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Introduction

« Intelligent fault identification of rail vehicles is of utmost importance to reduce the
operating and maintenance cost.

« Early identification of vehicle faults responsible for an unsafe situation, such as
the instable running of high-speed vehicles, is very important

1 https://www.youtube.com/watch?v=5sVbCRLEZCE&ab_channel=TravelingTom
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* A new 8.7 km tunnel opened for traffic on Swedish
main line connecting Gothenburg and Malmo LYY

More train types
are shaking through
Hallandsasen

2016-02-08 0

« Poor media publicity for train operators’ due to poor
ride comfort
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also been experienced on board the Oresund train and
; freight trains.
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1 https://www.nyteknik.se/fordon/fler-tagtyper-skakar-genom-hallandsasen-6336179 accessed on 20 Aug 2019 (Swedish to English google translation )
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Introduction

e An intrinsic behavior of wheelset

— At high speed and on tangent track
— Bogie hunting (3-9 Hz)
— Carbody hunting ( < 2Hz)

Rail - Wheel |
Vehicle Interface
« Many parameters influences g @

. External
* Research Question Infrastructure i,
— How to identify root cause from ﬁ -‘.‘-
onboard measurements?

TKnothe K, Stichel S. Rail vehicle dynamics. Rail Vehicle Dynamics. 2016.
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Introduction

* The task is challenging

Direction of travel

— The nonlinear dynamics associated with multiple

subsystems

— Multiple components may trigger running instability

» Using only carbody floor accelerations

— Task is more challenging

— However, maintenance is significantly lower
compared to axlebox accelerometers.

* iIVRIDA

— A Temporal Convolution Network (TCN)-based
algorithm to detect rail vehicle faults.
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IVRIDA

g \VRIDA — Schematic
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Carbody Floor Acceleration » The proposed iVRIDA algorithm utilizes two

data-driven methods

v

Dynamic Mode
Decomposition

v

Statistical Classifier

v

Vehicle Instability
Detection

— Dynamic Mode Decomposition (DMD) Algorithm
for vehicle instability detection

> fFeatures extracted from carbody floor acceleration

Transfer Function > Binary classification problem
Estimation

— Temporal Convolutional Network ' (TCN) for

identifying root causes of observed vehicle

instability.
Temporal Convolution > Transfer function? between carbody floor and track is
Network calculated

> Multiclass classification problem

v

Intelligent Vehicle
Running Instability
Fault Detection

TLea, C., Vidal, R., Reiter, A., & Hager, G. D. (2016). Temporal convolutional networks: A unified approach to action
segmentation. https://doi.org/10.1007/978-3-319-49409-8_7
2 Kulkarni, R., Qazizadeh, A., & Berg, M. (2022). Identification of vehicle response features for onboard diagnosis of

vehicle running instability. Proceedings of the IEEE Conference on Prognostic Health Management 2022, Detroit, USA.
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IVRIDA - Vehicle Running Instability Detection
with DMD

« The DMD " algorithm is chosen because it is a fast and accurate algorithm
suitable for detection of the eigenfrequencies and eigenmodes of the system.

« It is convenient for vehicle running instability detection due to the order in which
the results are sorted, namely by energy content.

— In fact, during hunting motion, essentially only one mode will be excited. This mode will
be the one with the highest energy content.

Direction of travel

X&Y Running
i Dynamic Mode Instability
tw%cg?wlgsraé}ogogih Decomposition Frequency &
C y Instability Mode

&

"Brunton, S. L., & Kutz, J. N. (2019). Data-Driven Science and Engineering. In Cambridge University Press. Cambridge University Press.
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2% iVRIDA - Intelligent Fault Detection of Vehicle

FKTHS

£+ 1 Running Instability with TCN

« Estimation of Transfer Functions’

— Arail vehicle running on track in presence of track irregularities can be considered a
MIMO system.
> Inputs are Alignment Level (AL), Track Gauge (TG), and Cross Level (CL) irregularities
> Qutputs are vehicle accelerations in Y direction.

— Thus, the transfer functions between carbody floor accelerations and track irregularities
are estimated according to principals of MIMO system identification.

— The simplified relationship between the input and output signal is modelled by linear,
time-invariant Transfer Functions.

Alignment Level Irregularity

Rail Vehicle
(MIMO System)

» Y Acceleration

Cross Level Irregularity

Track Gauge Irregularity

" Kulkarni, R., Qazizadeh, A., & Berg, M. (2022). Identification of vehicle response features for onboard diagnosis of vehicle running instability. Proceedings of the IEEE
Conference on Prognostic Health Management 2022, Detroit, USA.
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iVRIDA - Intelligent Fault Detection of Vehicle
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iVRIDA - Intelligent Fault Detection of Vehicle
Running Instability with TCN

» Transfer Function Estimation Case Study

(a) case 1 -TF (Y Acc vs AL) (c) case 2 -TF (Y Acc vs AL) (e) case 3 -TF (Y Acc vs AL) 40
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IVRIDA

B  iVRIDA - Vehicle Response (VR) Database
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« X2000 Vehicle Model '

iIVRIDA - Vehicle Response (VR) Database

« Nonlinearities included in vehicle model | Lo £

— Wheel-Rail Interface

— Primary and secondary suspension
elements

« 1 km tangent track section with
measured irregularities

» Simplified measurement scheme

— Carbody floor acceleration at two points

O®

U0

Direction of travel

' Dirks, B. (2003). Vehicle Dynamics Simulation of Wheel Wear for Swedish High-Speed Train X2000. KTH Royal Institute of Technology, Stockholm, Sweden.
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iIVRIDA - Vehicle Response (VR) Database

Key parameters for vehicle instability Other Parameters
1. Coefficient of Friction = 0.1t0 0.6 (6 1. Gaussian Distribution of other
steps each of 0.1) parameters around nominal value:
2. Equivalent Conicity = 0.1 to 0.6 (6 i. Primary suspension (X,Y,Z) : Stiffness
steps each of 0.1) and damping

i. Secondary Suspension (X,)Y,Z)

3. Yaw Dampers Failure Rate (One at Stiffness and damping

a time) = [0.1, 0.3, 0.5, 0.7, 0.9, 1]
4. Speed = 180, 200, 220

15552 Simulations

ol
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IVRIDA

g IVRIDA — Machine Learning Problem Formulation
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IVRIDA - Machine Learning Problem Formulation

« Vehicle Running Instability Detection with DMD

15552 simulation cases i.e. 15552 observations

5 features extracted from carbody floor acceleration with DMD
> Instability frequency

> Normalized mode shapes (X&Y direction at two sensor locations)

The true labels of stable/instable are generated with the running instability evaluation
scheme defined in EN14363.

This is a typical binary classification problem, and any typical statistical classifier can
perform the classification task.

Linear SVM (L-SVM) is deployed.
Database of 156552 cases
87.5% database for training (7-fold crossvalidation)

\Y%

\Y%

> 12.5% cases for testing

\Y%

Hyperparameters are optimized
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231 IVRIDA — Machine Learning Problem Formulation

* Intelligent Fault Detection of Vehicle Running Instability with TCN'
— Database labelling strategy

I- ———————————— =
> Faulty wheel-rail profile pair - : Eo i
V]
* Ay >=0.4 g— L---7R-----'
> Faulty yaw damper 3 o % 7
* One damper failing at a time E % ::\lljvltDamper: .\
+ Loss of performance >= 50% s E o' oth Faults
o ‘g N \
» e '®  N\| _________
00 I r 1
- O ° : ° : 1
— There are 10 fault classes/labels ° i :
° L
No Fault + No Fault; Worn Wheel + No Fault EN ) s i '
No Fault + R BF 11; Worn Wheel + R BF 11 ° ° o ‘e e
No Fault + L BF 11; Worn Wheel + L BF 11 . ‘;"h‘f*_‘f'
rofile
No Fault + R BF 12; Worn Wheel + R BF 12 ° Fault
No Fault + L BF 12; Worn Wheel + L BF 12 >
0 0.4 Asm

TLea, C., Vidal, R., Reiter, A., & Hager, G. D. (2016). Temporal convolutional networks: A unified approach to action segmentation. https://doi.org/10.1007/978-3-319-49409-8 ]
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231 IVRIDA — Machine Learning Problem Formulation
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* Intelligent Fault Detection of Vehicle Running Instability with TCN'
— The time-series form of transfer functions 2 are horizontally stacked together

& 5
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- Fault Detectlon is typlcal multlclass classmcatlon problem
> Database of 156552 cases

> 87.5% database for training (7-fold crossvalidation)
+ 6 folds are used for batchwise training of the network

e

T _
-

~  Ter
-
——]

« T7th fold is validation set

> 12.5% cases for testing

" Lea, C., Vidal, R., Reiter, A., & Hager, G. D. (2016). Temporal convolutional networks: A unified approach to action segmentation. https://doi.org/10.1007/978-3-319-49409-8 ]
2 Kulkarni, R., Qazizadeh, A., & Berg, M. (2022). Identification of vehicle response features for onboard diagnosis of vehicle running instability. Proceedings of the IEEE
Conference on Prognostic Health Management 2022, Detroit, USA.
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* Intelligent Fault Detection of Vehicle Running Instability with TCN'

— TCN is Deep learning algorithm proposed in 2018 for regression/classification of time
series data.

— TCN shows excellent abilities in solving sequential problems such as analyzing time
series data and outperforms RNN/LSTM models.

Table 1. Evaluation of TCNs and recurrent architectures on synthetic stress tests, polyphonic music modeling, character-level language
modeling, and word-level language modeling. The generic TCN architecture outperforms canonical recurrent networks across a
comprehensive suite of tasks and datasets. Current state-of-the-art results are listed in the supplement. ® means that higher is better.
" means that lower is better.

| Residual block (K, d)

; ol i Sequence Modeling Task Model Size (=) Models

i | LSTM GRU RNN  TCN
: WelghtNorm ! Seq. MNIST (accuracy™) TOK 87.2 96.2 215 990
Dilated Cavanl Come 1 Conv | Permuted MNIST (accuracy) 70K 8S.7 87.3 253 972
5 {optional) i Adding problem T=600 (loss") 70K 0164 53e-5 0177 58e-5
; ' Copy memory T'=1000 (loss) 16K 0.0204 00197 00202 3.5e-5
: : Music JSB Chorales (loss) 300K .45 B.43 891 8.10
E ! Music Nottingham (loss) IM 3.29 346 4.05 3.07
: | Waord-level PTE (perplexity’) 13M 7893 9248 11450 BE.68
i : Waord-level Wiki-103 (perplexity) - 48.4 - - 45.19
: Dilated Causal Conv | Word-level LAMBADA (perplexity) - 4186 - 14725 1279
E o Char-level PTB (bpc’) 3M 1.36 1.37 1.48 131
: ' Char-level text8 (bpc) M 1.50 1.53 1.69 145

"Lea, C., Vidal, R., Reiter, A., & Hager, G. D. (2016). Temporal convolutional networks: A unified approach to action segmentation. https://doi.org/10.1007/978-3-319-49409-8 ]
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Carbody Floor Acceleration

* Results

— Dynamic Mode Decomposition (DMD) Algorithm

v for vehicle instability detection
Dynamic Mode
Decomposition
Transfer F i .
v o en — Temporal Convolutional Network ' (TCN) for
identifying root causes of observed vehicle
Statistical Classifier |nstab|||ty
Vehicle Instability Temporal Convolution
Detection Network

v

Intelligent Vehicle

Running Instability | 1 |ea, C., Vidal, R., Reiter, A., & Hager, G. D. (2016). Temporal convolutional networks: A unified approach to action
Fault Detection segmentation. https://doi.org/10.1007/978-3-319-49409-8_7
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Performance in Training Phase

Not_Hunting 0.1%

True Class

Hunting 21 577 3.5%

Not_Hunting Hunting
Predicted Class
Performance in Testing Phase

Not_Hunting 0.3%

True Class

Hunting 2 83 2.4%

Not_Hunting Hunting
Predicted Class

* Performance in Training Phase

— Overall classification accuracy of 99.7%
> 99.9% cases of non-hunting are correctly classified
> 96.5% cases of hunting are correctly classified

» Performance in Testing Phase

— Opverall classification accuracy of 99.6%
> 99.7% cases of non-hunting are correctly classified
> 97.6% cases of hunting are correctly classified
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Confusion Matrix in Training Phase

Wormn-Wheel_&_R-BF12 29% | 0.3% | 0.2% | 0.8% 0.0% | 0.1%

Worn-Wheel_& L-BF12 0.0% | 0.1% | 0.1% | 2.1% | 0.0% 0.2%

0.1% 0.1% | 0.1% | 0.1% | 2.1%

No-Fault_&_L-BF12

No-Fault_& R-BF12 | 4.7% 0.0% | 0.1% | 0.1% | 0.1% | 1.2%

Worn-Wheel_& R-BF11 | 0.0% | 0.0% 4.2% 2.0% | 0.3%

3.6% | 21% | 0.2% | 0.6%

Worn-Wheel_&_L-BF11 | 0.1% | 0.0%

Worn-Wheel_& No-Fault | 0.9% | 1.7% | 0.0% | 0.0% | 1.6% 1.4%

True Class

4.2%

No-Fault_&_L-BF11 0.0% | 0.1% | 0.0% | 0.0% | 3.2%

No-Fault_&_R-BF11 0.0% | 0.0% | 2.7% | 0.1% | 0.2%

No-Fault_& No-Fault | 0.0% | 0.1% | 1.1% | 0.9% | 0.1% | 0.3% | 2.0%

6.5% | 6.8% | 4.9% | 4.9% | 71% | 8.6% | 7.8% | 8.1% | 6.5% | 8.4%

- - - - 1o

N~ o\~ R\ 0\ o\
\(\eﬁ' @\\G < < e K
\NO««\N \“0« W WO RSN ‘“0(« ‘*0‘« WO o

Predicted Class

4.3%

52%

5.8%

6.3%

7.0%

7.3%

7.8%

8.0%

8.4%

9.1%

Performance of iVRIDA in
Training Phase

— Overall classification accuracy of
92.9%

— Lowest fault detection accuracy
90.9% for No Fault & No Fault
class

— Highest classification accuracy of
95.7% for Worn_Wheel & R-
BF12 fault
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Confusion Matrix in Test Phase

Wormn-Wheel_&_R-BF12 3.6% | 0.2% 1.5% | 0.2% | 0.1% | 0.1% 5.6%

Worn-Wheel_&_L-BF12 | 0 0.1% 32% | 26% | 0.1% | 0.2% | 0.1% 6.4%

 Performance of iVRIDA in
o Testing Phase

6.7% Overall classification accuracy of
90.6%

No-Fault_&_R-BF12 0.1% | 0.2% | 0.1% 16% | 0.3% 6.8%

Worn-Wheel_&_R-BF11 | 0.1% | 0.1% 0.1% | 41% | 1.2% | 0.1% | 1.8%

No-Fault_&_L-BF11 0.1% | 3.9% | 3.9% | 0.6%

No-Fault & L-BF12 44% | 01% 0.1% 52% 9.9%

Worn-Wheel_&_No-Fault | 1.2% | 3.1% | 0.0% | 2.2% 14% | 0.0% 10.6%

108% — Lowest fault detection accuracy

True Class

Worn-Wheel_&_L-BF11 | 0.2% | 0.1% 0.7% | 2.2% 09% | 0
(o] - -
No-Fault_&_No-Fault | 0.1% | 0.0% | 1.5% | 0.1% | 3.4% | 1.6% | 2.8% 11.5% 867 /O for NO FaUIt_&_R BF11
Fault class
No-Fault_&_R-BF11 0.1% | 2.0% | 0.4% 0.6% 13.3%

— Highest classification accuracy of
94.4% for Worn_Wheel & R-
BF12 fault

74% |10.1%| 6.8% | 7.7% | 9.4% | 6.8% |10.9%(10.7%|12.7%| 7.1%

%?’\7' 6‘?\%?\%?'\1 g?’\'\ ’g‘?’\\ ’%? Q’A“\\ 3?\\ O’Q'A‘X\\ %‘?’\'\
55 RIS IR AN IR SN
- ”\Nx@e’ - W’“ RN L \N\\ee T <
@o‘« \ﬁo‘« WO \ﬂo«( O ®0‘“® “*0«( \AO WO

Predicted Class
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* iIVRIDA - intelligent Vehicle Running
Instability Detection Algorithm

— Only Carbody floor accelerations
— Instability detection with SVM+DMD
— Fault Identification with TCN

 Performance of iVRIDA

— Extensive database of 15552 simulations
— Opverall accuracy more than 90%

« After summer break, the algorithm is
undergoing validatation with onboard
measurements of X2000 fleet.

Conclusions and Future Work

Carbody Floor Acceleration

v

Dynamic Mode
Decomposition

v

Statistical Classifier

A 4

Y

Transfer Function
Estimation

Vehicle Instability

Detection

Y

Temporal Convolution
Network

v

Intelligent Vehicle
Running Instability
Fault Detection

7th European Conference of the PHM Society (PHME22), Turin, Italy

rohank@kth.se



mailto:rohank@kth.se
mailto:rohank@kth.se

ahp

F=T
FKTHY

ék VETENSKAP i}

<8, OCH KONST %%

s

Thank You

Rohan Kulkarni, PhD Student,

Rail Vehicles, Engineering Mechanics Department,

KTH Royal Institute of Technology, Stockholm, SE - 100 44
rohank@kth.se; +46 76 697 4346

KTH ROYAL INSTITUTE

OF TECHNOLOGY

:

l i

-

-

7th European Conference of the PHM Society (PHME22), Turin, Italy

rohank@kth.se

29



mailto:rohank@kth.se
mailto:rohank@kth.se

	Slide 1: iVRIDA: intelligent Vehicle Running Instability Detection Algorithm for high-speed rail vehicles using Temporal Convolution Network – A pilot study
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Introduction 
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: iVRIDA
	Slide 9: iVRIDA – Schematic 
	Slide 10: iVRIDA – Vehicle Running Instability Detection with DMD
	Slide 11: iVRIDA – Intelligent Fault Detection of Vehicle Running Instability with TCN
	Slide 12: iVRIDA – Intelligent Fault Detection of Vehicle Running Instability with TCN
	Slide 13: iVRIDA – Intelligent Fault Detection of Vehicle Running Instability with TCN
	Slide 14: iVRIDA
	Slide 15: iVRIDA – Vehicle Response (VR) Database
	Slide 16: iVRIDA – Vehicle Response (VR) Database
	Slide 17: iVRIDA
	Slide 18: iVRIDA – Machine Learning Problem Formulation
	Slide 19: iVRIDA – Machine Learning Problem Formulation
	Slide 20: iVRIDA – Machine Learning Problem Formulation
	Slide 21: iVRIDA – Machine Learning Problem Formulation
	Slide 22: Results
	Slide 23: iVRIDA – Results
	Slide 24: Results – Vehicle Running Instability Detection 
	Slide 25: Results – Intelligent Fault Detection
	Slide 26: Results – Intelligent Fault Detection
	Slide 27: Conclusions and Future Work
	Slide 28: Conclusions and Future Work
	Slide 29: Thank You 

