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ABSTRACT

Extended Bayesian information criterion (EBIC) and ex-
tended Fisher information criterion (EFIC) are two popular
criteria for model selection in sparse high-dimensional linear
regression models. However, EBIC is inconsistent in sce-
narios when the signal-to-noise-ratio (SNR) is high but the
sample size is small, and EFIC is not invariant to data scal-
ing, which affects its performance under different signal and
noise statistics. In this paper, we present a refined criterion
called EBICR where the ‘R’ stands for robust. EBICR is an
improved version of EBIC and EFIC. It is scale-invariant
and a consistent estimator of the true model as the sample
size grows large and/or when the SNR tends to infinity. The
performance of EBICR is compared to existing methods such
as EBIC, EFIC and multi-beta-test (MBT). Simulation results
indicate that the performance of EBICR in identifying the
true model is either at par or superior to that of the other
considered methods.

Index Terms— High-dimensional inference, model se-
lection, Lasso, OMP, sparse estimation, subset selection.

1. INTRODUCTION

In this paper, we study the model selection problem also
known as best subset selection in high-dimensional linear
regression models of the form y = Ax+ e, where the num-
ber of samples, N , is quite small compared to the parameter
dimension, p (N ≪ p), y ∈ RN is the measurement vector,
A ∈ RN×p is the known design matrix, whose columns are
referred to as predictors. x ∈ Rp is the unknown regression
vector. We denote the true support of x as S = {i : xi ̸= 0}
and cardinality card(S) = k0. x is assumed to be sparse
such that k0 ≪ N . e ∈ RN is the noise vector following
e ∼ N (0, σ2IN ) where σ2 is the true noise variance and IN
is an N × N identity matrix. The goal of model selection is
estimating the true subset S given y and A.

Model selection in general is a well studied subject and
there exists a vast literature on this topic [1, 2, 3, 4]. However,
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in the last two decades, the model selection problem in high-
dimensional cases has gained immense attention due to the
complexities and challenges involved in it. In fact, for p ≫
N problems, most of the popular and traditional information
theoretic methods such as Akaike information criterion (AIC)
[5], Bayesian information criterion (BIC) [6] and minimum
description length (MDL) [7] perform poorly and often lead
to overfitted models with unwanted predictors [8, 9, 10].

In order to tackle this large-p small-N problem, the au-
thors in [8] proposed an extended version of BIC called ex-
tended BIC (EBIC). Compared to BIC, EBIC assigns prior
probability to a candidate model that is inversely proportional
to the size of its model space. Thus, a model with larger di-
mension is assigned smaller prior probability as compared to
a model with smaller dimension, which is in tune with the
law of parsimony. EBIC is a consistent estimator of the true
model as N → ∞. However, as indicated in [10], the empiri-
cal performance of EBIC can sometimes be unsatisfactory for
practical sizes of N . Moreover, in scenarios when N is fixed
but σ2 → 0, it is shown that EBIC is inconsistent.

To overcome the consistency issue in EBIC for high-SNR
scenarios, the authors in [10], proposed a novel criterion
called extended Fisher information criterion (EFIC). It is in-
spired by EBIC and the model selection criteria with Fisher
information [11]. EFIC is a consistent criterion, as N → ∞
as well as when σ2 → 0. However, as shown in this paper,
EFIC is not invariant to data scaling and this causes the be-
haviour of EFIC to become unstable when the data is scaled
or equivalently under changing signal and noise statistics.
This scaling problem is a result of the data dependent penalty
design in EFIC that may blow the penalty to extremely small
or large values depending on how the signal is scaled leading
to higher overfitting or underfitting losses.

This paper presents an improved version of EBIC and
EFIC that is invariant to data scaling and consistent as N →
∞ and/or as σ2 → 0 (or equivalently SNR → ∞). We call it
EBICR, where the ‘R’ stands for robust. EBICR can be com-
bined with different predictor selection algorithms such as
greedy methods like orthogonal matching pursuit (OMP)[12]
or shrinkage methods, e.g., least absolute shrinkage and se-
lection operator (LASSO) [13] to perform model selection.

The rest of the paper is organized as follows: In Section



2 we provide the necessary background to motivate the new
criterion. Section 3 presents the proposed criterion in detail.
Section 4 shows the simulations results and Section 5 con-
cludes the paper.

2. BACKGROUND

Consider the linear model under the following hypothesis

HI : y = AIxI + eI , (1)

where HI denotes the hypothesis that the data y is truly gen-
erated according to (1), AI ∈ RN×k is the sub-design matrix
consisting of columns from the original design matrix A with
support I and cardinality card(I) = k. xI ∈ Rk is the cor-
responding unknown regression vector and eI ∈ RN is the
associated noise vector following eI ∼ N (0, σ2

IIN ) where
σ2
I is the unknown noise variance corresponding to the hy-

pothesis HI . The maximum likelihood estimates (MLEs) of
xI and σ2

I under HI are obtained as [14]

x̂I =
(
AT

IAI
)−1

AT
Iy & σ̂2

I = yTΠ⊥
I y/N (2)

where Π⊥
I = IN−AI(A

T
IAI)

−1AT
I denotes the orthogonal

projection matrix on the right null space of AT
I .

To motivate the proposed criterion we start with the source
i.e., the maximum a-posteriori (MAP) estimator. For the con-
sidered model selection problem, the MAP estimate of S is
equivalently given as (see [15, 16] for details):

ŜMAP = argmin
I

{
N ln σ̂2

I + ln
∣∣F̂I

∣∣− k ln 2π

−2 ln p(θ̂I |HI)− 2 ln p(HI)
}
.

(3)

where p(θ̂I |HI) is the prior probability for the model param-
eter vector θ̂I = [x̂T

I , σ̂
2
I ]

T , p(HI) is the prior probability of
the model with support I, | · | denotes determinant, and F̂I is
the sample Fisher information matrix under HI given as [10]

F̂I =

[
1
σ̂2
I
AT

IAI 0

0 N
2σ̂4

I

]
. (4)

Both EBIC and EFIC can be derived from (3) under different
assumptions. First, the −k ln 2π term is ignored as it weakly
depends on k. Also, the p(θ̂I |HI) term is dropped as it is
considered to be uniform and uninformative. In EBIC, it is
assumed that ln

∣∣F̂I
∣∣ ≈ k lnN + O(1) and p(HI) ∝

(
p
k

)−γ

[8]. Thus, the EBIC score for a model with support I is

EBIC(I) = N ln σ̂2
I + k lnN + 2γ ln

(
p

k

)
(5)

where 0 ≤ γ ≤ 1 is a tuning parameter. In EFIC, the ln
∣∣F̂I

∣∣
term is fully retained. Further approximation under large-p
include ln

(
p
k

)
≈ k ln p. The final form of the EFIC is [10]

EFIC(I) =N ln∥Π⊥
I y∥22 + k lnN + ln

∣∣AT
IAI

∣∣
− (k + 2) ln∥Π⊥

I y∥22 + 2ck ln p
(6)

where c > 0 is a tuning parameter.

3. PROPOSED METHOD EBICR

In this section, we present the necessary steps for deriving
EBICR. An important assumption in this regard is the follow-
ing property of the design matrix A [15, 17]

lim
N→∞

{
N−1

(
AT

IAI
)}

= MI = O(1), (7)

where MI is a positive definite matrix that is bounded as
N → ∞. The above assumption is true in many applications
but not all [15, 18]. Next, a similar approach as in [15] is con-
sidered, but here we perform normalization of F̂I under both
large-N and high-SNR assumption. Consider the following
matrix

L−1/2 =

√ 1
N

√
σ̂2
I

σ̂2
0
Ik 0

0
√

1
N

σ̂2
I

σ̂2
0

 , (8)

where σ̂2
0 = ∥y∥22/N . The factor, σ̂2

0 , is used in L−1/2 to
neutralize the data scaling problem and is motivated by the
fact that given (7), when the SNR is a constant, we have

E[σ̂2
0 ] → const. & Var[σ̂2

0 ] → 0 (9)

as N → ∞. Furthermore, from the considered generating
model in (1), when N is fixed, (9) is also satisfied as σ2 → 0.
Now using (4), (7) and (8) it is possible to show that∣∣∣L−1/2F̂IL

−1/2
∣∣∣ = ∣∣∣∣∣ 1

σ̂2
0

AT
IAI
N 0

0 1
2σ̂4

0

∣∣∣∣∣ = O(1). (10)

Using (10), we can express the ln
∣∣F̂I

∣∣ in (3) as

ln
∣∣F̂I

∣∣ = ln
[∣∣L∣∣ ∣∣∣L−1/2F̂IL

−1/2
∣∣∣] = ln |L|+O(1) (11)

where O(1) is a term that is bounded as N → ∞ and/or
σ2
I → 0 and therefore may be discarded without much effect

on the criterion. Expanding the ln|L| term we have

ln|L| = ln

∣∣∣∣∣∣
N

σ̂2
0

σ̂2
I
Ik 0

0 N
(

σ̂2
0

σ̂2
I

)2
∣∣∣∣∣∣

= (k + 1) lnN + (k + 2) ln
(
σ̂2
0/σ̂

2
I
)
. (12)

Therefore, using (12) we can rewrite (11) as

ln
∣∣F̂I

∣∣ = k lnN + (k + 2) ln

(
σ̂2
0

σ̂2
I

)
+ lnN +O(1). (13)

Using (3), (13), − ln p(HI) ≈ ζk ln p, and ignoring the O(1),
lnN (independent of k) and the p(θ̂I |HI) term we arrive at
the modified criterion EBICR:

EBICR(I) = N ln σ̂2
I + k ln

(
N

2π

)
+(k + 2) ln

(
σ̂2
0

σ̂2
I

)
+ 2ζk ln p (14)

where ζ > 0 is a tuning parameter. The term σ̂2
0/σ̂

2
I ≥ 1 ∀ I,

therefore, ln(σ̂2
0/σ̂

2
I) ≥ 0, ∀ I. Hence, the penalty of EBICR

is a monotonic function of N , σ̂2
0/σ̂

2
I (≈ SNR + 1) and p.



3.1. Scaling robustness as compared to EFIC

Here, we discuss the scaling problem present in EFIC. Let
∆ = k − k0. Now consider the difference assuming I ≠ S

EFIC(I)− EFIC(S) = (N − 2) ln

(∥∥Π⊥
I y
∥∥2
2∥∥Π⊥

S y
∥∥2
2

)
+

+ ln
∣∣AT

IAI
∣∣− ln

∣∣AT
SAS

∣∣− k ln
(∥∥Π⊥

I y
∥∥2
2

)
+ k0 ln

(∥∥Π⊥
S y
∥∥2
2

)
+∆(lnN + 2c ln p) = DEFIC. (15)

Ideally, for correct model selection, DEFIC > 0 for all I ≠
S. Now, if we scale the data y by a constant C > 0, the
difference becomes

EFIC(I)− EFIC(S) = DEFIC −∆ lnC2. (16)

It is clearly observed that (15) and (16) are unequal and the
difference after scaling contains an additional term −∆ lnC2.
This implies that scaling changes the EFIC score difference
between any arbitrary model I and the true model S. Hence
depending on the C value (C < 1 or C > 1) and ∆ > 0 or
∆ < 0, the difference in (16) may become negative leading to
a false model selection. Thus, EFIC is not immune to scaling
issues. On the contrary, consider the difference for EBICR,

EBICR(I)− EBICR(S) = (N − 2) ln

(
σ̂2
I

σ̂2
S

)
− k ln σ̂2

I+

k0 ln σ̂
2
S +∆ ln σ̂2

0 +∆(ln(N/2π) + 2ζ ln p) = DEBICR .

Now, scaling y by C, scales the estimates σ̂2
I , σ̂2

S and σ̂2
0 by

C2, however, the difference remains the same

EBICR(I)− EBICR(S) = DEBICR (17)

because in this case the −∆ lnC2 term is cancelled by
+∆ lnC2 generated by ∆ ln σ̂2

0 . Hence, EBICR is scale-
invariant, which is a desired property in any model selection
method.

4. SIMULATION RESULTS

In the simulations, we consider the linear regression model
y = Ax+ e, where the design matrix A ∈ RN×p is gener-
ated with independent entries following normal distribution
N (0, 1). The cardinality of the true support S is chosen to
be card(S) = k0 = 5. Furthermore, without loss of gener-
ality, we assume S = [1, 2, 3, 4, 5]. This also implies that the
elements of x ∈ Rp follows xi ̸= 0 for i = 1, . . . , k0 and
xi = 0 for i > k0. We represent the true regression vector
as xS = [x1, x2, x3, x4, x5]

T . The SNR in dB is SNR (dB) =
10 log10(σ

2
s/σ

2), where σ2
s is the signal power computed as

σ2
s = ||ASxS ||22/N . Based on σ2

s and the chosen SNR (dB),
the noise power is set as σ2 = σ2

s/10
SNR (dB)/10. Using this

σ2, the noise vector e is generated following N (0, σ2IN ).

Algorithm 1 OMP with K iterations

Inputs: Design matrix A, measurement vector y, K.
Initialization: ∥aj∥2 = 1 ∀j, r0 = y, S0

OMP = ∅
for i = 1 to K do

Find next column index ti = argmax
j∈[1,...,p]

∣∣aTj ri−1
∣∣

Add current index: Si
OMP = Si−1

OMP ∪ {ti}
Update residual: ri = Π⊥

Si
OMP

y

end for
Output: OMP generated index sequence SK

OMP

The probability of correct model selection is estimated over
1000 Monte Carlo trials. To maintain randomness in the data,
a new design matrix A is generated at each Monte Carlo trial.
OMP (Algorithm 1) is used for predictor selection with K =
20. Algorithm 2 illustrates executing model selection com-
bining OMP and EBICR. The performance of EBICR is com-
pared to the ‘oracle’ (OMP with a priori knowledge of k0),
EBIC, EFIC and MBT [19], which is a non-information theo-
retic method based on hypothesis testing using a test statistic.
The hyperparameter settings for the criteria are as follows:
ζ = 1 (EBICR), β = 0.999 (MBT), c = 1 (EFIC) and γ = 1
(EBIC). Note that LASSO can also be employed for predic-
tor selection instead of OMP, but we prefer OMP for now,
primarily because (i) MBT in its current form cannot be com-
bined with LASSO for model selection because the support
index sequence generated by LASSO is not monotonic in na-
ture and (ii) OMP is less computationally intensive.

Fig. 1 shows the empirical probability of correct model
selection versus SNR (dB) for N = 54 and p = 1000.
To highlight the scaling problem, we consider two different
design of xS . Fig. 1a and Fig. 1b correspond to xS =
[0.05, 0.04, 0.03, 0.02, 0.01] and xS = [50, 40, 30, 20, 10],
respectively. Comparing the figures, the first clear obser-
vation is that EBIC is inconsistent when SNR is high but
N is small and fixed as reported in [10]. Secondly, for the
considered hyperparameters, EFIC, MBT and EBICR are
empirically consistent for increasing SNR scenarios given
that N is fixed. Furthermore, unlike the other criteria,
the behaviour of EFIC is not identical for the two differ-
ent xS given that the other parameters viz, N , p and k0
are constant and the performance is evaluated for the same

Algorithm 2 Model selection combining EBICR with OMP

Run OMP for K iterations to obtain SK
OMP

for i = 1 to K do
I = Si

OMP
Compute EBICR(I) using (14)

end for
Estimated true support: Ŝ = argmin

I
{EBICR(I)}.



(a) xS = [0.05, 0.04, 0.03, 0.02, 0.01]T (b) xS = [50, 40, 30, 20, 10]T

Fig. 1: The probability of correct model selection versus SNR (dB) for N = 54, p = 1000 and k0 = 5.

(a) xS = [0.05, 0.04, 0.03, 0.02, 0.01]T (b) xS = [50, 40, 30, 20, 10]T

Fig. 2: The probability of correct model selection versus N (20 to 103) for SNR = 25 dB, p = Nd where d = 1.3.

SNR range. This highlights the scaling problem present
in EFIC that produces irregular penalties leading to either
high underfitting or overfitting issues. For the considered
setting, the above behavior of EFIC can be explained as fol-
lows: The data dependent penalty term (DDPT) of EFIC is
DDPT = −(k + 2) ln∥Π⊥

I y∥22, whose overall value highly
depends on ∥Π⊥

I y∥22, which in turn is influenced by the signal
and noise powers σ2

s and σ2 respectively. If ∥Π⊥
I y∥22 ≪ 1,

then DDPT ≫ 0, which may blow the overall penalty to a
large value leading to underfitting issues. This is most likely
the case when xS = [0.05, 0.04, 0.03, 0.02, 0.01]T (Fig. 1a).
On the contrary if ∥Π⊥

I y∥22 ≫ 1, then DDPT ≪ 0, thus low-
ering the overall penatly leading to overfitting issues (when
xS = [50, 40, 30, 20, 10]T , Fig. 1b).

Fig. 2, illustrates the empirical probability of correct
model selection versus N for SNR = 25 dB. A varying
parameter space is considered where p grows with N as
follows p = Nd, where d = 1.3. Fig. 2a and Fig.
2b correspond to xS = [0.05, 0.04, 0.03, 0.02, 0.01]T and
xS = [50, 40, 30, 20, 10]T respectively. Comparing Fig. 2a
and 2b it is clearly observed that for high-SNR scenarios,

EBICR and MBT provides much faster convergence to oracle
behaviour as compared to EBIC that requires higher sample
size to achieve convergence. We also notice that EFIC suffers
from a higher overfitting error for xS = [50, 40, 30, 20, 10]T

and performs lower than EBIC in a certain region of the sam-
ple size. This clearly underlines the effect of scaling on the
behaviour of EFIC.

5. CONCLUSION

In this paper, we presented an improved model selection
criterion for sparse high-dimensional linear regression mod-
els called EBICR where the subscript ‘R’ stands for robust.
EBICR solves the inconsistency issue of EBIC for high-SNR
and the scaling problem of EFIC. Simulation results indi-
cated that EBICR is a consistent criterion and its performance
is quite appreciable in many regions of the settings compared
to EBIC, EFIC and MBT. Furthermore, compared to MBT,
EBICR has more flexibility on the choice of predictor selec-
tion algorithms. In a future extension of this paper, we will
provide detailed analytical consistency guarantees of EBICR
and extensive simulation results.
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