
Formalizing Trajectories in Human-Robot Encounters
via Probabilistic STL Inference

Alexis Linard, Ilaria Torre, Anders Steen, Iolanda Leite and Jana Tumova

Abstract— In this paper, we are interested in formalizing
human trajectories in human-robot encounters. We consider
a particular case where a human and a robot walk towards
each other. A question that arises is whether, when, and how
humans will deviate from their trajectory to avoid a collision.
These human trajectories can then be used to generate socially
acceptable robot trajectories. To model these trajectories, we
propose a data-driven algorithm to extract a formal specifi-
cation expressed in Signal Temporal Logic with probabilistic
predicates. We evaluated our method on trajectories collected
through an online study where participants had to avoid
colliding with a robot in a shared environment. Further, we
demonstrate that probabilistic STL is a suitable formalism
to depict human behavior, choices and preferences in specific
scenarios of social navigation.

Index Terms— Temporal Logic Inference, Signal Temporal
Logic, Human-Robot Interaction.

I. INTRODUCTION

The increasing popularity of deploying robots in social
environments leads to new research challenges, such as
prediction of human behavior in crowds or identification of
different navigation styles [1], [2] and thus enable robot
controllers that would react efficiently and appropriately
to human behavior [3]. However, very often, models of
human behavior often lack interpretability. For instance, deep
neural networks [4], despite being undoubtedly powerful
at making good predictions, are by essence black boxes
making decisions that are hardly decipherable. At the same
time, accountability and interpretability are vital for human-
robot interaction to be safety-critical. In this paper, we aim
to retrieve interpretable models of human trajectories via
temporal logics that are highly expressive yet retain the
structure and some resemblance to natural language.

Temporal logics have been adopted to specify complex
robotic tasks for more than a decade [5]. Recently, Linear
Temporal Logic has also been used to express social norms
in human-robot interaction [6] and describe social robot be-
haviors [7]. Signal Temporal Logic (STL) is a richer variant
that can express system properties that include bounds on
time and values of system parameters. It is defined over
continuous signals [8], and hence can capture properties of
trajectories in a 2D workspace, i.e. 2-dimensional signals.
In robot motion planning and control, desired behavior

The authors are with the KTH Royal Institute of Technology, SE-
100 44, Stockholm, Sweden, with the division of Robotics, Percep-
tion and Learning, Faculty of Electrical Engineering and Computer Sci-
ence. This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Al-
ice Wallenberg Foundation and the Swedish Research Council (VR).
{linard,ilariat,astee,iolanda,tumova}@kth.se

specifications and preferences expressed in STL are typically
designed manually based on domain and task knowledge.

Temporal logic inference methods can synthesize spec-
ifications of desired trajectories from data. Given a series
of finite-time signals, STL inference algorithms focus on
finding a formula that optimally describes these signals.
Proposed inference methods span two categories: parameter
synthesis, that is, given the structure of an STL formula to
learn parameters to classify signals correctly [9]; and learning
both the structure and parameters of the formula. The latter
has been approached, e.g., via offline and online supervised
learning approaches based on decision trees [10], evolu-
tionary algorithms [11], unsupervised learning approaches
[12], or active learning [13], where the authors consider a
setting where data is a priori not available but interactively
retrieved through queries between the learning algorithm and
the signal-producing system.

Probabilistic extensions of STL provide tools to model
stochastic properties of systems and enforce probabilistic
guarantees on achieving them [14], as well as to model
uncertainties regarding the environment [15]. One of the
probabilistic extensions of STL uses predicates that bound
the probability of a state given a normal distribution. In
this paper, this is the extension we refer to when talking
about probabilistic STL. We propose using this probabilistic
STL to model human trajectories as a good compromise
between the rigor and interpretability of temporal logics and
the essence of human behavior, which can be hard to predict
at all times. However, to the best of our knowledge, learning
of probabilistic STL formulae has not been addressed before.

This paper aims to bridge the gap between models de-
scribing human behavior used to deploy robots in social
contexts and formal method-based robot control to accom-
plish complex missions with guaranteed performance. We
aim to learn a specification that reasons on probabilities
of human behavior and choices. Our contributions can be
summarized as follows: 1) we designed an algorithm to learn
probabilistic STL specifications from data, and 2) to evaluate
our algorithm, we collected data in a study inspired by the
game-theoretic “Game of Chicken” [16], where users in a
simulated environment had to navigate a space shared with
a robot. The crowd workers controlled a virtual avatar that
walked towards a robot moving in the opposite direction
along the same path. To avoid a collision, users had to
deviate their trajectory. We demonstrated how STL with
probabilistic predicates is a suitable formalism for modeling
human behavior in the context of social navigation. Thus, the
learnt specifications can later be implemented in socially-

aware robot controllers to improve the quality of human
experience in human-robot encounters.

Closely related work includes [17], where the authors
introduced a navigation system consisting of a planner that
attempts to optimize a robot’s trajectory considering social
constraints such as safety, time-to-collision and directional
compatibility of human-robot motion. An extension [18]
considers reactive planning and decision making in a human-
robot co-navigation setting, where humans are treated as co-
existing agents. However, these works focus on navigation
only and do not account for more complex robot task
specifications. Another approach is presented in exploratory
experimental works studying how autonomous robots nav-
igate around people in real-world environments [19] and
about the way a robot should approach humans [20] from
an empirical perspective.

II. PRELIMINARIES

Let R and N be the set of real and natural numbers,
respectively. We use discrete notion of time throughout this
paper, and time intervals are in the form I = [t1, t2] ⊂ N,
t1, t2 ∈ N, t1 ≤ t2. [τ+t1, τ+t2] is denoted by τ+I , τ ∈ N.
An n-dimensional, real, finite-time, discrete-time signal σ is
defined as a sequence of real values σ : σ(t0)σ(t1)σ(t2) · · · ,
where σ(ti) is the value of signal σ at time ti s.t. σ(ti) ∈
S,S ⊂ Rn, t ∈ N. We consider S = Rn. The set of all
signals with values taken in S is denoted S.

A. Probabilistic Models

A multivariate normal distribution (or n-dimensional nor-
mal distribution) of an n-dimensional random vector X =
(X1, . . . , Xn)T is defined as:

X ∼ N (µ,Σ) (1)

where µ ∈ Rn is an n-dimensional mean vector and Σ ∈
Rn×n an n× n covariance matrix such that:

µ = E[X] = (E[X1], . . . , E[Xn])T

Σi,j = E[(Xi − µi)(Xj − µj)]
(2)

Given two n-dimensional normal distributions N0(µ0,Σ0)
and N1(µ1,Σ1), the Kullback–Leibler divergence from N0

to N1 is defined as:

DKL(N0 ‖ N1) =
1

2

(
tr
(
Σ−11 Σ0

)
+ (µ1 − µ0)

T
Σ−11 (µ1 − µ0)− n+ ln

(
det Σ1

det Σ0

))
(3)

where tr(Σ) denotes the trace of an n×n square matrix Σ,
and det Σ its determinant.

The Jensen-Shannon Divergence between N0 and N1 is
defined as:

DJS(N0 ‖ N1) =
1

2
DKL(N0 ‖M) +

1

2
DKL(N1 ‖M) (4)

where M = 1
2 (N0 + N1) is the average of the two distri-

butions. Note that in [21],
√
DJS has been proven to be a

metric.

The probability at time ti of an n-dimensional signal σ to
fit N (µ,Σ) is defined as the probability of some unseen data
point y(ti) of being “closer” to the distribution than σ(ti):

P(σ(ti) | N (µ,Σ)) = 1−P(Q ≤ (σ(ti)−µ)TΣ−1(σ(ti)−µ))

with Q = (y(ti) − µ)TΣ−1(y(ti) − µ). Note that Q can
be approximated as a chi-square distribution with n degrees
of freedom. The definition of P(σ(ti) | N (µ,Σ)) follows
principles related to the Mahalanobis distance.

B. Probabilistic Signal Temporal Logic

Similarly to [14], we define an extension of STL [8] to
include probabilistic predicates of the form χε, where χ =
N (µ,Σ) and ε ∈ [0, 1], ε ∈ R is the probability threshold
for a signal σ(ti) at time ti of fitting χ.

In the rest of the paper, we will consider the following
fragment of STL with probabilistic predicates:

φ ::= > | φ1 ∨ φ2 | φ1 ∧ φ2 | ♦Iχε (5)

where > is the Boolean True constant, ∨ and ∧ are the
Boolean operators for disjunction and conjunction, respec-
tively; and ♦I is the temporal operator eventually over
bounded interval I .

The qualitative semantics of this fragment are defined as:

σ(ti) |= ♦Iχε ⇔ ∃i′ ∈ ti + I s.t. P(σ(ti′) | χ) ≥ ε
σ(ti) |= φ1 ∨ φ2 ⇔ (σ(ti) |= φ1) ∨ (σ(ti) |= φ2)
σ(ti) |= φ1 ∧ φ2 ⇔ (σ(ti) |= φ1) ∧ (σ(ti) |= φ2)

Since we consider modeling trajectories of human-robot
encounters and how humans deviate their trajectories, this
fragment appears to be expressive enough: in particular, the
probabilistic predicates encode desired spatial distributions
of trajectories at certain discrete times; the eventually op-
erator enforces the probabilistic predicate to hold at least
once within a given interval; finally, the conjunction and
disjunction operators encode combinations of events.

III. PROBLEM FORMULATION

We aim to find a probabilistic STL specification in
the form of (5) that describes a set of m trajecto-
ries S discretized by sampling into discrete-time signals
σi(t0)σi(t1)σi(t2) · · · , i ∈ {1, . . . ,m}. We consider the set-
ting where only positive data is available, i.e. data describing
the desired trajectories, but no data violating the specification
is present in the dataset. Formally:

Problem 1: Given a set of discrete-time signals S, learn
a probabilistic STL formula φ, such that ∀σ ∈ S, σ |= φ
and φ is tight enough, that is, φ is a representation of the set
S but not of a random or undesired set of trajectories.

IV. METHODOLOGY

The overall procedure is described in Algorithm 1 and
consists of four steps:

a) First, for each time instant ti, to find the number
of n-dimensional normal distributions (in this case,
2-dimensional since we consider trajectories in 2D)

that cluster data points σ1(ti), σ2(ti), . . . , σm(ti) into
dense enough clusters (see below for details).

b) Second, to smooth the number of normal distributions
over time. This operation enables the creation of win-
dows of successive time steps with the same number
of normal distributions that will allow for consistent
generalizations, i.e. form a succession of intervals on
which the eventually operators will be defined.

c) Third, in each of the previously defined intervals, to
link the distributions of one time step ti to the closest
distribution in the next time step ti+1. Therefore,
we create what we refer to as “chains” of normal
distributions over time that can later be generalized
into one meta distribution describing the whole chain
in the interval. Such meta distribution is surrounded
by an eventually operator equipped with the related
interval.

d) Fourth, to form the output specification as a disjunction
of all relevant conjunctions of meta distributions over
intervals that describe the input trajectories.

Below we describe the four procedures in detail.
a) Retrieving the number of normal distributions ad-

equately clustering the trajectories at time ti: The first
step is to iterate over each time step t0, t1, . . . , tH of the
trajectories (where H denotes the length of the longest signal
in the dataset S) to calculate how many dense clusters of
data points can be formed (l.2–6). We want to retrieve the
optimal number of normal distributions that describe the
data at each time step ti. To do so, all the data points
Sti of the signals at time ti are iteratively retrieved (l.3).
For each time step ti, a mixture of Gaussians gmm of
the form {N1(µ1,Σ1), . . . ,Nβ(µβ ,Σβ)} is retrieved from
Sti , using statistical learning (l.4). The number of normal
distributions composing gmm is a parameter β, being the
maximum number of desired normal distributions describ-
ing the data points at any instant. Note here that classi-
cal machine learning implementations are available for the
gaussianMixture function1. The normal distributions
comprised in gmm are later clustered. The goal of the
algorithm hierarchicalClust (l.5) is to provide the
optimal number of clusters of normal distributions that can
be formed within gmm, given a distance metric and a
threshold α given as input to the algorithm. It consists of
a hierarchical clustering-based approach that first computes
a distance matrix storing the pairwise distances between
normal distributions in gmm. The distance function used
is the square root of the Jensen-Shannon distance between
two normal distributions (4). The fact that

√
DJS is a metric

is of utmost importance: in a hierarchical clustering fashion
and in order to operate linkage of the distance matrix, it is
required that the distance function used is a metric (in the
mathematical sense, i.e. satisfying identity of indiscernibles,
symmetry and triangle inequality). Linkage is performed, and
clusters are formed so that the pairwise distance between

1in our implementation, we used the eponymous function from the Python
scipy library.

Algorithm 1: LEARNSTL(S)

Input: α – max
√
DJS in a cluster of normal distr

β – max nb normal distributions clustering datapoints
θ – tightness factor
H = maxσ∈S |σ| – length of longest signal in S
Output: φ – STL formula of the form of (5).
// calculate nb of optimal distributions

1 G ← ∅
2 for i ∈ [0, H] do
3 Sti ← {σ(ti), ∀σ ∈ S}
4 gmm← gaussianMixture(Sti , β)
5 |C| ← hierarchicalClust(gmm,α)
6 Gti ← gaussianMixture(Sti , |C|)
// forming intervals

7 G ← smoothNbDistr(G)
// forming meta distributions

8 Ψ← ∅
9 for k, I ← groupBy(G) do

10 ΨI ← ∅
11 chains← linkDistributions(G, k, I)
12 for c ∈ chains do
13 Sc ← signals(c)
14 µ,Σ← gaussianMixture(Sc, 1)
15 χ← N (µ,Σ)
16 ε← Pθ({P(σ(tτ) | χ), ∀τ ∈ I, ∀σ ∈ Sc})
17 ΨI ← ΨI ∪ {♦Iχε}

// construction of the returned formula

18 G← DAG(Ψ)
19 G← prune(G,S)
20 return

∨
path∈paths(G)

∧
♦Iχε∈path

♦Iχε

elements within a cluster remains below the threshold α.
hierarchicalClust then returns |C|, the number of
optimal clusters of data points. The next operation is to
calculate Gti , the mixture of |C| normal distributions given
the data points Sti (l.6).

b) Forming intervals of a uniform number of distri-
butions: After the mixture of normal distributions G is
calculated for all time steps, we want to smooth the number
of normal distributions in G over time. To illustrate this, take
the following example: if Gt10..t14 and Gt16..t20 are composed
of 3 distributions, but Gt15 contains 4, one may want to
smooth this value in order to, later on, generalize over the
interval [10..20]. We call the function smoothNbDistr
(l.7) that runs a Savitzky–Golay filter on the number of
normal distributions over time steps to perform smoothing.
In case at a given time ti the number of normal distributions
in Gti is changed, the filter automatically updates Gti so
that it will contain the desired number of distributions (we
run the gaussianMixture function on the data points
σ1(ti), σ2(ti), . . . , σm(ti) at time ti, with the smoothed num-
ber of distributions). After this operation, we form intervals
of successive time steps where the trajectories are clustered
in the same number of distributions.

c) Forming meta distributions in intervals: The next
step is, for each interval I (provided by the groupBy
function, – l.9), to form meta distributions covering the time
steps in the interval. First, we create k empty chains, k being
the number of normal distributions in the interval. The key
insight is to perform a 1-1 mapping of the closest normal
distributions from one time step to the next in I . The linkage
is done such that a given distribution in Gti at time ti ∈ I
is linked to the closest distribution in Gti+1 , using

√
DJS as

a distance (l.11). Now, for each chain, we will calculate the
related probabilistic predicate (l.12). We first retrieve all the
data points Sc corresponding to trajectories being classified
by any of the chain distributions in G (l.13). We then infer a
meta distribution χ modeling all these data points Sc (l.14–
15). The probability threshold ε is set to the θth percentile
(noted Pθ) of the set of probabilities for each data point
in Sc to fit χ (l.16). Note that the parameter θ acts here
as a tightness factor, since the closer it will be to 1, the
greater the probability of data points to satisfy χ will be;
conversely, a θ closer to 99 will impose a high bound on
the minimum probability of satisfaction of χ. Then, we add
the probabilistic predicate χε surrounded by an eventually
operator with interval I to the set of STL formulae at interval
I , ΨI (l.17), and we repeat this for the rest of the chains.

d) Construction of the returned STL formula: From the
set of STL formulae of the form ♦Iχε in Ψ, we construct
a DAG such that edges connect components with adjacent
intervals (l.18). Since it is possible that some of the signals
in S do not use all combinations of adjacent STL formulae,
we prune the graph G such that unnecessary edges w.r.t.
the dataset S are removed (l.19). The returned formula is
the disjunction of all paths in G, where a path is defined as
the conjunction of STL formulae of the form ♦Iχε acting as
vertices of the path (l.20). About our dataset of trajectories of
human-robot encounters, the disjunctions represent as many
possible combinations of choices (speed up, slow down,
deviate to the left or the right) taken by the humans to
avoid the robot. The conjunctions represent the succession of
probabilistic distributions of their spatial location at different
time steps.

V. EXPERIMENTS

We implemented and tested our learning algorithm for
modeling trajectories in Python 3.82. We ran our experiments
on an Intel i7-8665U CPU and 32GB RAM.

A. Data collection

Participants played a game where they had to reach a target
zone while navigating around a robot moving towards them.
The game was developed in Unity version 2019.4.16f1 and
exported to WebGL. Screenshots from the game are shown in
Fig. 1. We recruited 50 participants (16 female, median age
33 years old) on the online platform Amazon Mechanical
Turk (AMT), due to COVID-19 restrictions at the time.
When they accepted to take part in the study, they were

2Software and data available at https://github.com/allinard/stl hrencounters

A B

C D

Fig. 1: Screenshots from the experiment: robot’s and par-
ticipant’s avatars walking towards each other. A: the partici-
pant’s starting point – B: participant deviating to the left – C:
participant deviating to the right – D: participant and robot
colliding.

redirected to a webpage that contained a digital consent form.
They completed 20 trials of the game. Each trial proceeded as
follows: participants walked towards a goal, represented by
a red flag, by means of an avatar (Fig. 1). Participants could
use 4 types of actions triggered by the 4 keyboard arrows:
↑ to start moving and accelerate the speed of the avatar;
↓ to decelerate the speed; ← and → to deviate the avatar’s
trajectory to the left or to the right. In order to reach the goal,
they had to navigate around a virtual robot. Specifically, we
used a 3D model of Softbank Robotics’s Pepper3, a widely-
used social robot [22]. Since the human and robot avatars
start from a large distance from each other, we added a
zoomed-in view of the robot so that participants had enough
time to see the robot before starting any movement. After the
last trial, participants answered some questions about their
gender, age, country of origin and experience with robots,
and were given the unique survey code needed to be paid
in AMT. The whole experiment lasted approximately 10
minutes.

B. Results

We collected a total of 1,000 trajectories recorded with a
frequency of 10 Hz, i.e. time steps of 100ms. The initial x-
position of both the participants and the robot was set to 0.
The initial y-position of the participant was 0, and the one
of the robot 43. As pre-processing, we filtered out:

1) the trajectories where participants deviated too much
to the left or to the right. The average of the absolute
value of x positions was 1.47, with a standard deviation
of 1.16. We filtered out trajectories containing at least
one data point with absolute value of x greater than
1.47 + 2× 1.16 = 3.79.

3https://www.softbankrobotics.com/emea/en/pepper

https://github.com/allinard/stl_hrencounters
https://www.softbankrobotics.com/emea/en/pepper

−10 0 10
0

10

20

30

40

(a) χ1

−10 0 10
0

10

20

30

40

(b) χ2

−10 0 10
0

10

20

30

40

(c) χ3

−10 0 10
0

10

20

30

40

(d) χ4

−10 0 10
0

10

20

30

40

(e) χ5

−10 0 10
0

10

20

30

40

(f) χ6

Fig. 2: Spatial representations of the 6 probabilistic predicates in the learnt specification.

2) the trajectories where participants completed the task
too slowly. The minimum completion was done in 72
time steps, the maximum in 248 time steps, with an
average of 81 and a standard deviation of 17.32. We
removed trajectories completed with a number of time
steps greater than b81 + 2× 17.32c = 115.

3) the trajectories where participants collided with the
robot, which represented 127 trajectories. Note that we
used these colliding trajectories later on for evaluation
purposes, which we refer to as S−.

As a result, we used 814 trajectories, which we refer to as
S+.

a) Learned specification: Using Algorithm 1, we
learned the following specification. We empirically set pa-
rameters α = 1.6; β = 5; θ = 27; w = 9; p = 1. In Fig. 2
we show a spatial representation of the different probabilistic
predicates composing the STL formula.

φ =
(

(φ1 ∧ φ2 ∧ φ3 ∧ φ5 ∧ φ6)

∨ (φ1 ∧ φ2 ∧ φ4 ∧ φ5 ∧ φ6)
) (6)

φ1 = ♦[1,10]χ
0.46
1 , µ1 = [0.019 1.226] , Σ1 =

[
0.022 0.01
0.01 0.769

]
φ2 = ♦[11,50]χ

0.26
2 , µ2 = [0.266 16.154] , Σ2 =

[
0.959 0.401
0.401 45.024

]
φ3 = ♦[51,55]χ

0.301
3 , µ3 = [−1.28 28.359] , Σ3 =

[
0.284 0.153
0.153 0.548

]
φ4 = ♦[51,55]χ

0.557
4 , µ4 = [1.273 28.036] , Σ4 =

[
0.39 0.221
0.221 4.756

]
φ5 = ♦[56,103]χ

0.29
5 , µ5 = [0.284 38.727] , Σ5 =

[
0.588 −0.002
−0.002 11.038

]
φ6 = ♦[104,114]χ

0.385
6 , µ6 = [0.277 40.827] , Σ6 =

[
0.53 0.039
0.039 0.189

]
We can see from the retrieved specification the ability of

our algorithm to learn disjunctions of events (in our case,
disjunctions of clusters of trajectories). Indeed, concerning
our case study, we can see that the right/left trajectory
deviations are correctly identified by 2 of the probabilistic
predicates (φ3–Fig. 2c and φ4–Fig. 2d). Besides, combina-
tions of different user choices and preferences are established
by the disjunctions of the returned specification.

b) Evaluation: Our algorithm returned the learned
specification in (6) in about 20s. We state the evaluation

0.0 0.2 0.4 0.6 0.8 1.0
TPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

θ=27
TPR=0.607
TNR=0.843

θ=9
TPR=0.848
TNR=0.646

θ=51
TPR=0.322
TNR=0.929

Fig. 3: Pareto front of TPR and TNR, for different θ’s.

results in terms of True Positive Rate (TPR – the proportion
of signals in S+ that satisfy the learned specification) and
True Negative Rate (TNR – the proportion of colliding
trajectories in S− that violate the learned specification). The
goal is to achieve both good TPR and TNR. In Fig. 3, we
show trade-offs between the obtained TPR and TNR for
different values of the tightness parameter θ, and show the
pareto front in red. As an example, we achieved a good
compromise between TPR and TNR with θ = 27, that is,
TPR = 0.607 and TNR = 0.843. More generally, in order
to evaluate our method as a classifier of trajectories, we ran
a cross-validation of 10 folds on our dataset. We achieved
an average TPR of 0.563 (variance of 0.003) and an average
TNR of 0.815 (variance of 0.003).

C. Discussion

The interpretation of our results is the following: the
learned specification, despite rejecting some good trajecto-
ries, is tight enough to refuse satisfaction of most of the
bad trajectories (i.e., trajectories that result in human-robot
collision). These are encouraging results. Since we want to
use the specification on robot controllers, we can be confident
that the generated trajectories given this specification will
follow the behavior described by humans in these environ-
ments. Indeed, by construction of Algorithm 1, the tightness

parameter θ directly influenced how the parameter ε in the
formulae of the form ♦Iχε is set. As a consequence, a tighter
θ parameter induces that fewer data points in the space are
capable of satisfying the corresponding χε, whereas a low
tightness induces high permissiveness and the capturing of
false positives. Empirically, however, tightness degrees can
be explored, and local optimization of the θ parameter is
recommended in order to achieve the best balanced accuracy,
TNR or TPR according to the needs. Note also that we
chose to use the eventually operator instead of the always
operator in our fragment (5), since the always operator
is too restrictive, by enforcing a given condition to hold
through an entire interval. Nonetheless, we argue that our
technique applies to any scenario where valid trajectories
can be clustered into user choices describing multiple classes
of trajectories. We aim to apply it to other case studies in
the context of social navigation. The fact that our method
is parameterizable is an asset to model different contexts,
depending on how safety critical the application is (one may
require satisfaction of probabilistic predicates to be more
restrictive than other scenarios).

D. Future work

A possible modification of our algorithm would be to
weight the disjunction operators by how many trajectories
in the dataset use a given element in the disjunction. This
is an interesting approach for synthesizing trajectories. Our
next step is to achieve control synthesis based on the learnt
STL formula with probabilistic predicates, resulting in the
production of trajectories satisfying the STL specification.
Typically, given an STL formula (e.g. the learnt specifica-
tion), mixed integer semi-definite programming approaches
can be employed, such as the one proposed in [14]. Our
goal is to generate trajectories based on the learned spec-
ification that we would show to users in simulations. We
hope to reintegrate generated trajectories in a user study,
refine the learned specification based on user experience, and
eventually converge to specifications of trajectories for social
navigation of robots among humans.

VI. CONCLUSION

We developed a technique to infer probabilistic STL
formulae formalizing human-robot encounters. We collected
human data in a simulation that places users in a virtual
environment with a robot, where the user needs to reach
a target zone by avoiding the robot. From the trajectories
recorded from the study, we learned a specification of social
navigation. Out approach learned a formula tight enough to
reject most of the colliding trajectories. In the future, we will
deploy robot’s controllers embedding the social navigation
specification, test its integration, and refine the specification
thanks to feedback on user experience.

REFERENCES

[1] L. Sun, Z. Yan, S. M. Mellado, M. Hanheide, and T. Duckett,
“3dof pedestrian trajectory prediction learned from long-term au-
tonomous mobile robot deployment data,” in International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 5942–5948.

[2] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning
social etiquette: Human trajectory understanding in crowded scenes,”
in European conference on computer vision. Springer, 2016, pp.
549–565.

[3] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human motion trajectory prediction: A survey,”
The International Journal of Robotics Research, vol. 39, no. 8, pp.
895–935, 2020.

[4] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
gan: Socially acceptable trajectories with generative adversarial net-
works,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2255–2264.

[5] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in International Conference on
Robotics and Automation (ICRA). IEEE, 2005, pp. 2020–2025.

[6] D. Porfirio, A. Sauppé, A. Albarghouthi, and B. Mutlu, “Authoring
and verifying human-robot interactions,” in Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology,
2018, pp. 75–86.

[7] D. Porfirio, A. Sauppe, A. Albarghouthi, and B. Mutlu, “Transforming
robot programs based on social context,” in Proceedings of the 2020
CHI conference on human factors in computing systems, 2020.

[8] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[9] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifi-
cation of temporal properties,” in International Conference on Runtime
Verification. Springer, 2011, pp. 147–160.

[10] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
decision tree approach to data classification using signal temporal
logic,” in Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control. ACM, 2016, pp. 1–10.

[11] L. Nenzi, S. Silvetti, E. Bartocci, and L. Bortolussi, “A robust
genetic algorithm for learning temporal specifications from data,”
in International Conference on Quantitative Evaluation of Systems.
Springer, 2018, pp. 323–338.

[12] A. Jones, Z. Kong, and C. Belta, “Anomaly detection in cyber-physical
systems: A formal methods approach,” in 53rd Conference on Decision
and Control (CDC). IEEE, 2014, pp. 848–853.

[13] A. Linard and J. Tumova, “Active learning of signal temporal logic
specifications,” in 2020 IEEE 16th International Conference on Au-
tomation Science and Engineering (CASE). IEEE, 2020, pp. 779–785.

[14] D. Sadigh and A. Kapoor, “Safe control under uncertainty with
probabilistic signal temporal logic,” in Robotics: Science and Systems
(RSS ’16), 06 2016.

[15] M. Tiger and F. Heintz, “Incremental reasoning in probabilistic signal
temporal logic,” International Journal of Approximate Reasoning, vol.
119, pp. 325–352, 2020.

[16] I. Torre, A. Linard, A. Steen, J. Tumova, and I. Leite, “Should robots
chicken? how anthropomorphism and perceived autonomy influence
trajectories in a game-theoretic problem.” To appear in Proceeding
of the 16th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), 2021.

[17] H. Khambhaita and R. Alami, “Viewing robot navigation in human en-
vironment as a cooperative activity,” in Robotics Research. Springer,
2020, pp. 285–300.

[18] P.-T. Singamaneni and R. Alami, “Hateb-2: Reactive planning and
decision making in human-robot co-navigation,” in International Con-
ference on Robot & Human Interactive Communication, 2020, 2020.

[19] M. Dı́az-Boladeras, D. Paillacho, C. Angulo, O. Torres, J. González-
Diéguez, and J. Albo-Canals, “Evaluating group-robot interaction in
crowded public spaces: A week-long exploratory study in the wild
with a humanoid robot guiding visitors through a science museum,”
International Journal of Humanoid Robotics, vol. 12, no. 04, 2015.

[20] A. K. Ball, D. C. Rye, D. Silvera-Tawil, and M. Velonaki, “How should
a robot approach two people?” Journal of Human-Robot Interaction,
vol. 6, no. 3, pp. 71–91, 2017.

[21] D. M. Endres and J. E. Schindelin, “A new metric for probability
distributions,” IEEE Transactions on Information theory, vol. 49, no. 7,
pp. 1858–1860, 2003.

[22] M. E. Foster, R. Alami, O. Gestranius, O. Lemon, M. Niemelä, J.-
M. Odobez, and A. K. Pandey, “The mummer project: Engaging
human-robot interaction in real-world public spaces,” in International
Conference on Social Robotics. Springer, 2016, pp. 753–763.

	Introduction
	Preliminaries
	Probabilistic Models
	Probabilistic Signal Temporal Logic

	Problem formulation
	Methodology
	Experiments
	Data collection
	Results
	Discussion
	Future work

	Conclusion
	References

