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Abstract—Federated Learning (FL) plays a prominent role in
solving machine learning problems with data distributed across
clients. In FL, to reduce the communication overhead of data
between clients and the server, each client communicates the
local FL parameters instead of the local data. However, when a
wireless network connects clients and the server, the communi-
cation resource limitations of the clients may prevent completing
the training of the FL iterations. Therefore, communication-
efficient variants of FL have been widely investigated. Lazily
Aggregated Quantized Gradient (LAQ) is one of the promising
communication-efficient approaches to lower resource usage in
FL. However, LAQ assigns a fixed number of bits for all itera-
tions, which may be communication-inefficient when the number
of iterations is medium to high or convergence is approaching.
This paper proposes Adaptive Lazily Aggregated Quantized
Gradient (A-LAQ), which is a method that significantly extends
LAQ by assigning an adaptive number of communication bits
during the FL iterations. We train FL in an energy-constraint
condition and investigate the convergence analysis for A-LAQ.
The experimental results highlight that A-LAQ outperforms LAQ
by up to a 50% reduction in spent communication energy and
an 11% increase in test accuracy.

Index Terms—Federated learning, adaptive transmission, LAQ,
communication bits, edge learning.

I. INTRODUCTION

Federated Learning (FL) is a framework in which the clients
train a centralized model by communicating their computed
local models while data remains at each client [1]. FL has been
widely studied because it preserves local data privacy and re-
duces communication overhead by avoiding data transmission.
FL clients contribute to FL training by computing and sharing
a local FL vector. However, computation and communication
of such local vectors in large-scale FL require extensive com-
munication resources [2]. Furthermore, the resources needed
for FL training may be available in wired networks but not on
wireless devices due to communication and energy resource
constraints. Thus, we must minimize communication resource
expenditure and get the most accurate training possible.

Many papers have recently focused on communication,
computation, latency, and energy-efficient FL [3]–[7]. Au-
thors in [3] have tried to minimize the system’s total spent
communication energy under a latency constraint and could

reduce up to 59.5 % energy expenditure compared to the
conventional FL. Reference [4] studied the joint power and
resource allocation for ultra-reliable low-latency communica-
tion in vehicular networks and proposed a distributed approach
based on FL to estimate the tail distribution of the queue
lengths. Finally, authors of [5]–[7] have proposed a causal
setting to jointly minimize the FL loss function and the overall
resource consumption for training. Their results highlighted
that joint design of communication protocols and FL are
crucial for resource-efficient and accurate FL training.

Besides resource optimization, communication-efficient
methods like quantization [8], [9], compression [10], and
sparsification [11] can significantly reduce the communication
overhead at each communication iteration. Adaptive methods
have been recently noticed for communication-efficient FL
training [12]–[15]. Authors in [12] have proposed an adaptive
quantization strategy named AdaQuantFL by which they can
change the quantization level in the stochastic quantization
method to improve communication efficiency. Reference [13]
has considered an adaptive quantization and sparsification
scheme for uplink transmission facilitated by non-orthogonal
multiple access. Authors in [14] have proposed an online
learning scheme for determining the communication and com-
putation trade-off. This trade-off is controlled by the degree
of gradient sparsity obtained by the estimated sign of the
objective function’s derivative. Authors of [15] have proposed
an adaptive gradient compression approach that improves
communication efficiency by adjusting the compression rate
according to the actual characteristics of each client.

Lazily aggregated quantized gradients (LAQ) method [16] is
a novel framework that achieves the same linear convergence
as the gradient descent in strongly convex set-ups. In addition,
LAQ saves communication resources by using fewer trans-
mitted bits at each communication iteration. However, LAQ
considers a constant number of bits at each global and local
FL transmission, which may not be communication-efficient
enough.

In this paper, we significantly extend LAQ by considering
an adaptive number of bits during the FL training to further
improve communication and resource efficiency. The critical



factors in our proposed method are the descent behavior and
the diminishing return rule [17] in FL training for L-smooth
and convex loss functions. Due to the diminishing return rule,
the accuracy improvement of the final model reduces with
every new local and global communication iteration. Thus, we
propose an adaptive LAQ, which we called A-LAQ, in which
the FL training starts with a higher number of communication
bits and adapts the bits as the communication between the
server and clients continues. As the number of communication
iterations increases, we propose that the number of bits can
either decrease or stay the same. In A-LAQ, we assign more
communication bits to the first communication iterations to
minimize the quantization error at the beginning steps of
training. After some communication iterations, we reduce the
number of communication bits while facing a minor reduction
in the loss function during training. We also develop a con-
vergence analysis of FL with A-LAQ. The numerical results
show that energy-constraint FL with A-LAQ outperforms FL
with LAQ by up to a 50% reduction in spent communication
energy and an 11% increase in test accuracy.

We organize the rest of this paper as the following. Sec-
tion II describes the general system model and problem
formulation. In Section III, we explain the solution approaches
and convergence analysis for A-LAQ. Section IV shows some
numerical results of A-LAQ and its performance compared to
LAQ, and we conclude the paper in Section V.

Notation: Normal font w, bold font small-case w, bold-
font capital letter W , and calligraphic font W denote scalar,
vector, matrix, and set, respectively. We define the index set
[N ] = {1, 2, . . . , N} for any integer N . We denote by ∥ · ∥
the l2-norm, by ⌈.⌉ the ceiling value, by |A| the cardinality of
set A, by [w]i the entry i of vector w, by wT the transpose
of w, and 1x is an indicator function taking 1 if and only if
x is true and takes 0 otherwise.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we represent the system model and the
problem formulation. Consider a star network of M worker
nodes that cooperatively solve a distributed training problem
involving a loss function f(w). Consider D as the whole
dataset distributed among each worker j ∈ [M ] with Dj data
samples. Let tuple (xij , yij) denote data sample i of |Dj |
samples of worker node j and w ∈ Rd denote the model
parameter at the master node. Considering

∑M
j=1 |Dj | = |D|,

and j, j′ ∈ [M ], j ̸= j′, we assume Dj∩Dj′ = ∅, and defining
ρj := |Dj |/|D|, we formulate the following training problem

w∗ ∈ arg min
w∈Rd

f(w) =

M∑
j=1

ρjf j(w), (1)

where f j(w) :=
∑|Dj |

i=1 f(w;xij , yij)/|Dj |.

A. LAQ Summary

In this part, we briefly summarize LAQ and its important
parameters [16]. Considering the communication bits b, we de-
fine the quantization granularity τ := 1/(2b−1), the quantized

version of each local gradient at the global communication
iteration k as qj(wk) = Quant(∇f j(wk); b), j ∈ [M ]. Each
local gradient is element-wise quantized by projecting to
the closest point in a uniformly discretized d-dimensional
grid with radius of Rj

k = ∥∇f j(wk) − qj(wk−1)∥∞. We
assume that all the workers participate in the training, each
local loss function f j(wk) is Lj-smooth, the aggregated loss
function f(wk) is L-smooth and µ-strongly convex. Defining
εjk := ∇f j(wk)− qj(wk) as the local quantization error, the
aggregated quantization error is obtained as εk :=

∑M
j=1 ε

j
k

and the aggregated quantized gradient is qk :=
∑M

j=1 q
j(wk).

The global updates in LAQ is wk = wk−1 − α∇̃k−1, where
∇̃k = ∇̃k−1 +

∑M
j=1 δq

j
k and δqj

k := qj(wk)− qj(wk−1).

B. Adaptive LAQ

In this subsection, we propose A-LAQ, in which we let bk be
the adaptive number of communication bits, and we introduce
τk := 1/(2bk − 1) at each communication iteration 1 ≤ k ≤
K. The global update in FL with A-LAQ is similar to LAQ,
but the number of communication bits bk becomes adaptive.
First, we propose the following optimization problem, which
formalizes the general scope of this paper:

minimize
w,k0,K

f(w) (2a)

subject to wk = wk−1 − α∇̃k−1, k = 1, . . . ,K (2b)

∇̃k = ∇̃k−1 +

M∑
j=1

δqj
k, k = 1, . . . ,K (2c)

δqj
k = qj(wk)− qj(wk−1), k = 1, . . . ,K

(2d)
bk = bmax1k≤k0

(2e)
+ b01k=k0+1 + ⌈ηk−1bk−1⌉1k>k0+1

bk ≥ 2, k = 1, . . . ,K (2f)
K∑

k=1

Ek ≤ E, k = 1, . . . ,K, (2g)

where wk is the global FL parameter at each communication
iteration k, ρj , j ∈ [M ] is the local weight, α is the step size,
Ek is the communication energy spent at each communication
iteration k, E is the total communication energy budget, and
k0 ≤ K is the number of the first communication iterations
by which we assign bk = bmax, where bmax and b0 are the
given number of bits. We propose to update bk = ⌈ηk−1bk−1⌉
for k = max{3, k0}, . . . ,K, by introducing ηk−1 as

ηk−1 := min

{
∥f(wk−1)− f(wk−2)∥
∥f(wk−2)− f(wk−3)∥

, 1

}
, (3)

where the rationale of such a choice is the diminishing return
rule. Constraints (2b)-(2d) reveal global LAQ update, con-
straints (2e) and (2f) show the adaptive bk, and constraint (2g)
is the overall communication energy limitation.

Optimization problem (2) aims to solve an FL problem
in a communication energy-limited set-up. Although LAQ
is a promising communication-efficient method, we show



that under the same resource limitation, A-LAQ saves more
communication resources than LAQ. The set-up for A-LAQ
is to assign a high number of communication bits to the
communication iterations 1, . . . , k0. Afterward, the training
continues with b0 communication bits, while b0 < b (where
recall that b is the number of bits used by LAQ), and follows
a non-increasing sequence of bits as implied by (3).

Optimization problem (2) is not practical because it requires
K and the future local gradients for k = 1, . . . ,K at the
beginning of the training. Since it is impossible to have the
information of local parameters and K beforehand, we call
such a problem non-causal [5]. Therefore, in the rest of this
paper, we focus on developing causal and practical solution
approaches which do not need the future information of local
gradients and K.

III. SOLUTION APPROACH

This section provides a solution approach for optimization
problem (2). Since optimization problem (2) is non-causal,
we first calculate k0, then proceed to calculate K and w∗ in
a causal way. To obtain k0, we propose to solve a new opti-
mization problem demonstrating the effect of the diminishing
return rule on energy expenditure. After computing k0, we
simplify the optimization problem (2) and solve it to find K
and w∗ causally until the energy budget constraint is fulfilled.

A. Preliminary Results

To calculate k0, we propose an optimization problem con-
sidering the diminishing return rule and energy expenditure.
The idea behind A-LAQ is to change the number of com-
munication bits to cope with the diminishing return rule. In
other words, A-LAQ tries to associate a different number of
communication bits at each communication iteration k to save
the extra communication energy the clients spend before FL
converges. Therefore, we define the energy-per-progress ratio
function Ef (wk, k; Ij

k), where Ij
k is set of network’s clients

parameters, as

Ef (wk, k;M, [pjk]j , [t
j
k]j) :=

∑k
k′=1

∑M
j=1 p

j
k′t

j
k′

f(w0)− f(wk)
, k ≥ 1,

(4)
where pjk′ and tjk′ are respectively the transmission power
and latency of each client j ∈ [M ] at every communication
iteration k′ = 1, . . . , k. We assume that the client powers
are constant at each communication iteration k′, as pjk′ =
pj , j ∈ [M ]. Defining client transmission rate rj bits/sec, we
compute the transmission latency for each client j ∈ [M ],
as tjk′ = bk′d/rj sec, where d is the dimension of the local
and global parameters. Consider rj as

rj = BWj log2

(
1 +

pjHj

N0BWj

)
, (5)

where N0 is the power spectrum density of noise, Hj is the
channel gain and BWj is the bandwidth allocated to each client

j ∈ [M ]. Defining power vector p := [p1, . . . , pM ], bit vec-
tor b := [b1, . . . , bK ], and the rate vector r := [r1, . . . , rM ],
we have

Ef (wk, k;b,M,p, r) =

∑k
k′=1 Ek′

f(w0)− f(wk)
= (6)∑k

k′=1 bk′
∑M

j=1
pjd

BWj log2(1+
pjHj

N0
)

f(w0)− f(wk)
, k = 1, . . . ,K.

Now, considering b = bmax1, we aim to mini-
mize Ef (wk, k; b,M,p, r) as

minimize
k,w,K

Ef (wk, k; b
max1,M,p, r) (7a)

subject to wk = wk−1 − α∇̃k−1, k = 1, . . . ,K (7b)

∇̃k = ∇̃k−1 +

M∑
j=1

δqj
k, k = 1, . . . ,K (7c)

δqj
k = qj(wk)− qj(wk−1), k = 1, . . . ,K

(7d)

f(wk) =

M∑
j=1

ρjf j(wk), k = 1, . . . ,K, (7e)

K∑
k=1

Ek ≤ E. (7f)

To solve optimization problem (7), we propose the follow-
ing Lemma, which demonstrates the conditions for discrete
convexity [18] of Ef (wk, k; b

max,M,p, r).

Lemma 1. Let f(w) be µ-strongly convex and L-smooth.
Assume bmax = 32 bits which represents the quantization full
accuracy. Then, Ef (wk, k; b

max,M,p, r) is discrete convex
w.r.t. k.

Proof: See Appendix A-A
Lemma 1 demonstrates that Ef (wk, k; b

max,M,p, r) has a
unique minimum w.r.t. k. Thus, we calculate k0 as

k0 ∈ argmin
k∈N

Ef (wk, k; b
max,M,p, r) (8a)

subject to (7b) − (7f). (8b)

After computing k0, we re-write the optimization problem (2)
as

minimize
w,K,b

f(w) (9a)

subject to bk = b01k=k0+1 + ⌈ηk−1bk−1⌉1k>k0+1 (9b)
bk ≥ 2, k = k0 + 1, . . . ,K (9c)

K∑
k=k0+1

Ek ≤ E −
k0∑
k=1

Ek (9d)

(2b) − (2d). (9e)

Now, equipped with the preliminary results of this subsec-
tion, we are ready to solve optimization problem (2) in the
following subsection.



B. Solution Approach

First, we consider Lemma 1 and compute k0 according to
the following proposition.

Proposition 1. Let f(w) be µ-strongly convex and L-smooth.
Consider bmax = 32 bits. Thus, k0 = min{ke, kf}, where

ke := the first value of k such that Ek > E−
k−1∑
k′=1

Ek′ , (10)

and
kf := the first value of k such that (11)

k <
f(w0)− f(wk)

f(wk−1)− f(wk)
.

Proof: See Appendix A-B
Note that when k0 = ke, constraint (2g) is fulfilled, thus

the training is complete and K = k0, b = bmax1. Otherwise,
after computing k0, we focus on optimization problem (9) to
obtain K, w and b. Considering the non-increasing sequence
of bk for k ∈ [k0 + 1,K] in (9b) and (9c) along with the
energy constraint of (9d), we obtain(

32k0 + b0 +

K∑
k′=k0+2

bk′

)
M∑
j=1

pjd

BWj log2(1 +
pjHj

N0
)
≤ E.

(12)
Eq. (12) plays a critical role in FL training for the communi-
cation iteration k ≥ k0+1. It means that K is obtained while
the energy budget E is spent. The following lemma determines
when we can terminate the FL with A-LAQ training by finding
K.

Lemma 2. Let f(w) be µ-strongly convex and L-smooth and
bmax = 32 bits. For any k > k0, we obtain K = k if

ηkbk

M∑
j=1

pjd

BWj log2(1 +
pjHj

N0
)
> E −

k∑
k′=1

Ek. (13)

Proof: See Appendix A-C
Therefore, the FL training with A-LAQ continues until K

is obtained. Algorithm 1 summarizes all the steps for FL with
A-LAQ.

Theorem 1. Let f(w) be µ-strongly convex and L-smooth.
Assume bmax = 32 and b0 < b be given. Then, by solving op-
timization problems (7) and (9), we achieve an exact solution
for optimization problem (2).

Proof: In this paper, we propose to solve optimization
problem (2) in a causal way. Thus, we first have to compute
k0 to determine when we must adapt the number of bits. To
do so, we propose to solve optimization problem (7) which
highlights the diminishing return rule and energy expenditure.
The solution to (7) is exact and mathematically calculated by
either (10) or (11). Next, calculate K and w, which is another
causal approach, and the exact solution for K is obtained
by (13).

Algorithm 1: Federated Learning with A-LAQ

1: Inputs: w0, M , (xij , yij)i,j , α, bmax, b0, r, p, {|Dj |}j∈[M ],
{ρj}j∈[M ], µ, L.

2: Initialize: ∇̃0, K = +∞, k0 = ke = kf = 0, (bk)k∈[K] = bmax

3: Master node broadcasts w0 to all nodes
4: while K = +∞ do
5: for k = 1, . . . ,K do
6: for j ∈ [M ] do
7: Calculate ∇f j(wk), qj(wk), δqj

k and f j(wk)
8: Send δqj

k and f j(wk) to the master node
9: end for

10: Wait until master node collects all {δqj
k}j∈[M ] and update

f(wk), and ∇̃k and wk according to (2b), (2c)
11: if k0 = 0 then
12: if max{kf , ke} > 0 then
13: Set k0 = k
14: Set bk+1 = b0
15: end if
16: else
17: Calculate ηk according to (3)
18: Set bk+1 = ⌈ηkbk⌉
19: if Inequality (13) is true then
20: Set K = k
21: end if
22: end if
23: Set k ← k + 1
24: end for
25: end while
26: Return wK , k0, K, (bk)k∈[K]

C. Convergence Analysis

In this subsection, we investigate the convergence of A-
LAQ. Since ∥εjk∥∞ ≤ τkR

j
k, for each element of [εjk]i, i =

1, . . . , d, we have |[εjk]i| ≤ τkR
j
k, thus

∥εjk∥2 ≤
√
dτkR

j
k. (14)

According to definition of εk in LAQ, εk =
∑M

j=1 ε
j
k, thus

∥εk∥2 =

∥∥∥∥∥∥
M∑
j=1

εjk

∥∥∥∥∥∥
2

triangle
≤

M∑
j=1

∥εjk∥2
(14)
≤

M∑
j=1

√
dτkR

j
k. (15)

Then, considering the inequalities (14) and (15), and for every
bk, we give the following proposition.

Proposition 2. Let f(w) be µ-strongly convex and L-smooth,
and f∗ := f(w∗) be the loss function value of the optimal
solution of optimization problem (1). We define a Lyapunov
function as

V(wk) := f(wk)− f∗ (16)

+

k1∑
i=1

k1∑
h=i

ζh
α
∥wk+1−i −wk−i∥22 + γ

M∑
j=1

∥εjk∥
2
∞,

where ζh = ζ, h ∈ [k1] and γ are non-negative constants and
k1 ≤ k. By 0 < ρ < 1, βi − βi+1 = βk1 , i = 1, . . . , k1 − 1,
a ∈ (0, 1], α = a/L, and γ ≥ dα2

(
L+ 2β1 + (2ρα)−1

)
,

ζ < M/6τ2k+1dk1, and

βk1 ≥
dL+ d

2αρ

M
3τ2

k+1ζ
− 2dk1

.
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Fig. 1: Comparison of A-LAQ and LAQ for a) Test accuracy, and b) Total
communication energy for M = 50, b = 9, b0 = 8, bmax = 32 and k0 = 7.
c) Test accuracy, and b) Total communication energy for M = 30, b = 5,
b0 = 2, bmax = 32 with k0 = 7.

Then, Lyapunov function (16) is non-increasing, i.e.
V(wk+1) ≤ V(wk), k ≥ 1.

Proof: See Appendix A-D.
Proposition 2 shows that by proper choice of the Lyapunov

function parameters, FL with A-LAQ converges.

IV. NUMERICAL RESULTS

In this section, we illustrate our results from the previous
sections and numerically show the extensive impact of A-
LAQ on FL training. We consider solving a convex regression
problem over a wireless network using a real-world dataset.
To this end, we extract a binary dataset from MNIST (hand-
written digits) by keeping only samples of digits 0 and 1 and
then setting their labels to -1 and +1, respectively. We then
randomly split the resulting dataset of 12600 samples among
M worker nodes, each having {(xij , yij)}, where xij ∈ R784

is a data sample i, which is a vectorized image at node j ∈ [M ]
with corresponding digit label yij ∈ {−1,+1}. We use the
following training loss function [19]

f(w) =

M∑
j=1

ρj
|Dj |∑
i=1

1

|Dj |
log
(
1 + e−w

Txijyij

)
+

λ

2
∥w∥22,

(17)
where λ ∈ (0, 1) is a given regularization parameter and each
worker node j ∈ [M ] has the same number of samples, namely
|Dj | = |Di| = |D|/M,∀i, j ∈ [M ].

We consider OFDMA for the uplink in a single cell system
with the coverage radius of ℓc = 1 Km. There are Lp cellular
links on Sc subchannels. We model the subchannel power gain
hs
l = ϕ/(ℓj)3, where ℓj is the distance between each client to

the master node, following the Rayleigh fading, where ϕ has
an exponential distribution with unitary mean. We consider
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Fig. 2: Comparison between LAQ with b = 9, and A-LAQ with b0 = 2, 4
and 8 for M = 50. a) Test accuracy shows that all three A-LAQ scenarios
outperform LAQ. b) A-LAQ with smaller b0 performs better in an energy
limited FL.

the noise power in each subchannel as −170 dBm/Hz and the
maximum transmit power of each link as 23 dBm. We assume
that Sc = 64 subchannels, the total bandwidth of 10 MHz, and
the subchannel bandwidth of 150 KHz.

Fig. 1 illustrates A-LAQ performance and compares it with
LAQ. Figs. 1(a) and 1(b) show test accuracy for M = 50,
b = 9, b0 = 8, bmax = 32 and k0 = 7 is obtained. Each pair
of black marks demonstrates the comparison between A-LAQ
and LAQ either for the same energy budget E or the same
test accuracy. For E = 10J, we obtain K = 38 for A-LAQ
with test accuracy of 96% , and K = 50 for LAQ, with test
accuracy of 85%. Besides, we observe that for achieving a
test accuracy of 90%, A-LAQ spends 50% less energy and
requires a smaller K than LAQ.

Figs. 1(c) and 1(d) address the test accuracy and total
spent communication energy for M = 30, b = 5, b0 = 2,
bmax = 32 with k0 = 7. Similar to the previous arguments,
for an equal test accuracy of 90%, A-LAQ outperforms LAQ
by spending approximately the same energy but smaller K.
For an energy budget E = 5J, A-LAQ and LAQ calculate
the same K, but the test accuracy for A-LAQ is 4% higher
than LAQ. We also observe that for k ≥ 80, the total spent
communication energy in A-LAQ is lower than LAQ, while the
test accuracy of LAQ and A-LAQ are quite similar. Thus, when
high communication energy resources are available, A-LAQ
requires lower communication energy than LAQ to perform
K iterations.

Fig. 2 compares A-LAQ performance of test accuracy and
total communication energy for M = 50, with different values
of b0 = 8, 4, and 2. Fig. 2(a) shows test accuracy, and we
observe that LAQ has the lowest value of test accuracy for
all iterations. Fig. 2(b) demonstrates the total communication
energy, which A-LAQ with b0 = 2 and b0 = 5, spends lower
energy, while having very close test accuracy to A-LAQ with
b0 = 8. We conclude that A-LAQ with smaller b0 outperforms
A-LAQ with higher b0 in terms of energy expenditure and test
accuracy for the same energy budget.

V. CONCLUSION

In this paper, we considered Federated Learning and the
LAQ algorithm and proposed an adaptive transmission frame-
work, A-LAQ, by significantly extending LAQ. Different from



LAQ, A-LAQ used an adaptive number of communication bits
in a communication energy-limited situation. We analyzed the
convergence of A-LAQ, and we showed that A-LAQ could
achieve a better performance in test accuracy (by an 11%
increase) while reducing the communication energy by 50%.

Future Work: Our future work involves extending A-LAQ
to communication-efficient scenarios with the best client se-
lection policy. Also, we will consider the computation energy
of clients and obtain the optimal sequences of bits to achieve
a communication-computation energy-efficient A-LAQ.

REFERENCES
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APPENDIX A

A. Proof of Lemma 1

This proof is ad-absurdum. Assume that The sequences of
Ef (wk, k; Ij

k) is not discrete convex. Therefore, there is a
k > 1 such that Ef (wk, k; Ij

k) > Ef (wk−1, k − 1; Ij
k−1)

and Ef (wk, k; Ij
k) > Ef (wk+1, k + 1; Ij

k+1). According to
the statement of Lemma 1, since bk = bmax, k ≤ k0, we
consider

∑k
k′=1 Ek′ = kE1. Besides, f(w) is µ-strongly

convex and L-smooth, which means the sequence of f(wk)
have the descent behavior w.r.t. k, and satisfies f(wk) −
f(wk+1) ≤ f(wk−1 − f(wk). According to the definition of
Ef (wk, k; Ij

k) = kE1/(f(w0) − f(wk)), we have f(w0) −
f(wk) = f(w0)− f(wk−1)+ f(wk−1)− f(wk) ≥ f(w0)−
f(wk−1), which means that both numerator and denominator
of Ef (wk+1, k + 1; Ij

k+1) are non-decreasing w.r.t. k. Now,
if we assume that Ef (wk, k; Ij

k) > Ef (wk−1, k − 1; Ij
k−1)

and Ef (wk, k; Ij
k) > Ef (wk+1, k + 1; Ij

k+1), it results in
a decrease in the denominator from k to k + 1, thus we
obtain that f(w0) − f(wk) ≥ f(w0) − f(wk+1) which is
in contradiction with the behavior of f(wk). Therefore, we
conclude that Ef (wk, k; Ij

k) is discretely convex.

B. Proof of Proposition 1

First consider that k0 = ke, it means that the energy budget
is determining k0. As we mentioned in A-A, Ek = E0 and∑k

k′=1 Ek′ = kE0. Thus, when E0 > E − kE0, it results in
energy limitation and then k0 = K = k.

Next, consider that k0 = kf , according to Lemma 1,
Ef (wk, k; Ij

k) is discrete convex and we obtain k0 = k
when Ef (wk, k; Ij

k) − Ef (wk−1, k − 1; Ij
k−1) > 0, see [5].

Thus,

Ef (wk, k; Ij
k)− Ef (wk−1, k − 1; Ij

k−1) = (18)
kE0

f(w0)− f(wk)
− (k − 1)E0

f(w0)− f(wk−1)
=

kE0

f(w0)− f(wk)
− (k − 1)E0

f(w0)− f(wk−1)
> 0,

k <
f(w0)− f(wk)

f(wk−1)− f(wk)
.

Therefore, the proof is complete.

C. Proof of Lemma 2

This proof is similar to A-B, when k0 = kf , but with
considering adaptive bk. Since at each iteration k, we compute
bk+1 = ⌈ηkbk⌉, the possible causal way to obtain K is to
use the current information of communication energy Ek/bk.
Thus, we obtain K when the causal approximation of Ek+1,



i.e., bk+1Ek/bk is greater than E −
∑k

k′=1 Ek′ . Thus, we
obtain the inequality (13).

D. Proof of Proposition 2

According to [16],

∥εjk+1∥
2
∞ ≤ τ2(Rj

k+1)
2 (19)

≤ 3τ2Lj∥wk+1 −wk∥22 + 3τ2∥εjk∥
2
∞,

where ∥εjk∥2∞ ≤ τ2(Rj
k)

2,

τ2(Rj
k+1)

2 ≤ 3τ2Lj∥wk+1 −wk∥22 + 3τ4(Rj
k)

2. (20)

According to (19), we derive the following inequality for A-
LAQ.

τ2k+1(R
j
k+1)

2 ≤ 3τ2k+1Lj∥wk+1 −wk∥22 + 3τ2k+1τ
2
k (R

j
k)

2.
(21)

By inserting (21) into (16) , we obtain the one-step Lya-
punov function as

V(wk+1)−V(wk) ≤ −α⟨∇f(wk), qk⟩+
α

2
∥∇f(wk)∥22

+ (
L

2
+ β1 + 3γτ2k+1L

2
j )∥wk+1 −wk∥22

+

k1−1∑
i=1

(βi+1 − βi)∥wk+1−i −wk−i∥22

− βk1∥wk+1−k1 −wk−k1∥22

+ γ(3τ2k+1 − 1)

M∑
j=1

∥εjk∥
2
∞

+ 3γτ2k+1

M∑
j=1

∥qj
k−1 − qj

k∥
2
2. (22)

By replacing qk = ∇f(wk) − εk, wk+1 − wk = αqk, and
for any ρ > 0

⟨∇f(wk), εk⟩ ≤
ρ

2
∥∇f(wk)∥22 +

1

2ρ
∥εk∥22, (23)

and defining Ak+1 := L+2β1 +6γτ2k+1L
2
j , we simplify (22)

as

V(wk+1)−V(wk) ≤ ∥∇f(wk)∥22
(
α2Ak+1 −

α

2
+

αρ

2

)
+ ∥εk∥22

(
α2Ak+1 +

α

2ρ

)
+

(
3γτ2k+1ζk1

α2M
− βk1

)
∥wk+1−k1

−wk−k1
∥22

+

k1−1∑
i=1

(
βi+1 − βi +

3γτ2k+1ζi

α2M

)
∥wk+1−i

−wk−i∥22 + γ
(
3τ2k+1 − 1

) M∑
j=1

∥εjk∥
2
∞

≤ ∥∇f(wk)∥22
(
α2Ak+1 −

α

2
+

αρ

2

)
+

(
3γτ2k+1ζk1

α2M
− βk1

)
∥wk+1−k1 −wk−k1∥22

+

k1−1∑
i=1

(
βi+1 − βi +

3γτ2k+1ζi

α2M

)
∥wk+1−i−

wk−i∥22 +
(
dα2Ak+1 +

dα

2ρ
+ γ

(
3τ2k+1 − 1

))
× M∑

j=1

∥εjk∥∞

2

. (24)

Then, by setting the coefficient to be non-positive, we
complete the proof.


