
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at ICRA International Conference on
Robotics and Automation.

Citation for the original published paper:

Karlsson, J., van Waveren, S., Pek, C., Torre, I., Leite, I. et al. (2021)
Encoding Human Driving Styles in Motion Planning for Autonomous Vehicles
In:

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292195



Encoding Human Driving Styles in Motion Planning for Autonomous
Vehicles

Jesper Karlsson?, Sanne van Waveren?, Christian Pek, Ilaria Torre, Iolanda Leite and Jana Tumova
Division of Robotics, Perception and Learning,

KTH Royal Institute of Technology Stockholm, Sweden
Email: {jeskarl,sannevw,pek2,ilariat,iolanda,tumova}@kth.se

?Contributed Equally

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Driving styles play a major role in the acceptance
and use of autonomous vehicles. Yet, existing motion planning
techniques can often only incorporate simple driving styles that
are modeled by the developers of the planner and not tailored
to the passenger. We present a new approach to encode human
driving styles through the use of signal temporal logic and
its robustness metrics. Specifically, we use a penalty structure
that can be used in many motion planning frameworks, and
calibrate its parameters to model different automated driving
styles. We combine this penalty structure with a set of signal
temporal logic formula, based on the Responsibility-Sensitive
Safety model, to generate trajectories that we expected to
correlate with three different driving styles: aggressive, neutral,
and defensive. An online study showed that people perceived
different parameterizations of the motion planner as unique
driving styles, and that most people tend to prefer a more
defensive automated driving style, which correlated to their
self-reported driving style.

Index Terms— Autonomous Vehicle Navigation, Formal
Methods in Robotics and Automation, Human Factors and
Human-in-the-Loop

I. INTRODUCTION

Driving styles are crucial for passenger trust and accep-
tance of autonomous vehicles (AVs) [1], [2]. While driving
styles can be learned from human data [3]–[6], recent re-
search showed that people tend to prefer a more defensive
driving style for AVs over their own driving style [7]. Yet,
many AVs tend to drive overly defensive, limiting their
efficiency [5] and compromising passenger comfort [8].

Motion planners can incorporate different driving styles
through adapting cost functions and a set of constraints.
Often, developers carefully handcraft these cost functions to
achieve higher passenger comfort, e.g. by favoring smooth
accelerations. Modeling the complex aspects of driving styles
in a single cost function is difficult and constraints are
mostly used in a strict fashion (hard constraints) to ensure
safety [9], road compliance [10] or the satisfaction of traffic
rules [11]. Arguably, AVs may occasionally need to violate
certain constraints (soft constraints) for driving progress,
e.g., crossing lane markings when another vehicle blocks the
current lane.

Constraints can be modeled by temporal logic, such as
LTL [12] or STL [13], [14], which extends classical first
order logic with the possibility to model temporal aspects.
STL is particularly well-suited to model constraints in robotic

applications, as it operates over continuous signals (e.g., tra-
jectories) and allows arbitrary evaluation functions. Contrary
to other logics, STL’s inherent quantitative semantics allow
for quality evaluation of a proposed solution, e.g., how much
and how long a trajectory violates the specification.

In our prior work [15], [16], we use syntactically co-
safe Linear Temporal Logic (scLTL) to encode traffic rules
in various traffic scenarios. We can determine trajectories
that minimally violate these rules, by assigning costs to
potential violations of each rule. Such least-violating motion
planning approaches attempt to find a motion plan that
minimizes violation over the set of specifications, when not
all specifications can be strictly guaranteed [17], [18].

To enrich the STL robustness metric, Lindemann et al. [19]
propose the discrete average space robustness, which consid-
ers the average satisfaction of a formula, rather than the worst
case scenario of the standard robustness measure. Barbosa
et al. [20] use the STL robustness semantics from [21] for
exploration tasks. We complement these works [21] [20], by
showing that robustness metrics of STL formulas can be used
to model human driving styles.

We previously proposed a cost function that encodes the
importance of mission time against the satisfaction of spatial
preferences [21]. In this work, we implement a motion
planner that uses this cost function to support spatio-temporal
constraints. For a set of scenarios, we run our motion planner
with different calibrations to encode driving behavior from
which an objective defensive score can be computed.

This objective defensiveness score is adopted from Basu
et al [7], who define driving style in terms of defensiveness
level, and compute an objective defensiveness score from a
set of distinct driving features. Using the open-source driving
simulator CARLA [22], we collect trajectories that each
correspond to a distinct driving style (aggressive, neutral,
and defensive).

In an online study, people evaluated the perceived level of
defensiveness for different AV driving styles. We hypothesize
that calibrating this cost function allows us to model human
driving styles in motion planning. The main contributions of
this work are as follows:

1) We provide STL formulas for the RSS model [23] as
a specification to encode perceived driving styles;

2) We show that parameterizing the cost function results



in different driving behaviors that are perceived as
distinct driving styles, and that people prefer different
AV generated motion styles, which correlates to their
self-reported driving style.

II. MOTION PLANNING PRELIMINARIES

We employ STL, which is defined recursively according to
the grammar: ψ ::= µ | ¬µ | ψ1 ∧ψ2 | ψ1 ∨ψ2 | ψ1U[a,b]ψ2,
where µ is an atomic predicate, s.t.

µ =

{
> ⇐⇒ g(x) ≥ 0

⊥ ⇐⇒ g(x) < 0,

and g(x) : Rm → R is an evaluation function of a signal x ∈
Rm, corresponding to the trajectory of a dynamical system.

The satisfaction of a formula ψ by a signal x at
time t, is defined by the satisfaction relation, (x, t) |=
ψ. Here ψ1U[a,b]ψ2 denotes the Until operator, where
(x, t) |= ψ1U[a,b]ψ2 specifies that ψ1 must hold for signal
x at all times until a point in interval [a, b] where ψ2 holds.
Other operators can be derived from the basic operators, such
as eventually: F[a,b]ψ ≡ >U[a,b]ψ (ψ has to hold at some
point in interval [a, b]) and always: G[a,b]ψ ≡ ¬F[a,b]¬ψ (¬ψ
cannot hold at any time in interval [a, b]).

a) Quantitative Semantics of STL formulas: Here we
will briefly introduce the notion of space- and time robust-
ness, as proposed by Donzé et al. [13].

Let ρ(µ, x, t) denote a real-valued function, such that
(x, t) |= ψ ≡ ρ(µ, x, t) > 0. It can be interpreted as the
degree of satisfaction/violation of formula ψ by signal x. This
quantitative semantic is known as space robustness. Further-
more, let θ−(ψ, x, t) denote the left-time robustness, which
can be interpreted as the duration leading up to time t in
which ψ has been satisfied/violated, i.e.

θ−(ψ,x, t) =sign(ρ(ψ, x, t)) max
{
d ≥ 0 | ∀t′ ∈ [t− d, t]

sign(ρ(ψ, x, t′)) = sign(ρ(ψ, x, t))
}
,

b) Least-violating Motion planning with STL con-
straints: Driving specifications can be satisfied or violated
to a certain extent, e.g., driving at 100 km/h is worse than at
60 km/h on a road with 50 km/h speed limit. To measure
the violation of such a specification ψ, we use the modified
left-time robustness θ?(ψ, x, t) [21]:

θ?(ψ, x, t) = min(θ−(ψ, x, t), 0). (1)

Let w(α,A, ρ(ψ, x, t)) be a positive function that expresses
the compromise between a time-efficient trajectory and one
that prioritizes the spatial preferences, defined as follows:

w(α,A, ρ(ψ, x, t)) =


∞, ⇐⇒ ρ(ψ, x, t) < −α
0, ⇐⇒ ρ(ψ, x, t) > 0
−A
α
ρ(ψ, x, t) ⇐⇒ otherwise.

(2)
where α and A are user-defined parameters that specify the
lowest allowed spatial robustness, and the pace at which the
trajectory is being penalized as it approaches the the lowest
allowed spatial robustness.

The modified left-time robustness θ?(ψ, x, t) and the cost
function w(α,A, ρ(ψ, x, t)) can together quantify spatio-
temporal robustness in STL. The cost of a trajectory x, with
duration D, using said robustness is defined as:

PΨ(x) = −
∫ D

0

θ?(ψ, x, t)w(ρ(ψ, x, t))dt, (3)

which can be viewed as the quantitative semantics of the
operator Ĝ[0,D] [21].

III. MOTION PLANNING PROBLEM

We consider an AV νego operating in a traffic network
governed by rules of the road, similar to Vasile et al. [15], and
traffic behaviors derived from RSS [23]. The motion planning
problem weights the duration of the task and the violation of
the road-rules against one another to create a least-violating
trajectory (Sec. III-C). The road rules and desired behaviors
are specified as spatial preferences encoded in STL [13].

A. Vehicle Model

We define a vehicle νego as a tuple νego =
(X,U,R,Sense,Π,L), where X ⊂ R4, U ⊂ Rn and
R ⊂ R2 are the state space, control space and road net-
work, respectively. For simplicity, the vehicle dynamics use
a modified form of the Dubin’s model, defined as follows:

ṗx = V cos θ, ṗy = V sin θ,

θ̇ = u1, V = u2,
(4)

where the state x = (px, py, θ, V )> corresponds to the
position, yaw, and velocity of the vehicle. u1 and u2 are the
control inputs, denoting turn rate and velocity, respectively.
Let Sense : X → 2R be the vehicle’s limited sensing region,
from which it detects road signs, obstacles and markings. Let
Π denote the set of road signs and markings that annotate
the road network. Further, let h(νi) : X → R2 denote the
observation function that specifies the ith vehicle’s position.

a) Road Markings and Rules: Let L(t) denote the road
labeling map that assigns labels from Π to the sensing region
Sense(q). These labels determine which road rules should be
adhered to in the road context defined by the sensing region.

The road rules are defined in the reactive form as (θaj
Re⇒

θgj ), where θaj ∈ Θa, θgj ∈ Θg , Re⇒, are assumption formu-
las, guarantee formulas and a reactive implication [15]. A
traffic rule θj is active if the assumption formula θaj is sat-
isfied. Intuitively, the reactive implication can be understood
as defining the restrictions based on the road context of the
AV.

We write the full mission of the vehicle as:

θjUg ≡ (θaj
Re⇒ θgj )Ug, (5)

where g ⊂ R is a goal region to be reached in the road
network. The cost of the mission is measured using the
duration D, indicating the time it takes for a vehicle to reach
the goal region.



TABLE I: Application-Specific Symbols

Variable Description

ε Safety footprint of obstacles in the environ-
ment, it describes the desired distance to all
static obstacles.

µ Safety threshold that defines how close to the
center of the lane a vehicle should be.

lc Position of the center of lane parallel to the
current position of the vehicle.

alat,max Maximum lateral acceleration of a vehicle.
vνi Velocity vector of the ith vehicle, contains

lateral and longitudinal velocity

B. Spatial Preferences

We formalize common traffic rules from RSS [23] and
driving practices, e.g., the three-second rule [24], using STL.

Rule 1 (Safe longitudinal distance – “3-second rule”) Let
ν1 and ν2 denote two vehicles in a configuration s.t. ν2 is
ahead of ν1. The longitudinal distance dlon between ν1 and
ν2 is denoted as safe if the time tlon it takes to traverse dlon
is at least three seconds.

The specification can be encoded in the following formula:

Ψlon =
(
ψao,s

Re⇒ Ĝ[0,D] (|hlon(ν2)− hlon(ν1)| − dlon,min)
)
,

where ψao,s = Ĝ[0,D] (vν1lon − v
ν2
lon).

The three-second rule recommends that the time-headway to
the preceding car should not be smaller than 2 − 3 s. This
can be compared to the brake reaction time, which has been
shown to be 1− 2 s [25]. The smallest allowed longitudinal
distance between two cars, dlon,min is:

dlon,min = (vν1lon − v
ν2
lon)tBT , (6)

where tBT denotes the brake reaction time; here, 3 s.
The intuition behind the activation function ψao,s is that if

the velocity of ν2 is higher than that of ν1, then there is no
need to consider a minimum distance, because the distance
between the two vehicles will naturally increase over time.

Rule 2 (Safe lateral distance) The lateral distance dlat be-
tween ν1 and ν2 is unsafe if the lateral velocities vν1lat, v

ν2
lat are

pointed towards each other and the time it takes to traverse
dmin,lat (see Eq. 7) is within the interval t ∈ [0, tPT ].

The specification can be encoded in the following formula:

Ψlat =
(
ψalat

Re⇒ Ĝ[0,D] (|hlat(ν2)− hlat(ν1)| − dlat,min)
)
,

where

ψalat =¬Ψlon ∧ Ĝ[t,t+tPT ] (−vν1 · vν2) .

The smallest allowed lateral distance between two vehi-
cles, dmin,lat is:

dmin,lat = (vν1lat + vν2lat)tPT +
alat,maxt

2
PT

2
. (7)

This corresponds to the minimum distance in which it is
possible for a driver to react in case of unforeseen lane-
changing or swerving from adjoining lane. The value of tPT
is based on the concept of perception time, which has shown
to be 0.5−1 s [25] and alat,max is the maximum acceleration
in the lateral direction (see Table I).

The assumption formula ψalat states that Rule 2 is active
whenever νego is within a minimum safety distance to
another vehicle, and the lateral velocities have different
directions. The guarantee formula ensures that the vehicle
lateral distance between the two vehicles is larger than
dlat,min (Eq. 7).

Rule 3 (Safe overtaking manoeuvre – single vehicle) The
overtaking manoeuvre xν2 of vehicle ν1 is denoted as unsafe,
if at any point during the manoeuvre, ν1 is to the right of
ν2 relative to the direction of travel.

The specification can be encoded in the following formula:

Ψo,s =
(
ψao,s

Re⇒ Ĝ[0,D] (hlat(ν1)− hlat(ν2))
)
.

If ν2 is travelling at a velocity that is higher than the velocity
of ν1, then there is no need for an overtaking manoeuvre.
The assumption formula ψao,s ensures that no overtaking
manoeuvres are attempted unless needed. The guarantee
formula ensures that the overtaking manoeuvre is performed
from the left of the vehicle, in the direction of travel.

Rule 4 (Maintaining the speed limit) A trajectory x is
deemed unsafe if at any point during the run, the velocity
of the vehicle exceeds the speed limit of the road, denoted
vmax.

The specification can be encoded in the following formula:

Ψv = > Re⇒ Ĝ (vmax − vνego) .

The formula ensures that the velocity of the ego vehicle
should not exceed the speed limit of the road.

Rule 5 (Safety distance – static obstacles) Let obs denote
an obstruction in the sensing region of νego. The distance
dsafe between νego and obs is denoted as safe if dsafe > ε.

The specification can be encoded in the following formula:

Ψsafe =
(
> Re⇒ Ĝ[0,D] (|h(νego)− h(obs)| − ε)

)
,

This road rule ensures that the vehicle should not violate
the safety footprint of an obstacle, which is defined by the
parameter ε (see Table I), e.g., half the width of the vehicle.

Rule 6 (Maintaining center line) A trajectory must consis-
tently stay in the center of the lane, to avoid confusion to
other driving participants and unsafe situations.

The STL formula encoding the specification is:

Ψ = > Re⇒ Ĝ[0,D] (µ− |hlat(ν)− lc|) .

Here µ is a user defined threshold specifying how closely a
vehicle should stay to the center of its lane, lc (see Table I).
In this work, µ is defined as the width of the vehicle.



TABLE II: The features that operationalize the driving styles

Feature Description

Mean Distance to Lead Car Average distance to a vehicle ahead of
(νego)

Mean Time Headway Average time to another vehicle
Time Headway During
Lane Change

Average time to another vehicle while
performing a lane change

Distance Headway During
Lane Change

Average distance to a vehicle when per-
forming a lane change

Braking Distance from the
Intersection

Stopping distance from an intersection

Time to Stop Time it takes for a vehicle to go from
the velocity at the point of deceleration
to complete stop

Maximum Turn Speed Maximum speed used by (νego) while
turning

Average Speed 20 Meters
Before Intersection

Average speed of a vehicle when it is
within 20m of an intersection

Average Speed 20 Meters
Before Chicane

Average speed of a vehicle when it is
within 20m of a chicane

C. Penalty Structure

The rules defined in Sec. III-B provide a set of complex
spatio-temporal specifications, which the ego vehicle νego
needs to adhere to while driving. However, not all specifi-
cations can be guaranteed at all times. As such, we aim to
provide a least-violating trajectory, which, in the case that
some specification needs to be violated in order to fulfill the
mission, will minimize the penalty:

P (x) = D + PΨ(x), (8)

where PΨ(x) is the cumulative violation of the set of spatio-
temporal specifications Ψ.

IV. ONLINE STUDY

We studied whether people perceived the generated trajec-
tories as intended and we obtained a preferred defensiveness
value for each participant from their preference ratings of
generated trajectories pairs.

A. Defensiveness Score

We computed the defensiveness score, DS ∈ [0, 1], for our
generated trajectories from eleven features (see Table II), ten
were adopted from Basu et al. [7], and one was created to
specify the average speed of a vehicle when it is within 20m
(empirically decided) of a chicane. The chicane is one of the
four scenarios we used in this work, Fig. 1 illustrates all four
traffic scenarios. To simulate different driving behavior, we
ran our motion planner 200 times per scenario with different
calibrations. Rules 1, 2, 3 and 5 use the same parameter
calibration, which is randomized from an empirically chosen
parameter interval: A = [0, 20], α = [0, 4]. The parameter
intervals of Rule 4 were A = [0, 10], α = [0, 20], and the
intervals of of Rule 6 were A = [0, 20], α = [2, 10]. For
each run, we normalized each feature using min-max normal-
ization, regardless of the scenario. Then, we calculated the
defensiveness score by averaging all feature values for a run

and task to generate trajectories corresponding to a high de-
fensiveness score (defensive driving style, DSD ∈ [0.8, 1.0]),
an intermediate defensiveness score (neutral driving style,
DSN ∈ [0.4, 0.6]), and a low defensiveness score (aggressive
driving style, DSA ∈ [0.0, 0.2]). The final trajectories are
visualized in the media attachment of this paper.

B. Manipulated Variables

We manipulated the defensiveness score, scenario, and
perspective. We compared two perspectives: frontal and top
(see Fig. 2 for the frontal view and Fig. 1c for top view
of the chicane scenario). To get perceived driving styles,
we presented participants with 3 (level of defensiveness) x
2 (perspective) x 4 (scenarios) = 24 videos, in randomized
order.

To collect participants’ preferred defensiveness scores,
we manipulated whether the participant started with a low-
defensive video or with a high-defensive video (start score).
Participants indicated their preference for pairs of our gen-
erated trajectories. Each pair was either low-defensive vs.
neutral, or high-defensive vs. neutral. If they indicated on
the first trial to prefer the low-defensive or high-defensive
video, they would converge on that trial and would not be
presented with the other comparison. If they picked neutral
as preferred style for both trials, would converge on the
neutral defensiveness score. As the first trial may influence
people’s response, each participant would converge on a
score twice for the same set of trials, once starting from a
low-defensive vs. neutral video pair and once starting from a
high-defensive vs. neutral video pair. All factors were treated
as within-subjects and counterbalanced to avoid order effects,
resulting in a maximum of 4 (scenario) x 2 (start score) x 2
(perspective) x 2 (comparisons) = 32 video pairs, presented
in randomized order.

C. Participants

35 participants (26 male and 9 female) between the ages of
24 and 66 (mean = 38.3, SD = 11.3) were recruited on Ama-
zon Mechanical Turk. The nationalities of the participant
include Americans, 1 German, 1 Brazilian, and 1 Romanian.
Participants had a driver’s license for 17.8 years on average,
and 29 participants indicated to drive on average more than
2-4 times a week; as the current Covid-19 pandemic may
affect people’s current day-to-day life, we specifically asked
for pre-pandemic driving habits. All participants indicated
that they had heard of AVs and/or self-driving vehicles prior
to participating in the study.

D. Procedure and Measurements

After filling in demographic information and indicating
how often they would drive a car, participants are instructed
to imagine they owned an AV and were inside it. To
obtain convergence scores, we asked them to indicate which
trajectory they preferred the AV to drive, using a two-
alternative forced-choice, with open answer to motivate their
choice. Participants were informed that they would see the
car sometimes from the frontal perspective and sometimes



Autonomous vehicle

Other vehicle

Driving goal

(a) The AV attempts to merge onto a roundabout with a vehicle approaching from the
left.

Autonomous vehicle

Other vehicle

Driving goal

(b) The AV approaches a junction, equipped with traffic lights, with the goal to turn
left, with an oncoming vehicle approaching.

Autonomous vehicle

Other vehicle
Driving goal

Chicane

(c) The AV has to pass a chicane to reach the end of the lane, with an oncoming vehicle
approaching.

Autonomous vehicle

Other vehicles
Driving goal

(d) The AV is blocked by a slow moving car on a straight two-lane road, while a faster
moving car is approaching on the oncoming lane.

Fig. 1: In top-down perspective, the four different scenarios used in the online study.

Other vehicle

ChicaneDriving goal

Fig. 2: The chicane scenario as seen from frontal perspective.

from a top perspective. Then, we administered additional
questionnaires as described in the next paragraph and we
collected perceived defensiveness for each of the videos on
a 7-points scale (1 being extremely defensive and 7 being
extremely aggressive (reverse scored in analysis). Finally,
participants had the option to write final comments; they
were compensated $8USD.

The Ten-Item Personality-Inventory (TIPI) [26] was ad-
ministered to assess personality traits, and to assess self-
reported driving style, participants indicated on a 7-points
scale whether (1) they identified as being an conservative or
adventurous driver, (2) they liked joy of motion or comfort of
steadiness, (3) they varied their driving by external conditions

(e.g., road conditions), and (4) their driving experience from
somewhat experienced to very skillful, adopted from Basu
et al. [7].

V. RESULTS

Firstly, we ran a mixed-effects linear model with perceived
defensiveness rating as response variable, defensiveness level
and perspective as predictors, and participant and scenario
as random effects. As can be seen in Fig. 3, participants
perceived the degree of defensiveness (high score means high
defensiveness) of each video as intended, in that participants
rated the high-defensive (HD) videos as more defensive than
the neutral (N) ones, and the neutral ones more defensive
than the low-defensive (LD) videos (χ2(2) = 521.92, p <
.001;MLD = 2.46,MN = 4.38,MHD = 5.42). Participants
also mentioned defensiveness when motivating their choices:
“While I can appreciate patience in a car (...) There is
such a thing as too defensive when driving which can cause
accidents much the same way being overly offensive can do
(...)”

Secondly, we investigated whether participants’ preferred
defensiveness score was influenced by their starting defen-
siveness score, and by the perspective (frontal and top).
We fitted a cumulative link mixed model with convergence
score as dependent variable, starting score and perspective as
predictors, and participant id and scenario as random effects.
We also added the individual differences measured after
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Fig. 3: Perceived defensiveness ratings of the driving styles.

the video evaluation phase (gender, age, Big-5 personality
traits and self-reported driving behavior) to the model as
covariates. We found a main effect of starting score (χ2(1) =
44.86, p < .001). People converged more towards a defensive
style if they started from a high-defensive video; conversely,
they converged more to an aggressive style is they started
from a low-defensive video (see Fig. 4).

There was no main effect of perspective however (χ2(1) =
0.21, p = .64), and no interaction (χ2(2) = 0.27, p =
.87), suggesting that participants converged towards a high-
defensive or low-defensive video regardless of whether they
saw the video from a frontal or top view. Regarding the
individual differences, we only found a main effect of
self-reported driving behavior, specifically on whether they
considered themselves a conservative or adventurous driver
(χ2(1) = 8.26, p < .005). Specifically, people who consid-
ered themselves more conservative converged towards a more
defensive AV driving preference.

VI. DISCUSSION AND CONCLUSIONS

We extend prior work that proposed a penalty structure
for STL formula [21] and a defensiveness measure [7] by
studying whether human driving styles can be incorporated
into a motion planner by calibration of this penalty structure.
For several urban traffic scenarios, we generated trajectories
with low, neutral, and high defensiveness score.

First, we hypothesized that people would perceive different
parameterizations of our motion planner as a unique driving
style. The results confirmed our hypothesis and showed
that people’s defensiveness ratings corresponded with the
defensiveness score of each calibration, which indicates that
it is possible to use STL and its quantitative semantics to
encode human driving styles. This opens up for several
interesting venues of research in the field of formal methods
and motion planning. For instance, parameter learning and
synthesis of signal temporal logic specifications that leverage
human driving styles. As the primary strength of formal
method based approaches is that they provide verification
of encoded specifications, it would be possible to guarantee
that the set driving style holds for the entire lifetime of a
system.
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Aggressive style
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Defensive style

Fig. 4: Convergence scores divided by starting scores.

Second, we evaluated whether we can get a preferred
value of defensiveness for people and relate this to their
perceived driving style, so that in the future our system can
adapt to that. Interestingly, the initial level of defensiveness
that they would see influenced which level of defensiveness
they would converge on. However, most people tended to
converge to a defensive style, regardless of starting point.
Participants motivated their choice for a defensive driving
style with human attributes mentioning that the more aggres-
sive car “(...) shows impatience.”, and “i like that the right
[car] video is patient (...) that is respectful driving”. This
suggest that additional factors should be considered when
designing automated driving styles, such as driving etiquette.

We encoded only a subset of rules from the RSS model,
providing a basic framework for AV behavior in any traffic
scenario, but it will struggle when differentiating subtly dif-
ferent trajectories, as these differences might not be reflected
in the specification. For instance, the current specification
allows the agent to determine what speed limit it should
adhere to, yet fails to consider jerk. Encoding a larger and
more diverse set of rules from the RSS model, would allow
the motion planner to represent a larger subset of common
driving patterns.

Avenues of future research include a further investigation
of individual characteristics that may influence people’s
preferred driving style, a more fine-grained analysis of the in-
dividual and combined influence of specifications on driving
style, and conducting a simulator study in which participants
evaluate the automated driving styles as generated by our
motion planner.
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