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Learning Gaze Behaviors for Balancing
Participation in Group Human-Robot Interactions

Sarah Gillet, Maria Teresa Parreira, Marynel Vázquez, and Iolanda Leite

Abstract—Robots can affect group dynamics. In particular,
prior work has shown that robots that use hand-crafted gaze
heuristics can influence human participation in group interac-
tions. However, hand-crafting robot behaviors can be difficult and
might have unexpected results in groups. Thus, this work explores
learning robot gaze behaviors that balance human participation
in conversational interactions. More specifically, we examine
two techniques for learning a gaze policy from data: imitation
learning (IL) and batch reinforcement learning (RL). First, we
formulate the problem of learning a gaze policy as a sequential
decision-making task focused on human turn-taking. Second, we
experimentally show that IL can be used to combine strategies
from hand-crafted gaze behaviors, and we formulate a novel
reward function to achieve a similar result using batch RL.
Finally, we conduct an offline evaluation of IL and RL policies
and compare them via a user study (N=50). The results from the
study show that the learned behavior policies did not compromise
the interaction. Interestingly, the proposed reward for the RL
formulation enabled the robot to encourage participants to take
more turns during group human-robot interactions than one of
the gaze heuristic behaviors from prior work. Also, the imitation
learning policy led to more active participation from human
participants than another prior heuristic behavior.

Index Terms—social robotics, nonverbal signals, learning

I. INTRODUCTION

Because groups are an essential element of everyday hu-
man life, there has been a growing interest in studying how
robots can interact with and in human groups [1, 2, 3, 4].
Interestingly, recent work has shown that robots can assist in
positive ways during group social processes [5, 6, 7, 8, 9].
However, most of these prior efforts rely on hand-crafted
behavior policies based on expectations from psychology.
Because group interactions are very complex, hand-crafted
behaviors aiming to assist in these interactions may not always
lead to the effects that were originally intended [7, 8, 9].

To overcome the difficulties posed by hand-crafting robot
behavior, we explore the use of machine learning for robot au-
tonomy in Human-Robot Interaction (HRI) and study whether
learned behaviors can shape participation in groups. One
approach to learn robot behavior is to use online learning, such
as online reinforcement learning [10], but this can be risky.
Random exploration or prediction errors might expose users
to actions that compromise interactions. Therefore, we instead
focus on learning behaviors from pre-recorded interactions.
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Fig. 1: The interaction scenario in which we explored learning
robot gaze policies to balance human participation.

We used data collected in our previous work [11] to train
non-verbal robot behavior policies to balance participation
in a group HRI setting. In particular, our prior work [11]
investigated how a robot’s gaze could influence the behavior
of two humans in a language-focused game. The humans had
diverging language skill levels, which could pose challenges
for collaboration and engagement in the learning environment.
Nonetheless, the results showed that adaptive robot gaze could
balance human participation in the game.

In this paper, we describe our efforts to learn robot gaze
behaviors in groups using offline learning techniques. One
approach to learning a robot policy for balancing participation
is to use behavior cloning, a type of imitation learning that
reduces the problem of training a policy to supervised learning
[12]. In the case of the data from the language-focused game
[11], one of the hand-crafted robot gaze behaviors was char-
acterized by looking at the speaker and the listener; the other
one looked at the speaker or performed gaze aversion. While
the former gaze behavior was found to lead to more balanced
participation in [11], gaze aversion can also help comfort a
speaker [13]. Thus, we explored using imitation learning to
combine strategies from both hand-crafted behaviors.

The two hand-crafted gaze policies present in the dataset
from [11] might contradict each other at times, posing chal-
lenges for imitation learning. Therefore, we also explored
learning a policy for balancing participation using batch re-
inforcement learning (RL), also known as offline RL [14].
The goal of the RL algorithm was to create a behavior policy
that combined the benefits of the distinct gaze behaviors
studied in [11] while balancing participation. In comparison to
imitation learning, this approach required defining a suitable
reward function for training the robot policy.
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We compare the proposed learning approaches in two ways.
First, we use methods for policy evaluation proposed by
the batch RL community. Second, we evaluate the different
learned behavior policies in a between-subject study (N = 50)
whilst keeping the interaction scenario similar to that of [11].
Fig. 1 illustrates this scenario.

In sum, our main contributions are: (1) demonstrating the
use of imitation learning and batch RL for learning robot
gaze policies to balance human participation in group HRI
comparably to carefully hand-crafted heuristics; (2) formu-
lating a novel objective for the RL setup that incentivizes
human turn-taking during conversational interactions; and (3)
extensively evaluating both learning approaches, including
comparing them in a user study with respect to baseline
heuristic policies from our previous work [11]. To the best
of our knowledge, no prior work has studied the potential of
machine learning for learning gaze policies that attempt to
balance human participation in HRI.

II. RELATED WORK

Recently, group HRI has emerged as an important field
within HRI that aims to understand how robots can best
interact with users in multi-party settings [1]. Also, there has
been significant research in HRI on non-verbal communica-
tion, including robot gaze [15]. Due to limited space, the next
sections focus on describing similar prior work to our efforts.

A. Balancing Human Participation in Group Interactions

In HRI, communicative behaviors have been shown to affect
group interaction dynamics or human perception of groups [7,
8, 11, 16, 17, 18]. Related to our work, Tennent et al.
[17] proposed a microphone-shaped robot that could balance
engagement in a human group by turning towards users based
on a hand-crafted policy. In terms of gaze communication,
Mutlu and colleagues [18] showed that robot gaze behaviors
(inspired by human gaze) can help establish conversational
roles and, in turn, influence human participation behaviors.
Additionally, we found in previous work that adaptive gaze
behavior for a robot could aid in balancing participation in
group HRI [11].

While hand-crafted robot behavior is the norm today in
group HRI, there is no guarantee that these behaviors are
indeed optimal for robots. Suboptimality may have multiple
causes. First, group HRI is complex. For example, a robot’s
behavior designed to resolve human conflict led to more
intense perception of the conflict in [8]. Second, in relation
to creating robot gaze behaviors, much prior work in HRI
is inspired by human psychology but there are gaps in this
literature that can pose challenges. For instance, to the best of
our knowledge, it is not well understood how human gaze can
achieve a balance in participation. Further, robot and human
gaze may not lead to the same responses by humans [15]. Due
to the above challenges, this work explores how to leverage
machine learning to generate robot behavior for group HRI.

B. Imitation Learning in HRI

Imitation learning (often known as learning from demon-
stration in robotics [19, 20]) has been used in the past to
learn robot policies for a variety of human-robot interaction
scenarios. In particular, it is common to learn robot behaviors
from expert human demonstrations, such as in kinesthetic
teaching of manipulation skills [21, 22]. Closer to our work,
imitation learning was used by Jain et al. [23] to predict non-
verbal behaviors in a conversation, including back-channelling.
In contrast to these prior efforts, our aim is to learn robot
behaviors using data from pre-recorded group human-robot
interactions. That is, instead of having a human demonstrate
behavior, we aim to learn a robot policy from the hand-crafted
behaviors that were deployed in [11].

C. Reinforcement Learning in HRI

There is significant research on RL applied to HRI. For
example, prior work explored how humans can teach new ma-
nipulation skills to a robot through reinforcement signals [24].
Also, RL has been used to personalize robot behavior to
an interaction partner. For instance, Mitsunaga et al. [25]
explored adaptive behavior to increase personal comfort based
on human body signals. RL can also be used to adapt a robot’s
empathy [26], humor [27] and language [28] to comfort,
provide entertainment, and improve learning outcomes [29].

We focus on learning robot behaviors for situated multi-
party interactions. In this sense, our work is closer to that of
Qureshi et al. [10], who used online RL to learn a policy for a
humanoid robot to interact with bypassing strangers. Different
to [10], we opted for batch RL due to the risk of random action
exploration and errors that could compromise interactions with
users. In this regard, [30, 31] inspired our work. These prior
efforts used human interaction data and batch RL to learn
non-verbal behaviors that aim to increase engagement in HRI;
however, learned policies have not been deployed on a robot
to the best of our knowledge.

Prior literature has also shown how to learn appropriate gaze
behaviors when interacting in groups [32, 33]. We go one step
beyond this line of work by aiming to learn gaze behaviors
that positively shape group interaction.

III. PROBLEM FORMULATION

We pose the problem of shaping participation through gaze
in group HRI as a sequential decision-making problem. At
any time-step t, the robot’s environment is captured as a state
variable st. The robot can choose an action at that allows it to
gaze towards a human, perform gaze aversion or do nothing.
Our goal is to learn a gaze policy π : st 7→ at that enables the
robot to balance participation between human group members.
The next sections describe the group interaction context con-
sidered in this work, our state representation, the action space,
and the data used for learning and evaluating policies offline.

A. Interaction Context: A Language Game

We focus on learning gaze policies for a robot that interacts
with two humans while playing a variant of the With Other



Words game [11]. In each round of the game, two human
players describe a word via hints and the robot has to guess
which word it is in a limited amount of time. The robot’s role
is crucial because guessing the word is a core element of the
game; however, it does not require the robot to speak more
than the words it guesses. Thus, the conversational interaction
evolves among the two human players who have to coordinate
between themselves to effectively describe words via hints. As
shown in Fig. 1, the words that humans had to describe were
displayed on a game tablet. The game involved a minimum of
20 words and it typically lasted 15-20 minutes.

Given the robot’s goal of shaping participation, an important
aspect of the interaction is participation unevenness. Follow-
ing [17], we define unevenness in the whole interaction as:

uneven =
∑
i∈[1,2]

|spi − sp| (1)

with spi representing the amount of time that participant i
has spoken over the total amount of speech of the two human
players. The term sp in eq. (1) corresponds to the mean of
the relative speech time of the two players. That is, sp =
1
2

∑
i∈[1,2] spi. In this work, we use the unevenness measure

to evaluate the impact of robot gaze during interactions and
to learn gaze policies for the language game.

B. Interaction State

We define the state st for sequential decision making as a
77-element vector that encodes the state of human participants
(36 features × 2), the state of the robot (3 features), and high-
level interaction information (2 features). All of these features
are collected at 2 Hz. In particular, for each human participant,
the features describing their state correspond to:
Speech features: We consider speech features in our state
representation because they have been useful for predicting
the placement of nonverbal behaviors [23, 31]. In particular,
our state includes 13-dimensional mel-frequency cepstrum
coefficients (MFCC) and 4-dimensional prosody features ex-
tracted from individual audio signals. The MFCC features are
computed every 25ms with a sliding hamming window of
40ms. In addition, we compute speech intensity through yin-
energy and pitch through the fundamental frequency as well as
the first derivative of these features. Statistical quantities are
applied to feature vectors over time to describe speech over the
past second. Specifically, we compute the mean and standard
deviation of each feature, resulting in a 34-item feature vector.
Participation balance feature: We consider participation bal-
ance from the viewpoint of the participant. For example, let
this participant be i. Then, the balance is computed in the
spirit of eq. (1) but with respect to a time window [t− w, t]:

uneveni[t−w,t] = spi[t−w,t] − sp[t−w,t] (2)

Specifically, we use w = 3 minutes in this work.
Talking feature: One additional feature of the state encodes
if the participant is currently talking. This feature is a binary
variable (1 if the participant currently holds the floor).

The other features in st correspond to:
Robot state features: A one-hot vector of length 3 describes
the current gaze target of the robot. The target can be the
speaker, listener, or neither (looking away) for gaze aversion.
High-level interaction features: We consider the time since
the last robot state change and the frequency of robot actions
taken within one turn of a human group member. The former
feature increases with time and resets to 0 every time the robot
state changes. The latter provides the robot with a notion of the
history of taken actions and is meant to discourage overacting.

C. Robot Gaze Actions

The actions at ∈ A are discrete directions that the robot
can gaze towards using its head and eye movement. More
specifically, the action space A comprises four actions: Look
at speaker, Look at listener, Perform gaze aversion, and Do
nothing. The speaker is determined based on audio features.
Gaze aversion can only be performed on the current speaker
and is realized by choosing a fixed gaze target left/right above
the head of the speaker. The Do nothing action does not change
the robot’s state. Note that the robot takes actions continuously,
i.e., at 2Hz.

D. Interaction Data

We use data from [11] to learn gaze policies. The data
comprised interactions of 26 groups in which two participants
played With Other Words with a Furhat robot. Eleven groups
experienced the speaker-listener condition (SL, originally ex-
perimental condition) from [11], in which the robot performed
the actions Look at speaker, Look at listener and Do nothing.
The other 15 groups experienced the gaze aversion condition
(GA, originally control condition), where the robot performed
the actions Look at speaker, Perform gaze aversion, and
Do nothing. The autonomous, heuristic behaviors determined
which gaze action should be executed, and for how long. The
heuristic used in the SL condition used information about
participation to adapt to the group. In particular, the higher the
imbalance in the group, the more the robot looked at the person
that had spoken the least. In the GA condition, approximately
25% of the time was spent performing gaze aversion.

A total of 2742 conversational turns are demonstrated in the
dataset (1664 in GA, 1078 in SL). The recorded data contains
audio streams from individual close-talk microphones, the
robot’s state, individual amounts of speech, and unevenness
measures. While our work focuses on using this dataset to train
robot gaze behaviors, one could imagine using other sources of
data in the future given the flexibility of learning algorithms.
This possibility is further discussed in Section VII-G.

IV. ESTIMATING A ROBOT GAZE POLICY WITH IMITATION
LEARNING

We explore learning a gaze policy for a robot using imitation
learning (IL) and the group interaction data from [11]. As ex-
plained in Section III-D, the data was collected when the robot
showed two distinct gaze behaviors. In one case, the robot
switched between gazing at the speaker and the listener. This



behavior was shown to reduce participation unevenness among
human interactants. In the other case, the robot looked only
towards the speaker or looked away, performing gaze aversion.
Because humans often use gaze aversion to avoid staring at
other people and comfort speakers during conversations [13],
we used the data from both cases to learn a gaze policy. We
hoped that the learned policy would help balance participation
while seeming natural to users.

We learned the policy using behavioral cloning [12]. That
is, we used supervised learning to map observed states st
to actions at given paired input-target data from [11]. In
particular, we investigated how well three types of policy
models worked for rendering a suitable robot gaze behavior:
a decision tree (DT) classifier, a linear classifier trained
via stochastic gradient descent (SGD) [34], and a k-nearest
neighbors (KNN) classifier [35]. The decision tree classifier
was trained using the CART algorithm [36] with the Gini
impurity criteria. We considered a range of parameters for
maximum tree length, minimum number of samples per node
and minimum impurity decrease to split a node. For the SGD-
based models, we considered different loss functions (e.g.,
hinge loss) and regularization norms. Finally, for the KNN
classifier, we considered different algorithms (e.g., Ball Tree
[37], KD Tree [38]), leaf sizes and distance metrics (L1, L2).
We used grid search to find suitable parameters for these
models using the Scikit-learn library.1

V. ESTIMATING A ROBOT GAZE POLICY WITH BATCH
REINFORCEMENT LEARNING

Behavioral cloning as explored in Section IV generally as-
sumes that an expert provides consistent examples for learning,
i.e., the “ground truth”. However, our data was obtained from
interactions in which the robot executed two gaze behaviors.
We suspected that this could pose challenges for learning a
suitable gaze policy. Thus, we decided to also explore RL for
this problem. A key difference between IL and RL is that RL
can potentially learn a better policy from mistakes given a
suitable reward function, rather than simply copying behavior.

To estimate a suitable robot gaze policy via batch RL, we
first defined a relevant horizon H for the problem as well as a
reward function rt. To define the horizon, we closely studied
the problem of achieving balanced participation. First, we
observed that an essential aspect of this problem is turn-taking.
Intuitively, we wanted the robot to subtly incentivize switches
in the conversational floor so that all human interactants get a
chance to express themselves. Second, we expected learning of
a policy to be difficult if the horizon equaled the full length of a
group interaction (i.e., the full length of a With Other Words
game). This expectation was based on prior work that has
shown the difficulty of RL problems scales in terms of sample
complexity as the horizon increases [39]. Given the limited
amount of interaction data that is generally available for group
HRI, we decided to frame our RL problem as estimating a
suitable robot gaze policy for one conversational turn. In other

1https://scikit-learn.org/

words, an episode in our RL setup starts when a person takes
the turn to speak and ends when that person releases the floor.

To explain the rationale for our reward function, we make
two observations. First, if possible, the current turn should
improve the balance of the conversation. Second, many short
turns without meaningful spoken contributions are undesired.
Therefore, we propose a reward rt that describes the quality
of the interaction in regards to human participation balance
subject to the length of the current turn. More formally, let t
be the time when the current turn ends, i.e., when there is a
change in the conversational floor. Also, let t− l be the time
when the prior turn ended, where l corresponds to the length
of the current turn. Then, the proposed reward is:

rt = (uneven[t−l−w,t−l]︸ ︷︷ ︸
unevenness at the

end of the prior turn

− uneven[t−w,t]︸ ︷︷ ︸
unevenness at the

end of the current turn

) ∗ l (3)

The reward is given only at the end of a turn due to the
importance of changes in the conversational floor. For all other
time-steps, the reward is zero.

We learn a policy using the Double Deep Q-learning algo-
rithm [40], which approximates the optimal Q-value function:
Q∗(s, a) = Eπ∗ [Rt | st = s, at = a]. This function corre-
sponds to the expected return starting from a state s, taking the
action a, and thereafter acting optimally [41]. Prior work has
shown that estimating the Q function without the possibility
of exploration can cause an extrapolation error resulting in
an unrealistic estimation of the Q value for unseen state-
action pairs [42]. Thus, the implementation we use constraints
the learned Q function as in Batch-Constrained Deep Q-
learning [42], so that while learning it can only consider future
actions for which the state-action pair is in the data.

The neural network architecture that we used to predict the
Q function was composed of three fully connected (FC) layers
with 256, 512 and 4 units, respectively. The first two FC lay-
ers were followed by ReLU activations. Our implementation
leveraged the Coach RL library to train this model.2

VI. TRAINING GAZE POLICIES AND OFFLINE EVALUATION

We evaluate the proposed IL and RL approaches for learning
robot gaze policies quantitatively using a variety of metrics.

A. Train, Validation, Test Datasets
We trained and evaluated models using the interaction data

described in Section III-D. Because there was no specific
order for individual participant data to be included in the state
feature vector, we augmented the dataset by creating states for
the two different possible placements of individual participant
data. For RL, this resulted in a total of 5484 episodes where
one episode comprised one turn of the original interaction.

We split the episode data into a training set (approxi-
mately 48%), a validation set (32%) for choosing hyper-
parameters, and a test set (20%) for analyzing chosen policies
on unseen interactions prior to human evaluation. The same
train/validation/test splits were used for both IL and RL. The
features in the state vectors were normalized before training.

2https://github.com/IntelLabs/coach



TABLE I: Metrics from test data in imitation models. Macro
F1-score describes the top performing 10% of models for each
method. The decision tree model was selected for deployment.

Model Type Macro F1 score (M ± SD) WIS
DT 0.359± 0.005 0.124

SGD 0.335± 0.003 −0.002
KNN 0.278 −0.013

B. Evaluation Metrics

Because the selection of the random seeds can strongly
affect the training process and is important for the reproduction
of scientific results, we evaluated different behavior policies
obtained with different seeds. An initial evaluation was per-
formed during training that used the macro F1 metric (for
IL) and the mean of the Temporal Difference error (for RL).
Once models were trained, we evaluated them using additional
off-policy evaluation metrics from the RL community. For
completeness, we now provide high-level descriptions of all
of these metrics. We encourage interested readers to consult
the original works for more details.

Macro F1 Score: The macro F1 score is built as an average
of the F1 score for each of the classes. The F1 score thereby
computes the harmonic mean between precision and recall.
Mean of Temporal Difference (TD) Error: The TD error
reflects the difference between the Q value for a state-action
pair estimated through the Bellman equation and the prior
estimate of the Q value [41, Ch. 6.1]. With the mean TD
error, we refer to the mean squared error that is built over the
TD error for all state-action pairs.
Weighted Importance Sampling (WIS): This metric is used
to estimate the expected returns under the learned policy given
samples of the behavior policy (used to generate the dataset).
WIS uses a notion of relative probability between the two
policies to reweigh the reward obtained in the episodes present
in the dataset [41, Ch. 5.5].
Sequential Doubly Robust (SDR): This metric is an appli-
cation of the doubly robust estimator to sequential decision-
making problems [43]. This means that it uses two techniques
to estimate the average value of the learned policy: one based
on the learned Q-function and one based on the relative prob-
abilities (see WIS), the reward and the prior SDR estimation.

Note that we selected WIS for our evaluation because it
allowed us to estimate the quality of a policy without an
estimate of the Q function and therefore also can be used
to estimate the quality of an IL policy. Further, we considered
SDR because it is unbiased and has lower variance than WIS,
helping judge the quality of RL policies.

Because randomness was involved in the gaze behavior for
both conditions from [11], the action probabilities needed to
calculate the relative probabilities for WIS and SDR could
not be extracted directly from the data. Instead, we calculated
action probabilities as needed for the RL metrics above using
approximate nearest neighbors, as suggested in [44].

C. Training of Imitation Learning Policies

The decision tree and the linear classifier fitted through SGD
were trained using 51 different seeds and using grid search to
find the best hyperparameters. The top 10% of candidates for
each model were initially selected according to their macro
F1 score on the validation data. This score was computed not
on the actions commanded to the robot – which were used for
training the mapping from state to actions – but rather on the
robot gaze state because it was less sparse than the actions
and better reflected the robot’s gaze target over time.

The final IL policy was selected out of the top 10% of
candidates based on its WIS score. As shown in Table I, this
corresponded to a decision tree model, which used the Gini
impurity and a minimum of two samples to split a node.

It is worth noting that the F1 scores for the IL policies
are low overall in Table I. This was expected because the
validation dataset contains episodes from the GA and SL
conditions from [11], where only 2 out of the 3 possible gaze
behaviors are present. However, the IL agent could predict any
of the 3 behaviors because it combined the heuristics into a
single policy. Note that prior to deployment, we verified the
behavior output by the chosen IL policy in the test dataset, as
explained below in Section VI-E.

D. Training of Batch RL Policies

We obtained gaze policies via batch RL using an episodic
memory from which the training batches were selected. The
training process for the Q-value function lasted a total of
58500 steps, distributed over 150 training epochs. The initial
learning rate was 0.006 and decayed exponentially every
10000 steps. The final learning rate was 1.258e−5.

Because the network representing the Q function is ran-
domly initialized, we trained RL policies with 51 different
random seeds. For each of these training events, we identified
the best policy across epochs by inspecting their WIS, SDR
and mean TD error values. In particular, we first identified
the training epoch for each model that resulted in the highest
values of WIS and SDR on the validation set. Then, we
narrowed down our search for a model by choosing the top
10% of models based on their TD error in the training set.
Lastly, we chose an RL model as main candidate for our
user study (Section VII) by ranking models based on their
WIS and SDR on our validation set. The WIS of the best
performing model had a value of 0.0089. Using the WIS
allowed us to directly compare the policies learned through
imitation learning and batch reinforcement learning.

E. Analysis of Inferred Actions on the Test Set

To get a better understanding of the candidate RL and IL
policies for our user study, we predicted their actions on the
test dataset, which was unseen at training time. That is, we
rolled out the policies and updated the state space according
to the predicted gaze actions. Then, we evaluated for how long
the robot stayed in the different states. Further, we evaluated
the frequency of state changes – which we denoted as hastiness



TABLE II: Comparison of different gaze policies for the test dataset (M ± SD are calculated over episodes). Action columns
refer to the relative time spent in the robot state that was reached after taking the respective action.

Condition Hastiness Duration of actions (s) Look at speaker Look at listener Perform gaze aversion
GA 0.164± 0.012 3.054± 3.971 0.832± 0.010 - 0.168± 0.010
SL 0.134± 0.008 3.738± 2.681 0.743± 0.001 0.257± 0.001 -
RL 0.226± 0.031 2.219± 3.221 0.741± 0.080 0.089± 0.041 0.169± 0.074
IL 0.114± 0.030 4.421± 6.052 0.815± 0.039 0.113± 0.030 0.072± 0.065

– as well as the frequency of states. This analysis helped
evaluate intermediate results during the development process.

Table II summarizes our findings on the test dataset con-
sidering the best RL and IL policies chosen earlier (Sections
VI-D and VI-C) and the heuristic gaze behaviors from [11] as
a reference. The batch RL gaze policy appeared to be hastier
than the other policies. That is, it changed gaze targets more
frequently. The imitation learning policy appeared slightly less
hasty than the heuristics, although it gazed towards the listener
for less time than the behavior from the SL condition from
[11]. We considered the results to be reasonable, allowing for
the deployment of the final behavior policies on the robot.

VII. USER STUDY

We conducted a between-subject study with two conditions
to compare the IL and the RL gaze policies chosen via our
offline evaluation (Section VI). Further, this study served to
compare the policies with the heuristic gaze behaviors origi-
nally proposed in [11] to balance human participation in group
HRI. In general, our study protocol followed the protocol from
[11], including the recruitment of native Swedish speakers and
Swedish language learners to play the With Other Words game
with a Furhat robot (as depicted in Fig. 1).

A. Participants

For the present study, 50 participants were recruited at a uni-
versity campus and surrounding areas through flyers, posters,
word of mouth and social media platforms. Participants’ ages
ranged from 18 to 67 years (M = 28.02, SD = 10.53), and 27
participants identified as female, 22 as male and 1 would rather
not say. Thirty-two participants reported that they had never
interacted with a robot before, and 8 indicated interacting with
robots regularly. The participants were grouped into dyads for
our study. One pair of participants indicated being connected
via social media; all had never met before.

We analyzed data for our 50 participants along with the
data of 72 participants who took part in the study from
[11]. Considering all 122 participants, there were 61 dyads
who interacted with the Furhat robot. However, of the 25
groups formed by the 50 participants newly recruited for this
study, 1 group had to be excluded because the participants
misinterpreted the instructions. In [11], 9 of their 36 groups
also had to be excluded. This meant that we had a total of
102 valid participants, corresponding to 51 dyads. Table III
presents demographic details for these 102 participants.

B. Study Design & Hypotheses

We conducted the study with a between-subject design, as
in [11]. We collected data for two conditions: IL and RL,

TABLE III: The demographics of the participants (NS: par-
ticipants who rather did not share their gender identity). The
language level information only covers the language learners.
The remaining participants were native Swedish speakers.

Condition Age Gender Swedish language level
F M NS A2 B1 B2 C1

RL 27.2± 11.9 14 9 1 3 5 2 2
IL 28.6± 9.9 12 12 0 2 6 2 2
GA 32.0± 10.7 12 18 0 3 4 6 2
SL 31.8± 11.5 12 12 0 1 5 4 2

using the policies obtained from our offline evaluation (Section
VI). Further, we considered the data collected in [11] as two
additional conditions: SL and GA. The SL condition used an
adaptive gaze strategy to look between the speaker and the
listener. In the GA condition, the robot only focused on the
speaker and performed gaze aversion to keep the dynamics of
the gaze comparable to the SL condition. As in the IL and
RL conditions, the robot operated fully autonomously in the
SL and GA conditions. However, its behavior in the latter
two conditions was based on heuristics rather than learned.
Considering all four conditions, we hypothesized:
H1 The IL and the RL policies will result in lower participa-

tion unevenness than the GA and SL policies.
We expected the above result because both the IL and RL
policies tried to leverage the data from the other conditions to
achieve balanced participation.
H2 The RL policy will result in lower unevenness than the IL

policy.
This second hypothesis was motivated by the fact that the RL
policy was trained on a reward function that was directly tied
to the notion of participation unevenness whereas this notion
was implicit when training the IL policy.
H3 The RL policy will result in more turns taken by the

participants compared to the other three policies.
This last hypothesis was driven by our RL setup. The batch
RL agent received a reward at the end of a turn and, thus, it
could potentially benefit from trying to switch speakers early.
Also, our offline evaluation on a subset of the data from [11]
suggested that RL could lead to higher hastiness (Table II).

As part of the study, we also investigated how participants
perceived the robot and reacted to it in the different conditions.

C. Study Protocol

After giving written consent, the participants were asked
to complete a demographics questionnaire. We assigned par-
ticipant dyads (one native Swedish speaker, one language
learner) through blocked randomization to one of the IL or RL
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Fig. 2: Results from the analysis of unevenness of participation, number of turns, and active amount of participation. ↑ indicates
that high values on this measure are desirable, and ↓ indicates that low values reflect a successful interaction. Horizontal bars
represent the median and the box represents the inter-quartile range. The ∗ symbol indicates p < 0.05.

conditions. This was important to ensure a similar distribution
of language levels among language learners. Participants were
then invited to a conference room to meet the Furhat robot.

During the study, the robot introduced itself, the participants
were invited to do the same, and the robot then explained the
game rules. Afterwards, the participants played With Other
Words with Furhat for 15-20 minutes and, finally, completed
a post-game questionnaire away from the robot. This included
answering questions about participants’ familiarity and their
perceptions of the robot. Before debriefing about our research
interests in robot gaze, the participants were compensated for
their participation with a voucher (value ∼11.5 USD).

D. Measures

1) In-Game Measures: During With Other Words, the
participants were asked to describe words with increasing
levels of difficulty. Thus, each of the following measures were
collected on each level separately and normalized to the time
spent on the respective level.
Active Participation: We collected the amount of active par-
ticipation through voice activity detection for each participant
using individual close-talk microphones.
Frequency of Turn-Taking: As the number of turns taken
among participants is co-dependent, we measured how fre-
quently the participants took turns on a group level. The
system assumes that a turn was taken when the binary voice
activation signal indicated a change in speaker that lasted
longer than a backchannel threshold of 1 second.
Unevenness of Participation: We used eq. (1) to calculate the
unevenness of participation at each difficulty level. Low values
indicate an even speech distribution and balanced participation.

As in [11], the robot’s voice could sometimes be heard in
the participants’ close-talk microphones. But, due to a slight
difference in participants’ positions in our setup (Fig. 1) and
that of [11], we worried about additional false detection of
speech in the RL and IL conditions. Therefore, we applied a
correction to our audio processing pipeline that adjusted for
this issue. For fairness, this correction was applied equally to
data from the IL and RL as well as SL and GA conditions.

2) Subjective measures: We collected characteristics of our
participants and perceptions of the robot in pre- and post-game
questionnaires. These measures included participant Extrover-
sion and Agreeableness from the Big Five Inventory [45, 46]
as we expected these traits to influence human behavior.
Also, we measured Willingness to Communicate [47] and
participants’ Swedish proficiency [48].

We measured impressions of the robot with the Warmth and
Discomfort scales from the Robotic Social Attributes Scale
(RoSAS) [49]. Lastly, because we wanted to understand if
the learned gaze behaviors are perceived as unpleasant, we
asked the participants to rate on a 5-point scale the degree to
which they found the robot intimidating, if they thought it
was ignoring them, or whether it was staring at them.

E. Results

1) Participation Unevenness: We performed a one-way
ANCOVA to examine the effects of condition on the un-
evenness of participation, after controlling for the proficiency
of the language learner because we expected it to influence
participation behavior. The analysis yielded a main effect
of condition for the unevenness of participation measure,
F (3, 146) = 2.98, p = 0.034. A post-hoc pairwise comparison
with Tukey HSD correction showed that the GA and SL
condition were significantly different, p = 0.022, as reported
in our prior work [11] (SL (M ± SD): 0.23 ± 0.13, GA:
0.37± 0.25). Fig. 2 (left) shows these results.

Additionally, the language proficiency covariate was signifi-
cantly related to the unevenness in participation, F (3, 146) =
4.133, p = 0.007. This indicated that the imbalance in skill
induced by different language levels influenced participation.

2) Frequency of turns taken: We analyzed the effect of
condition on the number of turns taken through one-way
ANCOVA while controlling for the proficiency of the language
learner. The analysis showed a main effect of condition on
the number of turns taken, F (3, 146) = 3.036, p = 0.031.
A post-hoc pairwise comparison test with Tukey HSD cor-
rection indicated that the participants in the RL condition
took more turns than those in the GA condition, p = 0.024



(RL (M ±SD): 2.86± 0.86, GA: 2.27± 1.05). The covariate
language proficiency showed a trend towards significance for
the number of turns taken, F (3, 146) = 2.599, p = 0.054.
More details are given in the middle plot of Fig. 2.

3) Amount of active participation: To understand the effect
of condition on the amount of active participation, we per-
formed a one-way ANCOVA after controlling for willingness
to communicate, language proficiency (4 learner levels +
native speaker), and the personality traits of agreeableness
and extroversion because we expected those participant char-
acteristics to influence participation behavior. The analysis
showed a main effect of condition on the active amount
of participation, F (3, 304) = 3.655, p = 0.013. A post-
hoc pairwise comparison test with Tukey HSD correction
indicated that the participants in the IL condition participated
more actively (e.g., speech, laughter, back-channeling) than
participants in the SL condition, p = 0.007 (IL (M ± SD):
0.234±0.086, SL: 0.217±0.088). The covariates extroversion
(F (1, 304) = 9.643, p = 0.012) and language proficiency
(F (4, 304) = 32.190, p < 2.2e − 16) had a significant effect
on the active amount of participation. The right plot in Fig. 2
shows active participation by condition.

4) Robot perception: Finally, we conducted a one-way
ANOVA to study the effect of robot gaze behavior on percep-
tions of the robot (Warmth, Discomfort, Ignoring, Intimidating,
and Staring). The analysis showed no effect of condition on
the perceptual measures. Ratings were generally positive.

We further analyzed the participant’s comments about the
robot in the post-experiment questionnaire. Note that this qual-
itative data was only available for the RL and IL conditions.
We found that 50% of the participants did not notice anything
unusual about the robot’s behavior. Four participants (8%)
noted negative gaze behaviors (3 RL; 1 IL), mostly reporting
hasty movements. Other comments positively and negatively
assessed the guessing (6 responses) or the hard-coded behav-
iors, such as back-channelling (11). When asked specifically
to describe the robot’s gaze behavior, 25% characterized the
robot’s gaze as friendly or kind, 15% described it as attentive
(6 RL, 1 IL), 19% as sharing attention equally (3 RL, 6
IL), 12.5% as looking at the speaker (1 RL, 5 IL), and 6%
noted rapid and hasty movements (3 RL, 0 IL). The remaining
comments concerned the gaze intensity (3) or were general (8).

F. Discussion of the Results

One of our goals was to learn gaze behaviors that can
balance participation. We did not find that the learned behav-
iors improved the balance in the interactions with respect to
prior work [11] (H1) nor that RL led to lower unevenness
than IL (H2). However, there was also no indication that
the learned gaze policies would decrease the balance and
quality of interactions. Also, we found partial support for our
hypothesis (H3) that the gaze behaviors trained through batch
RL and deployed on the robot could increase the number
of turns for human participants in the game. In particular,
the RL gaze policy led to more turns than the GA behavior
from [11]. We attribute this increase in turns to our RL

problem formulation and our novel reward. Because turn-
taking is important for group collective intelligence [50], we
argue that the RL behavior shows promise towards improving
the quality of group HRI. Interestingly, we also found that IL
led to more active participation than the SL condition, showing
potential for this method as well. Overall, these result indicate
that learning of gaze policies was successful in the sense that
the learned behaviors did not compromise the interaction and
helped with turn taking or verbal participation.

G. Limitations

First, we studied interactions with an autonomous robot, and
its signal processing software sometimes missed or detected
false human speech. While we corrected for this issue in our
study measures, this could have affected the real-time behavior
of the robot in our human evaluation. Second, our study
recruitment procedure only allowed us to apply randomized
blocking to one factor (language learning). The participants’
gender distribution differed between our study conditions and
might have influenced our findings. Third, we learned and
tested robot gaze policies in a controlled interaction scenario.
It would be interesting to adapt the proposed methods to
in-the-wild human-robot interactions, where more than two
people interact with the robot. Lastly, it would be interesting
to investigate if the proposed approaches can effectively learn
from other types of data than the heuristic gaze behaviors
from [11], e.g., data collected in other cultures or other
group tasks. Given the popularity of using human data for
learning robot behaviors in HRI, it would also be interesting
to understand if such data can serve for balancing participation
in group HRI via gaze. Assuming this data was available,
future work should consider (a) possible differences in human
reaction to robot vs. human gaze [15] and (b) the mapping
of human gaze and head motion to robot motions, which is
nontrivial due to physical characteristics of the hardware [51].

VIII. CONCLUSION

Our work demonstrated that imitation learning, in the form
of behavorial cloning, as well as batch RL were suitable to
combine robot gaze behaviors that aim to balance participation
in group HRI. For RL, we proposed a novel reward and
chose a horizon that was intended to encourage balancing
participation. An extensive offline evaluation allowed us to
evaluate the learned policies quantitatively to ensure that
learning resulted in reasonable behaviors before deployment.
Our user study showed that the learned policies shaped par-
ticipation behavior. While the participation balance achieved
was similar, the learned behaviors influenced the amount of
turn-taking (RL) and active participation (IL) when comparing
to the hand-crafted heuristics that were used to generate the
human-robot interaction data. This showed promise in learning
gaze behaviors for group HRI. In the future, we foresee
using similar learning methods to those proposed in this paper
to create suitable robot gaze policies to shape other group
interactions and to explore learning other non-verbal behaviors
in an offline fashion from group HRI data.
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