed over the full fea-
ture map down to 1 × 1 resolution, followed by a final fully
connected softmax layer. We do not use dropout, since it did

11 We do not evaluate the SWMax network on the CIFAR-10 data set,
since it is not meaningful to perform a spatial search for objects in this
data set.
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Fig. 14 Sample images from the rescaled CIFAR-10 testing set (of size 32×32 pixels). The images in the original CIFAR-10 testing set are rescaled
for scaling factors between 1

2 and 2, with mirror extension at the image boundaries for scaling factors s < 1. Top row: “frog”. Bottom row: “truck”

not improve the results for this quite simple network with
relatively few parameters. The number of feature channels is
32–32–32–64–64–128–128 for the 7 convolutional layers.

For the FovAvg and FovMax networks, max pooling and
average pooling, respectively, is performed across the log-
its outputs from the scale channels before the final softmax
transformation and the cross-entropy loss. For the FovConc
network, there is a fully connected layer that combines the
logits outputs from the multiple scale channels before apply-
ing a final softmax transformation and the cross-entropy loss.
We use bilinear interpolation and reflection padding at the
image boundaries when computing the rescaled images used
as input for the scale channels.

All the CIFAR-10 networks are trained for 20,000 time
steps using 50,000 training samples from the CIFAR-10
training set over 103 epochs, using a batch size of 256 and
the Adam optimiser with default parameters in PyTorch:
β1 = 0.9 and β2 = 0.999. A cosine learning rate decay
is used with starting learning rate 0.001 and floor learning
rate 0.00005, where the learning rate decreases to the floor
learning rate after 75 epochs. The networks are then tested
on the 10,000 images in the testing set, for relative scaling
factors in the interval [ 12 , 2].

We chose the learning rate and training schedule based on
the CNN performance using the last 10,000 samples of the
training set as a validation set.

7.3 Experimental Results

The results for the standard CNN are shown in Fig. 15a. It
can be seen that, already for scale factors slightly off from 1,
there is a noticeable drop in generalisation performance.

The results for the FovConc network, for different number
of scale channels, are presented in Fig. 15b. The generali-
sation ability to new scales is markedly better than for the
standard CNN, but the scale generalisation is not improved
by addingmore scale channels. This can be comparedwith no
improvement over a standard CNN when trained on single-
scale MNIST data. We believe that the key difference is that
for the CIFAR-10 data set there are indeed some scale vari-

ations present in the training set, and as discussed earlier, it
is possible for the FovConc network to learn to generalise
by assigning appropriate weights to the layer that combines
information from the different scale channels. This illustrates
that the method does have some structural advantage com-
pared to a standard CNN, but that multi-scale training data
are required to realise this advantage.

The results for the FovMax and FovAvg networks, for dif-
ferent numbers of scale channels, are presented in Fig. 15c,
d, and are significantly better than for the standard CNN and
the FovConc network. The accuracy for the smallest scale
1/2 is improved from ≈ 40% for the CNN to above 70% for
the FovAvg and FovMax networks, while the accuracy for
the largest scale 2 is improved from ≈ 30% for the CNN to
≈ 50% for the FovAvg and FovMax networks.

For the FovMax network, there is a noticeable improve-
ment by going to afiner scale sampling ratio of 21/4 compared
to 21/2. Then, the generalisation ability for the FovMax net-
work is also somewhat better than for the FovAvg network.
TheFovAvgnetwork does, however, have slightly better peak
performance compared to the FovMax network.

To summarise, the FovMax and FovAvg networks pro-
vide the best generalisation ability to new scales, which is
in line with theory. This shows that, also for data sets where
the conditions regarding image size and resolution are not
such that the scale-channel approach can provide full invari-
ance, our foveated scale-channel networks can nevertheless
provide benefits.

8 Summary and Discussion

We have presented a methodology to handle scaling trans-
formations in deep networks by scale-channel networks.
Specifically, we have presented a theoretical formalism for
modelling scale-channel networks based on continuousmod-
els of both the filters and the image data and have shown that
the continuous scale-channel networks are provably scale
covariant and translationally covariant. Combined with max
pooling or average pooling over the scale channels, our fove-
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(a) Standard CNN (b) The FovConc network

(c) The FovAvg network (d) The FovMax network

Fig. 15 Generalisation ability to unseen scales for a standard CNN and
different scale-channel network architectures for the rescaledCIFAR-10
data set. The network is trained on the CIFAR-10 training set (corre-
sponding to scale factor 1.0) and tested on rescaled images from the

testing set for relative scale factors between 1
2 and 2. The FovConc

network has better scale generalisation compared to the standard CNN,
but for larger deviations from the scale that the network is trained on,
there is a clear advantage for the FovAvg and the FovMax networks

ated scale-channel networks are additionally provably scale
invariant.

Experimentally,wehavedemonstrated that discrete approx-
imations to the continuous foveated scale-channel networks
FovMax and FovAvg are very robust to scaling transfor-
mations and allow for scale generalisation, with very good
performance for classifying image patterns at new scales
not spanned by the training data, because of the continuous
invariance properties that they approximate. Experimentally,
we have also demonstrated the very limited scale generali-
sation performance of vanilla CNNs and scale concatenation
networks when exposed to testing at scales not spanned by
the training data, although those approaches maywork rather
well when training on multi-scale training data. The rea-
sonwhy those approaches fail regarding scale generalisation,
when trained at a single scale or a over a narrow scale inter-
val only, is because of the lack of an explicit mechanism to
enforce scale invariance.

We have further demonstrated that a foveated approach
shows better generalisation performance compared to a
sliding window approach, especially when moving from a
smaller training scale to a large testing scale. Note that this
should not be seen as an argument against any type of slid-
ing window processing per se. The foveated networks could,
indeed, be applied in a sliding window manner to search for
objects in a larger image. Instead, it illustrates that for any
specific image point, it is important to process a covariant
set of image regions that correspond to different sizes in the
input image.

We have also demonstrated that our FovMax and FovAvg
scale-channel networks lead to improvements when training
on data with significant scale variations in the small sample
regime. We have further shown that the selected scale levels
for these scale-invariant networks increase linearly with the
size of the image structures in the testing data, in a similar
way as for classical methods for scale selection.
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From the presented experimental results on the MNIST
Large Scale data set, it is clear that our FovMax and
FovAvg scale-channel networks do provide a considerable
improvement in scale generalisation ability compared to a
standard CNN aswell as in relation to previous scale-channel
approaches. Concerning the CIFAR-10 data set, it should be
noted that full invariance is not possible because of the loss
in image information between the original and the rescaled
images. Our experiments on this data set show, nonetheless,
that also in the presence of undersampling and serious bound-
ary effects, our FovMax and FovAvg scale-channel networks
give considerably improved generalisation ability compared
to a standard CNN or alternative scale-channel networks.

We believe that our proposed foveated scale-channel
networks could prove useful in situations where a simple
approach that can generalise to unseen scales or learn from
small data sets with large scale variations is needed. Strong
reasons for using such scale-invariant scale-channel net-
works could either be because there is a limited amount of
multi-scale training data, where sharing statistical strength
between scales is valuable, or because only a single scale
or a limited range of scales is present in the training set,
which implies that generalisation outside the scales seen dur-
ing training is crucial for the performance. Thus, we propose
that this type of foveated scale-invariant processing could be
included as subparts in more complex frameworks dealing
with large scale variations.

Concerning applications towards object recognition, it
should, however, be emphasised that in this study,wehavenot
specifically focused on developing an integrated approach
for detecting objects, since the main focus has been to
developways of handling the notion of scale in a theoretically
well-founded manner. Beyond the vanilla sliding window
approach studied in this paper, which has such a built-in
object detection capability, also the foveated networks could
be applied in a slidingwindow fashion, thus being able to also
handle smaller objects near the image boundaries, which is
not possible if the central point in the image is always used
as the origin when resizing the image multiple times to form
the input for the different scale channels.

To avoid explicit exhaustive search over multiple such
origins for the foveated representations, such an approach
could further be naturally extended to a two-stage approach,
where detection of points of interest is first performed using
a complementary module that detects points of interest (not
necessarily of the same kind as the current regular notion of
interest points for image-based matching and recognition),
followed by more detailed analysis of these points of interest
with a foveated representation. Such an approach would then
bear similarity to human vision, by foveating on interesting
structures to look at them in more detail. It would specifi-
cally also bear similarity to two-stage approaches for object
recognition, such as R-CNNs [49,120,121], with the differ-

ence that the initial detection step does not need to return a
full window of interest. Instead, only a single initial point
is needed, where the scale, corresponding to the size of the
window, is then handled by the built-in scale selection step
in the foveated scale-channel network.

To conclude, the overarching aim of this study has instead
been to test the limits of CNNs to generalise to unseen scales
over wide scale ranges. The key take-home message is a
proof of concept that such scale generalisation is possible, if
including structural assumptions about scale in the network
design.
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Appendix

A TheMNIST Large Scale Data Set

We, here, give a more detailed description of the MNIST
Large Scale data set. The original MNIST data set [114]
contains images of centred handwritten digits of size 28 ×
28. The MNIST Large Scale data set is derived from the
MNIST data set by rescaling the original MNIST images.
The resulting data set contains images of size 112 × 112
with scale variations of a factor of 16. The scale factors s
relative to the original MNIST images are s ∈ [ 12 , 8]. The
data set is illustrated in Fig. 4.

To create an imagewith a certain scale factor s, the original
image is first rescaled/resampled using bicubic interpolation.
The image range is then clipped to [0, 256] to remove possi-
ble over/undershoot resulting from the bicubic interpolation.
The resulting image is embedded into an 112×112 resolution
image using zero padding or cropping as needed.

Large amounts of upsampling tend to result in discreti-
sation artefacts. To reduce the severity of such artefacts, the
images are post-processed with discrete Gaussian smooth-
ing [122] followed by nonlinear thresholding. The standard
deviation of the discrete Gaussian kernel varies with the scale
factor as σ(s) = 7

8 s. After smoothing, the image range is
rescaled to the range [0, 255].
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As a final step, an arctan nonlinearity is applied to sharpen
the resulting image, where the final image intensity Iout is
computed from the output of the smoothing step Iin as:

Iout = 2

π
arctan(a(Iin − b)) (53)

with a = 0.02 and b = 128. Note that for scale factors > 4,
the full digit might not be visible in the image. These scale
factors are included to enable studying the limits of general-
isation when the entire object is no longer visible (typically
the digits are fully contained in the image for s < 4

√
2).

All training data sets are created from the first 50,000
images in the original MNIST training set, while the last
10,000 images in the original MNIST training set are used
to create validation sets. The testing data sets are created by
rescaling the 10,000 images in the original MNIST testing
set. For the multi-scale data sets, scale factors for the indi-
vidual images are sampled uniformly on a logarithmic scale
in the range [smin, smax].

The specific MNIST Large Scale data set used for the
experiments in this paper is available online [115].
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