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Abstract—The aim of this article is to present a switched
system approach for the dynamic modeling of Pneumatic Muscle
Actuators (PMAs). PMAs are highly non-linear pneumatic actu-
ators where their elongation is proportional to the interval pres-
sure. During the last two decades, various modeling approaches
have been presented that describe the behavior of PMAs. While
most mathematical models are characterized by simplicity and
accuracy in describing the attributes of PMAs, they are limited
to static performance analysis. Static models are proven to be
insufficient for real time control applications, thus creating the
need for the development of dynamic PMA models. A collection
of experimental and simulation results are being presented that
prove the efficiency of the proposed approach.

I. INTRODUCTION

The Pneumatic Muscle Actuator [1], also known as the
McKibben Pneumatic Artificial Muscle (PMA) [2–5], Fluidic
Muscle [6] or the Biomimetic Actuator [7], is a tube–like
actuator that is characterized by a decrease in the actuating
length when pressurized [8–11]. Best known member of this
family is the McKibben–Muscle, which was first invented
in 1950s by the physician, Joseph L. McKibben and has
been utilized as an orthotic appliance for polio patients [2].
The first commercialization of PMAs has been done by the
Bridgestone Rubber Company of Japan in the 1980s. PMAs
are significantly light actuators, which are characterized by
smooth, accurate and fast response and also are able to produce
a significant force when fully stretched.

Typical manufacturing of a PMA can be found as a long
synthetic or natural rubber tube, wrapped inside man-made
netting, such as Kevlar, at predetermined angle. Protective
rubber coating surrounds the fibber wrapping and appropriate
metal fittings are attached at each end. The PMA converts
pneumatic power to pulling force and has many advantages
over conventional pneumatic cylinders, such as high force to
weight ratio, variable installation possibilities, no mechanical
parts, lower compressed-air consumption and low cost [12].

The PMA, when compressed, air is applied to the interior
of the rubber tube, it contracts in length and expands radially.
As the air exits the tube, the inner netting acts as a spring that
restores the tube in its original form. This actuation reminds
the operation of a single acting pneumatic cylinder with
a spring return, while this reversible physical deformation,
during the contraction and expansion of the muscle, results

in an almost linear motion. Typical types of PMAs and the
corresponding naming are depicted in Figure 1 [13].

Fig. 1. Various types of PMAs, (a) McKibben Muscle/Braided Muscle,
(b) Pleated Muscle, (c) Yarlott Netted Muscle, (d) ROMAC Muscle and (e)
Paynter Hyperboloid Muscle.

Various modeling approaches have been presented in the
scientific field of PMA–modeling. These approaches, although
incorporate basic and more detailed analysis of PMAs, in the
area of PMA applications, most of the models are based on
the geometry of the PMA, mainly due to the models simplicity
and great relativity to the experimental behavior [14], while
the model is being derived based on a fundamental operation
point (when the muscle is not pressurized). Among these
models, the Chou and Hannaford model [15] and the Tondu
and Lopez model [16] have been widely utilized in most of
PMA applications.

The main novelty of this article is to propose a switching
system approach for the modeling of the nonlinear PMAs,
based on multiple linear systems, derived from multiple cor-
responding operation points. Based on this approach, the larger
the number of the linear system is, the better the non–linear
model, is approximated by the set of switched linear models.
The state of the actuator’s elongation rules the switchings
while this scheme allows for the future application of novel
control schemes, e.g. switching controllers.

The rest of the article is structured as it follows. In
Section II the fundamental modeling for static and dynamic
PMA performance will be presented, while in Section III
the switching system modeling approach will be analysed. In
Section IV, experimental estimation of the PMA phenomeno-



logical model’s parameters and the validation of the dynamic
model accompanied by simulation results will be presented.
Finally the conclusions will be drawn in Section V.

II. FUNDAMENTAL MODELING FOR PMA PERFORMANCE

A. Static Modeling

The Chou and Hannaford model, is the most simple ge-
ometrical model for a static performance of a PMA. The
proposed model is valid under the following assumptions:
a) the actuator is cylindrical in shape, b) the threads in the
sheath are inextensible and always in contact with the outside
diameter of the latex bladder, c) frictional forces between the
tubing and the sheath and between the fibers of the sheath
are negligible, and d) latex tubing forces are negligible. With
this approach the PMA actuator can be modelled as a cylinder,
depicted in Figure 2, with a length L, thread length b, diameter
D, and number of thread turns n. The angle θ is defined as
the angle of the threads with the longitudinal axis [17].

Fig. 2. Simplified Geometrical Model of PMA.

When the PMA actuator inflates, D and L change, n and b
remain constant, while the expressions for the PMA’s length
and diameter can be formulated as:

L = b cos θ, D = b
sin θ

nπ
(1)

where the thread length can be calculated as:

b =
(
L2 +D2n2π2

)1/2
(2)

Equation (2) is referred in the literature as the geometric
relationship for the PMA, while its volume is provided by:

V =
b3 cos θ sin2 θ

4n2π
(3)

Utilizing the energy conservation principle, the PMA simple
geometric force Fg can be calculated as the gauge pressure
multiplied by the change in volume with respect to length
(this model can also be found in [17]):

Fg =
pb2(3cos2θ − 1)

4πn2
(4)

Another simple and widely utilized geometrical model of PMA
is that of Tondu and Lopez [16]. Based on this approach and
by: a) utilizing similar geometric description of the muscle
with [15], b) assuming inextensibility of the mesh material,

and c) angle changes during the alteration of the PMAs length,
the following mathematical modeling approach can be derived,
based on the theorem of virtual work [18]:

F (ϵ, P ) = πr20 · P [a(1− ϵ)2 − β] (5)

where:

ϵ =
l0 − l

l0
, d0 ≤ ϵ ≤ ϵmax, a =

3

tan2 θ0
, β =

1

sin2 θ0
(6)

In equations (5) and (6), r0 is the nominal inner radius, l
the length of the muscle, l0 the initial nominal length, P the
pressure and θ0 is the initial angle between the membrane
fibres and the muscle axis, while this model can also be found
in [19]. A disadvantage of the model is that its design is
based on the hypothesis of a continuously cylindrical–shaped
muscle, whereas it takes a conic shape at both ends when it
contracts. Consequently, the more the muscle contracts, the
more its active part decreases. This phenomenon affects the
actual maximum contraction, as theoretically it is smaller than
that expected from (5) [20]. For improving equation (5), an
empirical factor k has been added [16] to account for the end
deformation of the PMA:

F (ϵ, P ) = πr20 · P [a(1− kϵ)2 − β] (7)

where again: 0 ≤ ϵ ≤ ϵmax and ϵmax is provided from:

ϵmax = (1/k)(1−
√

β/a) (8)

Inserted in this way within the considered static model, the
parameter k does not modify the value of the maximum
force given at zero contraction. This is in concordance with
the conducted experiment since the PMA has a cylindrical
shape only when its contraction ratio is zero. Furthermore, the
parameter k allows adapting the model maximum contraction
ratio given by (8) to the experimental data. Thus, it tunes the
“slope” of the considered static model. In addition it has been
established two options for the selection of the parameter k:
a) a constant value which may vary depending on the material
that the muscle made of, and b) the parameter k depends on
the pressure in the muscle at any given time.

B. Dynamic Modeling

Although the geometrical models are characterized by sim-
plicity, they are not beneficial for real time control applications
because they strictly describe the static behavior of PMAs
and analyze their performance in quasi-static state. The PMA
geometric structure variables are inaccessible and difficult to
obtain from experimental data, thus, creating the need for
the development of dynamic PMA models. More recently,
a phenomenological modeling approach describes accurately
the dynamics of PMAs using a model with three elements.
Specifically, during expansion, PMA experiences viscoelastic
resistance which can be modeled as a damping and spring
element. Thus, in the phenomenological model, the PMA is
being considered as a parallel pattern that consists of a spring
element, a damping element and a contractile element as it is
presented in Figure 3 [21].



Fig. 3. Phenomenological Model of PMA.

This model corresponds to the system of a PMA on the
vertical position with one end fixed and an external load
L attached to the other end. The differential equation that
describes the overall system is the following:

Mẍ+Bẋ+Kx = Fce − L (9)

where x ∈ ℜ+ is the displacement of the PMA, M is the mass
of the muscle, P is the control pressure, L is the external load,
K is the spring constant, B is the damping coefficient and Fce

is the force exerted by the muscle as described in [16] and it
is provided by the following equation:

Fce = πr20

(
a(1− x

l0
)2 − b

)
P (10)

As it has been indicated in [21], at a steady state L both
damping and spring coefficients are polynomial expressions of
pressure P and can be formulated as:

B(P ) =

n∑
i=0

biP
i (11)

K(P ) =
n∑

i=0

kiP
i (12)

with i, n ∈ Z+, n the order of the approximated polynomial,
and bi, ki ∈ ℜ2 are the polynomial coefficients correspond-
ingly. From equations (11) and (12) it can be observed that
the higher the order, the better the approximation is with a
trade off in the complexity of the non–linear system.

III. SWITCHING SYSTEM MODELING APPROACH
By combining equations in (9) and (10), the full non–linear

state space equation that describes the elongation of the PMA,
can be cast as:

ẍ +
B(P )

M
ẋ +

K(P )

M
x −

πr20
M

P

[
a(1 −

x

l0
)
2 − b

]
+

1

M
L = 0 (13)

The operating points xop
j , with j = {0, . . . , N} and N ∈

Z+}, depend on the applied nominal pressure P op
j , under the

assumption of a constant load experiment. By zeroing the
terms ẍ = ẋ = 0, equation (13) yields:

K

M
xop
j − πr20

M
P op
j

[
a(1−

xop
j

l0
)2 − b

]
+

1

M
L = 0 (14)

which is the equality that all the equilibrium points [xop
j , P op

j ]
should satisfy. This means that a nominal pressure P op

j should
be applied to the PMA, if its length is to be maintained at a
distance xop

j from its un–stretched position.
The linearized equations of motion for the PMA, around

multiple equilibrium points j can be formulated by consid-
ering small perturbations around the variables x and P , or
considering x = xop

j + δx and P = P op
j + δP . By applying

this linearization approach on equation (13), the state space
representation:

x = [δx, δẋ]T ∈ X ⊆ ℜ2

for the elongation of the PMA, under the following control
vector:

u = [δP, 0]T ∈ U ⊆ ℜ2

can be mathematically formulated as it follows:

ẋ = Ajx+Bju, (15)

where the state space matrices are defined as:

Aj =

[
0 1

−kop
j

M − 2πr20a
Ml0

P op
j (1− xop

j

l0
) − bopj

M

]
(16)

Bj =

[
0 0

πr20
M [a(1− xop

j

l0
)2 − b] − 1

M

]
(17)

and the sets X and U specify state and input operating regions
that contain the operating points in their interior (middle
point).

The system described in (15) is switched, as j belongs to
a finite set of indexes and N denotes the number of switched
systems, with the state x to act as the switching rule. If Σ is
the polytope that contains all the switching systems, defined
by the switching vertices [Aj , Bj ], it can be notated as:

Co{[A1 B1], · · · , [AN BN ]} (18)

where the notation Co denotes the convex hull of the set, and
any [Aj , Bj ] within the convex set Σ, is a linear combination
of:

[Aj , Bj ] =
N∑

j=1

aj [Aj ,Bj ],
N∑

j=1

aj = 1, 0 ≤ aj ≤ 1 (19)

IV. MODEL VALIDATION

A. Experimental Contraction Study

In order to calculate and estimate the efficiency of the pro-
posed switched system modeling approach, values for B and
K elements are required. For this reason, a simple experiment
for a rough estimation of said values was conducted. The
experimental setup that was constructed for the extraction of
B and K elements, as provided in (11) and (12), respectively,
is depicted in Figure 4. The setup consists of a pneumatic
muscle actuator on the vertical position with one end fixed, a
proportional pressure regulator and a linear position sensor.

The PMA utilized in this test–bed was a Festo MXAM–40–
AA–DMSP–40–305N–AM–CM Fluidic Muscle with 40mm of



Fig. 4. PMA Experimental Setup: (1) Proportional Pressure Regulator, (2)
Pneumatic Muscle Actuator, (3) Linear Position Sensor.

internal diameter and 305mm of nominal length. The PMA
is on the vertical position and has its upper end clumped.
A Festo VPPM-6F-L-1-F-0L6H-V1N Proportional Pressure
Regulator was used to regulate the supply and pressure of the
compressed air supplied into the PMA. Moreover an ASM
WS12 cable actuated linear position sensor with analogue
output was utilized to measure the PMAs displacement in
the vertical axis. The control of the setup operation, as well
as the data acquisition, was achieved by utilizing a National
Instruments USB–6215 Data Acquisition Card. The dynamic
experiments in this study were conducted on the test system
utilizing vertical layout with steady state L. With no additional
load attached to the PMA, and considering that the upper end
of the muscle is clumped, half of its mass is supported; the L
load is constant and equals half the weight of the PMA.

Considering the previous studies in [22] the method, for the
case of estimating the damping and spring coefficients only,
could be simplified by ignoring the inertial term Mẍ of the
phenomenological model, and considering it as a first order
system. Given that a rough estimation - and not a accurate
identification - of the B, K parameters is needed for the
further development of the switched modeling approach, this
assumption has no major impact in the simulation studies.
Thus, equation (9) becomes:

Bẋ+Kx = Fce − L (20)

For step changes in pressure and Fce > L, the solution of the
above equation has been calculated as [22]:

x(t) =
Fce − L

K

(
(1− e−

K
B

t
)
= xmax

(
(1− e−

K
B

t
)

(21)

where ∆xmax is the maximum contraction at steady state.
The above equation relates the damping B and spring K
coefficients with the displacement x, the contraction force Fce

and the load L. To provide independent estimates of the model
elements as functions of the pressure P , a contraction study
was conducted to parameterize the damping B(P ) and the
spring constant K(P ) responses [21] with the utilization of
the theoretical solution described above. Successive inflations
of the PMA were conducted, with pressures between 0-6bar
(0-600kPa) by 0.5bar increments. The Force coefficients Fce

at each pressure were estimated from (10) for x = xmax,
while the spring element K was estimated at each state by
the following equation:

K =
Fce − L

xmax
(22)

The obtained results for: a) the experimental dependency of
the spring coefficient K to the applied pressure P , b) the linear
approximation of K as a function of P , and c) the switched
linear approximation of K that will be utilized in the following
subsection, are displayed in Figure 5. as it has been observed
in [22] and experimentally evaluated in the provided results,
the dependency of K and B from P is different than the one
in higher pressures. This is one of the reasons that PMA are
usually operated in higher pressures.
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Fig. 5. Spring Coefficient Estimates for Pressures 0-6bar.

From equation (21), the time constant of the displacement
response is equal to:

τ =
B

K
(23)

Based on these displacement responses the corresponding time
constants were estimated. Then, the damping element B was
calculated at each state using equation (23). In Figure 6 it is
displayed: a) the dependency of the damping coefficient B
experimental measurements to the pressure P , b) the linear
approximation of B as a function of pressure, and c) the
the switched linear approximation approximation that will be
utilized in the next subsection.

B. Simulation Results

Having estimated the relations of B(P) and K(P) in the
subsection 4.1, this section will focus on the switched model
verification. The number of the switched systems has been
selected as N = 4, which corresponds to 4–linearization points
as depicted in Table I

The validity of the aforementioned switched system mod-
eling when compared with the non–linear model, will be
provided based on the consideration of 2nd–order (linear)
polynomials for the B(P ) and K(P ), or considering B(P ) =
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Fig. 6. Damping Coefficient Estimates for Pressures 0-6bar.

TABLE I
PMA LINEARIZATION POINTS

N Parameters Linearization Regions
1 x◦ = [0.0399, 0] x ∈ [0, 0.0581]
2 x◦ = [0.0622, 0] x ∈ [0.0581, 0.0657]
3 x◦ = [0.0688, 0] x ∈ [0.0657, 0.0715]
4 x◦ = [0.0739, 0] x ∈ [0.0715, 0.076]

b0 + b1P and K(P ) = k0 + k1P . In all the simulations, that
will be presented in the sequence, the step response of the
PMA, modeled as a switched system, will be presented when
inflamed with various pressures. It should be noted that in
these Figures, with solid line we present the response of the
non–linear system and with dash–dotted line, the response of
the switched linear system.

In the first simulation case, the PMA is inflated by a constant
pressure P = 3.1bar and the responses of the switched and the
non–linear system are depicted in Figure 7. Under this applied
pressure, the PMA achieves to reach a maximum elongation
at x = 0.0589m in the non–linear case, and x = 0.0599m in
the switched case, that gives a total steady state error of 1.7%
. In the examined test–case, it should be noted that N = 2
switched systems have been utilized (N = 1, 2), as it has
been displayed in Figure 8.

In the second simulation case, the PMA is inflated by
a constant pressure P = 4.8bar and the responses of the
switched and the non–linear system are depicted in Figure 9.
Under this applied pressure, the PMA achieves to reach a
maximum elongation at x = 0.0704m in the non–linear case,
and x = 0.07m in the switched case, that gives a total steady
state error of 0.5% . In the examined test–case, the system had
to switch among N = 3 switched systems (N = 1, 2, 3), as
it has been displayed in Figure 10.

In the final simulation case, the PMA is inflated by a
constant pressure of P = 6bar and the responses of the
switched and the non–linear system are depicted in Figure 11.
Under this applied pressure, the PMA achieves to reach a
maximum elongation at x = 0.076m in the non–linear case,
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Fig. 7. Step Response for pressure P = 3.4bar
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Fig. 8. Switched system activation for pressure P = 3.1bar
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Fig. 9. Step Response for pressure P = 4.8bar
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Fig. 10. Switched system activation for pressure P = 4.8bar

and x = 0.0753m in the switched case, that gives a total
steady state error of 0.92% . In the examined test–case, it
should be noted that all the utilized switched systems have
been utilized (N = 1, 2, 3, 4), as it has been presented
in Figure 12. From all the previous results, it should be
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Fig. 11. Step Response for pressure P = 6bar

noted that among the responses of the non–linear model and
the corresponding switched systems, only a small and almost
negligible tracking error has been noticed in the proposed
approach. This deviation is being inserted primarily: a) from
the number of the utilized switched systems N , and b) on the
approximation towards the calculation of the B(P ) and K(P )
parameters from the experimental measurements.

V. CONCLUSIONS

In this paper a switched system modeling of a PMA was
presented. Given the phenomenological model of a PMA
and the assumption of a vertically positioned PMA with
a load attached to the loose end, a non linear model was
extracted. Following a rough experimental estimation of the
spring and damping coefficient relations for the muscle, a
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Fig. 12. Switched system activation for pressure P = 6bar

switched system model approach was considered. A trade–off
has been done in both the estimation of the K and B parameters
- by ignoring the inertial term Mẍ - and in the number
of on switched systems, on account of simpler experimental
setup and linear representation of the overall scheme. The said
system was compared with the non linear model, resulting
in a satisfactory linear approach. The resulting linearization
can be improved by the further increase in the number of the
switching systems. As future work, an accurate identification
of the spring and damping coefficients can be a achieved, for
benchmarking the switched system with the real muscle.
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