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Abstract

Brain magnetic resonance imaging (MRI) is an imaging modality that pro-
duces detailed images of the brain without using any ionizing radiation.
From a structural MRI scan, it is possible to extract morphological proper-
ties of different brain regions, such as their volume and shape. These mea-
sures can both allow a better understanding of how the brain changes due
to multiple factors (e.g., environmental and pathological) and contribute to
the identification of new imaging biomarkers of neurological and psychiatric
diseases. The overall goal of the present thesis is to advance the knowledge
on how brain MRI image processing can be effectively used to analyze and
characterize brain structure.

The first two works presented in this thesis are animal studies that pri-
marily aim to use MRI data for analyzing differences between groups of
interest. In Paper I, MRI scans from wild and domestic rabbits were pro-
cessed to identify structural brain differences between these two groups.
Domestication was found to significantly reshape brain structure in terms
of both regional gray matter volume and white matter integrity. In Paper II,
rat brain MRI scans were used to train a brain age prediction model. This
model was then tested on both controls and a group of rats that underwent
long-term environmental enrichment and dietary restriction. This healthy
lifestyle intervention was shown to significantly affect the predicted brain
age trajectories by slowing the rats’ aging process compared to controls.
Furthermore, brain age predicted on young adult rats was found to have a
significant effect on survival.

Papers III to V are human studies that propose deep learning-based
methods for segmenting brain structures that can be severely affected by
neurodegeneration. In particular, Papers III and IV focus on U-Net-based
2D segmentation of the corpus callosum (CC) in multiple sclerosis (MS)
patients. In both studies, good segmentation accuracy was obtained and a
significant correlation was found between CC area and the patient’s level of
cognitive and physical disability. Additionally, in Paper IV, shape analysis
of the segmented CC revealed a significant association between disability
and both CC thickness and bending angle. Conversely, in Paper V, a novel
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method for automatic segmentation of the hippocampus is proposed, which
consists of embedding a statistical shape prior as context information into
a U-Net-based framework. The inclusion of shape information was shown
to significantly improve segmentation accuracy when testing the method
on a new unseen cohort (i.e., different from the one used for training).
Furthermore, good performance was observed across three different diag-
nostic groups (healthy controls, subjects with mild cognitive impairment
and Alzheimer’s patients) that were characterized by different levels of hip-
pocampal atrophy.

In summary, the studies presented in this thesis support the great value
of MRI image analysis for the advancement of neuroscientific knowledge,
and their contribution is mostly two-fold. First, by applying well-established
processing methods on datasets that had not yet been explored in the liter-
ature, it was possible to characterize specific brain changes and disentangle
relevant problems of a clinical or biological nature. Second, a technical
contribution is provided by modifying and extending already-existing brain
image processing methods to achieve good performance on new datasets.

Keywords: Brain MRI, Image Segmentation, Machine Learning, Deep
Learning, Shape Analysis, Aging, Neurodegeneration
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Sammanfattning

Magnetresonansbilder (MR-bilder) används för att framställa detaljerade
bilder av hjärnan utan joniserande str̊alning. Fr̊an en strukturell MR-bild
är det möjligt att extrahera morfologiska egenskaper hos hjärnans olika
regioner, s̊asom deras volym och form. Dessa egenskaper kan ge bättre
först̊aelse för förändringar som hjärnan utsätts för p̊a grund av en mängd
faktorer (exempelvis miljö eller sjukdom) samt bidra till att identifiera nya
bildbaserade biomarkörer för neurologiska och psykiatriska sjukdomar. Den
här avhandlingens huvudsakliga m̊al är att bidra till kunskapen om hur bild-
behandling av MR-bilder kan användas för att analysera och karaktärisera
hjärnstrukturer.

De tv̊a första delarbetena som ing̊ar i avhandlingen är djurstudier som
primärt avser att använda MR-data för att analysera skillnaderna mellan
tv̊a kohorter. I Artikel I behandlas MR-bilder fr̊an domesticerade och vilda
kaniner för att identifiera skillnader i hjärnstruktur mellan de tv̊a grup-
perna. Domesticering visade sig förändra hjärnstrukturen signifikant, b̊ade
den gr̊aa hjärnsubstansens volym och den vita hjärnsubstansens integritet.
I Artikel II användes MR-bilder p̊a r̊attor för att träna en datadriven modell
att predicera hjärn̊alder. Modellen testades sedan p̊a en kontrollgrupp och
en grupp r̊attor som under flera m̊anader utsattes för en mer stimulerande
miljö samt fick en diet med restriktioner. Den mer hälsosamma livsstilen
visade sig bidra till en lägre predicerad hjärn̊alder genom att sakta ner
r̊attornas åldringsprocess, jämfört med kontrollgruppen. Hjärn̊aldern hos
unga, vuxna r̊attor visade sig signifikant p̊averka r̊attornas överlevnad.

Artikel III, IV och V är människostudier som föresl̊ar
djupinlärningsbaserade metoder för att segmentera (avgränsa)
hjärnstrukturer som kan p̊averkas av neurodegeneration. Artikel III och IV
i synnerhet fokuserar p̊a U-Net-baserad 2D-segmentering av corpus callo-
sum (CC) hos patienter med multipel skleros. I b̊ada studierna uppmättes
god träffsäkerhet för segmenteringsalgoritmen och signifikant korrelation
mellan CC:s area och patientens kognitiva och fysiska nedsättning. Utöver
detta visar Artikel IV genom geometrisk analys av den segmenterade CC
ett signifikant samband mellan sjukdom och CC:s tjocklek och böjvinkel.
I Artikel V introduceras en ny metod för automatisk segmentering av
hippocampus. Metoden kombinerar U-Net-baserad segmentering med en
inbyggd statistisk representation av hippocampus’ form. Metoden visade
sig ge en signifikant förbättring av segmenteringskvaliteten när metoden
utvärderades p̊a en ny, tidigare osedd, kohort. Goda resultat uppmättes
även i tre olika diagnosgrupper (en frisk kontrollgrupp, patienter med milda
kognitiva symptom och en grupp patienter med Alzheimers sjukdom) som
särskilde sig genom tre olika niv̊aer av atrofi av hippocampus.
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Sammanfattningsvis bidrar studierna som ing̊ar i avhandlingen till att
förstärka värdet av MR-bildanalys för framsteg inom neurovetenskapen, och
detta p̊a tv̊a sätt. Genom att applicera väletablerade bildbehandlingsme-
toder p̊a dataset som ännu inte utforskats i litteraturen var det möjligt att
karaktärisera specifika förändringar i hjärnans geometri och därmed lösa rel-
evanta kliniska eller biologiska utmaningar. Vidare har studierna bidragit
till den teknologiska metodutvecklingen genom att modifiera och utvidga
existerande bildbehandlingsmetoder för hjärnbilder för att uppn̊a goda re-
sultat p̊a nya dataset.

Nyckelord: MRT av hjärnan, Bildsegmentering, Maskininlärning,
Djupinlärning, Formanalys, Åldrande, Neurodegeneration
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Chapter 1

Introduction

Brain magnetic resonance imaging (MRI) is a noninvasive imaging modality.

It can provide good contrast between soft tissues and high spatial resolu-

tion without using any ionizing radiation. For these reasons, it is widely

used in the clinic for both diagnostics and disease monitoring. Nonethe-

less, brain MRI image processing research is extremely active with the aim

to expand the range of clinical applications of brain MRI by introducing

so-called imaging biomarkers. In a commentary by the Biomarkers Defini-

tions Working Group (2001) of the American National Institute of Health,

a biomarker was defined as “a characteristic that is objectively measured

and evaluated as an indicator of normal biological processes, pathogenic

processes, or pharmacologic responses.” Neuroimaging biomarkers are ex-

amples of such objective measurements, and they are specifically extracted

from brain imaging data by applying a set of predefined image processing

techniques.

Important information on brain morphology can be extrapolated from

structural MRI scans. The segmentation of certain brain regions of interest

can allow the study of their morphological properties (e.g., volume and

shape), which represent potential biomarkers of some diseases. For instance,

significant volumetric reductions (atrophy) in some brain regions (e.g., the

hippocampus and entorhinal cortex) have been demonstrated to correlate

with Alzheimer’s disease (AD) progression (Scheltens et al., 2002; Varghese

et al., 2013). Thus, early detection of this atrophy can aid in the early

diagnosis of AD and its treatment planning. Furthermore, structural MRI

can be used to identify other markers of brain damage and/or degeneration,

for example the presence of brain lesions and their extent, as well as level
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of vascular burden (Young et al., 2020).

Advanced image processing methods can be employed to improve un-

derstanding of brain structure and how it changes due to multiple factors

(e.g., underlying pathology, genetics, environment or normal aging). Sev-

eral software tools for brain image processing as well as rich image datasets

are now available to the scientific community with the aim of advancing re-

search in this field. Moreover, in the last decades, the explosion of machine

learning and, more recently, deep learning has attracted the attention of the

neuroimaging community given the strong potential and accuracy of these

tools, especially when it comes to automatic image classification and seg-

mentation. A prime example of this phenomenon is the popularity of the

U-Net model for medical image segmentation (Ronneberger et al., 2015),

which presented an alternative to other deep learning solutions based on

convolutional neural networks. This novel fully convolutional architecture,

trained together with extensive data augmentation, was originally shown

to achieve excellent performance on cell segmentation from 2D light mi-

croscopy images, outperforming all other previously proposed methods. To

date, the original U-Net paper by Ronneberger et al. (2015) has received

over 37 000 citations and has been used in applications that go far beyond

the segmentation of microscopy images. It has since been revisited and

modified for various medical image segmentation tasks including brain MRI

segmentation (Kermi et al., 2019; Mehta and Arbel, 2019; Wu et al., 2019;

Hwang et al., 2019; Dong et al., 2017; Lee et al., 2020), and it constitutes

the baseline model in multiple studies.

This thesis aims to add a new piece to the brain image analysis puzzle by

advancing knowledge on how image processing tools can be used to analyze

and characterize brain morphology. The present work includes both animal

and human brain MRI studies, and its contribution is generally two-fold.

The first general goal is to show how the use of well-established image

processing methods can help disentangle problems of a broader clinical or

biological nature by analyzing the properties of brain MRI datasets that

have not yet been explored in the literature. Secondly, this thesis aims

to provide a technical contribution to the field by proposing new ways to

revisit, modify and extend already-existing methods in order to achieve good

performance on the datasets of interest for the presented studies.

In the next chapter, the specific aims of each of the five papers appended

to this thesis are outlined. Subsequently, the theoretical and research back-

ground that constitute the foundation of these five papers is presented. In
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Chapters 4 and 5, the methods and results of these research studies are sum-

marized. The results are then thoroughly discussed in Chapter 6, while the

possible future outlook of the presented research and the final conclusions

to be drawn from each paper are outlined in Chapters 7 and 8, respectively.

Finally, the last part of this thesis comprises the full texts of the appended

papers.
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Chapter 2

Research aims

The overall aim of the present doctoral thesis is to strengthen the impor-

tance of MRI image analysis for analyzing brain structure and, more specif-

ically, characterizing the changes that it undergoes due to multiple factors

(evolutionary, environmental or pathological). This is done, first of all, by

using well-established image processing tools on new, unique datasets with

the aim of solving clinically or biologically relevant questions using MRI.

Furthermore, some of the already-existing image analysis methods are re-

visited and modified in order to provide new technical contributions to the

brain image analysis literature, with a special focus on the computation of

clinically relevant neuroimaging biomarkers.

This thesis is made up of five different scientific papers, which are ap-

pended at the end of this work. Below, the motivations and aims of each

paper are outlined.

Paper I

Motivation: Through evolution, domestic animals have developed very

different behavioral traits compared to their wild counterparts (Jensen,

2014), allowing them to live in contact with humans and suppress fight

and flight responses. The rabbit constitutes an ideal case for studying the

differences between domestic and wild animals since many wild rabbits still

exist in Southern France (where their domestication originally began), and

rabbits are already used and suited for genotypic and phenotypic studies. A

previous work by Carneiro et al. (2014) reported genetic differences between

wild and domestic rabbits, especially in the vicinity of genes responsible for
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neural development. This suggests the presence of brain alterations between

the two groups.

Aim: To analyze high-resolution ex vivo brain MRI scans from wild

and domestic rabbits in order to identify structural brain differences

between the two groups.

Paper II

Motivation: Previous studies on humans have shown that brain MRI

scans can be used as input to machine learning-based models to predict the

chronological age of healthy participants with high accuracy. If the model

predicts an age that is greater than the subject’s chronological age, this

might reflect an underlying disease or neurodegeneration. Conversely, a

younger predicted age could indicate a positive trend in the aging process.

Therefore, the BrainAGE score (defined as the difference between predicted

and chronological age) has been proposed as an aging biomarker. However,

validations of this biomarker on laboratory animals are currently lacking.

Aim: To implement a new MRI-based brain age prediction model for

rats and to test it on a cohort including both controls and a group

of rats that have undergone long-term environmental enrichment and

dietary restriction. The BrainAGE scores of controls are compared

against those from the healthy lifestyle group in order to investigate

whether this lifestyle intervention has a significant effect on BrainAGE.

Papers III and IV

Motivation: Multiple sclerosis (MS) is an autoimmune demyelinating dis-

ease characterized by neuroinflammation and neurodegeneration. The cor-

pus callosum (CC), a large fiber bundle that connects the two brain hemi-

spheres, is known for being highly susceptible to MS progression. Therefore,

the identification of CC atrophy from brain MRI can constitute a relevant

biomarker of neurodegeneration in MS.
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Aim: To develop efficient methods for automatic CC segmentation on

the mid-sagittal slice of T1-weighted (Paper III), FLAIR (Paper III)

and T2-weighted (Paper IV) MRI scans of MS patients. Moreover,

in both papers, the correlation between the normalized CC area and

disability in MS is investigated. Additionally, in Paper IV, the relation

between disability and CC shape is analyzed.

Paper V

Motivation: Atrophy of the hippocampus is one of the earliest signs of

Alzheimer’s disease (AD). Thus, accurate hippocampal segmentation tools

are needed in order to reliably analyze the structural integrity of this brain

structure as a potential neuroimaging biomarker of AD. However, this can be

an extremely challenging task, especially when segmenting images from new

unseen cohorts (i.e., differing from those used for training the segmentation

models) and from patients with a high degree of hippocampal atrophy.

Aim: To propose a novel, deep learning framework for hippocampal

segmentation that embeds statistical shape models as an additional

input context layer of a traditional U-Net architecture. The model

accuracy is investigated both within a training cohort (through cross-

validation) and on a new independent cohort. All used datasets include

healthy controls, subjects with mild cognitive impairment and AD pa-

tients.
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Chapter 3

Background

3.1 Basics of neuroscience

3.1.1 Organization of the nervous system

The nervous system controls voluntary and involuntary actions by trans-

mitting or receiving signals within the body (Swanson, 2013; Brown, 2012).

The units of the nervous system are the nerve cells, also called neurons,

which interact with each other at membrane specializations (gap junctions

and chemical synapses). The receptive surface of a neuron usually includes

the dendrites, the cell body and its axon terminals. Based on the anatom-

ical location of the neurons, the overall nervous system is divided into two

parts: the central nervous system (CNS) and peripheral nervous system

(PNS). The CNS is made up of the brain and the spinal cord. In con-

trast, the PNS comprises different types of nerve cells: some are located

completely outside the CNS; some have their cell bodies in the CNS but in-

nervate muscles or peripheral neurons, while others have cell bodies outside

the CNS but originate from sense organs and innervate the CNS.

An alternative way of dividing the nervous system is based on its mi-

croarchitecture, that is on cellular organization across the system (Swanson,

2013; Purves, 2018). This approach is most often applied to the CNS only,

and it consists in dividing it broadly into gray matter (GM) and white mat-

ter (WM), which are represented in Figure 3.1. The first mainly consists

of neural cell bodies, which can have different shapes, sizes, locations and

packing densities. These cells can be organized as nuclei, which are accu-

mulations of neurons having similar functions and connections, and can be

found, for example, in the spinal cord, the cerebrum and the brainstem.
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Figure 3.1: Schematic representation of a coronal brain slice. Gray matter
and white matter structures, as well as the ventricles (which are filled with
cerebrospinal fluid) are indicated. (Figure created with BioRender.com)

GM cells can also be arranged to make up cortices, which have a sheet-

like structure and are found both in the two cerebral hemispheres and the

cerebellum. WM is made up of axons that—within the CNS—form neural

tracts, which are more or less similar to the nerves that characterize the

PNS. All neural tracts that cross the midline of the brain are also referred

to as commissures.

However, neurons are not the only cellular components of the nervous

system. Glial cells are at least as abundant as neurons and can play multiple

roles such as supporting the propagation of the neural signals, repair after

neural injury and response to toxins by aiding communication between the

immune system and the brain (Purves, 2018). Glial cells can be divided

into three groups. Astrocytes make up the blood-brain barrier that sepa-

rates blood flow from the brain, and they also aid in the efficient creation

of synapses. Microglia have a phagocytic function that allows eliminating

cellular debris and can actively regulate synaptogenesis. Finally, oligoden-

drocytes generate myelin around axons, which is a lipid-rich substance that

facilitates the isolation of the neural signal inside the axons, and therefore

a more efficient communication between neurons.

In addition to the approximately 86 billion neurons and at least as many

glia, other types of cells can be identified within the nervous system. For

example, normal brain function relies not only on correct functioning of

neurons and glia, but also on vasculature (Zeisel et al., 2015). Therefore,
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it is possible to identify multiple mural and endothelial cells that control

vascular contraction and play an important role in the blood-brain barrier.

Ependymal cells are also present and are particularly important for gener-

ating and regulating the cerebrospinal fluid (CSF), a fluid that surrounds

both the brain and the spinal cord. CSF is formed from blood plasma and

provides the basic mechanical and immunological protection to the organs

of the nervous system.

3.1.2 Brain anatomy

The most complex organ of not only the nervous system but the whole

human body is the brain. It provides humans with the ability to process

sensory stimuli as well as to perform cognitive functions (e.g., memory,

attention and language). Moreover, thanks to the brain, many visceral,

endocrine and musculoskeletal functions are regulated. Therefore, the brain

is an irreplaceable organ in the human body, and the understanding of its

functioning as well as of its pathological processes has always been a focus

of attention in scientific research.

From an anatomical perspective, the brain can be divided into three

main parts: cerebrum, brainstem and cerebellum (see Figure 3.2A). The

cerebrum consists of the left and right cerebral hemispheres (also referred to

as the telencephalon), the diencephalon and subcortical nuclei. The brain-

stem comprises the midbrain (mesencephalon), the pons (which is part of

the metencephalon, together with the cerebellum) and the medulla oblon-

gata (myelencephalon). The content of this section is based on the Brain

Anatomy chapter by Sharma and Majsak (2014), as well as the book Neu-

roscience by Purves (2018).

Cerebrum

The two cerebral hemispheres are mainly made of GM cerebral cortex and

of a dense network of WM fibers that allow communication between dif-

ferent brain regions and with the periphery. Moreover, inside each of the

two hemispheres, a lateral ventricle can be identified. These two lateral

ventricles are the largest of the four cerebral ventricles, which are cavities

containing CSF.

The cortical part of the cerebrum can be 1.5 to 5.0 mm thick. It is

organized into layers that can be divided in two groups: the allocortex,

which is deeper and phylogenetically older, and the neocortex, which takes
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Figure 3.2: Basics of brain anatomy. In (A), the subdivision into cerebrum,
brainstem and cerebellum is shown. (B) represents a sagittal section of the
brain, and the location of some important brain structures is highlighted. In
(C), the five cerebral lobes are shown. (Figure created with BioRender.com)

up 90% of the cortex and is responsible for higher-order brain functions. The

brain cortex is extremely convoluted into different ridges (gyri) and grooves

(sulci). Gyri and sulci also define the edges of the five main lobes of the

cerebral hemispheres: frontal, parietal, temporal, occipital and limbic (see

Figure 3.2C). Each lobe is associated with different functions. For example,

the frontal lobe participates in decision making, motor planning, attention

and voluntary movements. The temporal lobe is more involved in learning

and memory as well as in the processing of auditory and visual information.

In contrast, the limbic lobe (which is the only lobe situated in the medial

as opposed to the lateral brain surface) constitutes a very important area

12
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for both memory and emotional responses.

Regarding the WM portion of the hemispheres, which is made of neural

fiber bundles, its main role is to coordinate and connect different cortical

regions as well as the diencephalon, brainstem and spinal cord. Within each

hemisphere, the major WM fiber bundles are the superior longitudinal fas-

ciculus, the superior and inferior occipitofrontal fasciculi and the cingulum.

The main and fundamental bundle connecting the two hemispheres with

each other is the corpus callosum (CC), which is made up of commissural

fibers.

Between the two hemispheres and above the brainstem is the dien-

cephalon (from the Greek: di[a]-“across” + enkephalos “brain”). The

largest region of the diencephalon is the thalamus, which receives informa-

tion from multiple sources in the CNS: cortical areas responsible for mental

processes, neuronal centers involved in emotions, as well as sensory (e.g., au-

ditory and visual) and motor pathways (from the cerebellum and the basal

ganglia). These inputs are processed by the thalamus and later terminate

in the cerebral cortex. Another important structure of the diencephalon is

the hypothalamus, whose roles include the control of blood circulation and

body temperature, the production of hormones regulating water and food

intake as well as emotional expression.

Finally, located deep between the two hemispheres, three paired (i.e., one

per hemisphere) brain structures are found. One consists of the basal gan-

glia, which are involved in the regulation of motor performance. Second,

there is the hippocampus, which plays a fundamental role in the forma-

tion and storage of memory. Finally, there is the amygdala, which partici-

pates in several attentional and emotional processes as well as in episodic-

autobiographical memory.

Brainstem

The medulla is the most caudal part of the brainstem, and it is directly

connected with the spinal cord. It controls fundamental and primordial

body functions such as breathing, digestion and heart rate. Superior to the

medulla is the pons, which mostly comprises neural pathways connecting

different areas of the brain with the cerebellum. Finally, the midbrain is

responsible for multiple processes including motor functions (e.g., eye move-

ment), sensory functions (e.g., auditory and visual reflexes), pain modula-

tion, attention and alertness.
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Cerebellum

Although the cerebellum accounts for only 10% of total brain volume, it

comprises approximately 50% of the CNS neurons. It plays a fundamental

role in equilibrium and learning of motor tasks thanks to a closed loop of

neural circuits that allow correction of motor errors. It is also responsible for

controlling the timing, magnitude and direction of movements. Moreover,

the cerebellum is involved in some cognitive functions, including nondeclar-

ative memory, attention and emotional control.

3.1.3 Human versus rodent brains

In brain research, it is common to use small-animal models (especially mice

and rats) to better understand how the brain is affected by specific genetic

and environmental conditions, diseases or therapies. Moreover, animal mod-

els have the great advantage of being characterized by group homogeneity

(Hoyer et al., 2014). However, the differences between human and animal

brains must be considered when carrying out neuroimaging research, which

is the focus of the present thesis.

The first clear difference between a human and a rodent brain is of course

the size: the volume of a human brain is about 1 450 ml, while that of a

mouse ranges from 0.5 to 0.6 ml (Hoyer et al., 2014). In brain imaging,

size differences must be accounted for when it comes to image resolution:

a resolution of 1 mm is normally satisfactory for humans, but the same

cannot be said for mouse or rat data. This is why animal MRI scanners are

usually characterized by higher magnetic field magnitude (in the range of

4.7–11.7T), specific radiofrequency coils and optimized imaging sequences,

leading to higher resolutions (Denic et al., 2011). Furthermore, animals

are most often imaged either under anesthesia or ex vivo, since it is ex-

tremely challenging—if not impossible—to habituate them to the scanning

procedures. While this can be a problem for functional MRI studies (where

anesthesia can confound the results), it does not normally constitute a lim-

itation for structural MRI. More theoretical background on MRI imaging

can be found in Section 3.2.

Although human and rodent brains have common anatomical divisions

(i.e., those outlined in Section 3.1.2), these structures have evolved differ-

ently across species (Northcutt, 2002). For example, as it can be seen in

Figure 3.3, the surface of a mouse (or a rat) brain is smooth, and thus it

does not have the sulci and gyri found on the human cortex that further
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Figure 3.3: Representation of a mouse brain from a dorsal (left) and sagittal
(right) view. (Figure created with BioRender.com)

increase its surface area. The increased cortical surface allows the forma-

tion of very different and specialized areas on the human cortex related to

higher mental functions that rodents have not developed (e.g., language and

cognition). The olfactory bulbs constitute an example of a region that is

much larger in rodents (with respect to total brain size); unlike humans, ro-

dents interact with the surrounding environment by relying mostly on their

sense of smell. In contrast, the cerebellum has developed similarly in both

humans and rodents; the motor functions controlled by this structure are

highly important for both species.

Therefore, given the multiple anatomical differences existing across

species, it is important to use and adapt appropriate image analysis tools

in order to properly translate from preclinical (i.e., on laboratory animals)

to clinical (on humans) neuroimaging research and vice versa. More details

on brain image processing methods can be found in Section 3.3.

3.1.4 Brain aging and neurodegeneration

The number of elderly individuals across the world is rapidly growing: in

2020, around 9.3% of the world’s population was aged 65 years or older, and

it has been estimated that this percentage could increase to 16% by 2050

(the United Nations Department of Economic and Social Affairs, 2020).

However, the penalty of this longer life expectancy is an increased risk for
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elderly individuals to develop diseases related to aging, and the brain—like

many other parts of the human body—can be considerably affected by this

(Denver and McClean, 2018). Aging is indeed an important risk factor for

developing dementia, which is a clinical syndrome that comprises a range

of recognizable symptoms that impair independent living, for example lan-

guage disturbances, memory loss, damaged perceptual-motor function and

impaired attention (Burns and Iliffe, 2009; Irwin et al., 2018). When demen-

tia is associated with an underlying deterioration of brain cells, neurode-

generative dementia is involved, which is both progressive and irreversible

(Ripich and Horner, 2004). The four main types of neurodegenerative de-

mentia are Alzheimer’s disease (AD, which accounts for about 60% of all

dementias), vascular dementia, dementia with Lewy bodies and frontotem-

poral dementia. It is also important to point out that neurodegenerative

dementias do not constitute the only brain degenerative diseases. Other

diseases characterized by neurodegeneration include multiple sclerosis (MS),

Hungtinton’s disease and Parkinson’s disease (Hardiman et al., 2011).

In this section, three topics of relevance to the present thesis are pre-

sented. First, the main characteristics of normal brain aging are summa-

rized and later compared with the main features of AD progression. Finally,

neurodegeneration caused by MS is discussed.

Normal brain aging

Even when no underlying disease is present, normal brain aging can be

associated with impaired cognitive functions and presence of neuropatho-

logical lesions (Denver and McClean, 2018). These conditions can indeed

be considered benign when they can still be compensated for and do not

relevantly affect a subject’s daily life. In particular, normal brain aging

can be characterized by decreased working memory and processing speed,

symptoms that usually become more evident above 60 years of age.

From an anatomical perspective, these cognitive complaints have been

associated with increased atrophy in the prefrontal lobes (Swerdlow, 2011),

although this is not the only area affected by age-related changes. Multiple

studies have shown that the GM undergoes a general shrinkage, but the mag-

nitude of this phenomenon changes across different brain areas (Good et al.,

2001; Walhovd et al., 2005). For example, the cortex is normally affected

by more atrophy than subcortical structures. Moreover, the relationship

between GM volume reduction and age can be linear or nonlinear accord-

ing to the brain region being analyzed. Similarly, small WM changes can
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be observed in healthy elderly subjects, for example WM volume reduction

or disrupted microstructural integrity (Gunning-Dixon et al., 2009). This

loss of WM integrity is believed to be associated with age-related cognitive

decline.

In order to promote healthy brain aging, it is important to investigate

evidence-based strategies that could help prevent the occurrence of neu-

rodegenerative diseases. Such strategies may include the use of specific

medications and the control of subject-specific risk factors (e.g., diabetes

or high blood pressure) but also lifestyle and environmental changes (Desai

et al., 2010). Multiple studies have indeed shown that cognitive functions

are positively influenced by environmental enrichment and physical exercise

in both rodents and humans (Speisman et al., 2013; Hötting and Röder,

2013). A healthier lifestyle has been shown to enhance neurogenesis, synap-

tic remodeling and brain plasticity. Moreover, brain plasticity, together

with neuroprotection, has been shown to be augmented by applying dietary

changes (Mattson, 2010; Martin et al., 2006). Thus, multidomain lifestyle

changes (i.e., the combination of better diet, physical activity and a stimu-

lating environment) can help positively influence healthy brain aging.

Alzheimer’s disease

Some of the clinical and neuropathological features of AD can also be

present during the healthy aging process described in the previous para-

graph. Therefore, it can be challenging to distinguish AD from normal ag-

ing, especially during the first stages of the disease (Denver and McClean,

2018). While healthy aging can be characterized by moderate impairment

of some cognitive abilities, AD is associated with a more severe decline of a

broader range of cognitive functions that can affect the independent living

of the patient as well as their personal, social and professional life. However,

the exact mechanism behind the initiation of AD neurodegeneration is still

unknown, as are the causes of AD diverging from healthy aging (Irwin et al.,

2018).

According to the AD staging criteria defined by Braak and Braak (1995),

the initiation of the disease itself takes place in the transentorhinal cortex

(Stages I and II), later reaching the hippocampus (Stages III and IV) and

finally involving the neocortex (Stage V). These stages were originally de-

fined based on the accumulation of intracellular tau neurofibrillary tangles,

which, together with the loss of synapses and the deposition of extracel-

lular amyloid beta plaques, are the main hallmarks of an AD brain (see
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Figure 3.4: Representation of microscopic and macroscopic hallmarks of
Alzheimer’s disease. Macroscopically, the Alzheimer’s brain is characterized
by extensive atrophy, which can be observed from MRI scans. Microscop-
ically, accumulation of tau neurofibrillary tangles as well as amyloid beta
plaques can be observed. [Reprinted from “Pathology of Alzheimer’s Disease
2”, by BioRender.com (2022). Retrieved from https://app.biorender.

com/biorender-templates]

Figure 3.4). However, similar steps in the progression of brain atrophy can

be identified from neuroimaging data. In particular, reductions in both the

volume of the hippocampus and the thickness of the entorhinal cortex can

be observed from brain MRI as early signs of AD (Scheltens et al., 2002).

It has been shown that these geometric measures can be used to predict

conversion to AD in subjects with mild cognitive impairment (MCI) (Liu

et al., 2010). MCI is a condition in which a subject’s cognitive impairment

is greater than what would be expected considering their age and educa-

tion level but not significant enough to severely affect daily life and thus be

classified as dementia (Irwin et al., 2018). Not all MCI subjects eventually

develop dementia. However, they still constitute an important study group

since many MCI cases evolve towards AD.

As discussed in the previous section, cortical atrophy is a characteristic
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also found in healthy elderly subjects. However, once AD progresses to

affecting the brain cortex, the associated GM reductions differ from those

typical of healthy aging, which is characterized by a stronger decline in

frontal brain regions (Terribilli et al., 2011), while AD tends to progress by

affecting more the medial temporal lobe (DeCarli, 2000).

Finally, AD patients have been shown to be affected by a lower WM

integrity compared to healthy subjects. Previous studies have reported AD-

related alterations in several WM fiber tracts including the CC (Di Paola

et al., 2010; Liu et al., 2011), longitudinal fasciculus (Liu et al., 2011),

cingulum (Liu et al., 2011; Kiuchi et al., 2009), uncinate fasciculus (Liu

et al., 2011; Kiuchi et al., 2009) and fornix (Liu et al., 2011; Oishi et al.,

2012).

Multiple sclerosis

MS is a chronic autoimmune demyelinating disease. In contrast to demen-

tia, MS does not develop at older ages: its onset is usually between 20 and

40 years of age, and it is the most common cause of nontraumatic neu-

rological disability (Hardiman et al., 2011). In the CNS of MS patients,

an inflammatory process damages myelin and in turn the axons, leading

to gliosis, which is a proliferation of glial cells in response to damage (Liu

et al., 2017). This chronic extensive neuroinflammation ultimately leads to

neuronal death, causing atrophy of several structures, which is why MS is

also considered to be a neurodegenerative disorder.

In MS patients, it is common to identify WM atrophy, which has also

been shown to be directly associated with cognitive impairment (Sacco

et al., 2015). In particular, the CC is a WM structure that is greatly

affected by MS lesions (Hardiman et al., 2011), and its atrophy has been

shown to significantly correlate with two different types of disability mea-

sures (Granberg et al., 2015b). One is the Expanded Disability Status Scale

(EDSS), which is a score of physical disability ranging from 0 to 10 in 0.5

units: the lower the score, the lower the level of disability (Kurtzke, 1983).

A patient with an EDSS below 4.5 is normally able to walk without any aid

but may have other types of functional impairments in one or more of the

following functional systems: pyramidal (related to muscle weakness), cere-

bellar (impaired balance and coordination), brainstem (impaired speech and

swallowing), sensory, bowel and bladder, visual (impaired sight), cerebral

(impaired cognitive functions) or other. When the EDSS score is greater

than or equal to 5, problems with walking are also present.
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The second disability measure is obtained by performing the Symbol

Digit Modalities Test (SDMT), which tests for cognitive disability (Smith,

1973). The test is based on giving a task to the patient that consists of

matching numerical digits with a set of predefined abstract symbols. In this

case, the score is inversely related to the level of disability: the higher the

score, the higher the level of attention and processing speed.

3.2 Magnetic resonance imaging

In this section, basic principles of MRI image acquisition and conventional

structural MRI sequences are presented. The content is mainly based on the

book by Kuperman (2000) and the topical review by Gossuin et al. (2010),

in which more technical details about MRI physics—that are outside the

scope of this thesis—can be found.

3.2.1 Nuclear magnetic resonance

The imaging technology MRI is based on the physical phenomenon of nu-

clear magnetic resonance (NMR), which was independently discovered by

Bloch (1946) and Purcell et al. (1946). This phenomenon describes the

interaction between nuclei (in this specific case, hydrogen nuclei) and an

external static magnetic field B0. Such interaction consists of a precession

of each nuclear magnetic moment around B0 at an angular frequency ω0,

which is known as the Larmor frequency. In the case of MRI, it is always

in the radio frequency (RF) domain. If B0 is applied along the z direction

(i.e., the head-feet direction), ω0 is proportional to the strength B0 of B0:

ω0 = γB0, where γ is a constant called the gyromagnetic ratio. In an equi-

librium condition, the nuclear magnetic moments are aligned in parallel and

antiparallel to the external field, with a slight predominance in the paral-

lel alignment. For this reason, their summation results in a total nonzero

macroscopic magnetization M (see Figure 3.5A).

The system can be put out of equilibrium if another magnetic field B1

rotating at the Larmor frequency is applied perpendicularly to B0 (reso-

nance phenomenon). The additional field introduces another rotation of

M around the B1 direction with an angular frequency of ω1 = γB1. This

results in a spiral trajectory of M, with the nuclear magnetic moments ro-

tating around both B0 and B1. Thus, as soon as B1 is applied, M is no

longer parallel to B0 and, at time t, is tilted at angle θ, which is called the
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Figure 3.5: (A) Left: in the absence of an external magnetic field, the
nuclei are randomly oriented. Right: when a magnetic field B0 is applied,
the majority of the nuclear moments are aligned in parallel to the field. (B)
The effect of a 90° and 180° pulse on the macroscopic magnetization M is
illustrated.

flip angle:

θ =

∫ t

0

ω1(τ)dτ = γ

∫ t

0

B1(τ)dτ.

Flip angles used in MRI can range between 0° and 180° (see Figure 3.5B).
After applying this RF pulse, the system goes back to equilibrium, that is

M is again aligned to B0.

In the case of a 90° pulse, M lies on the xy plane and rotates around B0

at the Larmor frequency. Such a rotation causes magnetic flux variations

that induce a voltage in a coil placed on the xy plane that results in an

electric signal oscillating at the Larmor frequency. These oscillations are

usually removed by a detection system, obtaining only an exponentially

decaying signal called free induction decay (FID). The maximum amplitude

of the FID depends on the proton density (related to the amplitude of M),
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while its time course depends on two time constants referred to as T1 and T2

(T1 ≥ T2). T1 is the longitudinal relaxation time and describes the speed at

which the z component of the magnetization is recovered after the RF pulse.

T2 is the transverse relaxation time and describes the return to equilibrium

of the x and y components of M. If M0 is the initial amplitude of M, the

relaxation process can be described by the following equations:

Mz(t) = M0(1− e−
t

T1 ) +Mz(0)e
− t

T1 , Mxy(t) = Mxy(0)e
− t

T2 .

In practice, though, the transverse FID decays more rapidly, with a time

constant T ∗
2 that is lower than T2. This is mainly due to inhomogeneities

of B0 that cause a dephasing of the proton magnetic moments in the xy

plane after the pulse. This dephasing can be reduced using a particular MRI

sequence (i.e., a set of subsequent RF pulses) called spin echo that consists of

applying, after the 90° pulse, several 180° pulses, one every TE (echo time).

At each TE , the magnetic moments are refocused, and the signal reaches its

maximum value. The estimated curve for the transverse relaxation can then

be obtained by fitting these maximum signal amplitudes. This sequence is

then repeated at every TR (repetition time), that is the time between the

two 90° pulses. The overall intensity of the measured signal is given by the

following formula:

S = K · [H] · (1− e−
TR
T1 ) · e−

TE
T2 ,

where K is a scaling factor, and [H] indicates the proton density.

3.2.2 Image reconstruction

Lauterbur (1973) introduced for the first time a technique for image for-

mation based on the use of gradients to identify the spatial position of a

measured MR signal. This method consists of three main steps:

1. Slice selection. A magnetic field gradient Gz is applied along the

z direction such that the Larmor frequency is different in every axial

slice: ω(z) = γ(B0 + Gzz) = ω0 + γGzz. Thus, it is possible to

excite only the protons belonging to the desired slice zp by applying

an excitation pulse gradient with frequency ω(zp).

2. Frequency encoding. A gradient Gx is applied along the x direction

and the magnetic resonance moments at the same x position rotate

with a frequency ωx = ω0 + γGxx.
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Figure 3.6: Comparison of T1w, T2w and FLAIR MRI scans.

3. Phase encoding. A gradient Gy is applied along the y direction.

After a time interval ty, the moments at the same y position shown a

phase given by ϕy = (ω0 + γGyy) · ty.

Each voxel in the slice zp is then associated with its pair (ωx, ϕy). The

information about frequency and phase can be extracted from the detected

MR signal, which has been shown to be the Fourier transform of the effective

proton density ρ, that is the true density corrected by all the phenomena

that can affect the quality of the measured signal (Ljunggren, 1983; Twieg,

1983). Subsequently, it is possible to reconstruct the image (which is a

representation of the proton density) by taking the inverse Fourier transform

of the sampled data.

3.2.3 T1- and T2-weighted MRI

The above-described principles can be used to reconstruct images of body

tissues by targeting hydrogen nuclei. Since the human body is made of 70%

water, and every water molecule contains two hydrogen protons, hydrogen

nuclei produce an excellent NMR signal, and different types of soft tissues

can be distinguished. For example, in the brain, it is possible to distinguish

WM and GM from their different relaxation times. By applying a magnetic

field of 3.0 T (common values are from 1.5 T to 3.0 T), Wansapura et al.

(1999) obtained average T1 values of 1 331 and 832 ms from GM and WM,

respectively, and average T2 of 80 and 110 ms, respectively. The simple

proton density variations between tissues are usually within a few percent.

This is why the difference in relaxation times is more often employed to

reconstruct detailed brain MRI images.

When imaging different tissues using a spin-echo sequence, the longi-

tudinal magnetization is restored faster and the transverse magnetization
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more slowly in tissues having a shorter T1. Tissues with short T1 and long

T2 result in being bright in so-called T1-weighted (T1w) images. This dom-

inant T1 contrast is obtained by setting both a very short TE (i.e., lower

than the shortest T2 of the tissues of interest) and a short TR (TR ≈ T1).

In a similar manner, images with predominant T2 contrast can also be

produced by using the differences in T2 relaxation times between different

tissues. T2-weighted (T2w) images can be obtained by using a TE that is

equal to or longer than the shortest T2 of the tissues of interest and a long

TR (TR > T1).

When employing a T2w MRI sequence, the signal from the brain’s GM

and WM decays much more rapidly compared to that of the CSF. There-

fore, in some cases, the use of a T2w fluid attenuated inversion recovery

sequence—the FLAIR sequence—is preferred as it allows suppressing the

signal from the CSF (Hajnal et al., 1992). This is done by using, first of

all, very long TR and TE , thus obtaining a very heavily T2-weighted scan.

Next, a so-called inversion recovery sequence is applied; it consists in ap-

plying an initial 180° pulse followed by a series of slice-selective 90° pulses
(applied after a time interval Ti, i.e., inversion time) and spin echo ac-

quisitions (Hajnal et al., 1992; Valli and Coppini, 2005). Therefore, after

initially inverting the magnetization with the 180° pulse, an appropriate

choice of Ti can null the signal from a specific tissue of interest such as the

CSF. Thanks to the combination of high T2-weighting with the reduction

of artefacts normally caused by a high CSF signal, FLAIR images produce

high contrast corresponding to brain lesions, especially in regions close to

the CSF. For this reason, this sequence is particularly useful for detecting

MS lesions that result in hyperintensities (Bakshi et al., 2001).

A comparison between the contrasts of a T1w, T2w and FLAIR brain

MRI image is shown in Figure 3.6.

3.2.4 Diffusion MRI

While T1w and T2w imaging constitute the most common techniques for

imaging the general structure of the brain, diffusion MRI (dMRI) represents

an extremely useful method for imaging WM connectivity. The basic con-

cept behind dMRI is that MR images are sensitive to the random Brownian

motion of water molecules in the direction of the applied magnetic field

gradients (Jellison et al., 2004). The diffusion rate of the molecules can

be described by the equation < r2 > = 6Dt, where < r2 > is the mean

squared molecular displacement, t is the diffusion time, and D is the diffu-
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sion constant, which is typically expressed in mm2/s. The higher D is, the

more mobile are the water molecules. In biological tissues, such diffusion

is impeded and deviated by cellular structures, resulting in anisotropic dif-

fusion. This is particularly evident in the WM, while GM and CSF show

more isotropic diffusion (Mukherjee et al., 2008).

The diffusion-weighted signal

In dMRI experiments, the standard gradient pulse sequence is the Stejskal-

Tanner sequence (Stejskal and Tanner, 1965), which consists of adding two

magnetic gradients, one each for a time δ, to a spin-echo sequence: the first

gradient is applied before the 180° RF excitation, and the second is applied

immediately after. The two pulse gradients are separated by a time interval

∆. After the first pulse, there is a phase shift that depends on the position

of the nuclei in the direction of that gradient. The 180° excitation inverts

this shift, and then the second gradient introduces an additional dephasing

that is equal to that of the first pulse. If the nuclei do not move along the

direction of the gradients during ∆, the second gradient undoes the effect

of the first, bringing the magnetic moments in phase again. If instead there

is diffusion in some voxels, the changes in position will be reflected in an

attenuation of the MR signal in those voxels.

The diffusion-weighted signal can be described by the following equation:

Si = S0 · e−b·ADCi .

Si is the signal intensity when the pulse gradients are applied along the

direction i, while S0 is the signal intensity measured without any gradient.

ADCi (i.e., the apparent diffusion coefficient) is the diffusion constant mea-

sured in clinical settings; it includes not only the actual diffusion constant

D but also any other source of water mobility. Regarding the parameter b,

it is called b-value and is given by

b = γ2G2δ2(∆− δ

3
),

where γ is the gyromagnetic ratio, and G is the amplitude of the gradients.

By acquiring an image with a b-value of 0 s/mm2, we can derive the signal

intensity S0. The ADC values can then be obtained as

ADCi = −
ln( Si

S0
)

b
.
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Figure 3.7: Comparison of (A) binary mask of low FA (0 ≤ FA ≤ 0.3), (B)
binary mask of high FA (FA > 0.3) and (C) the original FA map on one
slice of one subject. [© Giannelli et al. (2010), reprinted with permission]

Once the ADC values are derived for each voxel, it is possible to represent

the diffusion information in a diffusion-weighted image.

Diffusion tensor imaging

Many of the WM fiber tracts are organized in macroscopic structures that

are coherently oriented in the direction of the fibers. The diffusion of water

molecules is much faster along WM fibers than perpendicularly to them,

so dMRI can provide voxel-wise information on the orientation of these

large groups of neuronal axons (Alexander, 2009). This information can

be extracted using different techniques, of which the most commonly used

is diffusion tensor imaging (DTI) because of its simple model and good

scanning efficiency.

DTI infers a 3D description of the direction of diffusion of water

molecules within a voxel by representing the diffusion as a 3× 3 symmetric

positive semidefinite matrix D (Chowdhury et al., 2014). This matrix is

also called the diffusion tensor (DT):

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 .

Since six out of nine values of the matrix are independent, at least six

different gradient directions are required to derive the DT. If the number of

gradient directions is increased, the estimate will be more accurate but at
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the cost of increased scanning time (Zhang et al., 2009). The DT is usually

represented by a 3D ellipsoid, which easily describes the anisotropic nature

of water diffusion in the WM.

The principal eigenvector of the DT that corresponds to its highest eigen-

value is assumed to be aligned along the local fiber direction. The degree

of directionality of the diffusivity within each voxel can be measured with

an index called fractional anisotropy (FA), which ranges from 0 (random

motion) to 1 (unidirectional diffusion) (Mukherjee et al., 2008):

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

2 ·
√
λ2
1 + λ2

2 + λ2
3

,

where λ1, λ2 and λ3 are the eigenvalues of the DT. These eigenvalues,

together with the respective eigenvectors, describe the directions and lengths

of the axes of the diffusion ellipsoid. The FA values of each voxel can be

represented in 3D images referred to as FA maps (see Figure 3.7).

3.3 Medical image processing

Medical image processing research focuses on the development of methods

for enhancing raw medical image data in order to analyze and visualize

them according to specific clinical or research needs. Furthermore, medi-

cal image processing comprises multiple research topics ranging from very

problem-specific applications to more general techniques that can be applied

in different contexts (Zhu, 2003). In this section, two of the main research

subfields of medical image processing that are also relevant for the present

doctoral thesis are presented: image registration and segmentation. What is

presented in this section is mainly based on the Handbook of Medical Imag-

ing by Beutel et al. (2000) as well as two chapters of the Handbook of Medical

Image Processing and Analysis by Woods (2009) and Bankman (2009). It

must be noted that the described methods constitute traditional approaches

that are currently often replaced by machine learning (ML)-based—in par-

ticular, deep learning (DL)-based—methods, especially for what concerns

image segmentation. These latter approaches are addressed in Section 3.4.

3.3.1 Image registration

Image registration is the process of aligning one image (usually referred to

as the moving image) to another (fixed image). This is done by applying
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a specific geometrical transformation to the moving image so that it can

match as closely as possible the fixed image according to a given criterion.

Linear transformation models

The type of transformation applied depends on the choice of a spatial trans-

formation model. The simplest, but also the most constrained, is the rigid-

body model, which consists in applying only global rotations and transla-

tions to the image. In 3D images, this model can be defined by specifying

six independent parameters: three for the translations (along the x, y and

z axes) and three for the rotations (around the x, y and z axes). This type

of transformation can be used for registering body parts that are subject to

deformations only in a limited manner, for example bones.

Another type of model is the global rescaling transformation, which adds

a seventh parameter to the rigid-body transformation: a magnification fac-

tor. This means that the moving image is subject not only to rotations

and translations but also to scaling. A slightly more complex alternative

consists in performing an anisotropic rescaling rather than using the same

scaling factor for all three axes. This type of model is usually referred to as a

nine-parameter affine model because of the number of parameters required

to describe it.

The most general type of linear transformation model is the affine model,

which, in three dimensions, is described by a total of 12 independent pa-

rameters. It imposes a geometric constraint according to which lines that

are parallel in the original image will still be parallel after applying the

transformation. This type of geometrical transformation can be described

as 
x

′

y
′

z
′

1

 =


e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
0 0 0 1

×


x

y

z

1

 .

This notation allows the representation in a 4×4 form of all the transfor-

mations that have been applied to the image: translation, rotation, scaling

and shearing.

Nonlinear transformation models

In brain imaging as well as other medical imaging subfields, the structures

to be aligned are often so complex and heterogeneous that the use of affine
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Figure 3.8: 2D representation of the neighborhood of 16 control points
(black circles) employed for the deformation of a pixel/voxel (blue square)
using the FFD algorithm. The white circles correspond to the points that
are not used since they do not belong to the voxel’s neighborhood. (px, py),
which is outlined in red, is the reference grid point that is closest to the voxel.
The control points used in the algorithm range from the index (px−1, py−1)
to the index (px + 2, py + 2).

models is not sufficient to obtain a good registration. This is why warping

algorithms need to be applied to perform different deformations that are no

longer global but depend on the location in the image. In the literature,

a large variety of warping algorithms have been proposed, but they are

mainly divided into two groups: parametric and nonparametric algorithms

(Dwith Chenna et al., 2018). The first are based on the definition of a grid

of control points that correspond to the parts of the image that are actu-

ally employed by the deformation algorithm. In contrast, nonparametric

methods associate a displacement vector to every single voxel in the moving

image.

Some of the most commonly used parametric methods are those based

on B-splines, including the so-called free-form deformation (FFD) algorithm

(Rueckert et al., 1999). Given an image volume Ω = {(x, y, z) | 0 ≤ x <

X, 0 ≤ y < Y, 0 ≤ z < Z} and an nx × ny × nz mesh of control points

φi,j,k with uniform spacing δ, the displacement of every voxel (x, y, z) is

determined by the displacement of a neighborhood of control points around

the voxel (see Figure 3.8). This displacement can be defined as the following

tensor product using a neighborhood of 64 control points (or 16 control
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points in the 2D case, as depicted in Figure 3.8):

Tlocal(x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n,

where i = ⌊ x
nx

⌋−1, j = ⌊ y
ny

⌋−1, k = ⌊ z
nz

⌋−1, u = x
nx

−⌊ x
nx

⌋, v = y
ny

−⌊ y
ny

⌋,
w = z

nz
− ⌊ z

nz
⌋. Bl (as well as Bm and Bn) is the lth basis function of the

cubic B-spline, which is defined as

B0(u) =
(1− u)3

6
,

B1(u) =
(3u3 − 6u2 + 4)

6
,

B2(u) =
(−3u3 + 3u2 + 3u+ 1)

6
,

B3(u) =
u3

6
.

The control points φi,j,k constitute the parameters of the algorithm;

by increasing the resolution of the mesh, the degrees of freedom of the

deformation also increase. In medical imaging, deformations should usually

be smooth in order to achieve a realistic and well-proportioned image after

applying the transformations. Therefore, a regularization term is usually

integrated and defined as

Csmooth =
1

V

∫ X

0

∫ Y

0

∫ Z

0

[(
∂2T

∂x2

)2

+

(
∂2T

∂y2

)2

+

(
∂2T

∂z2

)2

+

+2

(
∂2T

∂xy

)2

+ 2

(
∂2T

∂xz

)2

+ 2

(
∂2T

∂yz

)2
]
dxdydz,

where V indicates the image volume.

A method like the above-described FFD algorithm has the limitation of

assuming that both moving and fixed images present very similar structures.

However, if this is not the case, the topology of the transformed image

may change uncontrollably, leading to results that are difficult to interpret

from an anatomical perspective (Avants et al., 2011a). For this reason,

registration methods that make use of diffeomorphic transformations (i.e.,

smooth and invertible) have been introduced.

One example is the symmetric normalization (SyN) algorithm proposed
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by Avants et al. (2008). In this work, a diffeomorphism ϕ is defined in the

image domain Ω and maps an image I into a new space ϕI = I(ϕ(x, t = 1)),

where t is a time parameter (which can be seen as the image registration

optimization time, t ∈ [0, 1]), and x is a spatial coordinate. A velocity field

v(x, t), which is square integrable, can be defined on Ω. The integration

of the velocity field in time can be used to generate the diffeomorphism:

ϕ(x, 1) = ϕ(x, 0) +
∫ 1

0
v(ϕ(x, t), t)dt, where ϕ(x, 0) is the identity. Addi-

tionally, the fact that a diffeomorphism ϕ can be decomposed in two parts

(ϕ1 and ϕ2) that have the same value in the middle of the registration can

be exploited. In other words, if the registration defines a transformation

from image I to image J , then the same diffeomorphic path would be com-

puted from J to I (no matter which one is the moving and which one is the

reference image). Two new velocities fields v1 and v2 can then be defined so

that v(x, t) = v1(x, t) for t ∈ [0, 0.5] and v(x, t) = v2(x, t) for t ∈ [0.5, 1].

Therefore, it is possible to split the above-mentioned integral into the two

different components of the velocity field, allowing the optimization algo-

rithm to deform both I and J along ϕ in such a way that they will always

meet at a fixed point midway. This optimization process with respect to

both ϕ1 and ϕ2—the details of which are outside the scope of the present

thesis but can be found in the paper by Avants et al. (2008)—provide the

symmetric solution that is characteristic of the SyN algorithm.

Similarity metrics

In addition to defining a transformation model, a similarity metric also needs

to be set. The role of the registration algorithm consists in maximizing the

similarity between the moving image and the fixed image according to the

selected similarity metric.

If two images are acquired using the same imaging modality, they should

have similar brightness and contrast, and thus—after registration—the in-

tensity values in corresponding voxels should be (nearly) equal. When this is

the case, the simplest similarity metric to be applied is the least square dif-

ference, which should reach its minimum value when the images are aligned.

Another more advanced and commonly used metric is cross-correlation,

which consists in first multiplying the image intensities at each voxel and

summing these products. The obtained value is then divided by the product

of the root mean squared intensities of each image. The maximum value of

the cross-correlation is 1, which is achieved when two images are identical.

The use of cross-correlation assumes the existence of a linear relationship
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between the intensities of the two images. This assumption is less strict

than that of the least square difference, which assumes an identity relation

between the two aligned images.

When dealing with intermodality registration, the intensity values of cor-

responding voxels of aligned images can be very different from one another.

Therefore, metrics such as the least square difference will most likely fail

in these cases. The assumption of a linear relationship (cross-correlation)

between the two images is also often untrue for multimodality problems.

This is why other metrics are usually employed that are based on informa-

tion theory: registration is seen as a process for reducing the amount of

information present in the two images combined. The most common way

of describing this amount information is the joint entropy :

H(A,B) = −
∑
a∈A

∑
b∈B

pAB(a, b) · log2(pAB(a, b)),

where A and B are the two images, while pAB is their joint probability dis-

tribution. Such distribution is obtained by deriving the two images’ joint

histogram and dividing it by the total number of voxels in the images.

The value of H(A,B) can be minimized for performing image registration,

although a more reliable and commonly used metric is the mutual informa-

tion, which consists in not only considering the joint information but also

the information contributed by each image to the overlapping volume:

MI(A,B) = H(A) +H(B)−H(A,B) =

=
∑
a∈A

∑
b∈B

pAB(a, b) · log2
(

pAB(a, b)

pA(a) · pB(b)

)
,

where H(A) = −
∑

a∈A pA(a) · log2pA(a) and H(B) = −
∑

b∈B pB(b) ·
log2pB(b).

During the image registration process, each transformation step results

in different degrees of overlap between the two images, and the mutual

information metric is highly dependent on this overlap. However, inter-

modality images often differ in terms of both spatial resolution and field of

view. This is, for example, often seen when comparing computed tomogra-

phy (CT) with MRI data: CT images usually contain a smaller volume in

order to limit the amount of radiation. Therefore, the overlapping volume

between the two images can be much lower than the actual volume repre-

sented in either modality. For this reason, another similarity metric that
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is more overlap-independent can be used. This is the normalized mutual

information, which can be defined as

NMI(A,B) =
H(A) +H(B)

H(A,B)
.

3.3.2 Image segmentation

Image segmentation consists in separating an image into regions of interest

(ROI) that can be analyzed for a specific task. In brain MRI, this could

involve, for example, the calculation of the volumes of the three main tissue

types (GM, WM and CSF) or the labeling of deeper structures—such as

the hippocampus or the amygdala—to study their volume and shape.

Segmentation methods

Gray-level thresholding is the simplest segmentation method. It consists

in assigning a certain label to each voxel having an intensity value higher

than a given threshold. With just one threshold, the image can simply

be segmented into two regions (i.e., foreground and background). If more

regions need to be segmented, the number of threshold values can increase

accordingly.

A more complex segmentation method that takes into consideration the

similarity (in terms of intensity) of neighboring voxels is region growing. It

starts by manually defining different seeds that are known to belong to the

ROI. Then, nearby voxels are automatically added to the segmentation mask

if they are similar enough to the seeds according to a so-called homogeneity

criterion. Such a criterion could, for example, consist in the comparison

of the difference between voxel intensity and the mean intensity over a

region. However, many different criteria exist in literature, and choosing

them appropriately is fundamental to avoid leaking into contiguous areas of

the image.

The initialization of the segmentation by defining seed regions is also

common to other algorithms, such as watershed segmentation. With this

method, once the seeds are specified, they are grown by applying a mor-

phological watershed transformation. An intuitive way of describing this

transformation consists in seeing the bright voxels of the image as moun-

taintops and the darker regions as valleys. This “landscape” is punctured

at some points, and from each puncture, water comes out, but water from

different punctures is not allowed to mix. Therefore, once valleys start to be
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submerged, dams need to be added to separate water coming from different

punctures. These dams constitute the boundaries of the segmented ROIs,

while the submerged valleys represent the ROIs themselves. Edge operators

are often used in combination with watershed to generate images with high

intensities on the edges and low intensities inside the ROIs to be segmented.

Edge detection operators are highly employed in another class of seg-

mentation approaches called edge based. These consist in describing the

image in terms of the edges existing between different regions, which can

be defined by the local voxel intensity gradient. Edges can be identified

by applying a wide range of possible edge operators, the most popular of

which include the Sobel, Canny, Laplacian-of-Gaussian and Prewitt oper-

ators. Once the edges are detected, several region boundary candidates

can be extracted from the image. However, the edge detection process is

often quite sensitive to noise, so several pre and postprocessing steps are

required, such as preliminary image smoothing using a Gaussian filter or

semi-automatic edge linking to identify relevant closed boundaries.

Segmentation has always constituted a challenging task due to several

issues including poor contrast and spatial resolution as well as noise and

artifacts in the image. For this reason, many segmentation methods do not

rely only on gray-level information. Such approaches include, for example,

level set methods. The idea behind these consists in representing the con-

tours of a ROI as a propagating wavefront. Such propagation takes place

along the contour’s normal direction, and its speed is controlled by a func-

tion φ that incorporates both surface features (e.g., normal direction and

curvature) and image features (e.g., intensity and gradient). The boundary

of the ROI to be segmented is the zero level set of φ, while the inside of the

ROI is identified by all points in which φ is positive. The level set function

φ satisfies the following equation:

∂φ

∂t
= v|∇φ|,

where v is the speed, t is time, and | · | denotes the Euclidean norm. The

solution of the above equation provides the segmentation result of interest.

Additional a priori information on the ROI to be segmented can be

integrated into the above-described model. One example that is particularly

relevant for the present thesis is the incorporation of statistical shape models

into the level set segmentation as originally proposed by Leventon et al.

(2000). In this study, a training dataset of N manual segmentations of
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the structures of interest is selected, and a shape model is built over the

distribution of these N surfaces. This is done by first computing a signed

distance map for each surface that has negative values inside, positive values

outside, and zero in correspondence to the zero level set. Afterwards, the

mean surface µ is computed, and principal component analysis (PCA) is

performed to extract the first k orthogonal models of shape variation, which

can be represented as columns of a matrix Uk. Any novel shape u can

therefore be approximated with an estimate ũ by computing a k-dimensional

vector of coefficients α:

ũ = Ukα+ µ.

We can then assume that all shapes have a Gaussian distribution. There-

fore, the probability of a certain shape, represented by its α vector, can be

estimated as:

P (α) =
1√

(2π)k|
∑

k |
e−

1
2α

T ∑−1
k α.

Once a curve representation α and its probability distribution are ob-

tained, it is possible to incorporate shape information into the level set

segmentation process. If u is the shape at a certain step of the curve evo-

lution, and ∇I is the image gradient, the respective shape parameters α as

well as the pose p of the evolving curve with respect to the shape model can

be estimated by applying a maximum a posteriori (MAP) approach:

αMAP, pMAP = argmaxα,pP (α, p | u,∇I).

Since no prior information on the exact location of the object is retained,

the pose parameters are assumed to have a uniform distribution. After

estimating the appropriate values of α and p, a final evolving surface u∗(t)

can be extracted starting from the surface u(t) at time t. Finally, the level

set update expression including shape information can be expressed as:

u(t+ 1) = λ1(g(c+ κ)|∇u(t)|+∇u(t) · ∇g) + λ2(u
∗(t)− u(t)) + u(t).

The first term refers to the typical level set expression, where g is a

function of the image gradient, c is a balloon force that makes the contour

flow outward, and κ is the curvature. By contrast, the second term refers

to the MAP estimation discussed above. By choosing appropriate λ1 and

λ2, it is possible to balance the influence of the gradient-curvature model

and the shape model (see Figure 3.9).
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Figure 3.9: Schematic representation of the contribution of the gradient-
curvature model (weighed by the parameter λ1) and the statistical shape
model (weighed by λ2) in the level set curve evolution (from u to unew).
[From Leventon et al. (2002), © 2002 IEEE, reprinted with permission]

Another way of incorporating a priori knowledge into the segmentation

process is based on applying atlas-based methods. First, a linear registration

step aligns a reference atlas volume to the image to be segmented. Next,

nonlinear transformations are applied to deform the atlas to achieve local

correspondence with the target image. The atlas is originally provided to-

gether with a corresponding segmentation mask that has been performed—

or at least checked and corrected—manually. Therefore, the same transfor-

mation that was applied to the atlas volume can be applied to the mask in

order to obtain a new segmentation mask for the target image. Atlas-based

segmentation is a successful method that is widely applied for brain seg-

mentation, for example to parcellate the brain into several subcortical and

cortical structures. Sometimes, such methods are further extended by using

more robust multi-atlas approaches that consist in registering different at-

lases (and thus segmentation masks) to the target image and then obtaining

the final segmentation by merging the results together (e.g., through ma-

jority voting).

Evaluation metrics

When developing a semi or fully automatic segmentation algorithm, it is

important to investigate its performance by using standardized evaluation

metrics. These metrics are usually based on a comparison of the algorithm’s

output segmentation with one (or more) reference manual segmentation(s)

performed by expert annotators. Such reference segmentations are usually
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referred to as ground truth.

One of the most commonly used evaluation metrics is the Dice coeffi-

cient (Dice, 1945), which measures the degree of overlap between a pre-

dicted segmentation mask and the ground truth segmentation. Given two

segmentations A and B, the Dice coefficient is defined as

Dice(A,B) =
2|A ∩B|
|A|+ |B|

,

where the operator | · | refers to the number of nonzero elements in the

given segmentation. Alternatively, by defining as FP the number of false

positives in the predicted segmentation (i.e., non-zero elements that are

instead marked as background in the ground truth), as FN the number of

false negatives (zero elements that are labeled as part of the ROI in the

ground truth) and as TP the number of true positives (nonzero elements

in both the prediction and the ground truth), the Dice coefficient can be

computed as

Dice(A,B) =
2TP

2TP + FP + FN
.

Using the same notation, two other important evaluation metrics can be

defined: precision (often referred to as positive predictive value) and recall

(or sensitivity). These provide additional information on the proportion of,

respectively, false positives and false negatives in the predicted segmentation

masks:

precision(A,B) =
TP

TP + FP
, recall(A,B) =

TP

TP + FN
.

Useful evaluation metrics also exist for estimating the distance in the

image space between the predicted and the ground truth masks. One rele-

vant example is the Hausdorff distance H(A,B) (Huttenlocher et al., 1993),

which is defined as

H(A,B) = max(d(A,B), d(B,A)),

where d(A,B) = maxa∈Aminb∈B∥a − b∥, and ∥ · ∥ usually refers to either

the L2 or the Euclidean norm.
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3.3.3 Other relevant tools for brain MRI image processing

The above-described registration and segmentation methods are often only

the first steps of more extensive image analyses that allow the investigation

of brain morphology in more detail. In this section, a few more methods

as well as software tools for performing these analyses are presented. All

methods presented here are relevant for the present doctoral thesis.

Voxel-based morphometry

The principle of nonlinear registration can be applied not only to simply

align different 3D volumes but also to analyze local brain differences across

different subject groups. This is the case with the neuroimage processing

method called voxel-based morphometry (VBM), which aims to compare lo-

cal GM volume between two subject groups (Ashburner and Friston, 2000).

This is done by first segmenting the GM of each subject from structural

MRI images. Subsequently, these GM masks are affine registered to a pre-

defined GM template. A further nonlinear registration step is added to

identify for each subject which local deformations need to be performed in

order to match the reference template. Such deformations consist in local

expansions if a subject has a GM concentration that is locally lower than

that of the template or contractions if the GM concentration of the subject

is higher than that of the template. All information on local expansions

and contractions can be stored in modulated GM volumes, which are ob-

tained by multiplying all the registered GM segmentations by the Jacobian

of the deformation field. These modulated images are often then blurred

with a Gaussian kernel in order to both compensate for any inaccuracies

in the registration and make the data more normally distributed so that

they are valid for parametric statistical testing (the residuals after fitting a

general linear model should be both independent and normally distributed).

The final step consists in the use of generalized linear models to compare

voxel-wise local deformations between the two groups of interest.

Tract-based spatial statistics

Voxel-wise statistics for identifying group differences can be applied in other

neuroimaging contexts, including dMRI analysis. This is the case for a

technique called tract-based spatial statistics (TBSS), which aims to identify

local differences in FA between subject groups (Smith et al., 2006). FA maps

are first extracted from every subject’s dMRI scan and aligned to a reference
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FA template by applying nonlinear registration. Next, a mean FA image

is generated by averaging all the aligned images, and then it is thinned to

identify a so-called FA skeleton, which represents the centers of the main

WM bundles in the average brain. Finally, each subject’s FA is projected

onto the skeleton by assigning to each skeleton voxel the maximum FA value

that is found in that subject by searching perpendicularly to the skeleton

voxel. Voxel-wise statistics can then be carried out on the FA values in the

skeleton space.

Brain MRI image processing software

Both VBM and TBSS for human brain image analysis have been imple-

mented in one of the most commonly used software packages for neuroimage

processing: FSL (Jenkinson et al., 2012). Another useful tool implemented

in FSL is FAST (FMRIB’s Automated Segmentation Tool), which corrects

for possible field inhomogeneities that affect image intensity and segments a

3D brain image into its three main tissue types (GM, WM and CSF). Each

tissue parcellation is provided both as a hard binary segmentation (i.e., ev-

ery voxel is classified into only one tissue class) and as a tissue probability

map (i.e., every voxel is associated with a value from 0 to 1 corresponding

to the probability of that voxel belonging to the specified tissue).

When it comes to brain parcellation into different cortical and sub-

cortical regions, one of the most successful and used software packages is

FreeSurfer (Fischl, 2012). The full FreeSurfer segmentation pipeline starts

by constructing surface models corresponding to the boundary between WM

and GM as well as the pial surface (i.e., the outer GM layer). This is fol-

lowed by volumetric cortical and subcortical parcellations, which are based

on both a subject-independent probabilistic atlas (which is built from a set

of manually labeled images) and subject-specific measured values (including

voxel intensity and curvature).

Another popular software package for structural brain MRI image anal-

ysis is ANTs (http://stnava.github.io/ANTs/), which is based on the

medical image processing library Insight ToolKit (ITK, https://itk.

org/). Similarly to FSL’s FAST, ANTs can be used for probabilistic tissue

segmentation by applying the Atropos tool (Avants et al., 2011b), which

combines the use of prior reference segmentations with finite mixture mod-

eling. ANTs also provides a reliable tool for image registration, the SyN

algorithm (Avants et al., 2008), which is based on diffeomorphic mapping

(as described in Section 3.3.1).
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Within the context of brain MRI image registration, another robust

alternative is the NiftyReg open-source software (http://cmictig.cs.ucl.

ac.uk/wiki/index.php/NiftyReg). It provides an implementation of a

fast FFD algorithm for nonlinear registration (Modat et al., 2010) that

constitutes a refactoring of the FFD method described in Section 3.3.1.

3.4 Machine learning in medical image processing

ML is a subset of artificial intelligence consisting in the development of

algorithms that modify computer actions so the system can improve with

experience, that is it can achieve better accuracy when performing a specific

task of interest (Alzubi et al., 2018). Depending on the type of task to be

performed, different types of ML algorithms exist, and they can be divided

into the following categories:

• Classification. The output of the algorithm can only be one of a

predefined number of classes, which are known a priori.

• Anomaly detection. The algorithm aims to analyze specific pat-

terns in the input data and detect any change or anomaly in such

patterns. Therefore, this type of task is more focused on identifying

outliers in the input data.

• Regression. Here, the output is numeric and continuous, and there-

fore these algorithms aim to answer questions such as “How many?”

or “How much?”.

• Clustering. It aims to identify relevant structures in the input data

and use the similarity between these structures in order to group data

into different clusters. Data that are grouped into the same cluster

are meant to have a high level of similarity, while data belonging to

different clusters should show lower similarity.

• Reinforcement learning. Here, past learning experience is con-

stantly used by the algorithm to produce an output. The algorithm

makes use of an agent that is in contact with a constantly changing

environment and learns a behavior using trial and error.

In the papers appended to this thesis, supervised learning-based meth-

ods for classification and regression are applied. For these problems, given

an input vector x (x ∈ Rn, where n is the number of input features), the
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algorithm should predict an output variable y = f(x), where y is a scalar

for single-class and regression problems. The function f is then identified

using a set of training data for which all x and their respective outputs y are

already known (Wernick et al., 2010). This trained model is then tested on

new unseen data in order to validate its performance. Often, such perfor-

mance validation is carried out using k-fold cross-validation, which consists

in training the model k times: at each iteration, 1
k of the available (and al-

ready labeled) data is used as validation set (i.e., to check the performance

of the algorithm on these new unseen data), while the remaining samples

constitute the training set.

In the section below, more detailed examples of traditional ML algo-

rithms of relevance to the present doctoral thesis are outlined. Moreover,

in the following sections, DL-based methods are presented. Finally, some

relevant examples of applications of ML in brain MRI image processing are

described in Section 3.4.6.

3.4.1 An overview of relevant models

Neural networks

Learning with neural networks (NNs) is often seen as the archetypal ML

method (Erickson et al., 2017). As schematized in Figure 3.10, in an NN,

all features of the input vector x are first multiplied by a weight vector w,

whose number of features is equal to the number of nodes in Layer 1 of

the NN. Every node is also characterized by a nonlinear activation function

f(x,w). The outputs of the activation functions are then fed as input to

the next network’s layers. Finally, in the last layer, the activation functions’

outputs are used to obtain the network’s output. The closer this value is to

the true output y of x, the more accurate is the algorithm. The accuracy of

the network can be improved by iteratively calculating a loss function (which

estimates the level of discrepancy between true and predicted output) and

updating accordingly the network’s weights, aiming to obtain a lower loss

value at the next iteration.

Logistic regression

Logistic regression (LR) classification models constitute another popular

ML method that may be seen as a simplified version of an NN (Dreiseitl

and Ohno-Machado, 2002). An LR model is indeed identical to a one-layer

NN having a sigmoid function as the activation function. In particular, in a
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Figure 3.10: Schematic representation of a neural network with two hidden
layers. A weighted sum of the n features of input vector x is fed into each
of the l nodes of Layer 1. Their output y is also weighed and fed into Layer
2. In the training phase, the output of Layer 2 is compared with the true
labels associated with x. The weights of the network are then adjusted in
order to reduce the loss function, that is the discrepancy between predicted
output and true labels.

binary classification task (where 1 and 0 are the two classes), the LR model

aims to compute the class membership probability of its input x using a

weight vector α:

P (y = 1) =
1

1 + e−α·x , P (y = 0) = 1− P (y = 1) =
e−α·x

1 + e−α·x .

In the hyperplane of points x for which α · x = 0, P (y = 0) = P (y =

1) = 0.5. From the formulas above, it is also possible to derive the following

relationship between the probabilities of Class 1 and Class 0:

P (y = 1)

P (y = 0)
=

1

e−α·x ⇒ ln

(
P (y = 1)

P (y = 0)

)
= α · x.

When dealing with multiclass problems, multinomial LR can be used.

If K is the number of classes, the multinomial LR model for class k (with

k ∈ [2,K]) given an input vector x ∈ Rn can be defined by the formula

ln

(
P (y = k)

P (y = 1)

)
=

n∑
q=1

βq,kxq = βk · x ⇒ P (y = k) = P (y = 1)eβk·x,
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where βk ∈ Rn is the vector of regression coefficients associated with class

k (Vermunt, 2010). Please note that in these formulas, Class 1 was chosen

as the reference class in the LR model. However, any class can be chosen as

reference. Moreover, given that the probabilities of all classes should sum

to 1, it is possible to derive that:

P (y = 1) =
1

1 +
∑K

l=2 e
βl·x

⇒ P (y = k) =
eβk·x

1 +
∑K

l=2 e
βl·x

.

To summarize, the idea behind LR (both in a binary and multiclass

context) consists in modeling the class probabilities as the result of nonlinear

functions, which are in turn applied on a linear combination of the input

features.

Gaussian process regression

The above-described NN and LR models are fitted by assuming that the

training data samples are independent and drawn from a true distribution

that is unknown (Simeone, 2017). Thus, their parameters θ are commonly

obtained from the input data x by using maximum likelihood estimation

(MLE), that is θMLE = argmaxθln (P (x | θ)). However, other types of algo-

rithms exist that employ instead a Bayesian approach based on the Bayes

formula:

P (θ | x) = P (x | θ)P (θ)

P (x)
.

This type of problem can be solved using a MAP approach:

θMAP = argmaxθP (θ | x) = argmaxθ
P (x | θ)P (θ)

P (x)
=

= argmaxθ
P (x | θ)P (θ)∫
P (x | θ)P (θ)dθ

= argmaxθP (x | θ)P (θ).

Gaussian process regression (GPR) constitutes an example of a Bayesian

approach that can be applied to regression problems. It is based on modeling

the output y = f(x) of the model as a Gaussian process (GP), which is a

collection of random variables having a joint Gaussian distribution and can

thus be fully described by its mean function m(x) and covariance function

k(x,x′) (Rasmussen, 2003):

f(x) ∼ GP(m(x), k(x,x′)).
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It is important to stress the fact that every input x is associated with

a specific random variable f(x). This introduces a certain margin of un-

certainty in the model prediction. Moreover, in practice, the mean m(x) is

usually set to 0. The covariance k(x,x′), which describes the relationship

between any pair of points x and x′, is estimated in a limited set of points.

The described GPR can be used as prior in the Bayesian inference: it does

not depend on the training data but only on predefined properties of the

process.

IfX is the training data and f its associated function, whileX∗ is the test

data and f∗ its associated function, their joint distribution P (f , f∗ | X,X∗)

is described by [
f

f∗

]
∼ N

([
µ

µ∗

]
,

[
Σ Σ∗
ΣT

∗ Σ∗∗

])
,

where µ and µ∗ are, respectively, the training and test means, while Σ, Σ∗
and Σ∗∗ are the training, training-test and test covariances, respectively.

Therefore, the distribution P (f∗ | f ,X,X∗) of f∗ conditioned by f can be

modeled by

f∗ | f ,X,X∗ ∼ N (µ∗ +ΣT
∗ Σ

−1(f − µ),Σ∗∗ − ΣT
∗ Σ

−1Σ∗).

Furthermore, we can take into account the fact that we normally observe

noisy versions of the true function values, that is y = f(x)+ϵ (Wang, 2020).

This noise can be modeled as additive Gaussian noise with zero mean and

covariance σ2I, and therefore the joint distribution P (y, f∗ | X,X∗) of the

noisy observed values and the test data’s function values becomes[
y

f∗

]
∼ N

([
µ

µ∗

]
,

[
Σ+ σ2I Σ∗

ΣT
∗ Σ∗∗

])
,

while the conditional distribution P (f∗ | y,X,X∗) is given by

f∗ | y,x,x∗ ∼ N (µ∗ +ΣT
∗ (Σ + σ2I)−1(y − µ),Σ∗∗ − ΣT

∗ (Σ + σ2I)−1Σ∗).

During training, the parameters defining the mean and covariance func-

tion are tuned in order to implement an appropriate GP model in light

of the available training data. If m(x) and k(x,x′) are parameterized in

terms of a set of hyperparameters θm and θk, respectively, the log marginal

likelihood of the observed values (which are assumed to have a Gaussian
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distribution) given the hyperparameters can be computed as

ln(p(y | X, θm, θk)) = −1

2
ln(|Σ|)− 1

2
(y − µ)TΣ−1(y − µ)− n

2
ln(2π).

The log marginal likelihood can finally be maximized using partial

derivatives together with a numerical optimization routine:

∂L

∂θm
= −(y − µ)TΣ−1 ∂m

∂θm
,

∂L

∂θk
=

1

2
trace(Σ−1 ∂Σ

∂θk
) +

1

2
(y − µ)T

∂Σ

∂θk
Σ−1 ∂Σ

∂θk
(y − µ).

Thus, during model training, the hyperparameters are adjusted accord-

ing to the observed training input and output pairs. Once the GPR model

is trained, probabilistic outputs are produced on inference phase by using

the optimized conditional distribution.

3.4.2 Introduction to deep learning

DL, also referred to as deep structured learning or hierarchical learning, is

a sub-set of ML techniques that has recently impacted every sector of data

processing. In the book Deep Learning: Methods and Application by Li

and Dong (2014), DL is defined as “a class of machine learning techniques

that exploit many layers of non-linear information processing for supervised

and unsupervised feature extraction and transformation, and for pattern

analysis and classification.” Therefore, a deep neural network (DNN) is

often seen as an NN with a large (usually higher than three) number of

hidden layers.

One of the main differences between DL and the rest of ML consists

in DL’s ability to process input data directly in their raw form (LeCun

et al., 2015). Traditional ML-based systems strongly rely on the use of a

feature extractor that transforms the raw data into a specific feature vector,

which can later be used as input for the ML algorithm. The definition of this

feature extractor is a fundamental part of the process and requires expertise

and engineering skills. With DL, this step can be eliminated. A DNN is

trained to automatically determine which features should be extracted from

the input data that are more strongly associated with the task of interest.

This is done by combining multiple (“deep”) layers of representation: each

layer extracts simple but nonlinear features from the previous layer. The

more layers, the more abstract is the information being extracted from the
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input data. For example, in the case of image classification, the first layer

usually detects the presence of edges, while higher layers assemble particular

arrangements of those edges that correspond to specific objects.

In the following sections, the main DL architectures of interest for the

present doctoral thesis are described.

3.4.3 Convolutional neural networks

In the field of medical imaging, the most popular types of DL architectures

are convolutional neural networks (CNNs) (Lundervold and Lundervold,

2019). The layers of a CNN are linked with very few connections (as op-

posed to the so-called fully connected layers), and they preserve the spatial

relationships present in the input data, which makes them appropriate for

image-oriented problems.

Like other standard artificial NNs, CNNs are typically trained using

backward propagation and gradient descent. The first refers to the practice

of iteratively calculating the gradient of the objective function with respect

to the network’s weights by the chain rule. This gradient is calculated for

one layer at a time, starting from the last layer and going back to the first.

Gradient descent is an optimization algorithm that allows identifying the

weights that minimize the objective function.

A schematic representation of a typical CNN is shown in Figure 3.11.

The most common types of layers in a CNN are described below.

• Convolutional layers

The input (either the raw image or the activations from the previous

layer) is convolved with a set of filters, usually of size 3 × 3 for 2D

and 3 × 3 × 3 for 3D inputs. These filters are stored in tensors Wij ,

where i is the layer number, and j is the filter number. Therefore, the

same weights are shared across the whole input, leading to a reduction

in the number of parameters that have to be learned. The results of

these convolutions are referred to as feature maps.

• Activation layers

The feature maps are fed into nonlinear activation functions, which

most often are simple rectified linear units (ReLUs): ReLU(z) =

max(0, z).

• Pooling layers

These layers down-sample the feature maps by performing pooling

46



3.4. MACHINE LEARNING IN MEDICAL IMAGE PROCESSING

Figure 3.11: Representation of a simple CNN-based architecture for image
classification. [From Lundervold and Lundervold (2019), © 2019 Elsevier,
reprinted with permission]

operations, which take as input small regions of the map and assign

one single output number to each of these regions. Common pool-

ing operations are max pooling, which assigns the maximum value of

the selected region, and average pooling, which performs an average

function in the region. These operations provide the CNN with some

translational invariance since small shifts in the image result only in

small changes in their activation maps.

• Dropout regularization

A certain portion (referred to as dropout rate) of neurons is removed

from some of the layers during training. Therefore, a slightly differ-

ent network is trained for every new batch of training data, and the

weights are optimized according to all these different variations. In

this way, the model tends to overfit less.

• Batch normalization

These regularization layers normalize the activation maps by subtract-

ing the mean and dividing them by the standard deviation for each

of the training batches. In addition to reducing overfitting, the use of

batch normalization also speeds up the training and makes the net-

work less dependent on the initial parameter initialization.

A conventional CNN is thus made up of sequences of convolutional and
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activation layers, which are often intermingled with pooling layers and reg-

ularization layers. Finally, the last layers of a CNN are typically fully con-

nected layers in which every neuron is connected with all the activations of

the previous layer.

One of the most popular uses of CNNs in medical image processing

is segmentation. Early CNN-based segmentation methods were based on

patch-wise classification in which each voxel is classified depending only

on the local context around it (Milletari et al., 2016). However, the use

of only local information made these networks prone to failure. Moreover,

the higher the number of extracted patches, the higher the computational

time. These issues led to the implementation of more efficient schemes,

referred to as fully convolutional networks (FCNs) (Long et al., 2015). These

models are trained end-to-end to take an image of any size as input and

provide a correspondingly sized output segmentation. In the original FCN

implementation, the last fully connected layer of a conventional CNN is

replaced with a convolutional layer followed by an up-sampling operator

that allows the final pixel-wise classification. Moreover, a skip-connection

architecture is integrated in which high resolution feature maps are summed

with the up-sampled outputs from deeper and more abstract layers. This

sum is then fed into the last dense pixel-wise classification layer. The skip-

connection trick combines coarse semantic information with more detailed

spatial information in order to obtain a more accurate segmentation output.

3.4.4 Image segmentation with U-Net

One of the most famous DL-based architectures for medical image segmen-

tation is the U-Net (see Figure 3.12), originally proposed by Ronneberger

et al. (2015). Similarly to a traditional FCN, the U-Net consists of a con-

tracting path (also referred to as encoder) made of subsequent convolutional

and pooling layers, as well as an expansive path (also called decoder) where

pooling is replaced by up-sampling operators that increase the resolution of

deep feature maps. A skip-connection architecture is also implemented: the

contracting path’s high-resolution features are combined with up-sampled

feature maps, and this combination is then fed into a successive convolu-

tional layer. However, some modifications make the U-Net different from a

more traditional FCN.

In the U-Net’s expansive path, a large number of feature channels are

used, so that the expansive path becomes symmetric to the contracting

path. This allows the network to propagate much more contextual informa-
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Figure 3.12: The original U-Net architecture. On top of each blue block
(representing a multichannel feature map), the respective number of chan-
nels is presented. In the bottom of each block, the xy input size is rep-
resented. White blocks in the expansive path represent the feature maps
copied from the contracting path. [Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer, in International Con-
ference on Medical Image Computing and Computer-Assisted Intervention,
Ronneberger et al. (2015) © 2015]

tion when up-sampling back to higher resolution layers. In particular, the

contracting path is a simple CNN in which the number of feature channels

is doubled at each down-sampling step. Each step in the expansive path

consists of the following:

1. A transpose convolution made of learnable filters that replace the

simple bilinear interpolation used in traditional FCNs for up-sampling.

This operation halves the number of feature channels.

2. A concatenation with the symmetric (i.e., having the same image size)

feature map from the contracting path. The concatenation replaces

the sum of a traditional FCN.

3. Two convolutional layers, each followed by a ReLU activation.
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In the original U-Net paper, the architecture was proposed for segmenta-

tion of neuronal structures in electron microscopy images. However, because

of its extremely successful performance, this method has been repurposed—

and often modified—for several other medical image segmentation tasks, as

mentioned in the Introduction of this thesis. Since medical images are often

3D, one relevant extensions of the U-Net is the 3D U-Net model developed

by Çiçek et al. (2016). Similarly to the original U-Net, this model is made

of a contracting and an expansive path, but all convolution, pooling and

transpose convolution operations are performed using 3D kernels.

An alternative way of segmenting 3D images using U-Nets consists in

implementing three different 2D U-Nets, each one trained on input slices

from a specific view (axial, coronal or sagittal). Since the three views are

orthogonal to one another, the results from the three 2D U-Nets can easily

be combined back together (e.g., by averaging them) in a 3D volume.

3.4.5 Incorporating context information into a DNN

The U-Net architecture described in the previous section as well as most of

the traditional image segmentation frameworks usually receive as input the

simple raw image to be segmented. However, the segmentation accuracy

can potentially be improved by adding some context information as input

to the network. The incorporation of context information consists in adding

priors and likelihood to the segmentation pipeline, and it is a widely used

practice in computer vision (Tu and Bai, 2010).

One of the simplest examples of context information is the autocontext,

which consists in first training a network and then feeding its output as

second input of a second network (Tu and Bai, 2010; Chen et al., 2018;

Mirikharaji et al., 2018). This strategy has also been employed to improve

the accuracy of brain MRI segmentation results (Chen et al., 2018).

In a study by Mahbod et al. (2018), shape context was tested as context

information to improve the performance of artificial NNs for brain segmen-

tation; this was inspired by the work by Leventon et al. (2000) described

in Section 3.3.2. The idea of incorporating shape context information was

later tested on DNNs in several studies, which showed that the use of shape

priors in the segmentation pipeline can increase the network’s performance.

Shape context has been integrated into DNNs, for example, by adding a

convolutional autoencoder to a U-Net as a shape regularization network

(Ravishankar et al., 2017), by feeding a statistical shape model as a second

input channel to a U-Net (Wang and Smedby, 2017) and by jointly training
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an FCN with a level set (Tang et al., 2017).

The inclusion of a priori information into the segmentation pipeline can

be relevant specifically in medical imaging since we often suffer from lack of

training data, but extensive prior knowledge on human anatomy is available.

3.4.6 Relevant applications in brain MRI image processing

In the appended Papers II to V, ML is employed as the main tool to process

and analyze structural brain data. In this section, relevant background

literature on the topics addressed by these four papers is presented.

Brain age prediction models

Previous studies have shown that brain MRI scans can be used for pre-

dicting chronological age in healthy subjects with high accuracy. The first

neuroimaging-based approaches for brain age prediction proposed ML mod-

els fed with different MRI modalities as inputs, including T1w MRI (Dosen-

bach et al., 2010; Franke et al., 2010). The T1w-based approach consists of

first processing the raw images using VBM to standardize the input data.

Second, data dimensionality reduction is automatically performed to avoid

overfitting and to increase computational efficiency. Finally, a regression

model such as GPR (described in Section 3.4.1) or relevance vector regres-

sion (RVR) (Tipping, 2000, 2001) is fitted in order to model brain age using

the processed MRI images. However, in recent years, DL has also been em-

ployed for this purpose. A DL-based approach was tested for the first time

by Cole et al. (2017b), who developed 3D CNNs for age prediction. More

recently, more advanced DL-based approaches, for example residual CNNs

(Jónsson et al., 2019) and the Inception-ResNet-v2 architecture (Bashyam

et al., 2020), have also been proposed and have obtained accurate brain age

prediction results in humans.

These models are meant to be trained on healthy individuals and tested

on new unseen subjects. If during testing the predicted brain age is greater

than the subject’s chronological age, this might reflect an underlying disease

or neurodegeneration (Cole et al., 2017b). Conversely, a predicted age that

is lower than the chronological age could indicate a positive trend in the

aging process. In one of the first brain age prediction studies by Franke

et al. (2010), the difference between predicted and chronological age was

defined as brain age gap estimation, also referred to as BrainAGE score.

Brain age prediction models have been tested on patients with several
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neuropsychiatric diseases as well as other clinical conditions. An increase

in predicted age was found to be associated with several conditions, such

as epilepsy (Pardoe et al., 2017), schizophrenia (Nenadić et al., 2017), trau-

matic brain injury (Cole et al., 2015), HIV (Cole et al., 2017c) and Down’s

syndrome (Cole et al., 2017a). Studies performed on subjects with MCI

have also shown that a higher BrainAGE score is found in individuals who

will develop Alzheimer’s disease within three years (Gaser et al., 2013; Löwe

et al., 2016). Increased BrainAGE scores have also been found in the pres-

ence of diabetes (Franke et al., 2013) and midlife obesity (Ronan et al.,

2016). Conversely, measures of physical activity as well as number of years

of education were found to correlate with lower brain age (Steffener et al.,

2016). Moreover, a study by Cole et al. (2018) found an association between

higher brain age prediction and higher mortality risk. The use of these MRI

and ML-based models is thus becoming more relevant for gaining a better

understanding of brain aging. Furthermore, the above-mentioned research

results regarding the association between BrainAGE scores and clinical con-

ditions suggest that such neuroimaging tools are promising for establishing

a new aging biomarker.

Standardized criteria exist for qualifying what can be considered an ag-

ing biomarker. According to the American Federation for Aging Research

(AFAR, from the Infoaging Guides, 2016), one of the requirements for an ag-

ing biomarker is that it must work on both humans and laboratory animals

so that it can be tested extensively in a laboratory before being validated in

humans. This highlights the importance of performing brain age studies in

a preclinical framework. Franke et al. (2016) proposed two species-specific

adaptations of the brain age prediction model: one for baboons and one for

rats. In both cases, the model achieved accurate results, thus showing how

it can effectively be adapted to animal studies. In particular, the rat-specific

model showed the best results, also thanks to its richer dataset: a corre-

lation coefficient of 0.95 was obtained between chronological and predicted

age with a mean absolute error of 49 days (corresponding to 6% of the total

age range).

Preclinical studies on BrainAGE can be particularly useful not only to

investigate the value of these predictive models across species but also to

study brain aging in more controlled laboratory environments. The ag-

ing process is indeed highly heterogeneous and influenced by both genetic

and environmental factors. In a laboratory setting, it is possible to better

control for such factors and therefore investigate which interventions could
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Figure 3.13: Segmentation of the corpus callosum (in green) manually per-
formed on the midsagittal slice of a T1w scan.

potentially slow down–—or even reverse—–brain aging.

Segmentation of the corpus callosum

As mentioned in Section 3.1.4, the CC is a structure of great importance as

a proxy for neurodegeneration in MS, since it is greatly affected by lesions

and atrophy. Although the CC can be identified as a 3D structure, multiple

studies have rather focused on the analysis of the 2D CC that can be seg-

mented from a scan’s midsagittal slice (see Figure 3.13). In such a slice, the

CC is indeed more easily identifiable and distinguishable with respect to the

surrounding brain tissue (Park et al., 2018b; Joshi et al., 2013). Moreover,

moving from 3D to 2D representations can decrease complexity while still

providing useful measures related to atrophy (such as area and thickness)

and reflecting the overall properties of the CC fibers (Joshi et al., 2013).

Once both the CC and the intracranial (IC) area are segmented in 2D, the

normalized CC can be computed as the ratio between CC and IC area. This

metric has been shown to significantly correlate with MS burden in previous

studies (Granberg et al., 2015a,b).

In order to accurately segment the CC from a midsagittal slice, sev-

eral methods have been proposed in the literature, especially as applied to

T1w scans (Cover et al., 2018). In a study by Adamson et al. (2014), an

atlas-based approach, followed by a refinement step based on morphological

operations and vein/vessel removal, was employed on T1w images of both
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healthy controls and Alzheimer’s patients. Model-based methods have also

been tested; for instance, in a study by Liu and Ruan (2015), high accuracy

was obtained by integrating shape priors into a level set-based segmenta-

tion framework. High performance was also obtained in other works that

employed ML methods such as artificial neural networks (Magnotta et al.,

1999) as well as Gaussian mixture modeling and fuzzy C-means (İçer, 2013).

With the successful advent of DL, some studies have also applied CNNs

to segment the CC. Park et al. (2018a) proposed two patch-based CNN

methods: one without any prior information (i.e., just using the MRI slice as

input) and one with prior information (i.e., adding two input channels: a CC

probability map and an average image, both generated from an atlas-based

segmentation approach). Both methods showed a mean Dice coefficient

of approximately 0.95. Additionally, Chandra et al. (2019) explored an

encoder-decoder network for the same purpose.

However, to the best of the author’s knowledge, current literature is still

largely lacking DL-based CC segmentation methods specifically trained and

tested on MS patients, although such a study would provide a valuable con-

tribution to the understanding of MS progression as well as an advancement

in research for neuroimaging biomarkers of MS.

Segmentation of the hippocampus

As described in Section 3.1.4, hippocampal atrophy is one of the early signs

of AD (Scheltens et al., 2002). An accurate segmentation of the hippocam-

pus from MRI scans can allow measuring its volume, which is useful in order

to separate healthy subjects from AD patients as well as to potentially iden-

tify cases that may soon convert into AD (Liu et al., 2010). Moreover, hip-

pocampal shape analysis was also shown to provide useful indicators for AD

diagnosis and for its differentiation from other types of dementia (Lindberg

et al., 2012).

Various software tools performing automatic hippocampal segmentation

already exist and are widely used. These include, most notably, FreeSurfer

and FSL (see Section 3.3.3). However, their computational time is rather

long (in the order of a few hours) and not suitable for use in the clinical

setting. Therefore, many other methods for automatic hippocampal seg-

mentation have been proposed in the literature (Zhu et al., 2021; Dill et al.,

2015). Both single-atlas (Barnes et al., 2007; Carmichael et al., 2005; Kwak

et al., 2013) and multi-atlas (Heckemann et al., 2006; Sabuncu et al., 2010;

Wenyan et al., 2011) based methods have been shown to be particularly
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successful at this task. Furthermore, with the advent of DL, a large portion

of the literature is based on the use of DNNs that perform quicker auto-

matic segmentation of the hippocampus. Such methods are mostly divided

into two groups (Zhu et al., 2021): (1) DL methods that integrate multi-

atlas approaches into the pipeline and (2) end-to-end DL models. The first

ones aim to use DNNs to further improve the performance obtained from

traditional atlas-based approaches (Fang et al., 2019; Yang et al., 2018).

The second group of studies aims to perform the segmentation by directly

receiving the raw MRI scan as input, thus proposing novel DL-based strate-

gies for this purpose (Chen et al., 2017; Milletari et al., 2017; Chen et al.,

2018; Guha Roy et al., 2019; Thyreau et al., 2018).

Independently from the method being used, performing an accurate seg-

mentation of the hippocampus is particularly challenging, especially in the

presence of pathology (i.e., when the hippocampus is atrophic) as well as

when dealing with different MRI scanners and protocols or images affected

by artifacts (Akkus et al., 2017). Therefore, it is important to thoroughly

investigate suitable DL methods that are also robust across different di-

agnostic groups and across images acquired from different scanners and

centers.
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Chapter 4

Methods

4.1 Investigating group differences from brain MRI:

Two animal studies

The first two works presented in this thesis are animal studies that—despite

having different aims—are both based on the use of similar image processing

methods for analyzing differences between animal groups of interest.

4.1.1 Overview of the studies

In Paper I, brain MRI scans of eight wild and eight domestic rabbits were

used to identify differences in brain morphology between these two groups.

Both T1-weighted (T1w) and diffusion MRI (dMRI) images were employed

in order to study both gray matter (GM) and white matter (WM) differ-

ences, respectively.

Paper II aimed to investigate differences in MRI-derived brain age be-

tween a group of 24 control rats and a group of 24 rats that underwent

long-term environmental enrichment and dietary restriction (EEDR). First,

a machine learning (ML)-based age prediction model was trained using pro-

cessed T1w images from a cohort of 31 normal aging rats. Subsequently,

this model was tested on the test cohort of interest to study the effect of

the two different lifestyles on brain age. All rats (from both the training

and test cohorts) were scanned at four specific time points in their life: at

about 3, 5, 11 and 17 months of age.

Both Papers I and II rely on the use of appropriate processing pipelines

that allow extracting and analyzing relevant information from the brain

scans. These pipelines include multiple steps that are presented in the
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Figure 4.1: Schematic representation of the image processing workflow im-
plemented for Papers I and II of this thesis. These two studies share some
common processing steps that are represented with black boxes and arrows,
whereas study-specific steps are shown in blue for Paper I and in red for
Paper II. (Figure created with BioRender.com)

following sections (see also Figure 4.1). Information on animal breeding

and MRI acquisition protocols is not included in this thesis as these tasks

had been previously performed by other collaborators.

4.1.2 Brain extraction

In both Papers I and II, the first step consisted in brain extraction from the

analyzed T1w scans, that is the removal of the skull and any other nonbrain

tissue from the MRI image. When working with human brain scans, mul-

tiple software exists for robust skull-stripping on T1w images, for example

FSL’s Brain Extraction Tool (BET) (Jenkinson et al., 2012; Smith, 2002)

and the skull-stripping step of the FreeSurfer processing pipeline (Fischl,
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2012; Ségonne et al., 2004). However, when processing animal data, such

popular tools would obviously fail. Therefore, tailored species-specific solu-

tions are needed.

In Paper I, rabbit skull-stripping was performed by an expert collabo-

rator using an interactive segmentation method based on level set (Wang

et al., 2014). Once all T1w images were skull-stripped, they were manu-

ally aligned to the dMRI data of their respective subjects. This procedure

allowed identifying the brain area in dMRI data too, and thus obtaining

skull-stripped FA maps by running the dtifit function of FMRIB’s Diffu-

sion Toolbox (Jenkinson et al., 2012; Smith et al., 2004).

For Paper II, an atlas-based approach was employed by running a mod-

ified implementation of the artsBrainExtraction algorithm proposed by

MacNicol et al. (2020). In order to run this algorithm, a reference atlas with

its associated brain mask must be selected. For this purpose, the 11-month-

old rat brain template created by MacNicol et al. (2021) was employed since

it corresponds to a “middle age” that could minimize the differences across

all rats analyzed in the study.

4.1.3 Image registration and segmentation

In order to properly analyze and compare the extracted animal brains, it

is necessary to normalize images to a common space. Within this image

space, the brain images can be parcellated into different brain structures.

In Paper I, the rabbit brain template by Muñoz-Moreno et al. (2013) was

nonlinearly registered to each T1w image. More specifically, the NiftyReg

software was used to run a free-form deformation algorithm (Modat et al.,

2010) with the template as moving image. The same transformation was

then applied to the corresponding rabbit atlas, which is defined in the tem-

plate’s space and includes 60 brain regions of interest (ROIs). This atlas-

based segmentation allowed parcellating each subject’s brain into 60 ROIs.

However, due to the difference in resolution between the atlas and the MRI

images used in the study (0.15× 0.15× 7 mm3 vs. 0.16× 0.16× 0.17 mm3),

the segmentations of some ROIs had to be manually refined in order to im-

prove their quality and obtain more reliable results. Finally, since the atlas

includes both GM and WM regions, it was possible to use this information

to obtain both GM and WM tissue maps for each subject.

Similarly to Paper I and as already touched upon in Section 4.1.2, a

reference atlas was employed for tissue segmentation also in Paper II. The

previously mentioned artsBrainExtraction algorithm includes a nonlinear
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registration of each individual rat brain to the reference template. This

registration step is based on the diffeomorphic image registration algorithm

implemented within ANTs Syn (Avants et al., 2008). Subsequently, ANTs

Atropos tool (Avants et al., 2011b) was employed to extract subject-specific

tissue probability maps (TPMs) for GM,WM and cerebrospinal fluid (CSF).

4.1.4 Voxel-based morphometry

Differences in brain tissue volume—with respect to a reference template,

as well as between groups—can be investigated not only from ROI-based

analyses but also at the voxel level using voxel-based morphometry (VBM)

(Ashburner and Friston, 2000), as described also in the background Section

3.3.3.

In Paper I, the FSL-VBM tool (Douaud et al. (2007), http://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM) was employed as a basis to per-

form VBM on the rabbit data. However, the human-specific pipeline imple-

mented within FSL had to be slightly adjusted in order to use it with the

rabbit data of interest. The original FSL-VBM relies on an affine registra-

tion of each subject’s GM segmentation to the human GM ICBM-152 tem-

plate (Lancaster et al., 2007). In Paper I, this template was replaced with

the GM segmentation of a randomly selected wild rabbit, which was blurred

using a Gaussian filter (σ2 = 0.1 mm2). Subsequently, a study-specific tem-

plate was generated by nonlinearly registering the GM segmentations of

every subject to the created reference template (Andersson et al., 2007a,b)

and then averaging them. Nonlinear registrations were then run again, but

this time using the study-specific template as reference image. The defor-

mation fields from these latter registrations were finally used for deriving

the Jacobians, from which each subject’s modulated GM image could be

computed. A Gaussian filter was applied to smooth each modulated image

before computing voxel-wise statistics.

Modulated tissue segmentations—or, more precisely, TPMs (for GM,

WM and CSF)—were also obtained in Paper II. However, they were not

used for finding differences between groups but rather as input to the imple-

mented brain age prediction model (see Section 4.1.6 for details). Moreover,

the Jacobians obtained from the nonlinear registration to the reference 11-

month-old template (Section 4.1.3) could be multiplied to all the TPMs to

obtain modulated TPMs. Here, no smoothing was applied to the modulated

images, but the used registration algorithm (ANTs Syn) applies a Gaus-

sian smoothing to the deformation field after every iteration. Furthermore,
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TPMs are themselves smoother compared to binary tissue segmentations.

4.1.5 Tract-based spatial statistics

In Paper I, not only T1w but also dMRI images were available; there-

fore, fractional anisotropy (FA) maps could be extracted (see Section 3.2.4).

FSL’S tract-based spatial statistics (TBSS) (Smith et al., 2006; Jenkinson

et al., 2012) was employed to study local differences in FA between domes-

tic and wild rabbits (see Section 3.3.3). Similarly to what was mentioned

regarding FSL-VBM, some adjustments had to be performed in order to

run the full pipeline on rabbit images.

The same wild rabbit used as reference for FSL-VBM was also employed

as reference for TBSS: all rabbits’ FA maps were first nonlinearly registered

to it (Andersson et al., 2007a,b) and then averaged. The mean FA image

was later thinned in order to obtain an FA skeleton that would represent the

main WM fiber tracts identified in the rabbits’ brains. Finally, voxel-wise

cross-subject statistics were computed on the FA images projected onto the

mean FA skeleton.

4.1.6 Brain age prediction

Description of the GPR and LR models

One of the main goals of Paper II was to use the available rat brain MRI

scans to train and test a novel rat brain age prediction model. The pro-

posed model combines Gaussian process regression (GPR) and a logistic

regression (LR) classifier. Both models can receive as input the modulated

GM, WM and CSF TPMs of one subject after they have undergone princi-

pal component analysis (PCA). In particular, the projections onto the first

77 principal components were used as inputs. The output of each model

represents the predicted rat brain age expressed in weeks.

The GPR model (fitted using a linear kernel) was the baseline model

for this work since it has previously shown accurate results in human stud-

ies (Cole et al., 2015). The addition of an LR classifier into the pipeline,

and thus the formulation of the age prediction problem as a classification

task, constituted the main methodological novelty of this study. This ex-

tension was originally implemented with the aim to investigate whether it

could help reduce the “regression towards the mean” that intrinsically af-

fects GPR (Liang et al., 2019). For this purpose, the whole available age

range (spanning from 14 to 70 weeks) was divided into 40 bins (or classes),
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and each subject was assigned to its respective “age class”. The model was

then trained to predict the correct age class for every input subject. When

fitting the model, class weights were used to correct for data imbalance:

each age class was associated with a weight that was inversely proportional

to the class’s frequency in the training dataset.

Finally, the predictions from the two independent GPR and LR models

were combined by computing their weighted average. Each GPR predic-

tion had a weight of 1. The weight of each LR prediction was set equal

to its classification probability estimate, that is the probability (produced

as output by the classifier) that the input subject actually belongs to the

predicted age class.

Cross-validation and testing strategy

Both the GPR and LR models were first trained in a leave-one-out cross-

validation fashion using the 31 normally aging rats belonging to the study’s

training cohort. This means that every model was trained 31 times in

total: at every iteration, the longitudinal data from one rat were used as

the validation set, while the data from all remaining 30 rats constituted the

training set.

Once the models had been optimized and their performance had been

evaluated with cross-validation, they were retrained once more using all

31 rats as the training set. The newly fitted pipeline was then tested on

a separate cohort of rats (the aging cohort), including 24 controls and 24

EEDR rats. For each rat at each available time point, the BrainAGE score

was computed as the difference between predicted and chronological age.

4.1.7 Statistical analyses

As mentioned at the beginning of Section 4.1, the common denominator

between the first two studies is the aim to use MRI for investigating differ-

ences between two groups of animals (domestic and wild rabbits for Paper

I, control and EEDR rats for Paper II). In order to achieve this, appropriate

statistical analysis methods must be applied. For all the applied methods

described below, the significance threshold was set to p = 0.05.

In Paper I, a ROI-based analysis was first performed by studying the

difference in ROI volumes between the two rabbit groups. This was accom-

plished by first dividing each ROI volume by the total subject’s cerebrum

volume (made up of 54 ROIs in total). Then, permutation t-tests (with
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5 000 permutations) were performed to find statistically significant differ-

ences between groups for each GM ROI (21 in total). Bonferroni correction

was carried out to correct for these 21 independent statistical tests.

The same 5 000-permutation strategy was followed for the analysis of

the VBM and TBSS results in order to reduce the chance of finding false

positives. However, in these cases, the design of the statistical tests was

chosen according to what was already implemented within the FSL work-

flow. In particular, voxel-wise generalized linear models and subsequent

permutation-based nonparametric testing were used for identifying statisti-

cally significant differences in both local GM volume and local FA between

domestic and wild rabbits.

In Paper II, other types of group differences were investigated. First, we

were interested in analyzing whether controls and EEDR rats showed statis-

tically significant differences in their BrainAGE scores throughout their lifes-

pan. For this purpose, we fitted a linear mixed-effects model with BrainAGE

score as the dependent variable. The fixed effects were chronological age,

lifestyle group (controls vs. EEDR) and their interaction. Moreover, since

it was a longitudinal study with repeated measures, subject identity was

considered a random effect.

Finally, we aimed to investigate whether lifestyle group and/or

BrainAGE score had any significant effect on survival. In particular, we

focused only on the BrainAGE scores measured at the first two time-points

of the study observation period (i.e., at about three and five months of

age), when no test rats were yet excluded from the study. The survival

analysis was performed by fitting five Cox regression models, each having

different independent variables: (1) lifestyle group only, (2) BrainAGE at

the first session only, (3) BrainAGE at the second session only, (4) lifestyle

and BrainAGE at the first session, and (5) lifestyle and BrainAGE at the

second session. When performing this analysis, seven rats were considered

as having terminal events since they died for health-related reasons before

the end of the study’s observation period. The survival data from the other

41 rats was considered censored.

4.2 Deep learning and shape analysis of the degener-

ating human brain

Papers III to V constitute the human studies of the present thesis and in-

troduce additional methods that were not investigated in Papers I and II.
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First, these works are all based on deep learning (DL) methods for both 2D

image classification (Paper III) and segmentation (Papers III, IV and V).

Furthermore, they introduce the use of statistical shape models based on

PCA. These models are employed both to analyze the results of DL segmen-

tation frameworks (Paper IV) and to further improve their accuracy (Paper

V). Finally, these studies aim to create robust processing pipelines that can

work on brain images not only in healthy subjects but also in patients with

multiple sclerosis (MS) (Papers III and IV), Alzheimer’s disease (AD) and

mild cognitive impairment (MCI) (Paper V).

4.2.1 Overview of the studies

Papers III and IV focus on U-Net-based 2D segmentation of the corpus

callosum (CC) in MS patients. This segmentation is performed on the mid-

sagittal slice of the acquired 3D MRI scans since the CC is well-defined and

reflects the overall characteristics of the 3D CC (see background Section

3.4.6). In Paper III, an automatic method for midsagittal slice selection on

T1w and FLAIR images is also presented. In Paper IV, segmentation is

instead performed directly on manually selected midslices of T2w images.

Metrics related to the CC area, as well as shape in the case of Paper IV, were

also investigated with respect to physical and cognitive disability scores.

In Paper V, a novel framework for automatic segmentation of the hip-

pocampus from T1w images is presented. The proposed approach consists in

embedding shape context information into the segmentation pipeline. The

method was tested on three different diagnostic groups (healthy controls

[HC], AD and MCI), as well as in two different cohorts (AddNeuroMed and

ADNI).

In the following sections, the methods implemented in these three studies

are described. Detailed information on the datasets and MRI acquisition

protocols is not presented: for Papers III and IV, these tasks had been

previously performed by other collaborators from the Karolinska Institute;

for Paper V, the data were obtained from the AddNeuroMed Consortium

(Lovestone et al., 2009; Simmons et al., 2009) and the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (Jack et al., 2008). Furthermore, in Paper

IV, it should be noted that the author of this thesis was only responsible for

the shape analysis part of the work. However, some details on the DL-based

segmentation method are provided in this section for completeness.
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4.2.2 Automatic midslice selection

The automatic midsagittal slice selection method proposed in Paper III is

based on a convolutional neural network (CNN) that was trained to predict

whether an input sagittal slice is (Class 1) or is not (Class 0) a midslice.

The CNN was implemented with four 2D convolutional layers (with 3 × 3

kernels; rectified linear unit activation function; 16, 32, 64 and 64 filters,

respectively) intermingled with max-pooling layers and finally followed by

two dense layers (with 128 and 1 unit, respectively). The last dense layer

has a sigmoid activation function that will produce an output from 0 to

1 that can be interpreted as the estimated probability of the input image

being a midsagittal slice.

The above-described architecture (referred to as midCNN) was trained

three times, depending on the type of MRI sequences provided as in-

put: midCNNT1 for T1w inputs only, midCNNFLAIR for FLAIR only

and midCNNT1/FLAIR for both T1w and FLAIR. All three architectures

were trained both with 10-fold cross-validation and with scanner-wise cross-

validation. In the first case, all available 3D scans were randomly split into

10 folds. By contrast, the scanner-wise approach consisted in a three-fold

cross-validation method in which the images of each fold all belonged to the

same scanner (i.e., Siemens Aera, Avanto or Trio).

During each of the training phases, only half of the available non-middle

slices were used. This was done to address the problem of data imbalance

since only one middle slice per scan is available. In the validation phase,

though, all available sagittal slices of every subject were fed into the trained

model: the slice associated with the highest midCCN’s output was consid-

ered to be the predicted midslice.

For all the proposed CNNs, the same image preprocessing was per-

formed: each input slice was resized to 256×256 pixels and then normalized

by subtracting its mean pixel intensity and dividing it by its standard de-

viation.

4.2.3 U-Net-based segmentation

In all three human studies, the popular U-Net architecture originally pro-

posed by Ronneberger et al. (2015) was used to perform 2D image segmen-

tation (see background Section 3.4.4).
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Figure 4.2: The pipeline proposed in Paper III for automatic midslice se-
lection (upper part) and subsequent 2D segmentation of both CC and IC
(lower part). All slices of an input 3D scan are fed into a CNN and classified
as either midslice or not. The slice i having the highest probability pmid-slice

of being a midsagittal slice is fed into two U-Net-like architectures, which
produce an IC and a CC binary segmentation as output. [© Brusini et al.
(2022b). Journal of Neuroimaging published by Wiley Periodicals LLC on
behalf of American Society of Neuroimaging. Reprinted with permission]

Segmentation of the corpus callosum

In both Papers III and IV, two main types of segmentation networks were

proposed: one for segmenting the CC and one for segmenting the intracra-

nial (IC) area from an input MRI slice. The latter segmentation was per-

formed in order to compute the normalized CC area, which is defined as the

ratio between CC and IC area.

In Paper III, we focused on two types of input MRI sequences
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(T1w and FLAIR) and trained different networks according to the type

of sequence that can be provided as input: CC-NetT1, CC-NetFLAIR

and CC-NetT1/FLAIR for CC segmentation; IC-NetT1, IC-NetFLAIR and

IC-NetT1/FLAIR for IC. These networks receive as input a slice that can

be automatically selected by running the midslice selection algorithm de-

scribed in Section 4.2.2 (see also Figure 4.2). In Paper IV, slices from only

T2w images were used, and therefore only one CC and one IC segmentation

framework were trained.

In Paper III, the original U-Net architecture was used, except for the

addition of batch normalization layers after every convolutional layer. For

IC-NetT1/FLAIR, though, batch normalization was removed since it led to

less accurate results. In Paper IV, besides batch normalization, dropout

layers were also added into the framework to prevent overfitting. Moreover,

other techniques were employed to improve the inference performance, in-

cluding online data augmentation (in Papers III and IV) and the use of

different sample weights (for CC-NetT1/FLAIR and IC-NetT1/FLAIR in Pa-

per III in order to increase the accuracy on FLAIR images, which are more

challenging to segment).

In both studies, the U-Nets were first trained in a 10-fold cross-validation

fashion. Furthermore, in Paper III, a scanner-wise cross-validation approach

was investigated (as outlined above in Section 4.2.2).

Finally, in Paper III, additional test sets were used to investigate both

the reproducibility of the proposed framework and the correlation between

normalized CC and two types of disability scores: Expanded Disability

Status Scale (EDSS) and Symbol Digit Modality Test (SDMT) scores (see

background Section 3.1.4).

Segmentation of the hippocampus

In Paper V, the hippocampus was segmented from 3D T1w scans using

three separate 2D U-Nets, making up an architecture referred to as MRI U-

Net. These three U-Nets were trained independently for each image view:

axial, coronal and sagittal. Once the network outputs were obtained for

each slice from each view, they were averaged together in a final 3D volume

that constitutes the final segmentation output.

The centers of gravity of the left and right hippocampal segmentations

were estimated. Subsequently, the input T1w scan was cropped around the

two centers of gravity, generating two new smaller 3D volumes with a pre-

defined size. These cropped 3D images were used to train a new architecture
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made up of other three 3D U-Nets (one per view), which is referred to as

Cropped MRI U-Net.

Finally, one last ensemble of three orthogonal U-Nets was implemented:

the Shape MRI U-Net. In this framework, two input images are provided as

input: the cropped MRI image (already mentioned above) and its respective

shape context, which was obtained by using a statistical shape model fitted

to the segmentation output of Cropped MRI U-Net. In Section 4.2.4, the

methods for the generation of such shape context information are described

in more detail.

All the proposed network architectures are schematized in Figure 4.3.

They were first trained and evaluated on 54 subjects from the ADNI co-

hort using nine-fold stratified cross-validation stratifying by magnetic field

strength (1.5T and 3.0T) and diagnosis (HC, MCI and AD). Finally, these

trained networks were tested first on 37 scans from the AddNeuroMed co-

hort and then on a separate dataset of 5 948 unlabeled ADNI subjects.

4.2.4 Shape analysis

In Papers IV and V, a crucial role is played by statistical shape models

based on PCA. However, they are employed in different ways. In Paper IV,

the principal components (PCs) of the CC shape model were analyzed to

identify which shape variations correlated with disability. In Paper V, the

hippocampal shape model was used to generate the input context layer of

Shape MRI U-Net.

Shape analysis of corpus callosum segmentations

The output CC segmentations of Paper IV (see Section 4.2.3) were used

to generate a statistical shape model. According to the method proposed

by Leventon et al. (2000) and described in the background Section 3.3.2,

distance transforms were first computed from the segmentations and used

for generating the model. Only the first PCs representing 99% of the total

variance were preserved. It was then possible to analyze the projections

of each subject’s CC distance transform onto the PCs’ space and compute

their correlations with EDSS and SDMT.

In addition to the analysis described above, we investigated how the

thickness and bending angle of the CC may change with disability. CC

thickness was obtained by averaging the values of the CC distance transform

along the CC midline and then computing its absolute value. The bending
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Figure 4.3: Summary of the methods for hippocampal segmentation pro-
posed in Paper V. The segmentation results are highlighted in pink for MRI
U-Net, in green for Cropped MRI U-Net and in yellow for Shape MRI U-Net.
All three architectures are made up of three orthogonal 2D U-Nets (one per
view) and receive T1w MRI slices as input. For Cropped and Shape MRI
U-Net, though, such slices are cropped around the hippocampus segmented
by MRI U-Net. Shape MRI U-Net also includes an additional input chan-
nel that embeds shape information obtained by fitting a hippocampal shape
model. [© Brusini et al. (2020), reprinted with permission]

angle was obtained by calculating the angle between the two vectors that

connect the endpoints of the midline to its center.

Shape context for hippocampus segmentation

The hippocampal shape model in Paper V was generated using segmenta-

tions of four HC, four MCI and four AD subjects from the ADNI cohort,

all scanned using 3.0T scanners. Also in this case, the PCA-based method

described by Leventon et al. (2000) was used, but performed on 3D distance
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transforms instead. Moreover, a unique model for both right and left hip-

pocampus was generated. Therefore, all 12 right hippocampi were mirrored

in order to be modelled. The images used to generate the model were also

up-sampled to 0.5 × 0.5 × 0.5 mm3 voxel size (from 1 × 1 × 1 mm3) and

cropped around the hippocampi’s centers of gravity. Finally, PCA was per-

formed on these 24 distance transforms, and the five main PCs of variation

were preserved.

The above-described model can be fitted to the distance transform of

the output of Cropped MRI U-Net. This fitted shape model constitutes the

input shape context of Shape MRI U-Net.

4.2.5 Method evaluation

Several data analysis methods were applied to evaluate the performance of

the proposed tools as well as to find associations with clinical and diagnostic

parameters.

In all three human studies, the Dice coefficient was utilized as the main

metric of segmentation accuracy. In Paper V, precision, recall and Hausdorff

distance were also computed. By performing Student’s t-tests (in Paper III)

and mixed-effects analysis of variance (ANOVA, in Paper V), it was possi-

ble to compare the resulting evaluation metrics across different approaches.

For example, the difference in segmentation performance using T1w data

versus FLAIR data was investigated in Paper III; in Paper V, single-cohort

performance (using nine-fold cross-validation on ADNI data) was compared

to the one obtained in the cross-cohort analysis (testing the trained net-

works on the AddNeuroMed cohort). In Paper III, ANOVA tests were also

carried out to evaluate the accuracy of the implemented algorithms across

the three available scanners.

Since ground truth was not available for the large ADNI test dataset used

in the inference phase of Paper V, this was the only case in which segmenta-

tion accuracy could not be precisely estimated. Therefore, in this case, the

correlation between the hippocampal volumes predicted by the proposed

methods and those obtained using FreeSurfer 6.0 was instead computed.

Finally, changes in the performance across patients with different levels

of neurodegeneration were investigated. In Paper III, this was done by di-

viding subjects into three different levels of CC atrophy (low, medium and

high) and investigating differences in segmentation accuracy across these

three groups using t-tests. Similarly, in Paper V, the segmentation per-

formance was compared between HC, MCI and AD subjects. Moreover,
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differences in predicted hippocampal volume as well as their diagnostic pre-

diction power were investigated between these three groups using one-way

ANOVA tests and binary LR classification models, respectively.
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Chapter 5

Results

5.1 Investigating group differences from brain MRI

5.1.1 Paper I

Changes in brain architecture are consistent with altered

fear processing in domestic rabbits

In the first part of the study, the normalized volumes of all gray

matter (GM) regions of interest (ROIs) were computed for each rabbit,

and differences between domestic and wild rabbits were investigated. After

Bonferroni correction, a significant difference between the two groups was

found in two ROIs (see Figure 5.1). The amygdala showed a significant

volumetric reduction (p < 0.01) of −10.1% and −8.7% in domestic rabbits

for the right and left amygdala, respectively. The medial frontal cortex

presented a significant volumetric increase (p < 0.01) of +12.1% and

+11.1% in the right and left hemisphere, respectively.

Voxel-based morphometry (VBM) was later employed to analyze local

voxel-level volumetric changes, which are independent from the ROI parcel-

lations. Nevertheless, consistent results with the ROI-based analysis were

observed. As shown in Figure 5.2, two main GM clusters were affected by

significant group differences (p < 0.05): one centered around the amygdala

(with a domestication-induced GM loss) and one around the frontal cortex

(with a domestication-induced GM increase). In particular, the amygdalar

cluster was found to overlap mostly with the basolateral, central and lateral

nuclei of the amygdala. Moreover, it partially extended into the hippocam-

pus and both the entorhinal and piriform cortices. The cluster showing
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Figure 5.1: Results of the ROI-based analysis of Paper I, investigating differ-
ences in GM ROI volumes between domestic and wild rabbits. The results
from the two hemispheres are merged together, while separate results for
the left and right hemispheres can be found in the Supplementary Mate-
rial of Paper I. The black bars show p-values based on 5 000 permutations
t-tests. The red bars show Bonferroni-corrected p-values, which take the
total number of comparisons into account. [© Brusini et al. (2018). Pub-
lished by PNAS and reprinted with permission]

GM gain included mostly the medial frontal cortex as well as parts of the

temporal and parietal cortices.

Finally, white matter (WM) changes were analyzed by running tract-

based spatial statistics (TBSS) to identify local differences in fractional

anisotropy (FA). In contrast to the GM analysis, very dispersed (rather than

localized) significant changes were observed across the brain. In particular,

wild rabbits showed a significantly higher FA (p < 0.05) in 86% of the

corona radiata volume, 69% of the subcortical WM and 71% of the corpus

callosum (CC).
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Figure 5.2: GM volume differences between domestic and wild rabbits ob-
tained from VBM. T -values were estimated using threshold-free cluster en-
hancement (Smith and Nichols, 2009). (A) Smaller and larger GM volumes
in domestic rabbits (compared to wild) are shown in blue and red, respec-
tively. Two blue clusters intersect the left and right amygdala (AMY-L and
AMY-R). The largest red cluster intersects the medial frontal cortex (MFC).
Two smaller red clusters are not located completely inside the brain and in-
tersect mostly superficial vessels, so they were disregarded. (B) Within
the amygdala (in blue), the regions showing significant volume differences
(in red) intersect the basolateral (BL), lateral (LA) and central (CE) nu-
clei. [Modified with permission from Równiak et al. (2007)]. (C) Within
the MFC (in blue), significant differences (in red) were found dorsally. [©
Brusini et al. (2018). Published by PNAS and reprinted with permission] 75
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5.1.2 Paper II

MRI-derived brain age as a biomarker of aging in rats: Valida-

tion using a healthy lifestyle intervention

First, the performance of the three proposed brain age prediction

models—based on Gaussian process regression (GPR) only, logistic re-

gression (LR) classification only and their ensemble—was evaluated on a

training cohort using leave-one-out cross-validation. The ensemble model

showed the best performance, with a mean absolute error (MAE) of 4.87

weeks in the predictions and a linear correlation coefficient r = 0.92

between predicted and chronological age, as opposed to MAE = 5.69 and

r = 0.92 for GPR only, and MAE = 5.47 and r = 0.80 for LR only.

By analyzing the input features with the highest weights in the LR

classifier, it was also found that the aging rat brain is affected by spread

and unspecific variations of various magnitudes rather than very localized

changes. Still, a few regions did seem to show slightly higher variations

across different ages compared to others. For example, older rats were

associated with a general increase in GM volume (especially in parts of the

cerebellum, amygdala and hippocampus) as well as a simultaneous WM

volume decrease in the cerebellar area and increase in large portions of the

cerebrum.

In Figure 5.3, the predictions of the GPR+LR ensemble model on the

aging cohort (including controls and EEDR rats) are presented. In gen-

eral, a loss in accuracy was observed compared to the training cohort, with

a MAE of 9.89 weeks and a correlation coefficient of 0.86. It is also no-

ticeable how the age predictions on the EEDR cohort are generally lower,

especially starting with the second scanning session. This result was ana-

lytically confirmed by fitting a linear mixed-effects model, which showed a

statistically significant influence of both chronological age (p < 0.001) and

the interaction between lifestyle group (control or EEDR) and chronological

age (p = 0.015) on the subjects’ BrainAGE scores.

Finally, survival analysis was performed by fitting Cox regression models.

A significant effect on survival was found only in one of the analyzed cases:

when using the BrainAGE score at Session 2 as the independent variable

of the survival prediction model. In particular, higher BrainAGE scores at

about five months of age were significantly associated with higher risk of

mortality (p = 0.03).
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Figure 5.3: Brain age predictions obtained on the test cohort, including 24
control rats (in black) and 24 EEDR rats (in red). Left plot: each single
prediction is shown as a black or red dot, while the lines represent the linear
fitting for the two groups (slope of 0.61 and 0.52 for controls and EEDR,
respectively). Right plot: the predicted aging trajectories are shown for all
48 subjects using the same color code. [From Brusini et al. (2022a), ©
2022, Elsevier. Reprinted with permission]

5.2 Deep learning and shape analysis of the degener-

ating human brain

5.2.1 Paper III

Automatic deep learning multicontrast corpus callosum seg-

mentation in multiple sclerosis

In this work, three convolutional neural networks (CNNs) for auto-

matic midsagittal slice selection were first developed: one specific for

T1-weighted (T1w) data, one for FLAIR and one for both. For all three

algorithms, over 98% of the predictions fell within 3 mm from the ground

truth using both the 10-fold and scanner-wise cross-validation strategy. In

the latter case, no significant performance difference was found between

scanners.

Intrarater variability in the midslice selection task was also evaluated

by computing the intraclass correlation coefficient (ICC) between two sets

of manual annotations performed by the same rater on two different oc-

casions. This resulted in an ICC of 0.999 and 0.993 for T1w and FLAIR

images, respectively. ICCs of 0.991, 0.968 and 0.998 were observed between
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Figure 5.4: Clustered boxplot showing how the CC segmentation accu-
racy, expressed as Dice coefficient, significantly decreases in patients with
higher atrophy using all three implemented architectures (CC-NetT1, CC-
NetFLAIR and CC-NetT1/FLAIR). These results were obtained with 10-fold
cross-validation on the training cohort. All patients were divided into three
atrophy levels, depending on whether their normalized CC area was in the
top, middle or bottom third of the cohort. * refers to p < 0.05, ** to
p < 0.01. [© Brusini et al. (2022b). Journal of Neuroimaging published
by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
Reprinted with permission]

ground truth annotations and the results from midCNNT1, midCNNFLAIR

and midCNNT1+FLAIR using 10-fold cross-validation.

Three intracranial (IC) and three CC segmentation networks were also

developed. All IC alternatives showed consistent accuracy. Using 10-fold

cross-validation, the overall mean Dice coefficient ranged from 0.970 (for IC-

NetT1) to 0.978 (for IC-NetT1/FLAIR). With scanner-wise cross-validation,

the Dice ranged from 0.965 (for IC-NetFLAIR) to 0.974 (for IC-NetT1), and

no significant difference was found between scanners.

Different patterns were observed for CC segmentation. When performing

10-fold cross-validation, the T1-specific architecture showed a significantly

higher (p < 0.05) Dice coefficient (equal to 0.91 ± 0.05) compared to both
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Table 5.1: Correlations between disability scores (EDSS and SDMT) and
normalized CC measures from both FreeSurfer (applied on T1w data only)
and the proposed DL-based pipelines. Since FreeSurfer provides a 3D seg-
mentation of the CC, normalized CC volume (nCCV) was computed in
that case. For all other configurations using the proposed pipelines for 2D
segmentation, normalized CC area was used instead. ρ is the Spearman’s
correlation coefficient and r the Pearson’s correlation coefficient. Signifi-
cant correlations are indicated with * (for p < 0.05) and ** (for p < 0.01).
[Adapted from © Brusini et al. (2022b) with permission. Journal of Neu-
roimaging published by Wiley Periodicals LLC on behalf of American Society
of Neuroimaging ]

Pipeline
EDSS

(+/- 6 months)
n=252

EDSS future
(6.7 +/- 2.6 years)

n = 331

SDMT
(+/- 6 months)

n=172

SDMT future
(5.8 +/- 2.8 years)

n = 304

FreeSurfer (nCCV) ρ = −0.19 ** ρ = −0.18 ** r = 0.18 * r = 0.24 **

T1w-specific ρ = −0.15 * ρ = −0.18 ** r = 0.12 r = 0.18 **

FLAIR-specific ρ = −0.13 * ρ = −0.19 ** r = 0.18 ** r = 0.28 **

Combined
T1w and
FLAIR

On T1w
data

ρ = −0.12 ρ = −0.18 ** r = 0.12 r = 0.21 **

On FLAIR
data

ρ = −0.21 ** ρ = −0.24 ** r = 0.25 ** r = 0.29 **

CC-NetFLAIR (0.881±0.091) and CC-NetT1/FLAIR (0.88±0.074). A superior

performance on T1w scans compared to FLAIR was observed also with

scanner-wise cross-validation: Dice coefficients of 0.902± 0.065 and 0.894±
0.062 were obtained on T1w data using CC-NetT1 and CC-NetT1/FLAIR,

respectively, compared to 0.828 ± 0.11 and 0.808 ± 0.149 on FLAIR scans

using CC-NetFLAIR and CC-NetT1/FLAIR, respectively. Furthermore, when

segmenting FLAIR data using CC-NetT1/FLAIR, a significant difference in

performance (p < 0.01) was found between scanners, with the Trio scanner

showing the highest accuracy (mean Dice of 0.852).

In the 10-fold cross-validation analysis, the CC segmentation perfor-

mance was also compared between patients having different levels of atro-

phy. The segmentations were found to be significantly more accurate in

subjects with lower CC atrophy in all three network implementations (see

Figure 5.4).
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Figure 5.5: CC shape changes that are significantly correlated with disabil-
ity. (A) The second principal component of shape variation (from PCA)
significantly correlates with the EDSS physical disability score. (B) Mean
CC thickness (computed as the average intensity along the midline of the CC
distance transform) significantly correlates with both EDSS (physical) and
future SDMT (cognitive) disability scores. The CC bending angle (i.e., the
angle between the two yellow vectors in the figure) significantly correlates
with EDSS. [© Platten et al. (2021). Journal of Neuroimaging published
by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
Reprinted with permission]

The reproducibility of the proposed pipeline (including both midslice

selection and subsequent segmentation on the selected slice) was tested on

nine subjects who were scanned on three different scanners on the same day.

Excellent reproducibility was achieved with the T1-specific pipeline (ICC

= 0.942) as well as with the pipeline tailored for both T1w and FLAIR

data when tested on T1w data only (ICC = 0.908). The reliability of the

algorithms on FLAIR data was moderate to good (ICC of 0.739 and 0.753

for the FLAIR-specific and the T1/FLAIR pipelines, respectively).

Finally, the proposed algorithms were tested again on a separate set of
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patients for which physical (EDSS) and cognitive (SDMT) disability scores

were recorded both at baseline (within six months from the scan) and in the

future (with follow-up time of 6.7 ± 2.6 and 5.8 ± 2.8 years for EDSS and

SDMT, respectively). The correlations between normalized CC measures

and all available disability scores are presented in Table 5.1.

5.2.2 Paper IV

Deep Learning Corpus Callosum Segmentation as a Neurode-

generative Marker in Multiple Sclerosis

In this study, U-Net-based architectures similar to those presented in

Paper III were employed for CC and IC segmentation, although from only

T2-weighted images. Additionally, shape analysis of the CC segmentation

results—more specifically, of their distance transforms—was performed in

order to investigate the correlation between shape changes and disability.

First, the first 13 principal components (PCs) obtained from principal

component analysis (PCA) were preserved as they represented 99% of the

total variance. The second PC was found to significantly correlate with

EDSS after Bonferroni correction (correlation coefficient r = 0.29, p <

0.001). In particular, this component seems to reflect a change towards a

thinner and more bent CC with higher degrees of disability (see Figure 5.5).

Both mean thickness and bending angle of the subjects’ CC were also

extracted. EDSS scores were found to significantly correlate with both

those shape properties: r = −0.30 and p < 0.001 for thickness, r = −0.17

and p = 0.043 for bending angle (see Figure 5.5). Moreover, normalized

future SDMT z -scores significantly correlated with CC thickness (r = 0.28,

p < 0.001).

5.2.3 Paper V

Shape information improves the cross-cohort performance of

deep learning-based segmentation of the hippocampus

Single-cohort versus cross-cohort performance

In the first part of the work, a single-cohort analysis (i.e., on ADNI data

only using cross-validation) was carried out to compare the performance of

81



CHAPTER 5. RESULTS

the three proposed networks for hippocampal segmentation. As shown in

Table 5.2, no relevant differences were observed between the presented MRI

U-Net, Cropped MRI U-Net and Shape MRI U-Net. Rather consistent ac-

curacy, although slightly numerically inferior, was achieved also when using

two other context-based networks that were implemented for comparison:

Tissue MRI U-Net and Autocontext MRI U-Net (see Paper V for further

details). However, all these deep learning-based architectures showed a su-

perior accuracy compared to FreeSurfer 6.0. Furthermore, using the three

proposed networks, a small loss in performance was observed on the images

from Alzheimer’s disease (AD) patients, with an average decrease in the

Dice coefficient between -1% and -2% with respect to healthy controls (HC)

and subjects with mild cognitive impairment (MCI).

Subsequently, a cross-cohort analysis was carried out by testing the

above-described networks on data from the AddNeuroMed cohort. In this

case, MRI U-Net was affected by a dramatic loss in performance, reaching

an accuracy close to that of FreeSurfer 6.0. Compared to MRI U-Net, an

improvement was obtained using Cropped MRI U-Net (+5.35% and +2.7%

in the average Dice coefficient for the left and right hippocampus, respec-

tively) and even more using Shape MRI U-Net (+5.83% and +4,04%). Au-

tocontext MRI U-Net achieved instead an accuracy between that of MRI

U-Net and Cropped MRI U-Net, while Tissue MRI U-Net performed simi-

larly to Cropped MRI U-Net (except for the recall, which was consistently

lower compared to Cropped MRI U-Net). Additionally, in this cross-cohort

analysis, AD cases showed the lowest Dice coefficients on average.

In order to further support the hypothesis that shape context infor-

mation can improve cross-cohort performance, a new cross-cohort analysis

was performed by switching the two available cohorts, that is by using the

AddNeuroMed dataset as the training set and the ADNI one as the test set.

The results were consistent with those presented above for the first cross-

cohort investigation, with Shape MRI U-Net showing superior segmentation

accuracy compared to the other methods (see Paper V for further details).

Validation on a larger dataset

The MRI U-Net and Shape MRI U-Net trained on the 54 ADNI subjects

were tested one last time on a new dataset made up of 5 948 additional

ADNI images (not used during training). On these data, rather high and

consistent correlation coefficients (from 0.879 to 0.892) were observed be-

tween FreeSurfer-based hippocampal volumes and those obtained using both
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CHAPTER 5. RESULTS

Figure 5.6: The hippocampal volumes (expressed as number of voxels) ob-
tained using the proposed methods (MRI U-Net on the right and Shape MRI
U-Net on the left) are plotted against those from FreeSurfer 6.0, for left (top)
and right (bottom) hippocampus separately. The correlation coefficient r
between these measures is also provided, as well as its 95% confidence in-
terval (CI). [© Brusini et al. (2020). Reprinted with permission]

deep learning-based architectures (see Figure 5.6). Higher correlation coef-

ficients of 0.952 and 0.958 for left and right hippocampus, respectively, were

achieved between MRI U-Net and Shape MRI U-Net.

An expert rater was then asked to compare the quality of deep learning-

based versus FreeSurfer-based segmentations on 14 images, which were all

from either AD or MCI subjects. These images represented cases in which

a high difference in hippocampal volume was observed for both MRI U-

Net and Shape MRI U-Net compared to FreeSurfer. In particular, the ex-

pert rater compared FreeSurfer results with those from MRI U-Net, which

was chosen as the reference deep learning-based method for this evaluation.
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In all 14 cases, the FreeSurfer segmentations presented evident segmenta-

tion errors. With MRI U-Net, three out of 14 cases were considered good

segmentations, five out of 14 were inaccurate but better than FreeSurfer,

while the remaining six segmentations were considered as erroneous as those

from FreeSurfer. Some examples of these examined segmentation results are

shown in Figure 6 of Paper V.

The results from the large ADNI test dataset were also employed to

investigate differences in the estimated normalized hippocampal volumes

(i.e., hippocampal volume divided by IC volume) across the three available

diagnostic groups (HC, MCI and AD). As shown in Table 5.3, statistically

significant differences between these groups were found for all tested seg-

mentation methods (MRI U-Net, Shape MRI U-Net and FreeSurfer), with

AD patients presenting the most atrophic hippocampi, followed by MCI and

HC. Moreover, the diagnostic prediction power of the computed normalized

volumes was investigated by fitting binary LR models. All three segmenta-

tion methods showed a good prediction power in distinguishing AD subjects

from HC (AUROC consistently above 0.80). However, lower performance

was achieved for automatic classification of AD versus MCI (AUROC =

0.68 for all three segmentation methods) and for MCI versus HC (AUROC

of 0.67, 0.65 and 0.64 for MRI U-Net, Shape MRI U-Net and FreeSurfer,

respectively).

Table 5.3: Comparison of hippocampal volume across the three diagnostic
groups of interest: Alzheimer’s disease (AD), mild cognitive impairment
(MCI) and healthy controls (HC). The hippocampal volume of each subject
was divided by their total intracranial volume (ICV) and later multiplied by
the average ICV of the present dataset. Volumetric results were calculated
at baseline on patients who did not change diagnosis within two years, and
they are reported as mean ± standard deviation. For each row (i.e., each
method and region of interest), a one-way ANOVA test was performed to
check for significance in the differences between the three diagnostic groups.
[© Brusini et al. (2020). Reprinted with permission]

Region of
interest

Segmentation
method

AD
(n = 93)

MCI
(n = 267)

HC
(n = 154)

p-value
(one-way ANOVA)

Left
hippocampus

MRI U-Net 3.54± 0.66cm3 3.95± 0.60cm3 4.30± 0.54cm3 p < 0.001
Shape MRI U-Net 3.67± 0.60cm3 4.04± 0.59cm3 4.39± 0.51cm3 p < 0.001
FreeSurfer 6.0 3.25± 0.60cm3 3.60± 0.63cm3 3.99± 0.58cm3 p < 0.001

Right
hippocampus

MRI U-Net 3.38± 0.66cm3 3.81± 0.66cm3 4.25± 0.54cm3 p < 0.001
Shape MRI U-Net 3.56± 0.61cm3 3.93± 0.62cm3 4.34± 0.50cm3 p < 0.001
FreeSurfer 6.0 3.16± 0.59cm3 3.50± 0.63cm3 3.89± 0.54cm3 p < 0.001

85





Chapter 6

Discussion

6.1 The important role of brain MRI image analysis

The studies presented in this thesis all revolve around a common thread: the

use of MRI image analysis methods to analyze and characterize brain struc-

ture. Thanks to their good contrast and spatial resolution, structural brain

MRI scans were successfully used as input to multiple processing pipelines,

which allowed extracting important morphological information. The results

of these studies support the great value of MRI image analysis as an essential

tool for the advancement of neuroscientific knowledge.

6.1.1 MRI image analysis for better understanding of the brain

As described in the background Section 3.1.2, the brain is the most com-

plex organ in the human body, and there is still much to discover about

it on multiple levels. Structural MRI image analysis can provide further

insights on the changes the brain undergoes due to multiple factors, such as

environmental, evolutionary, genetic and pathological.

The effect of domestication on the rabbit brain

In Paper I, brain changes of an evolutionary nature were investigated by

analyzing a unique dataset comprising scans from domestic and wild rabbits.

In a previous study, domestication was found to induce genetic changes

in the vicinity of genes that modulate brain and/or neural development

(Carneiro et al., 2014). Therefore, brain MRI scans of these animals could

be employed to investigate whether any macroscopic phenotypic changes

can be identified.
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Very localized gray matter (GM) changes were found in the domestic

group, which showed a decreased amygdalar volume and an enlarged me-

dial frontal cortex compared to their wild counterparts. The amygdala

is known for being involved in fear conditioning. Therefore, an enlarged

amygdala can facilitate fear expression in wild rabbits when exposed to

environmental threats. Furthermore, the amygdalar areas most subject to

changes corresponded to the basolateral nucleus, which is responsible for re-

ceiving and processing sensory stimuli (Agren et al., 2012), as well as parts

of the central and lateral nuclei, which control efferent and afferent pro-

cessing, respectively. This suggests that domestication has mostly affected

areas responsible not only for detecting fear stimuli but also for expressing

fear responses. This finding is in agreement with the simultaneous enlarge-

ment of the medial prefrontal cortex since this part of the brain controls

emotions and reduces fear responses (Urry et al., 2006; Winkelmann et al.,

2016). Moreover, aggressive behavior is known for being strongly modulated

by the prefrontal-amygdala fear network (Davidson et al., 2000). Therefore,

the findings of Paper I reflect well the behavioral components characteristic

of domestic rabbits. It is reasonable to think that constant contact with

humans and a quieter life in captivity are responsible for these evolutionary

changes. Conversely, wild rabbits must maintain an attentive and aggressive

behavior that is more suitable for wildlife.

In contrast to what was observed for the GM, domestication-induced

white matter (WM) changes were far more dispersed across the brain, with

a general reduction of fractional anisotropy (FA) in the brain of domestic

rabbits. This affects largely all types of fibers: association fibers (connect-

ing different areas of the brain), projection fibers (connecting the brain with

other parts of the central nervous system) and commissural fibers (connect-

ing the two hemispheres). This finding suggests that domestication may

compromise the communication between these areas in terms of informa-

tion processing capacity and speed.

As stated by Charles Darwin, “Hardly any animal is more difficult to

tame than the young of the wild rabbit; scarcely any animal is tamer than

the young of the tame rabbit” (Darwin, 1859). Thanks to the use of brain

MRI image analysis, it was possible to gain a better understanding of why

this phenomenon occurs on a brain structural level.
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The effect of a healthy lifestyle on rat brain aging

In Paper II, rat brain MRI scans were analyzed to understand the influence

of lifestyle factors on brain aging. In particular, the effect of environmental

enrichment and dietary restriction (EEDR) was investigated. This type of

intervention had already shown a positive impact on the overall health of

the EEDR subjects compared to controls, since they exhibited significantly

lower levels of frailty on average (see Paper II for more details on these

results). Brain MRI analysis can allow focusing specifically on the impact

that this lifestyle change has on the brain.

After applying a pretrained age prediction model, the two lifestyle groups

of interest showed diverging aging trajectories, with the EEDR group hav-

ing younger predicted ages on average compared to controls. This difference

between groups increased over time, a result that was further confirmed by

fitting a linear mixed-effects model that showed that the interaction be-

tween lifestyle group and chronological age had a significant effect on the

BrainAGE score (i.e., the difference between predicted and chronological

age). As mentioned in Section 3.1.4, the combination of multiple lifestyle

changes (a good diet, physical exercise and a stimulating environment) is

believed to have a positive effect on brain aging. However, to the author’s

knowledge, Paper II constitutes the first study on rats—and on animals in

general—that attempts to investigate the effect of a healthy lifestyle inter-

vention on brain age prediction. The results of this work reflect well what

has already been speculated in previous studies on humans. In particular,

they are in accordance with very recent findings by Bittner et al. (2021)

that show how multidomain lifestyle behaviors on humans (i.e., physical

exercise, social interactions, smoking and alcohol consumption) have a sig-

nificant effect on the BrainAGE score.

Furthermore, the analysis of the coefficients of the logistic regression

(LR) model for age prediction shed light on what areas of the brain most

influence the model predictions and thus are affected by more changes

throughout the study observation period. Rather than very specific and lo-

calized variations, widespread changes were found to affect the whole brain.

This is consistent with findings from previous studies on humans (Good

et al., 2001; Walhovd et al., 2005), and it is believed that these complex and

dispersed variations are the result of multiple factors (e.g., environmental,

metabolic or immune) that vary across time and influence the brain in a

nonlinear way.

To conclude, in Paper II, MRI images were successfully used for mod-

89



CHAPTER 6. DISCUSSION

eling rat brain aging, analyzing how their brains change through time and

understanding whether lifestyle interventions can have a direct impact on

brain aging. The findings of this study strengthen the idea that lifestyle-

related prevention methods can slow brain aging in rats, and this hypothesis

may possibly be extended to other species (including humans).

The association between corpus callosum shape and disability in

multiple sclerosis patients

As described in Section 3.1.4, the corpus callosum (CC) is a WM structure

that is greatly affected by multiple sclerosis (MS). CC atrophy is commonly

observed in MS patients, and it can be numerically estimated by calculating

the ratio between CC area and intracranial (IC) area. However, other fea-

tures can also be explored. In Paper IV, shape analysis was carried out on

the automatic CC segmentations of a dataset of MS patients. It was found

that the CC became thinner with greater cognitive and physical disability.

Moreover, more angled CCs were observed in patients with higher levels of

physical disability.

In a previous study by Sigirli et al. (2012), disease progression was found

to be associated with changes in CC shape. Shape differences were indeed

identified not only between healthy controls and MS patients but also be-

tween two different clinical manifestations of MS: relapsing-remitting MS

(where patients have periods of stability between different episodes of se-

vere MS symptoms) and secondary progressive MS (disability worsens in

a more continuous manner). For the latter condition, the CC was shown

to present more pronounced deformations, especially in its anterior part.

Moreover, in a work by Van Schependom et al. (2017), significant differ-

ences were found between healthy controls and MS patients in terms of

both thickness profile and CC index, which is a measure that corresponds

to the ratio between thickness and curvature. Therefore, the outcome of

Paper IV further supports the existence of CC shape changes in MS that

relate to the patient’s clinical condition and disease progression.

On one hand, the identification of CC thinning with increasing disability

matches well with the established knowledge on neurodegeneration and CC

atrophy in MS. On the other hand, this work provides new insights on

the relation between CC shape and disability with the identification of a

significant correlation between the structure’s bending angle and physical

disability scores. With MS progression and the subsequent atrophy of the

brain, ventricular enlargement may occur. Thus, it may be speculated that
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this phenomenon can displace the CC upwards, making it appear more

angled. Such a hypothesis may be further addressed in future MRI image

analysis studies in order to provide more useful insights on the progression

of this disease and on how to better interpret MRI scans from MS patients.

6.1.2 MRI-based biomarkers

In addition to being a useful tool for gaining new knowledge about the

brain, another important role of MRI image analysis consists in the ex-

traction of imaging biomarkers, which are measurable indicators of normal

or pathogenic processes as well as pharmacologic responses. As described

in Sections 3.1.4 and 3.4.6, extensive literature exists on the computation

of features significantly associated with the presence of disease, including

Alzheimer’s disease (AD) and MS, as well as with positive and healthy

trends in an individual’s aging process. Such research opens up multiple

possibilities for future clinical use of MRI-derived biomarkers for early di-

agnosis and monitoring of diseases. In this section, the results of the present

thesis that relate to neuroimaging biomarker research are discussed.

BrainAGE as a marker of healthy aging in rats

As discussed in Section 3.4.6, the BrainAGE score has been previously pro-

posed as a brain aging biomarker, given the strong association between

its value and multiple clinical conditions. In particular, higher and lower

BrainAGE scores correspond to negative and positive trends in the aging

process, respectively. To the best of the author’s knowledge, Paper II consti-

tutes the first preclinical validation of BrainAGE as a biomarker of healthy

aging.

The first important outcome of this study was the implementation of

an accurate age prediction model from a training cohort of 31 normal rats

(89 longitudinal scans in total). Similar accuracy was achieved on another

rat study by Franke et al. (2016) in which a different dataset was employed

(273 scans from 24 rats). These consistent outcomes support the potential of

using brain age prediction models not only on humans but also on laboratory

animals. This can allow investigating BrainAGE as a potential biomarker

in a preclinical framework, which is of fundamental importance for both

validating BrainAGE as an aging biomarker and studying how it is affected

by active interventions performed during long observation periods.

The second part of the study consisted in analyzing the effect of a long-
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term EEDR intervention on the BrainAGE score. As mentioned previously,

the brains of the EEDR rats were found to age at a slower pace compared

to controls. This finding is of high relevance not only to understand the

effects of a healthy lifestyle on the brain (as discussed in Section 6.1.1) but

also to support the value of BrainAGE as a sensitive marker of healthy

aging and lifestyle. In other words, when a relevantly young brain age is

predicted in a subject, it could be inferred not only that a neuropsychiatric

disorder and/or neurodegeneration may be absent, but also that the brain

is aging in a slower and healthier way compared to the normal population.

However, many more preclinical studies should be performed to confirm this

hypothesis.

The potential of BrainAGE as an important aging biomarker was

strengthened by finding a significant effect of the BrainAGE score at about

five months of age (approximately two months after the intervention started)

on the rats’ survival. This result was in agreement with a previous work

by Cole et al. (2018), who also found a significant association between

BrainAGE and survival in humans. This constitutes more evidence of the

similarities between animal and human studies and therefore of the im-

portance of conducting thorough preclinical research while controlling for

multiple genetic, environmental or lifestyle factors that are more difficult to

account for in human studies.

Finally, one of the strengths of Paper II is the fact that brain age predic-

tions are analyzed longitudinally. At least two scans per test subject were

available, and this allowed investigating differences in rate of aging between

the two examined lifestyle groups. It has already been observed—both in

previous studies (Franke et al., 2016; Liang et al., 2019; Cole et al., 2017b;

Pardoe and Kuzniecky, 2018) and in Paper II itself—that the accuracy of

the model can vary across chronological ages, with a general tendency to

overestimate brain age at younger chronological ages and underestimate it

at older ages. Prediction errors at older chronological ages are also charac-

terized by higher variability. For this reason, it is crucial to control at least

for age when studying the value of BrainAGE as an aging biomarker. An

even better alternative would consist in examining aging trajectories across

time for every subject. Similar observations were drawn in a recent work

by Vidal-Pineiro et al. (2021), who compared results from cross-sectional

and longitudinal brain age. No significant association was found between

these two approaches, and the readers are advised to interpret with cau-

tion the results from cross-sectional studies (which can be influenced by
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subject-specific congenital factors), while longitudinal approaches should

be preferred.

Segmentation area and volume as markers of neurodegeneration

Given the association between CC atrophy and MS as well as between hip-

pocampal atrophy and AD, measures of their size can be extracted from

their segmentations and investigated as possible imaging biomarkers of neu-

rodegeneration. Papers III to V aim to contribute to this area of study.

In Paper III, deep learning (DL)-based architectures are proposed for

automatic CC segmentation from both T1w and FLAIR data. The models

were used to calculate normalized CC areas on a dataset of MS patients

for which EDSS (physical) and SDMT (cognitive) disability scores were

available both at baseline and at follow-up (measured about six years after

the MRI scan). The areas measured from all implemented algorithms on

both types of MRI sequences consistently showed significant correlations

with both of the future disability scores. A similar analysis was carried

out in Paper IV using T2w scans instead. Also in this case, the normalized

CC area showed a significant correlation with both future EDSS and SDMT

(measured about 8-10 years later on average) as well as with baseline EDSS.

As discussed in Section 6.1.1, the significant correlations between CC

atrophy and disability are in agreement with previous studies, as well as

with general background knowledge on the neurodegeneration that char-

acterizes MS progression. However, the most remarkable—and not neces-

sarily expected—results are the significant correlations found with future

disability scores, which were calculated several years after the patients were

scanned. These results are also consistent with the findings of another study

by Ouellette et al. (2018) in which the normalized CC area—together with

the lesion area—was found to significantly correlate with cognitive disability

after 8.5 years. These findings are of great relevance because they strongly

support the potential of using neuroimaging for predicting disease outcome.

This would also allow better investigating prevention methods and designing

personalized treatment plans.

The topic of hippocampal segmentation is addressed in Paper V, where a

novel DL-based model (i.e., the Shape MRI U-Net) is proposed for obtaining

accurate segmentations and, subsequently, measures of hippocampal atro-

phy from 3D T1w scans. The algorithm was tested on a test dataset of over

500 cases including healthy controls (HC), subjects with mild cognitive im-

pairment (MCI) and AD patients. The derived hippocampal volumes were
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shown to be significantly different between these three diagnostic groups,

supporting the possibility of using automatic tools for identifying patterns

of atrophy.

LR classifiers were trained using the subjects’ hippocampal volumes as

input in order to investigate their power in predicting the diagnostic group

of every subject. The highest performance was achieved when discriminat-

ing HC from AD cases (AUROC of 0.84), for which the difference in atrophy

is the largest. This metric dropped to 0.68 and 0.65 for AD vs. MCI and

MCI vs. HC, respectively. This discrepancy in classification performance,

which varied according to the class pairs to be discriminated, has also been

reported in previous literature (Westman et al., 2011; Voevodskaya et al.,

2014). These results are expected since they reflect the main characteristics

of AD progression: the difference in hippocampal atrophy between HC and

AD is inevitably larger on average compared to the other two pairs, and

this affects the classifier’s accuracy. Moreover, it is important to note that

Paper V only uses volumetric information from the hippocampus, which

may be too limited in some cases. In a previous study by Poulakis et al.

(2018), it was indeed found that about 6% of AD patients present a form

of AD characterized by hippocampal sparing (i.e., the hippocampus is not

relevantly atrophied), while about 18% exhibit minimal atrophy across the

brain in general. Therefore, volumetric information from such patients can

drastically affect classification performance. For this reason, even though

hippocampal volumetry has been shown to have great value in AD predic-

tion, it is also important to combine it with other types of imaging biomark-

ers (e.g., based on other degenerating brain regions) in order to obtain more

reliable diagnostic tools.

Similar reasoning may be also applied to the field of MS monitoring.

Although statistically significant, the correlation coefficients between CC

area and disability scores reported in Papers III and IV never reached high

values. Therefore, the measure of CC area alone may be informative in itself

but not sufficiently robust for clinical decision making. However, it may be

investigated in combination with other imaging biomarkers, which together

could potentially correlate more strongly with disease state.

Robustness and reliability of segmentation-derived biomarkers

The potential of the above-described markers of neurodegeneration strongly

relies on the outcome of the automatic segmentation algorithms. Therefore,

in order to better trust the clinical relevance of these results, it is important
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to ensure that the applied segmentation methods are sufficiently robust.

This topic is addressed especially in Papers III and V.

In Paper III, scanner-wise cross-validation was performed to analyze the

CC segmentation accuracy on data from scanners that differed from those

used for training. By doing so, the average Dice coefficient dropped by ap-

proximately 6% on FLAIR images compared to the 10-fold cross-validation

approach (where data from different scanners were randomly distributed

across folds). Conversely, for T1w data, the accuracy remained high also

with scanner-wise cross-validation, supporting the high level of robustness

and generalization of the proposed methods when applied on T1w data.

This generalization discrepancy between FLAIR and T1w was partially ex-

pected: as presented in Section 5.2.1, CC segmentation on FLAIR scans was

consistently more challenging in terms of both Dice coefficient and scan-

rescan reproducibility. This is most likely caused by the different contrast

of FLAIR images compared to T1w. Even for the manual annotator who

labeled the data used in Paper III, it was perceived as more difficult to seg-

ment CC on FLAIR with high accuracy and confidence compared to T1w.

Thus, it is expected that automatic algorithms would reflect this trend,

especially when the discrepancy between training and test set is higher.

A relatively similar strategy was followed in Paper V, where the com-

parison between single- and cross-cohort performance was carried out. This

analysis revealed that Shape MRI U-Net could provide more robust hip-

pocampal segmentation results when tested on a cohort that differed from

the one used for training as opposed to the standard U-Net. This result is of

high relevance since it supports the choice of Shape MRI U-Net—which ben-

efits from the use of a priori shape information—over other more standard

approaches.

Furthermore, in both Papers III and V, consistency in segmentation

accuracy was analyzed between different levels of disease progression. This

is a crucial aspect when it comes to using these tools for clinical applications

and research: the more accurate the segmentation results are across the

population, the more reliable the computed biomarkers will be, and the

higher the chances are of eventually using them in the clinic.

More specifically, in Paper III, the CC segmentation performance was

investigated across different atrophy levels, and patients with a high degree

of CC atrophy showed significantly lower Dice scores. This was expected

since extensive and heterogeneous atrophy patterns can make it very chal-

lenging for the network to segment the CC properly. However, it should
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be noted that this loss in accuracy was not dramatic, and very few outliers

(i.e., subjects with particularly low Dice scores compared to average) were

found. Thus, this constitutes a good starting point for a potential future

use of these segmentation tools in clinical settings.

Similarly, in Paper V, the performance of the proposed DL-based ar-

chitectures was compared between the three diagnostic groups of interest

(HC, MCI and AD). As expected, due to the different levels of hippocampal

atrophy, a performance loss was observed for MCI and, even more, AD pa-

tients in both the single- and cross-cohort analyses. However, the accuracy

observed on these patients was higher than that obtained using the widely

used software FreeSurfer.

To conclude, the observations presented above are very important to

keep in mind when testing segmentation algorithms on different MRI se-

quences as well as on data from new unseen scanners or patients. A consis-

tent test accuracy may not be obtained at all times since multiple factors

(e.g., image contrast, disease progression, etc.) come into play and may

affect accuracy. This is a crucial point that both clinical and machine

learning (ML) researchers should always keep in mind when approaching

imaging biomarker research.

6.2 Machine learning: The future of neuroradiology?

In the previous sections, the importance of MRI image analysis for neuro-

science was presented by discussing the main results of the papers appended

to this thesis. In four out of five papers (i.e., Papers II to V), ML and DL

represent the core approaches employed to analyze the brain images of in-

terest. As described in Section 3.4, both traditional ML and DL methods

currently play a fundamental role in medical imaging research and dominate

a large portion of the scientific literature in this field. For this reason, it

is difficult to imagine a future of neuroradiology without the integration of

automated ML-based tools for clinical decision making.

6.2.1 Advantages of machine learning approaches

One of the strengths of ML-based systems is their time efficiency. While

the training process can be lengthy (especially when dealing with particu-

larly complex DL networks and large datasets), the inference phase is much

quicker. For example, in Paper III, the full pipeline (including automatic

midslice selection and both CC and IC segmentation) was shown to take less
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than one minute for each input 3D MRI scan. The same process would take

much longer (in the order of tens of minutes) if performed fully manually and

possibly even longer with other automatic and more established—but not

ML-based—neuroimaging software. For example, using FreeSurfer, the full

processing was shown to take up to 10 hours per input 3D scan. Similarly,

also in Paper V, a huge time difference was reported compared to FreeSurfer

since the full Shape MRI U-Net pipeline for hippocampal segmentation took

approximately two-and-a-half minutes per subject.

In addition to time efficiency, another advantage of these state-of-the-art

approaches—especially when it comes to novel DL methods—is their higher

accuracy compared to more traditional automatic methods. This aspect is

addressed in Section 3.4 and explored in part of the works appended to this

thesis. For example, in Paper V, another comparison with FreeSurfer is

carried out by analyzing the Dice coefficients achieved on FreeSurfer-based

segmentations as opposed to those obtained with the proposed Shape MRI

U-Net. The latter method was shown to have a consistently superior ac-

curacy, even when applied on a new unseen cohort and on AD patients

presenting hippocampal atrophy. Similarly, in Paper III, the CC segmenta-

tion accuracy obtained using a relatively simple U-Net-like architecture was

reported to be comparable, if not superior, to other similar segmentation

studies, especially when working with T1w data.

Researchers are also extremely active in pushing the performance of

these ML methods even further to achieve higher and higher accuracy. Also

in this thesis, some technical novelties are presented with the aim of propos-

ing alternative tools that may be tested by other researchers to improve the

state of the art. For example, in Paper II, a well-established age predic-

tion method based on Gaussian process regression (GPR) was extended by

creating a novel ensemble of GPR and an LR classifier. This novel combi-

nation showed a lower prediction error on average by taking advantage of

two aspects of LR: (1) its high accuracy when a relatively large number of

samples is available (i.e., at younger ages in the case of Paper II); (2) the

absence of “regression towards the mean” (i.e., the tendency of over- and

under-estimating the predictions at younger and older chronological ages,

respectively). Another technical innovation was presented in the context

of hippocampal segmentation in Paper V by adding fitted statistical shape

models to the inputs of standard U-Nets. As discussed in Section 6.1.2, this

approach was found to significantly improve segmentation accuracy when

testing the architecture on new unseen data. These examples from Papers
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II and V show how the field of ML-based image analysis can continuously

be improved. Thus, it is reasonable to follow this research direction in order

to improve also the existing clinical routines.

Finally, one other aspect in favor of using ML models consists in the

possibility of obtaining objective outputs, which is something that cannot

be achieved when the same task is performed by a human annotator. The

manual annotations of expert neuroradiologists are of extremely high value,

but they will always be relatively subjective (i.e., affected by both inter- and

intra-rater variability). They can indeed be influenced by multiple factors

such as the expert’s level of experience and/or concentration in the mo-

ment in which the annotations are performed. However, once an ML model

has been successfully trained and optimized, it will always show consistent

outputs when tested on the same input image.

6.2.2 Obstacles and ethical concerns

Given the above-examined advantages of ML-based methods, would it be

acceptable to integrate them fully into the clinical routine and have them

replace part of the work currently performed by radiologists? Where should

the boundary be drawn between decision making performed by a medical

doctor and that performed by a machine? These are probably the most

significant ethical questions when it comes to the employment of artificial

intelligence in healthcare. Despite the evidence that a human will never be

as quick and objective as a machine in analyzing brain images and using

them to compute useful diagnostic measurements, we are probably still far

from being able to fully replace the experience and clinical judgment of

a human expert. The author believes that this is mostly due to a series

of obstacles that characterize ML when applied to medical image analysis

problems.

First, once an automatic tool has been implemented and optimized, it

will most likely not show perfect accuracy. In the papers appended to this

thesis, no average Dice scores of 100% or mean absolute errors equal to

0 are reported, and the same can be claimed with confidence regarding

the rest of the neuroimaging literature (or at least the vast majority of it)

that is currently available. Part of the reason for this has been addressed

frequently throughout this thesis: the discrepancy between training and test

image datasets in terms of contrast, disease progression, image resolution,

etc. Moreover, the achievement of only suboptimal model accuracy can

arise from inter- and/or intra-rater disagreement among the annotators who
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generate the ground truth. This issue can make it even more difficult to

assess what the optimal performance of an ML model should really be: if

there is not 100% agreement among human raters, it is not possible to aim

for 100% accuracy using fully automated tools. Despite this, the available

manual annotations are still what can be considered closest to the truth in

neuroimaging studies. Therefore, while machine performance is below this

supposed truth, it will always be difficult to replace the radiologist’s work.

Secondly, for some tasks, the sensitivity and caution of a human expert

are of essential importance, no matter which algorithm may be used instead

and what level of accuracy it is claimed to reach. For example, nowadays,

a diagnosis of AD can be made with absolute certainty only after death,

when the brain tissue can be examined microscopically. Simultaneously,

neuroimaging biomarker research is focusing more and more on providing

an AD diagnosis as early as possible. This is an extremely important goal

to achieve, but at the same time, such an early diagnosis should be done

with extreme caution since both false positives and false negatives can be

very harmful. The first can cause patients to live with an extreme but

unwarranted fear, and false negatives can prevent patients from seeking care

as early as possible. Therefore, subjective and cautious evaluation from a

medical professional would still be preferred in certain situations.

This latter issue becomes even more critical when considering that many

of the state-of-the-art DL algorithms are “black boxes”, meaning that the

reason they produce a specific output cannot be easily deciphered by the

user. By using the same example as above, a trained deep neural network

(DNN) may perform an early diagnosis of AD by simply receiving a brain

MRI scan as input, which may (still) look healthy to the eye of a trained

physician. If it is not possible to understand exactly why that output has

been produced by the network, it will be challenging to introduce such a

tool in a clinical routine. Furthermore, even if a DNN has always shown

excellent accuracy in previous trials, it is well known that DL architec-

tures can be vulnerable to adversarial attacks, that is input images that are

slightly perturbed (e.g., by additive noise) and, because of that, can “fool”

the network and greatly affect its output (Akhtar and Mian, 2018). More

extensive research should be carried out to address these problems in order

to improve the explainability and reliability of ML for clinical applications.
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6.2.3 Aiming for balance between human and machine decision

making

In the sections above, some of the advantages and disadvantages of employ-

ing fully automated ML-based neuroimaging methods are examined. Both

should always be considered. Therefore, we should find an optimal balance

between the contribution that can be provided by a medical doctor and that

provided as output of an ML model.

Fully automated algorithms will probably not replace physicians any

time soon. However, highly accurate, quick and objective ML-based meth-

ods may (and should) soon become an important part of the clinical work-

flow. Given the high potential of the neuroimaging and ML-based biomark-

ers discussed throughout this thesis, the hope is for them to be further

evaluated in the future and eventually employed by medical professionals

who would still have the last word on clinical decisions. In this way, these

methods can find their perfect fit in the clinical routine as an additional,

but still highly important, aid for improving disease diagnosis and monitor-

ing. Aiming for such an improvement of the current clinical practices is also

in line with the third of the 17 goals for global sustainable development,

which is focused on promoting the good health and well-being of the world

population (United Nations, 2022).

6.3 Limitations

The five studies presented in this thesis provide relevant contributions to

the neuroimaging field. However, they are also affected by a number of

limitations, which are addressed in this section and should be taken into

account for improvement in the future (see also Chapter 7 for suggested

future work).

Sample size In all five papers, the size of the available datasets was

rather limited. This is a very common and well-documented issue in medical

imaging as opposed to other computer vision applications that make use

of similar image processing techniques (Varoquaux and Cheplygina, 2021).

This problem is even more present in animal studies, where an increased

sample size can highly affect the costs of the project as well as potentially

cause ethical problems in case of redundant samples (Serdar et al., 2021).

In Paper I, the small sample size (eight rabbits per group), combined

with a conservative Bonferroni correction in the statistical analysis, might
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have led to an increased risk for Type II errors, meaning that some addi-

tional brain differences may be present between wild and domestic rabbits.

In the studies using ML (i.e., Papers II to V), the limited size of the train-

ing datasets could affect the model accuracy. This issue has partially been

controlled for by performing cross-validation and, in the papers using DL

(Papers III to V), by adding data augmentation. However, the results of

these studies also showed that the model performance decreases in the in-

ference phase on datasets from different cohorts than the one(s) used for

training. Therefore, an increased sample size would be desirable in order to

further reduce this gap between training and testing performance.

Data heterogeneity Another limitation that characterizes the datasets

used in the appended papers is their limited heterogeneity, which is known

to cause additional biases (Varoquaux and Cheplygina, 2021).

In Paper I, only female rabbits were employed, but it would be inter-

esting to study the effects of domestication on male rabbits as well. The

opposite issue affects Paper II, where only male rats were used. Moreover,

in this longitudinal study, the rats were scanned only at four specific time

points throughout their lifespan. More frequent scans and a longer ob-

servation period could be beneficial for both implementing a more robust

age prediction model and drawing more reliable conclusions on the value of

BrainAGE as a marker of healthy aging. Another aspect that may affect

the current model’s robustness and future applicability is the fact that all

images were acquired from the same scanner. Therefore, it is unknown what

the performance would be on data acquired from different sites. The same

limitation affects also Paper IV, in which the CC segmentation networks

were trained and tested on T2w data from only one scanner. In Paper III,

the issue was addressed by using T1w and FLAIR data from three different

scanners, supporting more the generalizability of the models on new un-

seen data. However, all three scanners were from the same manufacturer,

so the performance of the model is still unknown on scans from different

manufacturers.

Processing and modeling choices For the sake of time and simplicity,

specific processing and modeling choices were made in the presented papers,

but more options could be explored in order to both improve these works

and further validate their main findings.

In Paper II, GPR with a linear covariance function was employed as
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a baseline model in order to mimic the strategy used in human studies in

the past (Cole et al., 2015, 2017b, 2018). However, considering also the

nonlinearity in the aging trajectories that was observed in this and other

studies, alternative nonlinear models could also be suitable. It should also

be noted, though, that the use of more complex nonlinear models may

not be appropriate with the limited amount of available training samples.

Furthermore, a limitation of the used linear covariance function is that

it does not allow to directly extract importance measures for each of the

input features of the model. Therefore, this aspect was investigated only

for the LR classifier, but the use of alternative covariance functions (e.g.,

kernels with automatic relevance determination) could allow performing this

analysis for the regressor as well (Caywood et al., 2017).

When it comes to the workflows implemented for the three human stud-

ies (Papers III to V), one common drawback consists in the limited image

preprocessing strategies tested. In all three works, the DL networks’ inputs

only underwent resizing and intensity normalization. This simple prepro-

cessing has the advantage of being extremely time efficient. However, some

additional data normalization steps could also be tested, for example a pre-

liminary registration onto a reference space.

Another common feature of all three human studies is the use of 2D

U-Nets for image segmentation. As described in Section 3.4.4, this is a

very well-established architecture within the medical image analysis com-

munity, and it has the advantage of being simple and relatively quick to

train. Therefore, on one hand, opting for this network is particularly ad-

vantageous in view of potential future implementation by other researchers

on new data. On the other hand, remaining with just one network can be

limiting, since other alternative options could be tested and potentially be

equally or more successful.

102



Chapter 7

Future work

The scientific contributions provided by the studies presented in this the-

sis can be seen as a promising starting point for future improvement and

validation. Below, some of the possible future directions for continuing this

work are outlined.

7.1 Larger and heterogeneous datasets

As discussed in Section 6.3, a limitation that all five appended papers have

in common is the limited size and heterogeneity of the employed datasets.

Although larger and more diverse datasets do not necessarily correspond

to better model performance (Varoquaux and Cheplygina, 2021), working

with more data would at least be useful to validate the findings of the

presented works. Below are listed the additions to the datasets that should

be performed before reproducing and/or extending the present studies.

Domestication-induced changes in the rabbit brain (Paper I)

Male rabbits should be included in the dataset. As mentioned in the pa-

per, female rabbits are particularly subjective to stress, so this behavioral

difference between male and female animals may also reflect some under-

lying structural brain differences. By adding male subjects to the already

available dataset, it would be possible to validate the previous findings and

reduce the risk for Type II errors.
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Rat brain age prediction models (Paper II)

The generalization power of the proposed prediction model should be im-

proved by training it with additional image scans acquired as follows:

1. From both male and female animals.

2. At more frequent time-points as well as before and after the current

limits of the study observation period (i.e., 3 and 17 months).

3. From multiple sites and scanners.

Segmentation of the degenerating corpus callosum and hippocam-

pus (Papers III to V)

The three human studies of this thesis would benefit from expanding the

available training datasets by manually labeling new scans based on the

following:

1. More sites and scanners. This would increase the possibility of suc-

cessfully using the proposed methods on data acquired by other re-

searchers and clinicians.

2. More subjects affected by high levels of neurodegeneration (in the cor-

pus callosum for Papers III and IV and in the hippocampus for Paper

V). The appended papers show a general tendency of the proposed

methods to perform better on healthy participants. While this is ex-

pected, it would still be important to focus on reducing the gap in

performance between healthy and disease cases. This would increase

the reliability of the MRI-derived biomarkers.

7.2 Validation of MRI-derived biomarkers

In this thesis, brain image analysis methods for extracting potential

biomarkers were explored. In some cases, new processing pipelines were

proposed for deriving imaging biomarkers that are already established in

literature. This is the case of the hippocampal volume (Paper V) and the

corpus callosum (CC) area (Papers III and IV), which had already been

recognized as potential indicators of disease progression in previous studies

(see background Section 3.1.4). This thesis also presented novel insights

into MRI-derived information that could be of high relevance for biomarker

research. This is the case for the investigation of BrainAGE as a marker
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of aging in rats (Paper II)—since previously it had only been analyzed in

humans—as well as the CC shape deformations identified in multiple scle-

rosis (MS) patients (Paper IV), which correlate with disability in a similar

way as the CC area. Given the high novelty of these two latter results, the

author believes that future work on these specific applications should have

the highest priority.

Preclinical applications of BrainAGE

Given the promising results of Paper II, which showed that a healthy lifestyle

intervention does have a significant effect on BrainAGE, future work should

involve testing the proposed age prediction algorithm on other rat models

of aging. In particular, it would be interesting to analyze the BrainAGE

score on cohorts of pathological aging, such as rat models of Alzheimer’s

disease. In such applications, the main hypothesis is that higher BrainAGE

scores would be observed compared to controls as this would match the

results reported in human studies (see Section 3.4.6). If this is the case,

it would constitute an important validation of the BrainAGE biomarker in

preclinical settings.

Moreover, this study may also be extended by developing brain age pre-

diction models for mice. Indeed, mice are often preferred over rats as rodent

models given their smaller size, their lower maintenance costs and the higher

availability of tools for genetic manipulation (Bryda, 2013). Therefore, ana-

lyzing BrainAGE on mice would be extremely useful not only to strengthen

its potential across species but also to investigate additional models of ab-

normal aging.

Geometric features of the corpus callosum in multiple sclerosis

Paper IV provided interesting insights on the fact that with MS progression,

not only a reduction in CC area can be observed but also a change in its

shape. The relevance of this result is two-fold. The shape features not only

represent interesting MS biomarkers; they can also provide new knowledge

on the macroscopic neurodegeneration process in these patients. However,

it is important to further validate these findings.

First, a natural way of continuing the present work would consist in

performing shape analysis on CC segmented from larger datasets. For this

purpose, it would be interesting to include CC segmentations obtained by

applying the T1w- and FLAIR-specific pipelines proposed in Paper III. In

105



CHAPTER 7. FUTURE WORK

this study, a significant correlation was identified between the CC area and

disability (similarly to what was reported in Paper IV). Therefore, similar

correlations between shape features and disability would also be expected.

Furthermore, given the availability of software tools for CC segmentation

in 3D (such as FreeSurfer, which was tested in Papers III and IV), shape

analysis could be performed in 3D. This approach might shed new light on

the shape changes that the CC undergoes.

Finally, longitudinal studies should be designed to investigate how the

geometry of the CC changes through time. In Papers III and IV, both area

and shape features of the CC were shown to correlate with future disabil-

ity scores. This is an important result in the context of disease diagnosis

and monitoring. Thus, by running longitudinal studies, it would be possi-

ble to closely monitor the disease progression of the participants through

time and more thoroughly investigate the prediction power of the potential

biomarkers presented in this thesis.

7.3 Testing new architectures

In all three human studies presented in this thesis, the 2D U-Net was chosen

as the preferred architecture for approaching all segmentation tasks (both

for the CC in 2D and for the hippocampus in 3D). Despite the positive

results, it would still be beneficial to test new architectures and compare

their performance with that presented in this thesis.

For example, the knowledge gained from Paper V on the use of shape

context for improving cross-cohort accuracy could be applied for CC seg-

mentation (Papers III and IV). This could improve the segmentation per-

formance on those data that were shown to be particularly challenging, such

as FLAIR scans and scans from patients with higher degrees of atrophy (see

Paper III).

The hippocampal segmentation method presented in Paper V can also be

further improved. While the shape input layer can be preserved, alternative

segmentation networks could be tested. For instance, the three orthogonal

2D U-Nets might be replaced by only one 3D network, for example the 3D

U-Net (Çiçek et al., 2016) or the V-Net (Milletari et al., 2016). In this

way, the network would learn from 3D information instead of considering

one image view at a time, and this may improve the final segmentation

accuracy.
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Conclusions

The studies included in this thesis showed how the development and use of

appropriate MRI image processing tools can help characterize and analyze

brain morphology. MRI scans could be employed to extract important in-

formation on the size and shape of brain structures, which in turn could be

used for accomplishing two main goals.

First, this morphological information could provide new knowledge for

better understanding the brain and how its structure changes due to multi-

ple factors. Morphological changes of an evolutionary nature were explored

in Paper I, where domestication was found to significantly reshape brain

structure in rabbits in terms of both regional gray matter volume and white

matter integrity. Lifestyle-induced modifications were investigated in Pa-

per II, where a healthy lifestyle was found to significantly slow rat brain

aging. New insights were also gained regarding the changes in the human

brain affected my multiple sclerosis (MS) thanks to the shape analysis of the

corpus callosum (CC) conducted in Paper IV, which revealed a significant

correlation between disability and CC thickness and bending angle.

Second, data on brain structure, together with the implementation of

appropriate machine learning-based models, could be used to validate and

expand the current knowledge on neuroimaging biomarkers. A preclinical

validation of BrainAGE as a potential marker of healthy brain aging was

successfully carried out in Paper II, whereas methods for obtaining reliable

markers of neurodegeneration were explored in the three human studies

of this thesis. In particular, morphological measures extracted from the

automatic segmentations of the CC and the hippocampus were associated

with disease state in MS and Alzheimer’s disease (AD), respectively.
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Muñoz-Moreno, E., Arbat-Plana, A., Batalle, D., Soria, G., Illa, M., Prats-Galino,

A., Eixarch, E., Gratacos, E., 2013. A magnetic resonance image based atlas

of the rabbit brain for automatic parcellation. PLoS One 8, e67418.

Nenadić, I., Dietzek, M., Langbein, K., Sauer, H., Gaser, C., 2017. BrainAGE

score indicates accelerated brain aging in schizophrenia, but not bipolar disor-

der. Psychiatry Research: Neuroimaging 266, 86–89.

Northcutt, R.G., 2002. Understanding vertebrate brain evolution. Integrative and

Comparative Biology 42, 743–756. URL: https://doi.org/10.1093/icb/42.

4.743, doi:10.1093/icb/42.4.743.

Oishi, K., Mielke, M.M., Albert, M., Lyketsos, C.G., Mori, S., 2012. The fornix

sign: a potential sign for Alzheimer’s disease based on diffusion tensor imaging.

J Neuroimaging 22, 365–74. doi:10.1111/j.1552-6569.2011.00633.x.
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Wang, C., Frimmel, H., Smedby, Ö., 2014. Fast level-set based image segmentation

using coherent propagation. Medical physics 41, 073501.
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