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ABSTRACT
The aim of this article is to present a dynamic analysis and
a cascade movement simulation of a Pneumatic Muscle Ac-
tuator (PMA). PMAs are highly non–linear pneumatic ac-
tuators where their elongation is proportional to the interval
pressure. Their non–linear characteristics and the property
of the hysteresis are posing several difficulties in simulating
these pneumatic actuators and to obtain a comprehension of
the PMA’s physical movement. In this article a novel de-
tailed modeling, based on hardware in the loop simulation
studies, capable to describe the dynamic characteristic of
the PMA and a detailed simulation environment for study-
ing the cascade movement of PMAs will be presented.

KEY WORDS
Pneumatic Muscle Actuators, Modeling, Cascade Move-
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1 Introduction

The Pneumatic Muscle Actuator [1], also known as the
McKibben Pneumatic Artificial Muscle (PMA) [2–5], Flu-
idic Muscle or the Biomimetic Actuator [6], is a tube–like
actuator that is characterized by a decrease in the actuat-
ing length when pressurized. Best known member of this
family is the McKibben–Muscle, which was first invented
in 1950s by the physician, Joseph L. McKibben and has
been utilized as an orthotic appliance for polio patients [2].
The first commercialization of PMAs has been done by
the Bridgestone Rubber Company of Japan in the 1980s.
PMAs are significantly light actuators, which are charac-
terized by smooth, accurate and fast response and also are
able to produce a significant force when fully stretched.

Typical manufacturing of a PMA can be found as a
long synthetic or natural rubber tube, wrapped inside man-
made netting, such as Kevlar, at predetermined angle. Pro-
tective rubber coating surrounds the fibber wrapping and
appropriate metal fittings are attached at each end. The
PMA converts pneumatic power to pulling force and has
many advantages over conventional pneumatic cylinders,
such as high force to weight ratio, variable installation pos-
sibilities, no mechanical parts, lower compressed-air con-
sumption and low cost [7].

The PMA, when compressed, air is applied to the in-
terior of the rubber tube, it contracts in length and expands
radially. As the air exits the tube, the inner netting acts as
a spring that restores the tube in its original form. This ac-

tuation reminds the operation of a single acting pneumatic
cylinder with a spring return, while this reversible physical
deformation, during the contraction and expansion of the
muscle, results in an almost linear motion. Typical types of
PMAs and the corresponding naming are depicted in Fig-
ure 1 [8].

Figure 1. Various types of PMAs, (a) McKibben Mus-
cle/Braided Muscle, (b) Pleated Muscle, (c) Yarlott Netted
Muscle, (d) ROMAC Muscle and (e) Paynter Hyperboloid
Muscle.

Various modeling approaches have been presented in
the scientific field of PMA–modeling. These approaches,
although incorporate basic and more detailed analysis of
PMAs, in the area of PMA applications, most of the mod-
els are based on the geometry of the PMA, mainly due to
the models simplicity and great relativity to the experimen-
tal behavior [9], while these models are being derived based
on a fundamental operation point (when the muscle is not
pressurized). Among these models, the Chou and Han-
naford model [10] and the Tondu and Lopez model [11]
have been widely utilized in most of PMA applications.

The main novelty of this article is the proposal of
advanced simulation results, on cascade connected PMAs,
based on: a) analytical dynamic modeling, and b) fine tun-
ing of the simulation parameters based on hardware exper-
iments. The current approaches in modeling PMAs have
been focused in assuming the geometry of the PMA to be
continuously cylindrical shaped, ignoring the conic shape
of the edges during deformation. In [11], Tondu-Lopez in-
tegrated a factor to account for that physical deformation.
In [12], Doumit et al. utilized trapezoidal modeling for the
description of the edges deformation. In this article, the
main modeling procedure is being derived based on inte-
grating the curved surfaces of the edges during deforma-
tion by utilizing n-th order Bezier Curves that are extracted



through experimental data and measurements described in
the sub-section 4.2 of the current article. This model results
in a more accurate mathematical description of the muscles
actual geometry than the models of related articles. Also
from a simulation point of view, this is one of the few ar-
ticles that are presenting simulation results in multiple cas-
caded PMAs.

The rest of the article is structured as it follows. In
Section 2 the fundamental modeling for static and dynamic
PMA performance will be presented, while in Section 3 the
experimental contraction and relaxation study of the PMA,
based on hardware in the loop studies, will be presented. In
Section 4 the simulation environment and the correspond-
ing simulation results of the cascade connection of PMAs
will be depicted. Finally the conclusions and issues for fur-
ther research activities will be drawn in Section 5.

2 Fundamental modeling for PMA perfor-
mance

2.1 Static Modeling

The Chou and Hannaford model, is the most simple geo-
metrical model for describing the static performance of a
PMA. The proposed model is valid under the following as-
sumptions: a) the actuator is cylindrical in shape, b) the
threads in the sheath are inextensible and always in contact
with the outside diameter of the latex bladder, c) frictional
forces between the tubing and the sheath and between the
fibers of the sheath are negligible, and d) latex tubing forces
are negligible. With this approach the PMA actuator can be
modelled as a cylinder, depicted in Figure 2, with a length
L, thread length b, diameter D, and number of thread turns
n. The angle θ is defined as the angle of the threads with
the longitudinal axis [13].

Figure 2. Simplified geometrical model of PMA.

When the PMA actuator inflates, D and L change, n
and b remain constant, while the expressions for the PMA’s
length and diameter can be formulated as:

L = b cos θ, D = b
sin θ

nπ
(1)

where the thread length can be calculated as:

b =
(
L2 +D2n2π2)1/2 (2)

Equation (2) is referred in the literature as the geometric

relationship for the PMA, while its volume is provided by:

V =
b3 cos θ sin2 θ

4n2π
(3)

Utilizing the energy conservation principle, the PMA
simple geometric force Fg can be calculated as the gauge
pressure multiplied by the change in volume with respect
to length (this model can also be found in [13]):

Fg =
pb2(3cos2θ − 1)

4πn2
(4)

Another simple and widely utilized geometrical model of
PMA is that of Tondu and Lopez [11]. Based on this ap-
proach and by: a) utilizing similar geometric description
of the muscle with [10], b) assuming inextensibility of the
mesh material, and c) angle changes during the alteration
of the PMAs length, the following mathematical modeling
approach can be derived, based on the theorem of virtual
work [14]:

F (ϵ, P ) = πr20 · P [a(1− ϵ)2 − b] (5)

where:

ϵ =
l0 − l

l0
, d0 ≤ ϵ ≤ ϵmax, a =

3

tan2 θ0
, b =

1

sin2 θ0
(6)

In equations (5) and (6), r0 is the nominal inner ra-
dius, l the length of the muscle, l0 the initial nominal
length, P the pressure and θ0 is the initial angle between
the membrane fibres and the muscle axis, while this model
can also be found in [15]. A disadvantage of the model is
that its design is based on the hypothesis of a continuously
cylindrical–shaped muscle, whereas it takes a conic shape
at both ends when it contracts. Consequently, the more the
muscle contracts, the more its active part decreases. This
phenomenon affects the actual maximum contraction, as
theoretically it is smaller than that expected from (5) [16].
For improving equation (5), an empirical factor k has been
added [11] to account for the end deformation of the PMA:

F (ϵ, P ) = πr20 · P [a(1− kϵ)2 − b] (7)

where again: 0 ≤ ϵ ≤ ϵmax and ϵmax is provided from:

ϵmax = (1/k)(1−
√

b/a) (8)

Inserted in this way within the considered static model, the
parameter k does not modify the value of the maximum
force given at zero contraction. This is in concordance with
the conducted experiment since the PMA has a cylindrical
shape only when its contraction ratio is zero. Furthermore,
the parameter k allows adapting the model maximum con-
traction ratio given by (8) to the experimental data. Thus,
it tunes the “slope” of the considered static model. In addi-
tion it have been established two options for the selection
of the parameter k: a) a constant value which may vary de-
pending on the material that the muscle is made of, and b)
the parameter k depends on the pressure in the muscle at
any given time.

2.2 Dynamic Modeling

Although the geometrical models are characterized by sim-
plicity, they are not beneficial for real time control appli-
cations because they strictly describe the static behavior of



PMAs and analyze their performance in quasi-static state.
The PMA geometric structure variables are inaccessible
and difficult to obtain from experimental data, thus, creat-
ing the need for the development of dynamic PMA models.

More recently, a phenomenological modeling ap-
proach described accurately the dynamics of PMAs using
a model with three elements. Specifically, during expan-
sion, PMA experiences viscoelastic resistance, which can
be modeled as a damping and spring element. Thus, in the
phenomenological model, the PMA is being considered as
a parallel pattern that consists of a spring element, a damp-
ing element and a contractile element as it is presented in
Figure 3 [17].

Figure 3. Phenomenological model of PMA.

This model corresponds to the system of a PMA on
the vertical position with one end fixed and an external load
L attached to the other end. The differential equation that
describes the overall system is the following:

Mẍ+Dẋ+ Sx = Fce − L (9)

where x ∈ ℜ+ is the displacement of the PMA, M is the
mass of the muscle, P is the control pressure, L is the ex-
ternal load, S is the spring constant, D is the damping coef-
ficient and Fce is the contractile muscle force as described
in [11] and it is provided by the following equation:

Fce = πr20

(
a(1− x

l0
)2 − b

)
P (10)

As it has been indicated in [17], at a steady state L, both
damping and spring coefficients are polynomial expres-
sions of pressure P and can be formulated as:

D(P ) =

n∑
i=0

diP
i (11)

S(P ) =
n∑

i=0

siP
i (12)

with i, n ∈ Z+, n the order of the approximated poly-
nomial, and di, si ∈ ℜ2 are the polynomial coefficients
correspondingly. From equations (11) and (12), it can be
observed that the higher the order is, the better the approx-
imation is, with a trade off in the complexity of the non–
linear system.

3 Experimental Contraction and Relaxation
Study

The experimental setup that was constructed for the calcu-
lation of D and S elements, as provided in (11) and (12),
respectively, is depicted in Figure 4. The setup consists of
a pneumatic muscle actuator on the vertical position with
one end fixed, a proportional pressure regulator and a laser
distance sensor.

Figure 4. PMA Experimental Setup: (1) Proportional pres-
sure regulator, (2) Pneumatic muscle actuator, (3) Laser
distance sensor.

The PMA utilized in this test–bed was a Festo
MXAM-40-AA-DMSP-40-305N-AM-CM Fluidic Muscle
with 40mm of internal diameter and 305mm of nominal
length. A Festo VPPM-8L-L-1-G14-0L10H-V1P-S1C1
Proportional Pressure Regulator was used to regulate the
supply and pressure of the compressed air supplied into the
PMA. Moreover a Festo SOEL-RTD-Q50-PP-S-7L laser
distance sensor was utilized to measure the PMAs displace-
ment in the vertical axis. The control of the setup operation,
as well as the data acquisition, was achieved by utilizing
a National Instruments USB–6215 Data Acquisition Card.
The dynamic experiments in this study were conducted on
the test system utilizing vertical layout while applied a load
L. With no additional load attached to the PMA, and con-
sidering that the upper end of the muscle is clumped, half
of its mass is supported; the L load is constant and equals
half the weight of the PMA. Considering the previous stud-
ies in [18], the method, only for the case of estimating
the damping and spring coefficients, could be simplified
by ignoring the inertial term Mẍ of the phenomenologi-
cal model, and considering it as a first order system. Thus,
equation (9) becomes:

Dẋ+ Sx = Fce − L (13)

For step changes in pressure and Fce > L, the solu-



tion of the above equation has been calculated as [18]:

x(t) =
Fce − L

S

(
1− e−

S
D

t
)
= xmax

(
1− e−

S
D

t
)

(14)

where ∆xmax is the maximum contraction at steady state.
The above equation relates the damping D and spring S
coefficients with the displacement x, the contraction force
Fce and the load L. To provide independent estimates of
the model elements as functions of the pressure P , con-
traction and relaxation studies were conducted to param-
eterize the damping D(P ) and the spring constant S(P )
responses [17], with the utilization of the theoretical so-
lution described above. Successive inflations of the PMA
were conducted, with zero initial–state pressure and final–
state pressures between 1-6bar (100-600kPa) by 0.5bar in-
crements. The force coefficients Fce at each pressure were
estimated from (10) for x = xmax, while the spring ele-
ment S was estimated at each state by the following equa-
tion:

S =
Fce − L

xmax
(15)

The obtained results for: a) the experimental depen-
dency of the spring coefficient S to the applied pressure P ,
b) the linear approximation of S as a function of P , and c) a
high–order polynomial approximation that will be utilized
in the next section, are displayed in Figure 5.
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Figure 5. Spring coefficient estimates for pressures 0-6bar.

As it has been observed in [18] and experimentally
evaluated in the provided results, the dependency of S and
D from P is different in low pressures than the one in
higher pressures. In the case of pressures lower than 1bar,
the non-linearities of the PAMs tend to become more in-
tense. This is one of the reasons that PMA are usually op-
erated in higher pressures.

From Equation (14), the time constant of the displace-
ment response is equal to:

τ =
D

S
(16)

Based on these displacement responses the corre-
sponding time constants have been estimated. Then, the
damping element D that corresponds to the contraction
study was calculated at each state using Equation (16). In
Figure 6 it is displayed: a) the dependency of the damping
coefficient D experimental measurements to the pressure

P , b) the linear approximation of D as a function of pres-
sure, and c) a high–order polynomial approximation as a
function of pressure that will be utilized in the next section
of simulations.
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Figure 6. Damping coefficient estimates via the contraction
experiments for pressures 0.5-6bar.

Considering the fact that PMAs are highly non–linear
actuators that present intense hysteresis phenomena, after
an inflation and deflation of the muscle of the same final
and initial–state pressure respectively, the time constants
of the displacement responses differ. Based on this fact,
and following the previous procedure, a relaxation study
was conducted at which the PMA was subjected to suc-
cessive deflations, with initial–state pressures between 1-
6bar (100-600kPa) by 0.5bar increments and zero final–
state pressure.

Based on these displacement responses the corre-
sponding time constants were estimated. Then, the damp-
ing element D that corresponds to the relaxation study was
calculated at each state using equation (16). In Figure 7
it is displayed: a) the dependency of the damping coeffi-
cient D experimental measurements to the pressure P , b)
the linear approximation of D as a function of pressure, and
c) a high–order polynomial approximation as a function of
pressure.

From Figures 6 and 7 it can be noticed that during in-
flations and deflations of the PMA for low pressures, the
damping coefficient has similar values for both the infla-
tion and its respective deflation experiment. As the pressure
rises to higher values, the damping coefficient increases in
both cases, although the increase is much greater in the case
of the relaxation experiments. That difference can be ex-
plained by considering the fact that the deflation response
time is greater than that of the inflation in high pressures,
as it takes longer to reach the relaxation state from a high
pressure than to contract to the same pressure.

Finally, it should be noted that in small pressures (less
than 1bar) the derived system model does not follow the ex-
perimental one, mainly due to the large nonlinearities that
occur at this operating region and that affect the damping
and spring coefficient values. The specific modeling at low
pressures is still an open problem and will be one of the
aims of the future research.
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Figure 7. Damping coefficient estimates via the relaxation
experiments for pressures 0.5-6bar.

4 Cascade Movement Simulation

In this section, a cascade movement simulation is pre-
sented. In a number of applications, like in multiple axis
positioning tables, biomimetic robots, etc, there is a need
for a cascade configuration of muscles. The cascade struc-
ture provides a significant increase of the overall force and
can also be used to mimic the biologically inspired slid-
ing movement of certain animals. Thus the proposed sim-
ulation is based on that assumption. The simulations were
implemented on Mathworks’ Matlab. In the next three sub-
sections, a general overview of the simulation algorithm, a
detailed analysis of the visualization part and the cascade
movement simulation results will be shown, respectively.

4.1 Simulation Algorithm

A general overview of the simulation algorithm can be seen
in Figure 8. The algorithm initializes with the measurement
of the geometrical properties of the PMAs. These proper-
ties are used for the calculation of the contractile force co-
efficient Fce shown in Equation (10) for pressures 0.5-6bar
(50-600kPa) by 0.5bar increments. From the experimental
data of the aforementioned contraction and relaxation stud-
ies the spring S and damping D elements are calculated
with the use of Equations (15) and (16), respectively. Then,
the polynomial fitting of these coefficients as a function of
pressure is calculated via Matlab. For the simulation, we
chose a high-order polynomial over the linear least square
approximation because it best fits the experimental data of
these two elements and the increase of the computational
load has little effect on the overall simulation time. The
6-th order polynomial used in the simulation algorithm for
the spring S element is shown in Equation (17). For the
damping D element, two 6-th order polynomials were cal-
culated that describe the coefficient’s behavior during the
contraction and relaxation of the PMA and are shown in

Equations (18) and (19), respectively.

S(z) = 3.4e2z6 − 4.9e2z5 − 4.6e2z4 + 3.4e2z3 + 6.6e2z2

+ 1.6e4z + 4.5e4 (17)

D(z) = 2.2e2z6 − 3.5e2z5 − 5.3e2z4 + 7.7e2z3 + 1.4e3z2

+ 2.5e3z + 1.8e4 (18)

D(z) = −8.6e2z6 + 1.5e3z5 + 3.8e3z4 − 5.3e3z3 + 3.8e2z2

+ 3.7e4z + 4.9e4 (19)

z(P ) =
P − 3.5e5

1.6583e5
(20)

where z is a transformation factor used for normalizing the
coefficients’ center and scale. The user then specifies the
number of PMAs of the cascade configuration, the pressure
inputs and the time delay between the successive inflations
and deflations into the simulation program. The response
of the PMA movement is calculated from Equation (14)
and the response time is extracted.

Figure 8. Block diagram of the simulation environment

The next stage concerns the adjustment of the simula-
tion’s execution time. The goal was to tune the execution so
as to simulate the cascade movement of the PMAs in real
time, a characteristic not easily integrated in Matlab-based
simulations. First, the execution time of a full movement
cycle is measured and then the time-step is tuned so as to
give the simulation real-time properties. Then, the visual-
ization of the cascade movement is shown and that stage
concludes the simulation algorithm sequence. The user can
select a re-run of the visualization or choose to see vari-
ous characteristics and results of the simulation taken place
in the last cycle, like the total displacement x of the PMA
configuration simulated as a function of time and the total



contractile force coefficient Fce as a function of total dis-
placement that will be shown in the next section.

4.2 Visualization Analysis

As mentioned in Section 2 the commonly used geometri-
cal modeling of the PMA is the cylindrical version. Even
though it describes accurately the length and diameter of
the muscle, it isn’t accurate for visualization purposes. For
this reason an improved visualization model based on the
trapezoidal modeling of [19] was followed. In reality, the
PMA when inflated, forms a curved surface - two symmet-
rical curves in a 2D projection - near the edge, while the
main body stays in cylindrical shape. In the 2D visualiza-
tion of the PMA movement, through observation can be
noted that this curve has one tangent; the main body of the
PMA, while near the bearing edge this curve has a linear
form. Based on those two observations, for designing this
curve, Bèzier curves were utilized. Invented by Dr Pierre
Bèzier, these curves are parametric curves. Given n + 1
control points (P0, P1...Pn), the nth order Bèzier curve
[20] can be given from:

P (t) =

n∑
i=0

(
n

i

)
(1− t)n−i(t− t0)

iPi (21)

A significant property of the Bèzier curve is that both
the start and the end of the curve is tangent to the first and
last part of the Bèzier polygon respectfully, that is the con-
vex polygon created by connecting the control points. This
property allows us to properly design the curve of the PMA
by choosing appropriate control points. In this case, 3 con-
trol points were utilized; First is the point of connection
between the rubber part of the PMA with the bearing, the
second is a point found experimentally, being the intersec-
tion point of the aforementioned tangent with the extension
of the linear part of the PMA curve, and the last point is
the connecting point of the curve with the main PMA body.
A more detailed visualization of this can be seen in Fig-
ure 9 where with solid line a detail of the one side of the
PMA is shown, with dashed lines are the aforementioned
tangents and with bullets the 3 control points used for the
construction of the Bèzier curves.

Figure 9. A detailed visualization of the curve

4.3 Simulation Results

For the simulations, the PMAs have considered to have a
horizontal orientation and the first end of the configuration
is fixed while the last (third PMA) is free, b) all friction
forces have been ignored, c) each individual PMA is con-
trolled by the same on/off open loop control with varying
activation time between the PMAs, d) the links between
each PMA are considered to be prismatic, allowing for an
independent movement between a fully inflated and a fully
deflated muscle. The derived model of the PMA performs
significantly well in the real life experimental test cases and
as a result the provided simulation studies are almost iden-
tical to a real life experimental setup. To illustrate this,
Figure 10 provides a comparison study towards the theoret-
ical responses of one PMA during extraction and the cor-
responding experimental ones, under different pressures.
The performance of the model in high pressures reaches
a 99,7% accuracy at steady state of the contracted muscle’s
displacement by comparing the acquired data to the exper-
imental ones.
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Figure 10. A comparison study between the experimental
and the simulated responses of one PMA during extraction,
under various pressures

The whole simulation is adjusted to run real-time. Se-
quential snapshots of the PMA cascade configuration, dur-
ing movement simulation, are being presented in Figure 11.
The particular configuration consists of three PMAs, per-
forming a successive set of inflations and deflations at a
final and initial–state pressure of 6bar, respectively, with a
time delay of 1sec between them. A full video preview of
the simulated cascade connection test case, can be viewed
in [21] where it could also be noticed that the elapsed sim-
ulation time is very close to the real-time duration of the
cascade movement cycle.

Finally, for the presented simulation test case, the to-
tal displacement x of the simulated PMA configuration is
depicted in Figure 12, during a cycle of the cascaded move-
ment as a function of different applied pressures and with
respect to the simulated time. The corresponding total con-
tractile force coefficient Fce, as a function of total displace-
ment is also depicted in Figure 13, with respect to the sim-
ulated time and the applied pressure.



Figure 11. Snapshots during cascade movement simulation
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Figure 12. Displacement of the simulated PMA configura-
tion during a cycle of the cascaded movement
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Figure 13. Contractile force coefficient of the simulated
PMA configuration

5 Conclusions and Future Work

In this article a dynamic analysis and a cascade movement
simulation of a Pneumatic Muscle Actuator has been pre-
sented. A methodology for hardware in the loop model
identification, of the PMA’s highly non–linear character-
istics have been presented, extended by the proposal of a
detailed simulation environment for studying the cascade
movement of multiple PMAs, a typical configuration, com-
monly found in relative applications. Multiple experimen-
tal and simulation results have been presented that prove
the efficiency of the proposal schemes. As future research
directions the authors will: a) study the derivation of a sys-
tem model that will be able to describe the PMA move-
ment under small pressures (less than 1bar) b) the ability to
seamlessly extend the provided model derivation method-
ology to PMAs of different lengths and diameters and c)
the extraction and study of the acquired simulation data for
the future construction and control of a biomimetic sliding
robot that utilizes cascaded PMA actuators.
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