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PRIVACY-ENHANCING APPLIANCE FILTERING FOR SMART METERS

Ramana R. Avula, and Tobias J. Oechtering

Department of Intelligent Systems, KTH Royal Institute of Technology, Sweden

ABSTRACT

Non-intrusive load monitoring (NILM) is the process of
disaggregating total electricity consumption measured by a
smart meter into individual appliances’ contributions. In
this paper, we present a privacy control strategy that selec-
tively filters appliances’ consumption from the smart meter
measurements to hinder NILM disaggregation performance.
The privacy controller uses charging and discharging oper-
ations of an energy storage to achieve desired smart meter
measurements. We model the household consumption using
both additive and difference factorial hidden Markov models
and design a control strategy to minimize privacy leakage
measured in terms of Bayesian risk due to maximum a pos-
teriori detection. Due to the high computational complexity
of the optimal control strategy, we propose a computation-
ally efficient sub-optimal strategy. We evaluate the proposed
approaches using the ECO data set and show their privacy
improvements against the Viterbi disaggregation algorithm.

Index Terms— Factorial hidden Markov model, privacy-
enhancing control, privacy-by-design, smart meter privacy,
Markov decision process

1. INTRODUCTION

Smart meters (SMs) pose privacy risk in smart grids due to
the transmission of high-resolution details of user’s energy
consumption behavior to the utility provider [1]. Several
non-intrusive load monitoring (NILM) algorithms [2–8] are
known to be quite effective in disaggregating the smart meter
readings. Addressing these risks, several privacy-preserving
techniques have been proposed in the literature, which are
surveyed in [9, 10]. A well studied privacy-by-design ap-
proach, known as load signature moderation, uses energy
storage systems (ESSs) to alter consumers’ energy consump-
tion profiles in order to hide their appliances’ usage patterns
using a heuristic best effort approach in [11], information
theoretic approach in [12–15], differential privacy approach
in [16] and detection theoretic approach in [17, 18].

In contrast to the existing works, in this paper we present
a privacy control strategy targeting a class of NILM algo-
rithms such as Parson’s Algorithm [5], Baranski’s algorithm
[6], Weiss’ algorithm [7], and Kolter’s algorithm [8] which
disaggregate SM data by using steady-state features such as
aggregate and difference power measurements [19]. To the
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Fig. 1. Schematic of the studied smart metering system where
the energy management unit controls privacy leakage by us-
ing an energy storage system. Here, the solid lines denote the
energy flow and the dotted lines denote the information flow.
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Fig. 2. The additive and difference FHMM of appliances.

best of our knowledge, control strategies against this class of
NILM algorithms using both aggregate and difference obser-
vations have not yet been studied and the existing works may
or may not achieve the least possible privacy leakage against
these NILM algorithms.

The proposed smart metering system uses an ESS for
load signature moderation, as shown in Fig. 1. We model
the household appliances using the factorial hidden Markov
model (FHMM), where each appliance follows a Markov
chain and these chains jointly emit aggregate power and the
power change observations, as shown in Fig. 2. The energy
management unit (EMU) schedules the charging and dis-
charging actions of the ESS to minimize the Bayesian risk
due to maximum a posteriori (MAP) detection of privacy-
sensitive appliances.



The rest of the paper is organized as follows. In Sec-
tion 2, we present the overview of the studied smart meter-
ing system. In Section 3 we formulate the design objective
and present the optimal control strategy to minimize privacy
leakage. In Section 4, we present results from a numerical
study and conclude the paper in Section 5. Throughout the
paper, we denote random variables by capital letters, their
realizations by lower-case letters, and their range spaces by
calligraphic letters. We use Ak:k+i to denote the row vec-
tor [Ak, Ak+1, . . . , Ak+i]; E[·] to denote expectation; (·)⊺ to
denote the transpose; PA to denote a probability distribution
function; ⊛ to denote convolution; 1 to denote an indicator
function for which 1{a} is 1 if a is true, and 0 otherwise; 1n

to denote an n dimensional vector with all entries as 1; and
∆n to denote the (n−1) dimensional simplex.

2. SYSTEM OVERVIEW

The discrete time system in Fig. 1 is controlled for every time
slot k within a time horizon K = {1, 2, . . . , n}. Each time
slot is of a fixed time duration T . Let e and q be the reso-
lution of energy and power measurements respectively. For
each k ∈ K, let H(i)

k , defined on a discrete set H(i), denote
the state of ith appliance and let m denote the number of ap-
pliances. Further, let ∆H

(i)
k = H

(i)
k −H

(i)
k−1, defined on the

discrete set ∆H(i) = {−(|H(i)| − 1), . . . , (|H(i)| − 1)}, de-
note the change in the state of of ith appliance. Further, let
Hk = [H

(1)
k , . . . ,H

(m)
k ] denote the joint state vector which

is defined on the discrete vector space H :=
∏m

i=1 H(i).
For each k ∈ K, Xk denotes the aggregated power de-

mand of all appliances in the house and is defined on X=
{0, q, 2q, . . . , xmax}. Let ∆Xk = Xk+1−Xk denote the ag-
gregated power change of the household appliances and is de-
fined on ∆X = {−xmax, . . . ,−q, 0, q, . . . , xmax}. Zk, de-
fined on Z= {0, e, 2e, . . . , zmax}, denotes the energy avail-
able in the battery at the end of time slot k. The power drawn
by the ESS is denoted as Dk and it is defined on a discrete
set D = {−dmin, . . . ,−q, 0, q, . . . , dmax}, where dmin and
dmax are the maximum discharge and charge powers of the
ESS respectively. In the presence of an ESS, the SM records
the aggregated power demands of all household appliances
and the ESS, which is represented by the random variable
Yk = Xk +Dk which is defined on Y = X . Let Y ∗

k , defined
on Y , denote the desired aggregate power demand scheduled
by the EMU. Further, we model the dependency between the
random variables in the sequences [H1:n, X1:n,∆X1:n] using
a FHMM with these assumptions:

• The state of each appliance H
(i)
k evolves over time,

independent of other applainces, according to a first-
order Markov chain with transition and initial probabil-
ities P

H
(i)
k |H(i)

k−1

and P
H

(i)
1

.

• At most one appliance’s state transitions at each k ∈ K.

• Each appliance contributes to the aggregate and differ-
ence observations Xk, ∆Xk through hidden emissions
W

(i)
k ,∆W

(i)
k which follow the emission probabilities

P
W

(i)
k |H(i)

k

and P
∆W

(i)
k |∆H

(i)
k

.

Consequently, the joint distribution of the variables in the se-
quence [H1:n, X1:n,∆X1:n] considering both additive and
difference measurements are given by:

PH1:n,X1:n,∆X1:n
=PH1

PX1|H1

n∏
k=2

1
{
∆Xk=Xk−Xk−1

}
×

PXk,Hk|Xk−1,Hk−1
, (1)

where PH1 , PX1|H1
, and PXk,Hk|Xk−1,Hk−1

are obtained us-
ing

{
P
H

(i)
k |H(i)

k−1

, P
H

(i)
1

, P
W

(i)
k |H(i)

k

, P
∆W

(i)
k |∆H

(i)
k

}
.

3. ENERGY MANAGEMENT UNIT STRATEGY

In this work, we design an EMU strategy using the Markov
decision process (MDP) framework by minimizing the Bayesian
risk due to MAP detection. We first present an optimal
strategy using both aggregate and difference observations
Xk,∆Xk jointly. We then present a low complexity sub-
optimal strategy that uses a fusion rule to combine the in-
formation in both additive and difference FHMMs. Here we
assume that an adversary employs existing NILM algorithms
tuned for disaggregation of appliances’ consumption using
unmodified household consumption data. That is, the adver-
sary is assumed to be unaware of the existence of privacy-
preserving EMU and the MAP detection is performed under
the assumption that Y1:n = X1:n.

3.1. Optimal strategy

The MAP state sequence estimate given both the aggregate
and difference observation sequences [y1:n,∆y1:n] is ob-
tained by solving the optimization problem:

ĥ1:n(y1:n,∆y1:n)= argmax
h1:n∈Hn

{
log

[
PX1|H1

(y1|h1)PH1
(h1)

]
+

∑n
k=2 log

[
PXk,Hk|Xk−1,Hk−1

(yk,hk|yk−1,hk−1)
]}

. (2)

The MAP state sequence estimate ĥ1:n obtained from (2) uses
non-causal data i.e., the detection is performed block-wise af-
ter a sequence of SM readings is received. However, as the
EMU operates causally, similar to [20], we first compute a
causal detection strategy that achieves the expected perfor-
mance of non-causal MAP detection given the causal data
[y1:k,∆y1:k]. At each k ∈ K, we model the state estimate of
the causal detection strategy using a discrete random variable
Ĥ

(i)
k ∈ H(i) for the ith appliance. Let Ĥk denote the joint

state estimate vector corresponding to all appliances at time
instant k. Let π̂k ∈ ∆|H| denote the posterior distribution



of Hk given causal data [y1:k,∆y1:k] which is the informa-
tion state [21] of the modeled adversary. We refer to π̂k as
controlled belief state, which is given by[
π̂k(y1:k,∆y1:k)

]
hk

=PHk|X1:k,∆X1:k

(
hk|y1:k,∆y1:k

)
=

PXk,Hk|X1:k−1,∆X1:k−1
(yk,hk|y1:k−1,∆y1:k−1)

PXk|X1:k−1,∆X1:k−1
(yk|y1:k−1,∆y1:k−1)

, (3)

where

PXk,Hk|X1:k−1,∆X1:k−1
(yk,hk|y1:k−1,∆y1:k−1) =∑

h̃∈H PXk,Hk|Xk−1,Hk−1
(yk,hk|yk−1, h̃)×[

π̂k−1(y1:k,∆y1:k)
]
h̃
. (4)

Therefore, the belief state evolution is given by

π̂k =
Mπ(yk−1:k, k) · π̂k−1

1⊺
|H| ·Mπ(yk−1:k, k) · π̂k−1

, (5)

where Mπ is a deterministic function of |H| × |H| dimen-
sional matrices with its elements given by (4). For any xk−1:k,
the random variable ∆Xk|Xk−1:k = xk−1:k is deterministic
and is redundant in the computation of π̂k. Let the causal
detection strategy of the EMU-unaware adversary be denoted
by ζk : Y2 × ∆|H| → H, which specifies the state esti-
mate ĥk ∈ H given the MDP state (yk−1:k, π̂k−1). Let G
denote the set of all valid causal detection strategy functions
ζk. Based on the objective function in (2), we define a per-
step MDP reward function for k ≥ 2 given by

rk(yk−1:k, π̂k−1, ĥk)=
∑

h̃∈H max
{
rmin,

log
[
PXk,Hk|Xk−1,Hk−1

(yk, ĥk|yk−1, h̃)
]}
π̂k−1(h̃), (6)

where rmin < 0 is an arbitrarily small constant so that the
MDP reward is lower bounded. Let ζ∗k denote the optimal
causal MAP detection strategy for each k ∈ K. Using the
Bellman’s dynamic programming [21], a sequence of optimal
strategies ζ∗1:n that achieves the maximum expected cumula-
tive reward over the horizon K can be obtained by solving:

vk(yk−1:k, π̂k−1) = max
ĥk∈H

{
rk(yk−1:k, π̂k−1, ĥk) +

E
[
vk+1(Xk:k+1, Π̂k)

∣∣Xk−1:k = yk−1:k

]}
, (7)

where vk is the expected reward over [k, . . . , n] due to opti-
mal causal MAP detection strategies ζ∗k:n and the recursion is
initialized by a terminal reward function vn+1. Note that the
second term in the objective function of (7) does not depend
on the optimization variable ĥk since π̂k−1 evolves to π̂k, in-
dependent of ĥk, using only yk−1:k as given in (5). Therefore,
the optimal causal MAP detection strategy at each k ∈ K is
obtained by simplifying (7) as

ζ∗k(yk−1:k, π̂k−1) = argmax
ĥk∈H

{
rk(yk−1:k, π̂k−1, ĥk)

}
. (8)

Next, we formulate another MDP problem to obtain the
EMU control strategy. Let A := X ×Z ×Y denote a vector
space and Ak := [Xk, Zk−1, Yk−1] denote a vector defined
on A. Let πk ∈ ∆|H| denote the posterior distribution of
Hk given causal data (x1:k,∆x1:k) which is the information
state [21] of the EMU. We refer to πk as exact belief state,
which follows the linear-fractional transformation in (5) using
xk−1:k instead of yk−1:k. Let µk : A × ∆2

|H| → Y denote
the EMU strategy, which specifies the desired control action
y∗k ∈ Y given the MDP state (ak, πk, π̂k−1). Let U denote
the set of all valid control strategies µk. To compute optimal
control strategy µ∗

k, we define the per-step MDP cost function
for the EMU based on the Bayesian risk, which is the average
cost due to the adversarial MAP detection attack on privacy
sensitive appliances, given by

ck(ak, πk, π̂k−1, yk)=
∑
hk

c̄ (hk, ζ
∗
k(yk−1:k, π̂k−1))πk(hk),

where c̄(h, ĥ) denotes the cost incurred when an adversary
detects ĥ ∈ H while the true joint state is h ∈ H. Here, we
assume that the cost for a correct detection of privacy sensi-
tive appliance state is higher compared to that of the wrong
state detection, such that the EMU aims to minimize the cu-
mulative Bayesian risk. Similar to (7), a sequence of optimal
EMU strategies µ∗

1:n that achieve the minimum cumulative
Bayesian risk over K can be obtained by solving:

sk(ak, πk, π̂k−1) = min
yk∈Yk(ak)

{
ck(ak, πk, π̂k−1, yk) +

E
[
sk+1(Ak+1,Πk+1, Π̂k)

∣∣Ak = ak

]}
, (9)

where Yk(ak) is the set of valid control actions given by the
ESS model; sk is the expected cost over [k, . . . , n] due to
optimal strategies µ∗

k:n; and the recursion is initialized by a
terminal cost function sn+1. Note that (9) needs to be solved
over continuous spaces of the belief states πk and π̂k−1. In
the following, we have a proposition on computing an optimal
strategy with respect to the continuous variable πk.

Proposition 1. Consider the optimal strategy µ̄∗
k : A×H×

∆|H| → Y obtained, when the joint-state hk is observable by
the EMU, using Bellman’s equation similar to (9). For any
given πk ∈ ∆|H|, a randomized strategy µ̃∗

k that achieves the
minimum expected cumulative Bayesian risk equivalent to the
optimal strategies µ∗

1:n given by (9) is given by[
µ̃∗
k(ak,πk,π̂k−1)

]
y
=
∑

hk∈H

1
{
y= µ̄∗

k(ak,hk,π̂k−1)
}
πk(hk).

The proposition follows from the fact that the exact be-
lief state πk evolves to πk+1 using only xk−1:k and indepen-
dent of the optimization variable yk. Furthermore, since the
controlled belief state π̂k−1 evolves using the linear-fractional
transformation in (5) and the objective function in (8) is linear
with respect to π̂k−1, the optimal strategy µ̃∗

k can be obtained
using the simplex partitioning approach in [22].



3.2. Sub-optimal strategy

In the computation of the optimal strategy µ̃∗
k the partitions of

simplex ∆|H| can grow exponentially with k and quickly be-
comes intractable even for small state-space H when the time
horizon is large. Hence, we present a sub-optimal control
strategy designed considering a sub-optimal detection strat-
egy ζ#k : Y2 ×H → H without using the information state
π̂k−1 in (7). Instead, the sub-optimal detection strategy ζ#k
uses (yk−1:k, ĥk−1) as MDP state, and a hyper-parameter
θ(ĥk) := PHk|Ĥk=ĥk

that describes the a priori detection

accuracy of ζ#k . Similar to (7), ζ#k can by obtained using the
Bellman’s equation:

v#k (yk−1:k, ĥk−1) = max
ĥk∈H

{
rk(yk−1:k, θ(ĥk−1), ĥk) +

E
[
v#k+1(Xk:k+1, ĥk)

∣∣Xk−1:k = yk−1:k

]}
. (10)

Further, we approximate the distribution PXk,Xk−1|Hk−1:k
us-

ing additive and difference emissions separately, given by

1. Additive FHMM: PXk|Hk
=⊛m

i=1 PW
(i)
k |H(i)

k

,

2. Difference FHMM: P∆Xk|∆Hk
=⊛m

i=1 P∆W
(i)
k |∆H

(i)
k

.

Next, we compute exact belief states π
(i)
k and randomized

strategies µ̃
(i)
k given in Prop. 1 corresponding to both FH-

MMs, where i = 1 denotes additive FHMM and i = 2 de-
notes difference FHMM. Lastly, we combine both FHMMs
using the following fusion rule:

η(i)(xk−1:k, πk−1) = 1⊺
|H| ·M

(i)
π (xk−1:k, k) · πk−1, (11)

µ̃k =

∑
i η

(i)(xk−1:k, πk−1) · µ̃(i)
k∑

i η
(i)(xk−1:k, πk−1)

, (12)

πk =

∑
i η

(i)(xk−1:k, πk−1) · π(i)
k∑

i η
(i)(xk−1:k, πk−1)

, (13)

where η(i) represents the likelihood of the observations xk

and ∆xk corresponding to each of the FHMMs.

4. NUMERICAL STUDY

We evaluate the proposed approaches with a numerical study
using energy consumption data from the ECO dataset [23].
We first consider 3 appliances with binary states: fridge, TV,
and stereo of house 2 with 10 minute and 75W resolution and
use a 48V-30Ah Li-battery to implement the EMU. We model
the battery using a three-circuit model [18] with cell internal
resistance of 46mΩ. In the controller design, we assume that
TV and stereo are privacy sensitive and use the cost function
as c̄(h, ĥ) =

∑
i∈I 1{h(i) = ĥ(i)}, where I is the set of

privacy-sensitive appliances. For simplicity, we designed an
optimal stationary strategy considering infinite horizon with
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Fig. 3. Detection accuracy of Viterbi algorithm with EMU
considering TV and Stereo as privacy-sensitive appliances.

a discount factor of 0.6 and a precision of 0.25 for controlled
belief state π̂k. Further, we designed sub-optimal strategy us-
ing a deterministic hyper-parameter θ(ĥk) = ĥk. Fig. 3(a)
shows the detection accuracy of the Viterbi algorithm, where
we observe 41% and 38% reductions in detection accuracy of
TV and stereo, using optimal and sub-optimal strategies. Fur-
ther, Fig. 3(b) shows the Viterbi performance when consider-
ing 5 appliances with binary states: fridge, freezer, lamp, TV,
and stereo. In this case, due to high dimensional state space,
the optimal strategy is computationally intensive to solve. In
this case, we observe a 42% reduction in detection accuracy
of TV and stereo using proposed sub-optimal strategy1.

5. CONCLUSION

In this paper, we have presented a privacy control strategy
that selectively filters appliances’ consumption from the smart
meter measurements. We have specifically designed a con-
trol strategy to counter existing NILM algorithms which use
steady-state power and power change measurements for dis-
aggregation. Using the MDP framework, we have presented
an exact optimal strategy to minimize the Bayesian risk due to
MAP detection, which is computationally intractable even for
small state-space problems when the time horizon is large. A
sub-optimal strategy with a simplified adversarial model and
using a fusion rule based on additive and difference FHMMs
is presented. In a numerical study using real household data,
the proposed strategy is shown to perform reasonably well
compared to the optimal strategy.

1The MATLAB code for these simulations can be downloaded from
https://github.com/r2avula/FHMM-Privacy-Controller.
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