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Abstract 

To be completed! 

1. Introduction 

Medical image segmentation refers to the process of partitioning the voxels/pixels of tissues, organs, or pathologies from 
background anatomical structures in medical images such as Computed Tomography (CT), Positron Emission 
Tomography (PET), and Magnetic Resonance Imaging (MRI). Target region segmentation in medical images is 
recognized as one of the most challenging tasks in medical image analysis due to the complexity of human anatomy, lack 
of intensity/textural contrast between adjacent tissues, presence of noise/artifacts, and boundary missing [1]. This process 
is often done manually by expert radiologists, which is not only a demanding task but also subjects to inter/intra-observer 
variabilities [2]. However, the quantifications derived from the segmentation step deliver critical information regarding 
the characteristics of the segmented regions such as shape, area/volume, and intensity/textural distributions that can be 
further used for diagnosis, prognosis, and interventional purposes. In the context of oncological images, the aim of image 
segmentation is to delineate the boundaries of target tumoral regions [3] and/or nearby healthy organs known as organs 
at risk [4].  

In the past three decades, a variety of computerized methods have been developed to speed up the delineation time 
without compromising the segmentation accuracy. In a broad view, these methods can be categorized as either deep 
learning or non-deep learning techniques. In the context of non-deep learning techniques, a wide range of rule-based 
methods have been proposed for different segmentation tasks. Region-growing [5], watershed [6], level-set [7], Markov 
random fields [8], graph cut [9], atlas-based [10] and statistical shape modelling [11] approaches, are only a few examples 
of rule-based segmentation methods that were employed to segment different types of tumors such as liver [12], [13], 
kidney [14], [15], and prostate [16], [17]. 

Supervised segmentation: Capability and limitations. Thanks to the recent rapid advances in the deep learning fields, 
a great level of progress have been witnessed in the performance of medical image segmentation tasks. Inspiring by the 
breakthrough of U-Net model [18], many different techniques have been proposed to tackle a variety of challenging 
segmentation problems. The novelties introduced by such models are mainly focused on modifications of the network 
architecture and/or optimization process. In this context, Attention U-Net was proposed by integrating the attention gate 
[19] into the plain U-Net model to guide the learning process more on the target area that successfully improved the 
segmentation performance of brain tumors [20] and retinal vessels [21]. By replacing convolutional blocks with inception 
blocks [22], computationally efficient deeper U-Nets were developed to deal with large variations in size and morphology 
within the salient regions. The superiority of the segmentation accuracy of such models was reported for the challenging 
task of lung nodule detection [23]. Similarly, Dense U-Net and Residual U-Net were developed by using Dense blocks 
[24] and Residual blocks [25], respectively, in the encoder-decoder paths that lead to outstanding segmentation accuracy 
of the prostate [26] and lung cancer [27]. More powerful segmentation network families such as U-Net++ [28] and 
Adversarial U-Net [29] have been developed and tested on large-scale datasets with remarkable improvement in 
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segmentation performance in different tasks. Despite the promising potential of such models, which can achieve clinical 
expert level accuracies, they require a large number of labeled data due to their supervised training fashion. In fact, 
supervised training of such data greedy models suffers from two types of limitations. First, the number of training medical 
images is often limited because of the costly slice-by-slice data annotation. Second, even if large-scale training data is 
available, the generalization power of the learned models over the unseen classes is poor, which necessarily requires the 
collection of annotated data from the new class followed by retraining of the model [30]. 

Unsupervised segmentation. Unsupervised deep learning methods tend to be a natural fit for gaining insights into 
medical image analysis tasks as their optimizations do not entail labeled datasets. In this domain, Unsupervised Anomaly 
Detection (UAD) is an active field of research that aims to identify the data that does not fit the learned distribution from 
normal data [31]. The main advantage of UAD approaches is their similarity to the learning procedures of radiologists 
who are trained to learn the appearance and characteristics of healthy anatomical structures to potentially detect any 
arbitrary abnormalities without a-priori knowledge of their attributes [32]. This essentially means that the training process 
of such models requires only unlabeled data acquired from healthy subjects. The underlying hypothesis is to capture the 
distribution of healthy anatomical organs by training deep representation learning models in order to identify anomalies 
as outliers with respect to the normative distribution [33]. In the domain of medical image segmentation, the applications 
of UAD techniques have been extensively investigated for the task of lesion segmentation [34]–[36]. In a series of 
contributions, Baur et al. investigated the potential of the deep AutoEncoder (AE) models for unsupervised brain lesion 
segmentation from MR images [32] Specifically, by integrating the adversarial training into spatial Variational 
AuoEncoder (VAE), they could map the healthy anatomies into latent manifolds and further reconstruct fairly high-
resolution images. With this model, they achieved a segmentation accuracy of 0.605 in terms of Dice score for Multiple 
Sclerosis (MS) lesion segmentation in a dataset containing 49 subjects [33]. They later developed a SteGANomaly [36] 
model, which gains from the steganographic abilities of CycleGAN in removing high-frequency patterns that, to some 
extent, was a beneficial strategy for preventing the learned model from reconstructing the images with pathological 
regions that achieved the best Dice score, ⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉, of 0.608 on the same MS dataset. The same authors employed the 
inherent multi-scale nature of the Laplacian pyramid within a family of AE models to compress and reconstruct MR 
images of different resolutions in a scale-space [37] approach. With this method, they reported a ⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ value of 0.590 
on the same MS dataset. Schlegel et al. [31] built a generative model of healthy training data and used the GAN’s latent 
space along with an anomaly score to comprise a discriminator feature residual error and image reconstruction error. The 
proposed f-AnoGAN model was tested on optical coherence tomography images with superiority over the conventional 
AE-based models. To efficiently learn fine-grained feature representations, Tian et al. [35] developed a Constrained 
Contrastive Distribution (CCD) model to simultaneously predict the augmented data as well as image contexts. This 
model was tested on colonoscopy and fundus screening datasets and outperformed a few other UAD models. Sergio et 
al. [38] lifted the need for an encoder network to capture the latent representation of healthy data by substituting the AE 
architecture with an auto-decoder along with a modified version of the implicit field learning technique to reconstruct 
high-resolution anomaly-free images. This model was tested on a brain tumor segmentation task in MR images with an 
outstanding performance against a family of VAE models. Last but not least, Dey et al. [39] developed an Adversarial-
based Selective Cutting neural network (ASC-net) by integrating the adversarial learning into a U-Net-like model with 
two decoders to decompose the images into two cuts based on a reference learned distribution of healthy images. The 
focus of this model is to obtain a joint estimation of anomaly and the corresponding normal images rather than to 
reconstruct a high-fidelity normal-looking image. This model was tested on several different pathology segmentations, 
including MS and brain tumor in MR images and liver tumor in CT images, and outperformed the segmentation accuracy 
of AnoGan families. 

Anomaly detection challenges. Despite the promising results achieved by the current UAD models, such models suffer 
from a number of limitations: 1) The first issue is related to learning the distribution of healthy anatomies in full image 
resolution. In fact, there are many fine-grained details in healthy anatomies that pose similar attributes with respect to the 
pathologies. However, the current methods cannot deal with such anatomical details and are unable to discriminate the 
fine-grained healthy structures from abnormalities. To tackle this issue, the current methods reduce the dimensionality of 
the original images to eliminate the fine-grained details and train the models with low-resolution data [32]. Such a 
downsampling procedure, however, abandons important image characteristics and therefore yields in learning the 
distributions of incomplete anatomies. 2) They often focus on detecting anomalies with different intensity patterns with 
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respect to nearby normal tissues, such as glioma and MS lesions, in a specific sequence(s) of MR images. However, to 
the best of our knowledge, detecting pathologies with similar intensity/textural patterns w.r.t adjacent healthy organs has 
not been investigated. The fact that AE models often reconstruct a blurry version of the down-sampled original image 
challenges the underlying hypothesis of capturing the distribution of healthy anatomies [40]. In other words, the 
hyperintensity patterns of the studied pathologies within generated images from the learned low dimensional 
representation space naturally tend to be suppressed. Hence, the residual images followed by some thresholding would 
consist of the anomaly regions regardless of the quality of the generated image. 3) Another important limitation of the 
current UAD techniques is their difficulties in preserving the anatomical constraint within the generated images. In fact, 
generating a healthy image from the corresponding pathological image does not necessarily guarantee the retaining of the 
anatomical constraints of other tissues and structures. Therefore, the residual images calculated from the difference 
between the original images and the unrealistic-looking generated images often consist of quite many false positives. 

Image inpainting. Image inpainting is the process of synthesizing alternative contents in the missing parts of an image 
with semantically meaningful patterns to reconstruct a seamless and realistic-looking image. It can be used for a variety 
of image editing tasks such as text removal, object removal, and missing part recovery [41], [42]. Although a variety of 
CNN-based models have been proposed for image inpainting, typical convolutional operators are naturally unsuitable for 
hole filling as they treat all the valid and invalid pixels as the same. To tackle this issue, Liu et al. [43] proposed a Partial 
Convolution (PConv) neural network in which the typical convolution operator is masked and renormalized to be 
conditioned only on the valid pixels. The invalid pixels are replaced by adjacent textures following a rule-based mask 
updating procedure. The model was trained with randomly generated irregular masks, and its superior performance was 
verified on large-scale datasets both quantitatively and qualitatively. In order to condition the prediction of missing pixels 
at each coordinate on the valid pixels from the input image, Yu et al. [44] replaced the PConv layers with Gated 
Convolution (GConv) layers along with adding a contextual attention layer and Spectral Normalized Markovian 
Discriminator (SN-PatchGAN). The advantage of this GConv layer is that they are able to learn features from input 
images progressively for each channel of the network. The network architecture consists of two encoder-decoder networks 
named as coarse and refinement networks, followed by a fully convolutional SN-PatchGAN. Due to the learnable 
dynamic mask updating procedure, Gconv model generates images with more color and texture consistency than Pconv 
model. Last but not least, different studies show that inpainting models trained with irregular-shaped holes distributed 
randomly over the image plane can generate images with more semantic context than those trained with simple-shape 
holes such as rectangles [45], [46]. 

Contribution. In this study, we propose an inpainting-based UAD method for tumor segmentation in 
single/multimodal medical images. Specifically, we propose a robust inpainting method to reconstruct high-resolution 
medical images from corrupted ones while preserving fine-grained details. To efficiently train the inpainting model, 
healthy images were corrupted by carefully generated random irregular holes to simulate the morphological 
characteristics of heterogeneous tumors. The learned model is then employed for automatic tumor removal in the test 
phase in an autoinpainting pipeline. In particular, a set of subregions within the main image is defined through a sliding 
window approach to be inpainted. The autoinpainting procedure is followed by a postprocessing strategy to detect the 
candidate region for the final tumor removal. Finally, image slices of each subject are aggregated to form a volume from 
which residual volumes are calculated to segment the tumors. The proposed inpainting model is optimized with a multi-
term objective function to fill the invalid holes with plausible imagery characteristics as well as to preserve the anatomical 
constraints. The developed pipeline was tested for unsupervised segmentation of two challenging types of tumors: Non-
Small Cell Lung Cancer (NSCLC) and Head-and-Neck (HN) on single modalities of CT and PET as well as multimodal 
PET-CT images.  

2. Methods  

2.1. Dataset 

Two datasets were examined to investigate the potential of the proposed method for segmenting different types of 
tumors. 
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PET-CT dataset for Non-Small Cell Lung Cancer (NSCLC) tumor segmentation 

This internal dataset includes 33 subjects, all diagnosed with NSCLC in stage III except three subjects who were 
categorized as stage I, II, and IV. All subjects were scanned with a Biograph 40 PET scanner (Siemen Medical Solution) 
to acquire one FDG-PET-CT scan before the beginning of radiation therapy and another one after a few weeks of 
treatment. The acquisition parameters of the scans varied in a wide range. While the voxel spacing in the CT images were 
fixed to (0.976×0.976×3)𝑚𝑚𝑚𝑚3, this parameter was fixed to (4.072×4.072×3)𝑚𝑚𝑚𝑚3 for the corresponding PET images. A 
semi-automatic segmentation tool based on the level-set algorithm was utilized to generate the grand truth segmentation 
mask [47]. In specific, initial contours were set around the tumors by an experienced user to instantiate the intensity-
based contour evolution algorithm. The final contours were then visually examined and manually refined by an expert 
radiologist. 

PET-CT dataset for Head-and-Neck (HN) tumor segmentation 

This multi-institutional publicly available dataset originally consisted of 300 HN cancer patients all diagnosed with 
squamous cell carcinoma [48], [49]. All patients underwent FDG-PET-CT scans with a median of 18 days before starting 
the treatment. Tumor delineations were done manually by expert radiation oncologists. In specific, for 93 out of 300 
patients, the original radiotherapy contours were directly drawn on the CT images of the PET-CT data, which were used 
for treatment planning. For the other 207 patients, the radiotherapy contours were delineated on another CT image 
particularly acquired for treatment planning. The drawn contours were then registered to the original FDG-PET-CT scans 
using an intensity-based free-form deformable registration tool provided by the software MIM (MIM Software Inc., 
Cleveland, OH) [48].  

From the original 300 subjects, a total number of 298 data were accessible. As annotations were done by various 
experts from different institutions, large variations were observed within the delineated contours. Accordingly, all the 
contours were visually examined by an experienced user, which led to excluding 70 subjects. Therefore, from this dataset, 
228 PET-CT scans were used for this study in which the CT image resolution varied from (0.683, 0.683, 2.0)𝑚𝑚𝑚𝑚3 to 
(2.343×2.343×1.5)𝑚𝑚𝑚𝑚3 and the PET resolution lies in the range of (3.515×3.515×3.269)𝑚𝑚𝑚𝑚3 to 
(5.468×5.468×3.269)𝑚𝑚𝑚𝑚3.  

2.2. Image preparation and preprocessing 

The following preprocessing was applied to the employed dataset. First, a third-order Spline interpolation method was 
used for the PET images to resample the voxel spacing of PET data into the corresponding CT volumes. Second, the 
intensity values of PET images were converted into Standardized Uptake Values (SUV). Third, to enhance the contrast 
between the tissues within the target organ, intensity values of CT and PET images were clamped. Particularly, the 
Hounsfield values of CT images were clamped into the range of [-1000,500] for NSCLC data and [-200,200] for the HN 
dataset. The SUV values of PET images were constrained in the range of [0,12] as well. The axial slices from signed 
16bit volumes were extracted and converted into 8bit gray-level images with the size of 512×512 pixels. Finally, the 
intensity range of images was normalized by maximum values and rescaled into the range of 0 to 1. Figure 1 shows the 
diversity of shape, size, and location of the tumors among the employed datasets. 
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Figure 1. Heterogeneous tumors appear in a diverse range of shapes and sizes at different locations. The first two rows show the 
diversity of NSCLC tumors, and the second two rows depict different HN tumors. 

2.3. Image inpainting model 

Assume that 𝐼𝐼(𝑥𝑥,𝑦𝑦) stands for a c-channel input image (or input feature map), and 𝑊𝑊represents a set of filters. The 
conventional convolutional operator filters the input image and returns a 𝐷𝐷′-channel output, 𝑂𝑂(𝑥𝑥,𝑦𝑦). Mathematically, this 
function can be represented as: 

𝑂𝑂(𝑥𝑥,𝑦𝑦) =  𝐼𝐼(𝑥𝑥,𝑦𝑦) ∗𝑊𝑊(𝑥𝑥 ,𝑦𝑦) = � � 𝑊𝑊𝑘𝑘𝑚𝑚+𝑖𝑖 ,𝑘𝑘𝑛𝑛+𝑗𝑗 . 𝐼𝐼𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗

𝑘𝑘𝑛𝑛′

𝑗𝑗=−𝑘𝑘𝑛𝑛′

𝑘𝑘𝑚𝑚′

𝑖𝑖=−𝑘𝑘𝑚𝑚′
 

Where 𝑘𝑘𝑚𝑚 and 𝑘𝑘𝑛𝑛 show the kernel size, 𝑘𝑘𝑚𝑚′ = 𝑘𝑘𝑚𝑚−1
2

 and 𝑘𝑘𝑛𝑛′ = 𝑘𝑘𝑛𝑛−1
2

. Please note that for the simplicity of the notation, 
the bias term was skipped. Although this type of convolutional operator works well for several tasks such as image 
classification, segmentation, and detection, it is not definitely, suitable for the task of image inpainting. In fact, the sliding 
window scans all the pixels and elements within the image/feature maps and applies the same filters at different spatial 
coordinates. Thus it simply ignores the presence of holes within a subregion and considers the valid and invalid pixels as 
the same. As a result, the inpainted holes do not fully match with the nearby textures, and the generated images contain 
textural/color inconsistencies.  

Pconv operator [43] is considered a promising attempt to tackle the mentioned issues faced by the convolutional 
operators. Let 𝑀𝑀 be a binary mask with the same size as the input image, the partial convolution at every spatial location 
for the current sliding window can be defined as: 
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𝑂𝑂(𝑥𝑥,𝑦𝑦) = �𝑊𝑊(𝑥𝑥,𝑦𝑦)
𝑇𝑇 �𝐼𝐼(𝑥𝑥,𝑦𝑦)ʘ𝑀𝑀(𝑥𝑥,𝑦𝑦)�

𝑠𝑠𝑠𝑠𝑚𝑚(1)
𝑠𝑠𝑠𝑠𝑚𝑚(𝑀𝑀)     𝐷𝐷𝑖𝑖 𝑠𝑠𝑠𝑠𝑚𝑚(𝑀𝑀) > 0

0                                                𝑜𝑜𝑜𝑜ℎ𝐷𝐷𝑒𝑒𝑒𝑒𝐷𝐷𝑠𝑠𝐷𝐷
 

Where ʘ denotes element-wise multiplication, 1 is an all-one matrix with the same size of 𝑀𝑀. Compared to the 
ordinary convolution operator, one can understand that the output values of Pconv depend only on the valid areas defined 
by the binary mask (𝑀𝑀). The role of the scaling factor (𝑠𝑠𝑠𝑠𝑚𝑚(1)

𝑠𝑠𝑠𝑠𝑚𝑚(𝑀𝑀)) is to adjust for varying amounts of valid inputs. After each 

Pconv operator, the binary mask will be updated by the following rule: if Pconv could condition its output on at least one 
valid input value, that spatial coordinate will be updated to become valid. However, this kind of rule-based mask updating 
is problematic because: 1) all feature channels in each convolutional layer share the same mask regardless of their 
inconsistencies. This limitation will be problematic, especially for multi-channel input images such as multimodal PET-
CT slices. 2) The binary mask will be updated progressively as the network goes deeper so that all the invalid pixels will 
be disappeared no matter how many pixels were covered in the previous layers. 

Gconv operator [44] has been proposed to turn the problematic rule-based mask updating of Pconv into a learnable 
procedure. In specific, gated convolutions learn soft mask updating automatically from the image/feature maps. It will 
able the convolutional operators to learn the dynamic feature selection mechanism for each channel and each spatial 
coordinate independently. This process can be formulated as: 

𝐺𝐺𝐺𝐺𝑜𝑜𝐷𝐷𝐺𝐺𝐺𝐺(𝑥𝑥,𝑦𝑦) = ��𝑊𝑊𝑔𝑔 . 𝐼𝐼 

𝐹𝐹𝐷𝐷𝐺𝐺𝑜𝑜𝑠𝑠𝑒𝑒𝐷𝐷(𝑥𝑥,𝑦𝑦) = ��𝑊𝑊𝑓𝑓 . 𝐼𝐼 

𝑂𝑂(𝑥𝑥,𝑦𝑦) = 𝜑𝜑�𝐹𝐹𝐷𝐷𝐺𝐺𝑜𝑜𝑠𝑠𝑒𝑒𝐷𝐷(𝑥𝑥,𝑦𝑦)� ʘ 𝜎𝜎(𝐺𝐺𝐺𝐺𝑜𝑜𝐷𝐷𝐺𝐺𝐺𝐺(𝑥𝑥,𝑦𝑦)) 

Where 𝜎𝜎 refers to the sigmoid function that scales the output of the gating signal into the range of 0 to 1; 𝜑𝜑 can be 
any kind of nonlinear activation function; 𝑊𝑊𝑔𝑔 and  𝑊𝑊𝑓𝑓 are two separate convolutional filters. 

Inspired by the concept of the Pconv model and Gconv operator, in this study, we design a U-Net-like architecture, 
replacing all the ordinary convolutional layers with the Gconv layer and using the nearest neighbor upsampling method 
in the decoder path. Specifically, the encoder part of the model consists of 8 Gconv blocks, each of which includes a 
Gconv layer with the stride of 2, followed by an optional Batch Normalization (BN) layer and a Rectified Linear Unit 
(ReLu) activation function. The decoder stage of the model, similarly, contains 8 Gconv blocks, each of which consists 
of a nearest neighbor upsampling layer, a Gconv layer, an optional BN layer, followed by a LeakyReLu activation 
function. Similar to the U-Net model, the skip connections concatenate the feature maps and corresponding binary masks 
from the encoder to the decoder path, acting as the feature and mask inputs to the next Gconv block. The final output 
layer of the model is an ordinary convolutional layer with a sigmoid activation function which is fed by a concatenation 
of the last Gconv block from the decoder path and the original input image with holes along with the original binary mask 
from the encoder. This strategy ables the model to directly transfer and copy the values of the valid pixels to the output 
layer. Figure 2 demonstrates a graphical illustration of the network architecture. 
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Figure 2. Schematic illustration of the model architecture.  

In order to fill the holes with meaningful semantic patterns, the proposed model is optimized with a multi-term 
objective function [43] that takes into account both pixel-wise reconstruction accuracy and context information. Let the 
input image with holes be 𝐼𝐼𝑖𝑖𝑛𝑛; 𝐼𝐼𝑔𝑔𝑔𝑔 represents the original image without holes (grand truth), 𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔 indicates the predicted 
image, and 𝑀𝑀 denotes the binary mask used for corrupting the image; the first two terms in the objective functions are 
pixel-wise errors that can be calculated separately for the valid and invalid regions as the least absolute errors (𝐿𝐿1 norm). 
These two terms aim to minimize the intensity differences between the predicted and grand truth images inside and outside 
the hole regions separately: 

ℒ𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣 = 
1
𝑁𝑁𝐼𝐼𝑔𝑔𝑔𝑔

�𝑀𝑀ʘ(𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔 − 𝐼𝐼𝑔𝑔𝑔𝑔)�1 
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ℒℎ𝑜𝑜𝑣𝑣𝑜𝑜 =  
1
𝑁𝑁𝐼𝐼𝑔𝑔𝑔𝑔

�(1 −𝑀𝑀)ʘ(𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔 − 𝐼𝐼𝑔𝑔𝑔𝑔)�1 

Where 𝑁𝑁𝐼𝐼𝑔𝑔𝑔𝑔  shows the number of pixels in the 𝐼𝐼𝑔𝑔𝑔𝑔. 

The third term is the perceptual loss which aims to minimize the discrepancies between the high-level feature 
representations extracted from the predicted and grand truth images in order to maximize the perceptual similarity 
between these two images. It calculates the 𝐿𝐿1 norm between two sets of high-level features extracted from 𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔 and 𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐 
where 𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐 is the composite output which is similar to the predicted image but with the intensity of valid pixels replaced 
by those of the grand truth. 1st, 2nd, and 3rd layers of a VGG16 [50] network pre-trained on ImageNet were used to extract 
the features: 

ℒ𝑐𝑐𝑜𝑜𝑝𝑝𝑐𝑐𝑜𝑜𝑐𝑐𝑔𝑔𝑠𝑠𝑣𝑣𝑣𝑣 =  �
�𝛹𝛹𝑐𝑐

𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔 − 𝛹𝛹𝑐𝑐
𝐼𝐼𝑔𝑔𝑔𝑔�

1
𝑁𝑁
𝛹𝛹𝑝𝑝
𝐼𝐼𝑔𝑔𝑔𝑔

𝑐𝑐−1

𝑐𝑐=0

+�
�𝛹𝛹𝑐𝑐

𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝 − 𝛹𝛹𝑐𝑐
𝐼𝐼𝑔𝑔𝑔𝑔�

1
𝑁𝑁
𝛹𝛹𝑝𝑝
𝐼𝐼𝑔𝑔𝑔𝑔

𝑐𝑐−1

𝑐𝑐=0

 

Here, 𝛹𝛹𝑐𝑐
𝐼𝐼∗  refers to the outputs of the activation function of the pth layer of the pre-trained network given the input 𝐼𝐼∗.  

In order to minimize the style differences between the synthesized and grand truth images, style loss was computed 
as well. To reconstruct images with high level of style similarities inside and outside of the holes, the style error was 
calculated for predicted and composite images separately: 

ℒ𝑠𝑠𝑔𝑔𝑦𝑦𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔 = �
1
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As can be seen, the style loss is similar to the perceptual loss, but it first calculates the autocorrelation of extracted 
features and then computes the  𝐿𝐿1 norm. In this notation, 𝐶𝐶𝑐𝑐 indicates the depth of the channels in 𝛹𝛹𝑐𝑐, and 𝐾𝐾𝑐𝑐 refers to 
the number of elements in 𝛹𝛹𝑐𝑐 tensor.  

The sixth loss term is Total Variation (TV) which is a conventional objective function for noise reduction applications. 
In fact, it functions as a smoothing term that makes the intensity values of the neighboring pixels in the synthesized image 
closer to each other: 

ℒ𝑔𝑔𝑣𝑣 = �
�𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐

𝑖𝑖 ,𝑗𝑗+1 − 𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐
𝑖𝑖,𝑗𝑗 �

1
𝑁𝑁𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝(𝑖𝑖,𝑗𝑗)∈𝑅𝑅,(𝑖𝑖,𝑗𝑗+1)∈𝑅𝑅

 + �
�𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐

𝑖𝑖+1,𝑗𝑗 − 𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐
𝑖𝑖,𝑗𝑗 �

1
𝑁𝑁𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝(𝑖𝑖 ,𝑗𝑗)∈𝑅𝑅,(𝑖𝑖+1,𝑗𝑗)∈𝑅𝑅

 

Where 𝑁𝑁𝐼𝐼𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝 is the number of pixels in the composite image. 

Finally, since the early layers of the model focus on capturing edge-based features, the described pixel-wise, 
perceptual, style, and TV losses alone cannot well preserve the high-frequency patterns and would lead to reconstructing 
blurry images. This issue will be problematic when the contents of each channel of the input image carry different 
structures, such as multimodal PET-CT images. Accordingly, to maintain the edges and synthesize images with details 
as much as possible, the last term includes the Laplacian (lap) pyramid loss: 

ℒ𝑣𝑣𝑣𝑣𝑐𝑐(𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔,𝐼𝐼𝑔𝑔𝑔𝑔) = �22𝑗𝑗�𝐿𝐿𝑗𝑗(𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔)− 𝐿𝐿𝑗𝑗(𝐼𝐼𝑔𝑔𝑔𝑔)�1
𝑗𝑗

 

Where 𝐿𝐿𝑗𝑗(𝑥𝑥) refers to the jth level of the Laplacian pyramid representation of input x. In this study, the parameter 𝑗𝑗 
was set to 3, i.e., three levels of pyramid representations were computed.   
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Therefore, the overall objective function is the combination of all the mentioned loss terms: 

ℒ𝑔𝑔𝑜𝑜𝑔𝑔𝑣𝑣𝑣𝑣 = 30ℒ𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣 + 240ℒℎ𝑜𝑜𝑣𝑣𝑜𝑜 + 0.2ℒ𝑐𝑐𝑜𝑜𝑝𝑝𝑐𝑐𝑜𝑜𝑐𝑐𝑔𝑔𝑠𝑠𝑣𝑣𝑣𝑣 + 0.05(ℒ𝑠𝑠𝑔𝑔𝑦𝑦𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔 + ℒ𝑠𝑠𝑔𝑔𝑦𝑦𝑣𝑣𝑜𝑜𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝) + 250ℒ𝑔𝑔𝑣𝑣 + 20ℒ𝑣𝑣𝑣𝑣𝑐𝑐 

The coefficient of each term was calculated after conducting an extensive ablation study over 2000 test images (see 
section 2.1 in Supplementary Materials).  

2.4. Learning the appearance of normal anatomies 

The proposed inpainting model was employed to learn the attributes of healthy anatomical structures by learning to fill 
the irregular holes with the characteristics of healthy structures. In other words, healthy image slices corrupted with 
irregular random holes are used to train the inpainting model. Having the corrupted healthy images as input to the model 
on one side and the original healthy images as the grand truth on the other side, the inpainting model is trained to smoothly 
replace the holes with semantically meaningful patterns in order to synthesize realistic-looking images while preserving 
fine-grained details and anatomical constraints. With this strategy, the inpainting model is assumed to estimate the 
distribution of healthy anatomies.  

Considering the fact that tumors appear with irregular shapes and different sizes at different locations, the corrupting 
holes should be generated in a way to imitate the visual attributes of the tumors. Accordingly, irregular holes were 
synthesized by carefully combining the ordinary regular geometric shapes, including circles, ellipses, and lines. Thus, the 
simulated holes were distributed randomly over different spatial coordinates of the image space to occupy, on average 
per batch, 25 to 30 percent of the image size. With this approach, two models were trained separately for NSCLC and 
HN datasets. In specific, 6233 healthy images from the NSCLC dataset and 12171 healthy slices from the HN dataset 
were extracted to train the inpainting model. An additional 2000 slices from each dataset were used as the validation set. 

Each model was trained for 300 epochs with Adam optimizer and a batch size of 8. The presence of the holes in the 
image causes issues for the BN parameters updating because the zero values inside the holes will contribute to updating 
the mean and variance of BN. Accordingly, it sounds rational to disable the calculation of the BN inside the holes. On the 
other hand, the training procedure forces the model to gradually fill the holes until they completely disappear so that they 
can potentially contribute to the BN parameter updating. Hence, the training was done in two phases. In the first phase, 
the models were trained for 150 epochs with a learning rate of 0.0001 and enabled all the BN layers. In the second phase, 
the model continues training for another 150 epochs with a learning rate of 0.00005. In this phase, the BN layers within 
the encoder path were disabled while they were enabled for the decoder stage. This fine-tuning strategy is not only 
beneficial to speed up the convergence but also to avoid the incorrect calculations of the mean and variance parameters 
of the BN operator [43][51]. The accuracy metrics over the validation set were monitored, and a certain epoch that resulted 
in the best accuracy metrics was used for the testing phase. It is worth mentioning that the described training procedure 
was performed independently for each of the examined imaging modalities, i.e., CT, PET, and PET-CT scans. Figure 3 
demonstrates the qualitative performance of the model in replacing the irregular holes with the appearance of normal 
anatomical regions.  



 

10 
 

 

Figure 3. The inpainting model could successfully replace the irregular random holes with the appearance of healthy anatomies 
while preserving the anatomical constraints. For each set of NSCLC and HN tumors, the first row shows the corrupted images with 

random holes, and the second row illustrates the inpainted results of the model. 

2.5. Autoinpainting for unsupervised tumor segmentation 

The trained inpainting model learns to synthesize semantically correct and contextually smooth contents in the predefined 
missing regions. Training the model only with healthy slices reinforces the model to replace the missing healthy tissues 
with the appearance of healthy tissues. This strategy enables the inpainting network to model the distribution of healthy 
anatomical structures that can be further utilized to detect the anomalies as outliers from the learned normative 
distribution. In other words, replacing the tumor with the appearance of already learned healthy tissues leads to 
synthesizing tumor-free images from which the tumoral regions can be detected by calculating the differences between 
the original and synthesized images. Accordingly, the learned inpainting network, which was trained only with random 
holes, can function as a UAD model, given that no segmentation label is required to localize the tumor location. That 
being the case, a pipeline is proposed to turn the manual inpainting network into an autoinpainting model to segment the 
tumors in an unsupervised fashion.  

The underlying idea thereby is to replace the random holes with a sliding window to sweep different anatomical 
regions for the inpainting process. Therefore, if the sliding window covers healthy regions, the inpainting network will 
replace the appearance of healthy structures with learned healthy structures; thus, the newly generated images remain 
intact. On the other hand, if the sliding window encounters tumoral regions, it substitutes the textures of the tumors with 
the appearance of already learned healthy tissues. Accordingly, for each original tumoral slice, a fake tumor-free image 
can be generated without needing any kind of supervised signal. Hence, a pipeline is proposed to efficiently inpaint the 
tumoral regions while preserving the appearance of healthy tissues with anatomical constraints. This pipeline functions 
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in the following four folds: I) preparing the input slices, II) detecting the candidate regions, III) determining the target 
region, IV) segmenting the target tumor: 

Preparing the input slices 

The images within the NSCLC dataset covered only the chest region, while the HN images covered not only the HN 
region but also brain and chest organs as well. Thus, to concentrate the analyses within the target organs, lung field masks 
for NSCLC data and HN masks for HN data were delineated. In specific, a pretrained Progressive Holistically-Nested 
Networks(P-HNNs) [52] was used for the CT volumes to accurately segment the lung fields in the presence of pathologies. 
The segmentation masks were visually examined, and manual refinements were needed only for a very limited number 
of cases. Then, the binary lung field masks were applied to the corresponding PET images as well. The CT images of the 
HN dataset, on the other hand, were visually examined to manually crop out the brain and lung tissues from the volumes. 
The cropped binary masks were later applied to the corresponding PET images. This step assures us that all the further 
analyses will be performed within the Organ Of Interest (OOI) where the tumors are presented. The last step includes the 
extraction of all the axial slices from the OOIs. 

Detecting the candidate regions 

Depending on the size of the OOIs, a certain number of subregions is determined with the help of a sliding window 
strategy for further analyses. In particular, a sliding circle with a radius of 27 pixels and an interval distance of 15 pixels 
sweeps over the OOIs in each of the axial slices. The already trained network is employed as an inference model to inpaint 
each of the moving circles independently. In other words, the sliding window scans each slice to produce several candidate 
circles to be inpainted by the trained network. The inpainting model, therefore, replaces the contents of the coordinates 
occupied by the circles with the textural patterns it learns from the healthy images in the training phase. As a result, for 
each of the circles within one slice, there will be a new synthesized image. If the moving circle masks a healthy subregion, 
the inpainting model replaces it with the texture of healthy tissues, and therefore there will be no remarkable 
intensity/textural differences between the original and the synthesized images. On the other hand, if the moving circle 
masks a tumoral region, the learned inpainting model changes the textures of the tumor with the patterns of healthy tissues. 
In this case, remarkable intensity/textural differences between the input slice and the generated slice can be observed. 
Accordingly, to identify which of the moving windows could cover the tumor(s), the sum of the intensity differences 
between the input slices and the inpainted slices was calculated for each of the moving circles. These values were then 
sorted, and only the top few values with notable differences w.r.t the other values were kept as these larger intensity 
difference values represent notable changes between the input image and the synthesized one, which could potentially 
imply the tumor location. 

It should be emphasized that if the size of the moving window is too small, the inpainting model will not be able to 
completely replace the tumoral regions. On the other hand, if this size is too large, it may slightly change so many tiny 
details, which would slightly change the general context. Thus, this size should be defined as a trade-off between the 
largest and smallest possible tumors within the datasets. In this study, based on the diversity of tumor sizes, a range of 
potential values were examined in an ablation study which yields set the radius of the moving window equal to 27 as the 
optimal value (See section 2.2 in Supplementary Materials).  

Determining the target region 

The identified top candidate regions either masked one single tumor or covered different anomalies related to multi-focal 
tumors. To automatically find out whether the top candidate regions share the same tumor or they focus on various 
subregions, the union of the top candidate binary masks is calculated. To this extent, if the top candidate regions overlap 
each other, their union will form a larger binary mask; however, if they don’t share even a single pixel, the outcome of 
the union calculation will not differ from the originally separated masks. This simple scheme ensures us whether only 
one tumor or several tumors are presented in the slice. Then, the updated union mask will be ready to perform the final 
inpainting step. Considering the possibility of presence of extremely large-size tumors, this final mask may not be large 
enough to cover the whole abnormalities. Accordingly, the size of this binary mask needs to be enlarged without 
compromising the efficacy of small-size anomalies. To do so, an incremental morphological dilation approach is adopted 
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in order to dilate the updated binary mask with square-shaped structural elements of the width of [7,9,11,13,15]. Simply 
explaining, in addition to the updated union mask, five other dilated versions of this mask will be generated to conduct a 
total number of six final inpaintings sequentially. For each of them, the intensity differences between the input slice and 
the inpainted slices will be quantified, and if no changes are observed between the sequential orders, then the mask with 
the smaller size is selected; otherwise, the one with the larger size will be set as the final candidate mask(s). In this way, 
the small-size tumors will not be affected by this incremental dilation strategy as they remain inpainted with the updated 
union mask, while the extremely large-size tumors can be covered more efficiently by the dilated masks.  

Segmenting the target tumor 

The proposed pipeline analyzes all the axial OOI slices; however, not all the slices contain tumors. Therefore, to prevent 
the model from detecting small deviations in healthy slices as anomalies, a size-based criterion is included in the pipeline. 
In fact, the radius of the smallest tumor in the studied dataset is 6 pixels. Having known the minimum value, any detected 
abnormalities with sizes smaller than the minimum radius can be recognized as a false positive and skipped from the 
further steps. To implement this concept, first, the residual images are calculated as the differences between the input and 
the final inpainted images. Connect Components (CCs) of the residual images are computed, and the size of the largest 
CC at each slice is compared against the minimum radius of the tumors. If the condition is satisfied, the output of the 
algorithm will become the final inpainted slice; otherwise, the input slice will be directly set as the output. The latter case 
necessarily means that either the model could not detect the tumor(s) or the image slice does not contain any tumors. 
Figure 4 illustrates a general schematic presentation of the autoinpainting pipeline. Please note that the segmentation of 
NSCLC tumors in CT images is more challenging than the multimodal PET-CT images; therefore, the graphic illustration 
in figure 4 is depicted on a CT slice to accentuate the abilities of the proposed pipeline. 

   The mentioned process is repeated for all the axial slices from which a stack of volume can be formed from the algorithm 
outputs. Therefore, for each input volume, there will be a synthesized autoinpainted volume. The intensity range of both 
input and synthesized one is scaled between 0 to 1. The final residual volume is then computed as intensity differences 
between the two volumes. Finally, to quantify the segmentation performance, two approaches were followed. First, a 
conventional quantification was done by setting a single threshold value to binarize all the residual volumes. Second, a 
variable threshold in the range of 0 to 0.8 with an incremental rate of 0.02 was used to binarize the residuals for further 
quantifications, from which the threshold that leads to the best segmentation accuracy was selected. Therefore, for each 
subject, a different threshold value was used for the quantification. These metrics are reported by the ⌈ ⌉ notations.  
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Figure 4. The autoinpainting pipeline employs the moving window strategy to adaptively inpaint the tumoral regions in a pure 
unsupervised approach. A) the original slice consists of multi-focal tumors; B) the determined circles to be inpainted independently 
are presented with different colors; C) the top three candidate circles detected the two different tumors; D) the union of candidate 

regions was used to corrupt the image for inpainting process; E) incrementally increasing the size of the detected regions better cover 
the tumoral zones and F) final inpainted image does not contain the tumors anymore.   

2.6. External validation 

To benchmark the efficacy of the proposed model, we compare its performance to State-Of-The-Art (SOTA) models in 
two folds: 1) A supervised segmentation model was employed to find out what optimal performance can be achieved over 
the investigated tasks. In specific, the self-configuring nnU-Net model [53] as a powerful segmentation framework was 
utilized to estimate the maximum achievable segmentation accuracy of the studied dataset. This model was trained with 
a 5-fold cross-validation fashion for each dataset separately. The default settings of the nnU-Net framework were adopted 
without further modifications, and the models were trained for 1000 epochs. 2) A set of recently developed deep UAD 
models were analyzed as well to objectively compare the segmentation accuracy of the proposed unsupervised model 
against the relevant UAD references. In this context, the following models were examined [32]: dense AE (dAE), spatial 
AE (sAE), context-encoding AE (ceAE), Variational AE (VAE), context-encoding Varitational AE (ceVAE), Gaussian 
Mixture Variational AE (GMVAE), Fast-AnomalyGAN (F-AnoGAN), and Adversarial AE (AAE). Similar to the 
proposed autoinpainting model, for each of the datasets, healthy slices were used to train these UAD models, and the 
pathological slices were employed in the test phase. It is worth mentioning that standard implementations of these models 
were used for fair comparisons [54].  

2.7. Quantitative Evaluation 

To assess the performance of the proposed inpainting model and the segmentation pipelines, two sets of quantitative 
metrics were examined. 

The first group of metrics includes Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural 
Similarity Index (SSIM). These metrics are measured to quantitatively evaluate the performance of the inpainting network 
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by directly comparing the original image to the synthesized one. The MSE metric measures the amount of changes per 
pixel between the two images; therefore, the smaller value of this measure represents more similarity between the two 
images. PSNR is another quality assessment measure between the two images where the higher PSNR value indicates the 
better quality of the synthesized image. SSIM assesses the perceptual image quality to quantify the visible differences 
between the two images. Let the original image be 𝐼𝐼𝑜𝑜𝑝𝑝𝑔𝑔, and 𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔 shows the synthesized image with equal matrix sizes of 
m×n and the maximum possible intensity value of R; then, the metrics can be mathematically defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀�𝐼𝐼𝑜𝑜𝑝𝑝𝑔𝑔 , 𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔� = 
1

𝑚𝑚 × 𝐺𝐺
� ��𝐼𝐼𝑜𝑜𝑝𝑝𝑔𝑔(𝐷𝐷, 𝑗𝑗)− 𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔(𝐷𝐷, 𝑗𝑗)�

2
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

 

𝑃𝑃𝑀𝑀𝑁𝑁𝑃𝑃�𝐼𝐼𝑜𝑜𝑝𝑝𝑔𝑔 , 𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔� = 10𝑙𝑙𝑜𝑜𝐺𝐺10(
𝑃𝑃2

𝑀𝑀𝑀𝑀𝑀𝑀(𝐼𝐼𝑜𝑜𝑝𝑝𝑔𝑔 , 𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔)
)  

𝑀𝑀𝑀𝑀𝐼𝐼𝑀𝑀�𝐼𝐼𝑜𝑜𝑝𝑝𝑔𝑔 , 𝐼𝐼𝑜𝑜𝑠𝑠𝑔𝑔� =
(2𝜇𝜇𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔𝜇𝜇𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔 + 𝐷𝐷1)(2𝜎𝜎𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔 + 𝐷𝐷2)

(𝜇𝜇𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔
2 + 𝜇𝜇𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔

2 + 𝐷𝐷1)(𝜎𝜎𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔
2 + 𝜎𝜎𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔

2 + 𝐷𝐷2) 

Where 𝜇𝜇𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔 , and 𝜇𝜇𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔are average intensities; 𝜎𝜎𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔
2  and 𝜎𝜎𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔

2  are variance values and 𝜎𝜎𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔𝐼𝐼𝑜𝑜𝑜𝑜𝑔𝑔 represents the 
covariance of the two images. Parameters 𝐷𝐷1 and 𝐷𝐷2 are two variables that ensure stability when the denominator 
becomes 0.  

The second group of metrics is used to quantify the segmentation accuracy of the proposed pipeline. These metrics 
include Dice coefficient (DSC), Precision, and Recall. While DSC measures the overlap between the target masks and 
model predictions, Precision and Recall metrics demonstrate the accuracy of pixel classifications. Given that P represents 
the segmentation output of the model and G refers to the grand truth mask, 𝑇𝑇𝑐𝑐, 𝐹𝐹𝑐𝑐, 𝐹𝐹𝑁𝑁 show true positive, false positive, 
and false negative, respectively, calculated from the confusion matrix, the definitions of the metrics are formulated as 
follows:  

𝐷𝐷𝑀𝑀𝐶𝐶 =  
2|𝑀𝑀 ∩ 𝐺𝐺|
|𝑀𝑀| + |𝐺𝐺| 

𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺𝑙𝑙𝑙𝑙 =  
𝑇𝑇𝑐𝑐

𝑇𝑇𝑐𝑐 + 𝐹𝐹𝑁𝑁
 

𝑃𝑃𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑜𝑜𝐺𝐺 =  
𝑇𝑇𝑐𝑐

𝑇𝑇𝑐𝑐 + 𝐹𝐹𝑐𝑐
 

3. Results 

In this section, the performance of the proposed method for unsupervised tumor segmentation is presented in two folds: 
(1) the quality of the inpainting model, (2) the segmentation accuracy of the autoinpainting pipeline.  

3.1. Inpainting Quality 

There exist many possible solutions to quantify the performance of inpainting models; therefore, no specific numerical 
metrics were designed for this task. Nevertheless, we employed the described MSE, PSNR, and SSIM metrics as 
conventionally have been used by other studies [43], [44]. Furthermore, qualitative comparisons are included by 
demonstrating both the corrupted and inpainted images. In the followings, GconvLap denotes the proposed method, which 
is compared against Pconv and Gconv models.  

Tables 1, and 2 represent the comparison results between the performance of the models for each of the PET-CT 
images, CT channel, and PET channel of multimodal images for the NSCLC dataset and HN dataset separately. In 
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specific, the already trained models were used in the test phase to inpaint the corrupted input images. Original images 
were then compared against the model predictions using the three quantitative metrics.   

Table 1 – Numerical comparison between the performance of inpainting models on the NSCLC dataset 

Model-Data Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

Pconv-CT 
Gconv-CT 

     GconvLap-CT 

123.401±66.536 
67.098±48.486 

     66.041±47.330 

27.915±2.623 
31.311±4.022 

      31.495±4.332 

0.908±0.033 
0.939±0.031 

       0.943±0.030 

Pconv-PET 
Gconv-PET 

    GconvLap-PET 

22.722±22.925 
21.931±28.111 

     21.888±31.336 

35.981±3.413 
37.449±5.094 

      38.070±5.836 

0.961±0.014 
0.973±0.015 

       0.977±0.013 

Pconv-Multi 
Gconv-Multi 

   GconvLap-Multi 

69.428±37.546 
45.850±32.813 

     44.290±33.785 

30.385±2.530 
32.814±3.682 

      33.271±4.267 

0.947±0.019 
0.960±0.018 

       0.966±0.018 
 

From Table 1, we can infer that the proposed GconvLap model could inpaint the corrupted images more accurately 
than the other two models. In particular, the numerical metrics obtained from the proposed GconvLap indicate fewer errors 
in terms of MSE metric and higher similarity in terms of PSNR and SSIM for all the experiments regardless of the type 
of the input images. As expected, quantitative values of the PET image show higher accuracy compared to those of the 
CT and multimodal images for all the experiments.  

Table 2 – Numerical comparison between the performance of inpainting models on the HN dataset 

Model-Data Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

Pconv-CT 
Gconv-CT 

     GconvLap-CT 

      9.934±8.367 
      7.136±7.504 
      5.744±6.177 

    39.922±4.561 
    42.295±5.868 
    43.622±6.396 

     0.985±0.012 
     0.988±0.011 
     0.991±0.009 

Pconv-PET 
Gconv-PET 

    GconvLap-PET 

      5.370±10.208 
      4.270±8.621 
      3.130±6.199 

    45.476±6.732 
    46.462±6.660 
    48.530±7.579 

     0.992±0.006 
     0.991±0.007 
     0.995±0.005 

Pconv-Multi 
Gconv-Multi 

   GconvLap-Multi 

      8.412±7.457 
      6.155±6.536 
      4.851±5.241 

    40.689±4.560 
    42.828±5.659 
    44.268±6.287 

     0.986±0.010 
     0.989±0.00 
     0.991±0.008 

 

Similar to the NSCLC experiments, for the HN dataset, the proposed GconvLap model outperforms the other methods 
with respect to the quality of the inpained images. It should be noted that both NSCLC and HN datasets were trained and 
tested under similar conditions, including the network parameters, shape, and size of the irregular holes. Therefore, the 
only reason that the range of the reported numerical values is different between the two datasets is related to the fact that 
the HN images entail fewer contents and textures compared to NSCLC images. In addition to assessing the inpainting 
models with multimodal datasets, the models were trained and tested with single modality images as well. In other words, 
for each of the NSCLC and HN datasets, CT images and PET images were independently used to train and test the quality 
of the inpainting models (Tables 1.1. and 1.2. in Supplementary Materials). Similar to multimodal inpainting networks, 
even for the single modality images, GconvLap outperformed the other methods with a rather remarkable margin. To test 
the statistical significant difference between the performance of the GconvLap model and the two other inpainting baslines, 
Wilcoxon signed rank test as a non-parametric method was applied on the calculated image quality metrics (see Table 
1.3. in Supplementary Material). 

Figure 5 demonstrates the qualitative comparisons between the functionality of the inpainting models in filling the 
random holes with meaningful patterns in the multimodal NSCLC dataset. The irregular holes were randomly distributed 
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over different locations on the image plane to learn the heterogeneous appearance of anatomical structures such as ribs, 
cardiac muscle, aorta, arteries, chest wall, etc. 

 

Figure 5. Qualitative comparisons of image inpainting performance. Row A: original PET-CT slices; row B: corrupted slices 
with random holes; row C: inpainted results by Pconv model; row D: inpainted results by Gconv model; and row E: inpainted results 
by the proposed GconvLap model. As can be seen, the proposed GconvLap model could replace the irregular holes with meaningful 

anatomical patterns and preserve the anatomical constraints far better than the other two methods. The blue bounding boxes 
highlighted the regions where the inpainted patterns by the proposed model are much more meaningful anatomically than the other 

models. 

For both the NSCLC and HN datasets, quantitative values show that the performance of the proposed GconvLap model 
is far better than the Pconv model and slightly better than the Gconv model. Nonetheless, the capability of the proposed 
GconvLap model in preserving the anatomical constraints is highlighted in Figure 5. In specific, while the Pconv and 
Gconv models filled the random holes with semantic image contents, they were not able to synthesize anatomically 
meaningful contents. From the qualitative comparisons between the anatomical regions highlighted with the blue boxes 
in Figure 4, it can be understood that the proposed GconvLap model synthesized plausible image contents with highly 
realistic anatomical details. Therefore, both the image details and cotextual patterns of the inpainted images synthesized 
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by the proposed model are more similar to those of the original images, which in return leads to reducing the 
reconstruction errors. 

3.2. Autoinpainting for Tumor Segmentation 

The performance of the proposed autoinpainting pipeline for tumor segmentation is quantified by finding the agreement 
between the segmented volumes and the label masks. The same autoinpainting pipeline was applied to all the three 
inpainting models, followed by the same postprocessing steps for tumor segmentation. Tables 3 and 4 represent the 
segmentation accuracy of the proposed autoinpainting strategy for NSCLC and HN tumors, respectively. 

Table 3 – Numerical results of NSCLC tumor segmentation with autoinpainting pipeline 

Model-Data Quantitative Metrics (𝜇𝜇±𝜎𝜎)  
⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ ⌈𝑃𝑃𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑜𝑜𝐺𝐺⌉ ⌈𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺𝑙𝑙⌉ Dice 

Pconv-CT 
Gconv-CT 

 GconvLap-CT 

0.382±0.157 
0.423±0.180 
0.442±0.176 

0.408±0.186 
0.463±0.199 
0.482±0.192 

0.389±0.151 
0.411±0.178 
0.426±0.176 

0.353±0.111 
0.398±0.124 
0.410±0.134 

Pconv-PET 
Gconv-PET 

     GconvLap-PET 

0.709±0.215 
0.750±0.176 
0.746±0.196 

0.793±0.196 
0.792±0.192 
0.822±0.169 

0.669±0.221 
0.747±0.189 
0.706±0.217 

0.654±0.132 
0.690±0.184 
0.686±0.121 

Pconv-Multi 
Gconv-Multi 

    GconvLap-Multi 

0.673±0.245 
0.747±0.172 
0.766±0.171 

0.771±0.219 
0.799±0.178 
0.832±0.158 

0.622±0.252 
0.718±0.183 
0.726±0.184 

0.625±0.122 
0.692±0.136 
0.708±0.118 

 

From table 3, we can observe that the segmentation accuracy achieved by the proposed GconvLap model is remarkably 
higher than that of the PConv model, regardless of the type of input images. The same trend can be seen when comparing 
the GconvLap model with the ordinary Gconv model for the CT and multimodal images though the Gconv model slightly 
performs better on the PET images.  

Table 4 – Numerical results of HN tumor segmentation with autoinpainting pipeline 

Model-Data Quantitative Metrics (𝜇𝜇±𝜎𝜎)  
⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ ⌈𝑃𝑃𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑜𝑜𝐺𝐺⌉ ⌈𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺𝑙𝑙⌉ Dice 

Pconv-CT 
Gconv-CT 

 GconvLap-CT 
NA NA NA NA 

Pconv-PET 
Gconv-PET 

     GconvLap-PET 

0.412±0.190 
0.445±0.188 
0.453±0.196 

0.541±0.230 
0.557±0.407 
0.550±0.236 

0.462±0.172 
0.408±0.181 
0.414±0.181 

0.389±0.132 
0.407±0.130 
0.405±0.130 

Pconv-Multi 
Gconv-Multi 

    GconvLap-Multi 

0.408±0.241 
0.462±0.202 
0.465±0.198 

0.511±0.274 
0.539±0.233 
0.541±0.233 

0.360±0.224 
0.443±0.189 
0.435±0.188 

0.344±0.100 
0.418±0.133 
0.422±0.135 

 

Similar to the NSCLC tumors, the segmentation accuracy of HN tumors achieved by the proposed GconvLap 
outperformed the Pconv model with a relatively large margin and performed slightly better than the ordinary Gconv 
model on the PET and multimodal images. The appearance, textural distributions, and Hounsfield values of the HN 
tumors are very similar to those of the surrounding soft tissues (see Figure 1.1. in Supplementary Materials). Hence, the 
HN tumors in CT images cannot be distinguished directly from the nearby structures due to the lack of visible contrasts. 
Therefore, none of the inpainting approaches is able to detect abnormal tumoral tissues. In this domain, it is worth 
mentioning that even the supervised segmentation methods can hardly detect the HN tumors in full resolution CT images. 
For instance, in reference [55], a promising Dice score of 0.48 was reported for the HN tumor segmentation in CT images 
when only a cropped region around the tumors was analyzed. The proposed unsupervised autoinpainting pipeline was not 
able to detect the HN tumors in CT images; therefore, the notation of “NA” was used in the relevant row of Table 4. Table 
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1.4. in Supplementary Materials shows the results of the applied Wilcoxon signed rank test on the Dice values achieved 
by the autoinpainting pipeline. 

Figure 6 illustrates the capability of the proposed pipeline in segmenting the tumors in multimodal images. Figure 
1.2. in Supplementary Materials depicts the same illustration in single modality images. 

 

Figure 6. Visualization of the segmentation performance of the proposed autoinpainting pipeline. For each of the NSCLC and 
HN images, the first row shows the original tumoral slices, the second row depicts the result of the proposed autoinpainting model, 

and the last row demonstrates the residuals between the two images. Please note that residual images were zoomed around the 
tumoral candidates to better visualize the qualitative comparison between the detected tumors and the grand truth (dashed orange 

contours). 

Of course, there are certain cases in which the proposed unsupervised method faces some difficulties in segmenting 
the tumors. Figures 1.3. to 1.6. in Supplementary Materials depict different examples of challenging cases where the 
proposed pipeline failed to completely remove the tumors. 
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3.3. Supervised Tumor Segmentation 

Table 5 presents the segmentation accuracy of the supervised nnU-Net model, which was trained with a 5-fold cross-
validation resampling strategy for each of the NSCLC and HN tumors independently.  

Table 5 – Numerical results of supervised segmentation accuracy achieved by the nn-UNet model 

Tumor-Data Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
Dice Precision Recall 

NSCLC-CT 
NSCLC-PET 

     NSCLC-Multi 

0.707±0.224 
0.802±0.177 

       0.802±0.179 

0.762±0.238 
0.802±0.231 

       0.847±0.182 

0.713±0.258 
0.854±0.174 

       0.812±0.231 
HN-CT 
HN-PET 

         HN-Multi 

0.293±0.208 
0.641±0.177 

       0.660±0.179 

0.275±0.232 
0.636±0.200 

             0.653±0.209 

 0.269±0.230 
 0.704±0.215 

        0.731±0.212 
 

Similar to the autoinpainting results, the supervised segmentation accuracy over the PET images is higher than CT 
images for both NSCLC and HN tumors. Moreover, integrating both modalities together into the segmentation pipeline 
yielded the best results, which were even more accurate than PET images alone.  

As was expected, the supervised models segment the tumors more accurately than the proposed unsupervised pipeline. 
However, carefully comparing the results, we can observe that the performance of the unsupervised autoinpainting models 
is not far behind the powerful supervised nnU-Net models, especially in the cases of multimodal and PET images. For 
instance, the Dice score achieved by the proposed GconvLap model for multimodal NSCLC tumors is 0.708, which is 
around 10 percent lower than that of the nnU-Net model (Dice = 0.802). For the case of HN tumors, the nnU-Net model 
outperformed the unsupervised approach with remarkable margins (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣−𝑣𝑣𝑣𝑣𝑐𝑐𝑚𝑚𝑜𝑜𝑚𝑚𝑔𝑔𝑚𝑚 = 0.422 vs. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛−𝑁𝑁𝑜𝑜𝑔𝑔𝑚𝑚𝑜𝑜𝑚𝑚𝑔𝑔𝑚𝑚 =
0.660). However, as was already described in section 2.6, comparing the differences between the supervised and 
unsupervised methods is not fair. In fact, the only reason that the supervised nnU-Net model was examined is to estimate 
the maximum accuracy which can be achieved on the same datasets.  

3.4. Tumor Segmentation with UAD methods 

The segmentation accuracy of the employed UAD methods in multimodal images is presented in tables 6 and 7. Tables 
1.5. to 1.7. in Supplementary Materials show the same evaluations for single modality images. In fact, eight conventional 
UAD models have been examined to benchmark the performance of the proposed unsupervised autoinpainting.  

Table 6 – Segmentation accuracy of unsupervised anomaly detection models on multimodal images of NSCLC tumors 

Model Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ ⌈𝑃𝑃𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑜𝑜𝐺𝐺⌉ ⌈𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺𝑙𝑙⌉ Dice 

dAE 0.305±0.122 0.270±0.132 0.405±0.147 0.285±0.068 
sAE 0.097±0.047 0.064±0.038 0.249±0.072 0.094±0.030 
ceAE 0.346±0.129 0.330±0.1464 0.407±0.144 0.314±0.078 
VAE 0.311±0.132 0.271±0.142 0.421±0.158 0.282±0.068 

ceVAE 0.254±0.109 0.228±0.126 0.320±0.119 0.242±0.069 
GMVAE 0.023±0.016 0.012±0.008 0.583±0.117 0.023±0.004 

F-AnoGAN 0.262±0.133 0.286±0.158 0.390±0.180 0.262±0.073 
AAE 0.277±0.129 0.284±0.167 0.335±0.159 0.237±0.059 

 

Comparing the numerical values of table 6 to those in table 3, one can obviously observe that the proposed 
autoinpainting pipeline significantly outperformed all the UAD models on NSCLC tumors. In specific, the best Dice 
score in the UAD family achieved by the dAE model is 0.285, which is 0.42 inferior to the GconvLap model (Dice=0.708). 
The same trend can be observed for the single modality images when comparing the segmentation accuracy of the 
proposed autoinpainting pipeline against the UAD models.  
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 Table 7 – Segmentation accuracy of unsupervised anomaly detection models on multimodal images of HN tumors 

Model Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ ⌈𝑃𝑃𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑜𝑜𝐺𝐺⌉ ⌈𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺𝑙𝑙⌉ Dice 

dAE 0.126±0.071 0.162±0.148 0.179±0.111 0.101±0.034 
sAE 0.080±0.046 0.068±0.064 0.257±0.226 0.066±0.019 
ceAE 0.128±0.072 0.167±0.149 0.174±0.105 0.101±0.034 
VAE 0.148±0.086 0.196±0.179 0.197±0.104 0.120±0.033 

ceVAE 0.119±0.082 0.176±0.163 0.218±0.176 0.109±0.023 
GMVAE 0.049±0.028 0.026±0.016 0.479±0.090 0.049±0.008 

F-AnoGAN 0.134±0.092 0.164±0.160 0.190±0.103 0.111±0.025 
AAE 0.136±0.099 0.199±0.195 0.187±0.130 0.112±0.028 

 

The UAD models were not able to deal with even more challenging HN tumors. In other words, while the proposed 
GconvLap model could achieve a segmentation accuracy of 0.422 in multimodal HN tumors, the examined UAD models 
barely obtained a Dice score of 0.120. Similar behavior was observed with PET images, where the proposed 
autoinpainting model could outperform the UAD models. However, it should be noted that both UAD models and 
autoinpainting pipeline were failed to segment the HN tumors in CT images.  

Figure 7 visualizes a qualitative comparison between the proposed autoinpainting approach and the employed UAD 
models. Such comparisons signify the superiority of the proposed unsupervised autoinpainting approach over the 
conventional UAD models. In fact, the ability of the GconvLap model to reconstruct high-resolution images by preserving 
the anatomical constraints on one side and its potential to detect and remove the tumors without corrupting the remaining 
anatomical structures on the other side boost the performance of the autoinpainting approach. On the other hand, the UAD 
models can neither preserve the anatomical constraints nor completely replace the tumors with healthy tissues. Figures 7 
and 8 in Supplementary Materials show the same concept for the PET-CT images of HN tumors and CT images of NSCLC 
tumors. 
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Figure 7. Qualitatively comparing the performance of the proposed autoinpainting pipeline against eight UAD models in 
learning the appearance of healthy lungs. Each set of images consists of: A) original tumoral slice, A) original tumor slice, B) 

proposed autoinpainted image, C) adversarial autoencoder result, D) dense autoencoder result, E) spatial autoencoder result, F) 
variational autoencoder result, G) context-encoding variational autoencoder result, H) Gaussian mixture variational autoencoder 

result, I) context-encoding autoencoder result, and J) Fast-Anomaly GAN. 

4. Discussion and conclusion 

The detection and segmentation of tumors in medical images support a series of important clinical tasks, including 
diagnosis, prognosis, treatment, and surgery planning. The development of accurate computerized methods for automatic 
tumor segmentation has become a major endeavor in medical image analysis communities. Recent advances in deep 
learning-based methods have led to the development of robust models which could achieve even expert-level performance 
in some applications. However, most of the developed models depend on an explicitly defined target class for their 
supervised training procedures. This dependency, in general, increases the sensitivity to the quality and quantity of the 
available labeled data, which in turn limits the generalization power of the models. Recently, to overcome the necessity 
of expensive labeled data, UAD methods have emerged as promising tools to detect pathologies from arbitrary types. 
These methods aim to resemble how radiologists examine imaging scans. In fact, expert radiologists are trained to learn 
the appearance of healthy anatomical regions. Therefore, they do not need data with pixel-level annotations because they 
can detect arbitrary abnormalities as outliers with respect to the healthy anatomies [32], [56]. However, one of the 
limitations of conventional UAD models is that they hardly learn the appearance of healthy anatomical structures with 
fine-grained details. In specific, they often tend to learn a general representation of anatomical structures without 
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preserving the details of anatomical constraints. The main objective of this study has been focused on developing an 
autoinpainting model to segment the tumors by generating high-resolution medical images without the tumors while 
preserving the anatomical details in the process of representation learning. Specifically, we proposed a robust image 
inpainting model, GconvLap, which is capable of capturing the appearance of normal anatomies and can synthesize high-
resolution medical images by preserving the fine-grained anatomical details. This inpainting model was trained with 
healthy image slices to model the characteristics of healthy anatomies by learning to fill the irregular random holes with 
semantically and anatomically meaningful patterns. Then, an autoinpainting pipeline was developed to automatically 
inpaint the tumoral regions and synthesize high-quality tumor-free images. In fact, we hypothesized that the well-trained 
inpainting model would replace the tumoral tissues with the characteristics of already learned healthy structures and leave 
the healthy parts of the images intact. Therefore, the differences between the original tumoral images and the synthesized 
inpainted images can be used to segment the tumoral regions.   

 The conventional AE-based models are often trained by optimizing per-pixel loss functions that tend to reconstruct 
blurry images. One potential approach is to modify the objective function in order to improve the quality of the 
reconstructed images. Therefore, more advanced loss functions such as perceptual loss and style loss can potentially 
increase the conceptual and textural quality of the generated images. However, integrating these objective functions into 
the conventional representation learning models such as AE models would degrade their ability to learn the latent 
characteristics of the healthy anatomies. In other words, such modified models tend to learn a wide range of image-based 
details and hardly can discriminate normal structures from anomalies. In fact, such fortified objective functions increase 
the risk of model overfitting with respect to representation learning tasks. However, limiting the convolutional operators 
with image subregions can regularize the learning process of representation learning models and avoid the overfitting 
problem. In particular, while the powerful objective function is prone to overfit on the details of anatomical structures, 
localizing the functionality of convolutional operators can potentially counteract this unwanted behavior. Accordingly, 
considering the functionality of the Gconv operators, they can be a perfect choice for this problem as they deal with local 
convolutions instead of ordinary global convolutions. As a result, the representation learning process in this study was 
turned from conventional AE and GAN-based models into an image inpainting problem. In practice, leveraging the 
inpainting model with multi-term objective function as an optimization algorithm and Gconv operator as localized 
convolutional backbones could successfully enforce the model to synthesize the high fidelity realistic-looking medical 
images while preserving the anatomical constraints regardless of the imaging modality. In practice, integrating the Gconv 
operator into a U-Net-like architecture optimized by a multi-term objective function that is fortified by the Laplacian loss 
could successfully improve the quality of the inpainted images regardless of the imaging modality. In particular, the 
quantified metrics of tables 1, 2, and tables 1.1. and 1.2. in Supplementary Materials verify the superiority of the proposed 
GconvLap model. The learnable soft mask updating procedure of the Gconv operator heuristically updates the invalid pixels, 
which leads to reconstructing images with more fidelities compared to the hard-gating rules embedded in the Pconv 
operator. This effect is more evident by comparing the quality of the inpainted images by the three models when 
multimodal PET-CT images were used (such as figure 5). Besides that, employing an encoder-decoder network 
architecture with skip connections could propagate the detailed color and textural information to the decoding path and 
fill the hole boundaries with smooth patterns. In addition, leveraging the objective function with Laplacian loss was a 
beneficial strategy to preserve the edges and synthesize images with fine-grained details as much as possible. In fact, one 
of the limitations of the Pconv and Gconv model is to maintain the anatomical constraints, especially in the edges, such 
as transitions between soft and hard tissues or sharp intensity changes within soft tissues. As can be seen in figure 5, both 
Pconv and Gconv were unable to reconstruct meaningful anatomical details, while the proposed GconvLap model 
synthesized images with the highest similarity with respect to the original image slices regardless of the level of 
corruptions applied to the images. Such qualitative comparison is consistent with the numerical values in tables 1 and 2, 
which point to the advantages of the proposed inpainting model.  

The proposed autoinpainting pipeline for tumor segmentation yielded interesting results in the context of unsupervised 
segmentation. In fact, the segmentation accuracy of the proposed unsupervised pipeline was not far behind the 
performance of the supervised nnU-Net model when the PET images were analyzed as multimodal or single-modality 
image data. In specific, the performance of the examined supervised model over the multimodal NSCLC dataset is 4 
percent, and for the multimodal HN dataset is 19 percent higher than the proposed unsupervised approach. This can be 
explained by the fact that the hyper signal intensity in PET images caused by tumoral uptakes facilitates tumor 
localization. Nevertheless, this should be noted that not all the hyperactive regions are related to cancerous tissues. In 
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other words, other healthy tissues such as cardiac muscle and lymph nodes uptake high levels of injected FDGs and often 
appear with hyperintensity patterns. Therefore, localization and segmentation of tumors in PET and multimodal PET-CT 
images is not a trivial task. In addition, the capabilities of the proposed inpainting model were not limited only to 
hyperintensity signals of PET images, as the pipeline could detect and inpaint the challenging NSCLC tumors in CT 
images as well. Highly similar visual attributes of NSCLC tumors with respect to the surrounding soft tissues make them 
challenging for segmentation models, even for the supervised ones. Nevertheless, the proposed autoinpainting strategy 
could inpaint and segment the challenging cases and lead to rather promising results. Comparing the segmentation 
accuracy of GconvLap model with Pconv and the ordinary Gconv model within the proposed autoinpainting framework 
signifies the superiority of the proposed inpainting model (tables 3, 4). In particular, the advantage of Gconv operator 
over the Pconv module on one side and the ability of the proposed model to preserve the anatomical constraints on the 
other side lead to inpainting the tumoral regions while retaining the healthy structures intact as much as possible. 
Therefore, tumoral tissues were removed by the proposed autoinpainting while the healthy structures were not 
manipulated, which resulted in remarkably fewer false positives. As expected, the tumor segmentation in PET images 
resulted in more accurate results than in CT images. In specific, while a Dice score of 0.442 was achieved by the GconvLap 
model for NSCLC tumor segmentation in CT images, this metric improved to 0.746 for the PET images on the same 
dataset. In this domain, it should be noted that the proposed unsupervised model failed to detect the HN tumors in CT 
images. As can be seen in figure 1.1. in Supplementary Materials, the lack of intensity and the textural contrast between 
the tumors and nearby soft tissues prevent the autoinpainting approach from recognizing the tumoral regions as anomalies. 
Such a limitation can be observed in the NSCLC dataset as well when the lung collapses or the tumors appear in the 
middle of soft tissues (figure 1.3. in Supplementary Materials). Nevertheless, analyzing the PET-CT images together 
could improve the segmentation accuracy for both the NSCLC and HN tumors.  

Comparing the segmentation accuracy of the proposed pipeline against the conventional UAD methods can highlight 
the great potential of the autoinpainting model. Numerically, the best Dice performance achieved by the examined UAD 
models is 0.311 for multimodal NSCLC tumors and 0.120 for multimodal HN tumors, which are 0.465 and 0.345 inferior 
to the corresponding Dice metrics achieved by the proposed GconvLap model. In practice, the UAD models failed to 
reconstruct healthy images from tumoral slices while preserving anatomical structures. In other words, they either 
removed the tumors and synthesized new images with meaningless anatomical structures or preserved the anatomical 
structures but could not remove the tumors. It should be emphasized that even when the UAD models managed to remove 
the tumors, they corrupted many other healthy structures, which resulted in a high rate of false positives. Such results 
challenge the underlying hypothesis of such UAD models, which aim to model the distribution of healthy data. Carefully 
examining the images (figure 7 and figures 1.7. and 1.8. in Supplementary Materials) generated by the best performing 
UAD models such as VAE, ceVAE, and F-AnoGAN, one can deduce that such models reconstructed texture-free images 
which do not hold meaningful anatomical details. Therefore, the tumors can be detected from the residual images only 
because of their hyperintensity patterns with respect to the nearby tissues. Such a major limitation of the current UAD 
methods was highlighted in a recent study [40] in which the authors showed that even with simple image processing 
techniques such as thresholding, competitive results could be achieved. Other types of UAD methods aim to detect the 
anomalies but not directly from the residual maps between the original and the reconstructed images [39], [57]; therefore, 
such models do not aim to produce high-quality anomaly-free images either. In contrast to these methods, the proposed 
autoinpainting-based anomaly detection pipeline can capture the normal anatomies and generate high-resolution anomaly-
free images by retaining fine-grained anatomical details.  

The strategy of moving window for detecting and inpainting the tumors is implemented to resemble the way human 
experts look at different regions of medical images to identify the abnormalities. In fact, once the model detects the 
candidate regions, it will proceed with the inpainting steps; otherwise, it returns the original image as a healthy one.  

Finally, despite the efficacy of the proposed autoinapainting-based UAD model for segmenting tumors in multimodal 
and single-modal images, there exist some limitations within the proposed pipeline, which will be investigated in our 
future studies. In particular, the underlying idea of tumor segmentation is based on the pixel-wise differences between 
the inpainted and original images. This error-prone strategy would be replaced by comparing the learned distribution of 
healthy anatomies with the distribution of tumoral slices and fine-tuning the trained models to minimize the distribution 
differences instead of intensity differences. Furthermore, extending the 2D autoinpainting pipeline into a 3D approach 
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requires the development of a robust 3D inpainting model, which may further improve the accuracy of inpainting by 
incorporating the volumetric contexts.  

While the unsupervised segmentation methods aim to overcome the disadvantages of supervised models, the current 
UAD models have not been robust enough to yield as accurate results as supervised models. In this study, an inpainting-
based UAD method was proposed to segment the NSCLC and HN tumors in multimodal and single-modal images. To 
the best knowledge of the author, it has been the first attempt to segment such challenging tumors with unsupervised 
methods. The quantitative results show the potential of the proposed pipeline with superior performance over the 
conventional UAD models. 
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1) Supplementary Tables and Figures 

Table 1.1. The numerical comparison between the performance of inpainting models trained and tested on NSCLC single 
modality images 

Model-Data Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

Pconv-CT 
Gconv-CT 

       GconvLap-CT 

109.883±63.296 
67.955±51.888 

   62.061±47.406 

28.572±2.966 
31.770±5.161 

    32.096±5.011 

0.921±0.034 
0.943±0.033 

    0.949±0.030 
Pconv-PET 
Gconv-PET 

      GconvLap-PET 

16.336±17.698 
16.040±21.927 

   15.668±19.547 

38.382±4.494 
39.351±6.115 

    39.312±6.112 

0.980±0.012 
0.981±0.013 

     0.982±0.012 
 

Table 1.2. The numerical comparison between the performance of inpainting models trained and tested on HN single modality 
images 

Model-Data Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

Pconv-CT 
Gconv-CT 

       GconvLap-CT 

9.533±9.009 
6.815±6.944 

     5.542±6.686 

40.429±5.066 
42.757±6.414 

   44.072±6.917 

0.985±0.013 
0.989±0.011 

     0.991±0.009 
Pconv-PET 
Gconv-PET 

      GconvLap-PET 

6.073±7.484 
5.852±17.400 

    3.413±10.395 

47.142±7.363 
48.533±6.909 

    50.123±9.312 

0.993±0.007 
0.993±+0.008 

     0.995±0.006 
 

Table 1.3. Statistical comparison of image quality metrics between the three inpainting models using the Wilcoxon signed rank 
test 

Data-Tumor Models p-value 
MSE PSNR SSIM 

CT-NSCLC 
Pconv vs. Gconv < 0.0001 < 0.0001 < 0.0001 

Pconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 
Gconv vs. GconvLap 0.665 0.430 0.0007 

PET-NSCLC 
Pconv vs. Gconv 0.516 0.005 0.0005 

Pconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 
Gconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 

Multi-NSCLC 
Pconv vs. Gconv < 0.0001 < 0.0001 < 0.0001 

Pconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 
Gconv vs. GconvLap 0.001 0.0139 < 0.0001 

CT-HN 
Pconv vs. Gconv < 0.0001 < 0.0001 < 0.0001 

Pconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 
Gconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 

PET-HN 
Pconv vs. Gconv < 0.0001 < 0.0001 < 0.0001 

Pconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 
Gconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 

Multi-HN 
Pconv vs. Gconv < 0.0001 < 0.0001 < 0.0001 

Pconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 
Gconv vs. GconvLap < 0.0001 < 0.0001 < 0.0001 
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Table 1.4. Statistical comparison of the achieved Dice scores by the autoinpainting method applied on the three inpainting models 

Data-Tumor Models p-value 

CT-NSCLC 
Pconv vs. Gconv < 0.0001 

Pconv vs. GconvLap < 0.0001 
Gconv vs. GconvLap < 0.0001 

PET-NSCLC 
Pconv vs. Gconv 0.083 

Pconv vs. GconvLap < 0.0001 
Gconv vs. GconvLap < 0.0001 

Multi-NSCLC 
Pconv vs. Gconv < 0.0001 

Pconv vs. GconvLap < 0.0001 
Gconv vs. GconvLap < 0.0001 

PET-HN 
Pconv vs. Gconv 0.354 

Pconv vs. GconvLap < 0.0001 
Gconv vs. GconvLap < 0.0001 

Multi-HN 
Pconv vs. Gconv < 0.0001 

Pconv vs. GconvLap < 0.0001 
Gconv vs. GconvLap 0.019 

 

Table 1.5. Segmentation accuracy of unsupervised anomaly detection models on CT images of NSCLC tumors 

Model Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ ⌈𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃⌉ ⌈𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅⌉ Dice 

dAE 0.225±0.123 0.302±0.126 0.992±0.009 0.200±0.127 
sAE 0.022±0.013 0.134±0.062 0.950±0.046 0.013±0.008 
ceAE 0.221±0.123 0.295±0.122 0.991±0.018 0.2018±0.1419 
VAE 0.210±0.114 0.287±0.107 0.990±0.020 0.182±0.121 

ceVAE 0.102±0.059 0.220±0.118 0.979±0.044 0.072±0.050 
GMVAE 0.013±0.007 0.519±0.108 0.721±0.018 0.006±0.003 

F-AnoGAN 0.084±0.071 0.376±0.183 0.960±0.034 0.051±0.047 
AAE 0.083±0.072 0.422±0.162 0.938±0.060 0.053±0.055 

 

Table 1.6. Segmentation accuracy of unsupervised anomaly detection models on PET images of NSCLC tumors 

Model 
Quantitative Metrics (𝜇𝜇±𝜎𝜎) 

⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ ⌈𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃⌉ ⌈𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅⌉ Dice 
dAE 0.583±0.160 0.533±0.159 0.998±0.000 0.658±0.184 
sAE 0.623±0.256 0.677±0.201 0.996±0.009 0.634±0.275 
ceAE 0.564±0.142 0.515±0.145 0.998±0.000 0.641±0.162 
VAE 0.660±0.173 0.634±0.174 0.999±0.000 0.702±0.190 

ceVAE 0.478±0.161 0.473±0.155 0.997±0.002 0.525±0.205 
GMVAE 0.026±0.017 0.653±0.094 0.814±0.030 0.013±0.009 

F-AnoGAN 0.633±0.199 0.593±0.197 0.999±0.000 0.695±0.215 
AAE 0.593±0.194 0.579±0.199 0.999±0.000 0.628±0.192 

 

Table 1.7. Segmentation accuracy of unsupervised anomaly detection models on PET images of HN tumors 

Model 
Quantitative Metrics (𝜇𝜇±𝜎𝜎) 

⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ ⌈𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃⌉ ⌈𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅⌉ Dice 
dAE 0.390±0.157 0.477±0.214 0.359±0.138 0.330±0.104 
sAE 0.158±0.109 0.371±0.289 0.149±0.137 0.137±0.038 
ceAE 0.402±0.153 0.481±0.211 0.376±0.129 0.337±0.107 
VAE 0.437±0.207 0.471±0.240 0.455±0.174 0.391±0.113 
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ceVAE 0.271±0.180 0.469±0.308 0.339±0.229 0.260±0.050 
GMVAE 0.064±0.037 0.033±0.021 0.756±0.120 0.064±0.011 

F-AnoGAN 0.426±0.203 0.461±0.239 0.417±0.171 0.388±0.108 
AAE 0.413±0.200 0.406±0.237 0.453±0.157 0.361±0.116 

 

 
Figure 1.1. Examples of the appearance of HN tumors, highlighted in red contours, in CT images. The presence of tumors 

among the densely connected soft tissues with a similar range of Hounsfield values makes the segmentation of HN tumors a 
challenging problem.  
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Figure 1.2. Visualization of the segmentation performance of the proposed autoinpainting pipeline for single modality PET 
images. For each of the NSCLC and HN images, the first row shows the original tumoral slices, and the second row depicts the 
result of the proposed autoinpainting model where the tumors were replaced by healthy tissues and fake tumor-free images were 

synthesized. 
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Figure 1.3. Examples of challenging NSCLC tumors in multimodal PET-CT images where the proposed autoinpaiting 
pipeline either failed to detect the tumors or could only partially remove the tumors. The first row shows the original tumoral 

slices, and the second row depicts the results of autoinpainting pipeline 

 

Figure 1.4. Examples of challenging NSCLC tumors in CT images where the proposed autoinpaiting pipeline could partially 
remove the tumors (the first three examples from left to right), or it mistakenly removes the healthy structures (the last image). 

The first row shows the original tumoral slices, and the second row depicts the results of autoinpainting pipeline. The parts of the 
tumors which were not removed are highlighted in red bounding boxes. 
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Figure 1.5. Examples of PET images where the tumors were partially removed by the proposed autoinpainting pipeline. The 
first row shows the original tumoral slices, and the second row depicts the results of autoinpainting pipeline. 

 

Figure 1.6. Examples of HN tumors in PET-CT images where the autoinpainting pipeline failed to completely substitute the 
tumoral regions with healthy anatomies. The first row shows the original tumoral slices, and the second row depicts the results of 

autoinpainting pipeline. 
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Figure 1.7. Qualitative comparison between the performance of the proposed autoinpainting pipeline and the other eight 
UAD models to learn the appearance of healthy anatomy in CT images and reconstruct NSCLC tumor-free images. Each three set 

of images include: A) original tumor slice, B) proposed autoinpainted image, C) adversarial autoencoder result, D) dense 
autoencoder result, E) spatial autoencoder result, F) variational autoencoder result, G) context-encoding variational autoencoder 
result, H) Guassian mixture variational autoencoder result, I) context-encoding autoencoder result, and J) Fast-Anomaly GAN. 
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Figure 1.8. Qualitative comparison between the performance of the proposed autoinpainting pipeline and the other eight 
UAD models to learn the appearance of healthy anatomy in PET-CT images and reconstruct HN tumor-free images. Each three 

set of images include: A) original tumor slice, B) proposed autoinpainted image, C) adversarial autoencoder result, D) dense 
autoencoder result, E) spatial autoencoder result, F) variational autoencoder result, G) context-encoding variational autoencoder 
result, H) Guassian mixture variational autoencoder result, I) context-encoding autoencoder result, and J) Fast-Anomaly GAN. 
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2) Ablation Study 

2.1) Objective Function  

The original objective function which was used for the Pconv model is: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 6ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.05ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 120(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 0.1ℒ𝑡𝑡𝑣𝑣 

In this study, the general framework of the objective function developed for the proposed GconvLap model is: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶1ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 𝐶𝐶2ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 𝐶𝐶3ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 𝐶𝐶4(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 𝐶𝐶5ℒ𝑡𝑡𝑣𝑣 + 𝐶𝐶6ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

And the specific weighting coefficients of different terms are: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 30ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 240ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.2ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 0.05(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 250ℒ𝑡𝑡𝑣𝑣 + 20ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

An extensive ablation study was conducted to determine the proper coefficients (𝐶𝐶𝑣𝑣) of the above-mentioned loss 
function. In the following, a summary of the results is reported. 

The coefficient of different terms of the objective function was, first, determined based on the idea that all the terms 
should contribute to the optimization equally so that none of them could outweigh the others. Accordingly, the 
following loss function was initiated: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 20ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 120ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.1ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 0.015(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 250ℒ𝑡𝑡𝑣𝑣 + 20ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

Then, for each of the 𝐶𝐶𝑣𝑣 a set of values were set around the initial coefficients, and the model was trained 100 epochs 
for each setting independently. The image similarity metrics over a test set of 2000 images were quantified to 
determine the optimal values. 

Table 2.1 shows the results of comparing the numerical metrics between the original Pconv model and the initial guess 
for the coefficients of the proposed model:  

Table 2.1. The numerical comparison between the proposed model with the initial guess of loss term coefficients and the original 
Pconv model 

Experiment Name Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

Original Pconv coef. 117.460±59.841 28.004±2.277 0.884±0.021 
All coef. set to 1 78.775±47.747 30.046±2.925 0.930±0.022 

Initial guess without Laplasian loss 64.009±44.861 31.317±3.598 0.943±0.021 
Initial guess with Laplassian loss 61.922±44.460 31.471±3.586 0.946±0.020 

 

Table 2.2 shows the effect of changing the coefficient 𝐶𝐶1 i.e.: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶1ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 120ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.1ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 0.015(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 2ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 250ℒ𝑡𝑡𝑣𝑣 + 20ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

Table 2.2. The impact of changing the 𝐶𝐶1 coefficients on the model performance. The candidate values for 
further experiments are marked in bold. 

𝐶𝐶1 variable Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

0 61.666±39.895 31.613±3.478 0.952±0.020 
1 61.009±47.244 31.751±3.928 0.951±0.019 
10 66.820±45.263 31.025±3.438 0.952±0.020 
20 71.907±50.929 30.834±3.634 0.945±0.021 
30 62.626±40.826 31.257±3.361 0.947±0.020 
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50 65.056±43.748 31.140±3.431 0.949±0.019 
 

Table 2.3. shows the effect of changing the coefficient 𝐶𝐶2 i.e.: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 20ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 𝐶𝐶2ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.1ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 0.015(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 2ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 250ℒ𝑡𝑡𝑣𝑣 + 20ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

Table 2.3. The impact of changing the 𝐶𝐶2 coefficients on the model performance. The candidate values for 
further experiments are marked in bold. 

𝐶𝐶2 variable Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

0 61.368±43.172 31.430±3.449 0.951±0.019 
1 63.964±44.135 31.246±3.473 0.950±0.021 
10 61.220±45.115 31.573±3.605 0.949±0.020 
60 59.938±40.708 31.434±3.290 0.948±0.020 
120 72.804±46.925 30.600±3.446 0.946±0.020 
240 58.955±41.414 31.624±3.484 0.950±0.020 
500 62.696±40.600 31.229±3.545 0.949±0.019 

 

Table 2.4. shows the effect of changing the coefficient 𝐶𝐶3 i.e.: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 20ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 120ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 𝐶𝐶3ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 0.015(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 2ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 250ℒ𝑡𝑡𝑣𝑣 + 20ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

Table 2.4. The impact of changing the 𝐶𝐶3 coefficients on the model performance. The candidate values for 
further experiments are marked in bold. 

𝐶𝐶3 variable Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

0 70.880±46.704 30.678±3.244 0.934±0.021 
0.05 61.982±44.739 31.468±3.595 0.947±0.019 
0.1 62.816±43.824 31.368±3.542 0.950±0.021 
0.2 58.224±44.404 31.950±3.935 0.953±0.021 

 

Table 2.5. shows the effect of changing the coefficient 𝐶𝐶4 i.e.: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 20ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 120ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.1ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 𝐶𝐶4(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 250ℒ𝑡𝑡𝑣𝑣 + 20ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

Table 2.5. The impact of changing the 𝐶𝐶4 coefficients on the model performance. The candidate values for 
further experiments are marked in bold. 

𝐶𝐶4 variable Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

0 66.653±39.837 31.003±3.487 0.945±0.019 
0.05 67.448±45.412 30.956±3.384 0.949±0.020 
0.1 66.550±44.078 31.056±3.481 0.943±0.021 
0.2 80.045±53.061 30.166±3.272 0.942±0.021 
1 83.138±53.245 29.926±3.127 0.928±0.022 
10 143.102±62.211 26.998±1.969 0.874±0.021 
60 138.358±67.401 27.279±2.292 0.894±0.021 

 

Table 2.6 shows the effect of changing the coefficient 𝐶𝐶5 i.e.:` 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 20ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 120ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.1ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 0.015(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 𝐶𝐶5ℒ𝑡𝑡𝑣𝑣 + 20ℒ𝑡𝑡𝑡𝑡𝑝𝑝 
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Table 2.6. The impact of changing the 𝐶𝐶5 coefficients on the model performance. The candidate values for 
further experiments are marked in bold. 

𝐶𝐶5 variable Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

0 65.480±38.833 31.203±3.218 0.941±0.018 
0.1 61.467±41.109 31.374±3.420 0.950±0.020 
1 64.616±43.502 31.052±3.167 0.945±0.019 
10 65.461±50.113 31.419±3.835 0.949±0.021 
100 59.500±41.086 31.639±3.738 0.949±0.021 
250 58.340±41.086 31.769±3.738 0.949±0.019 
500 65.933±48.985 31.373±3.926 0.948±0.020 

 

Finally, Table 2.7. shows the effect of changing the coefficient 𝐶𝐶6 i.e.: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 20ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 120ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.1ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 0.015(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 250ℒ𝑡𝑡𝑣𝑣 + 𝐶𝐶6ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

Table 2.7. The impact of changing the 𝐶𝐶6 coefficients on the model performance. The candidate values for 
further experiments are marked in bold. 

𝐶𝐶6 variable Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

0 65.924±42.228 31.213±3.533 0.940±0.020 
1 63.426±44.382 31.289±3.453 0.946±0.019 
10 68.367±41.182 30.699±3.061 0.943±0.018 
20 63.121±45.666 31.394±3.585 0.950±0.020 
50 66.587±44.098 30.945±3.246 0.947±0.019 
100 64.476±40.940 31.268±3.407 0.948±0.020 

 

From the described conducted experiments, the final weight candidates for each of the loss terms will be:  

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
0
1

30
ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + � 60

240ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.2ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + �
0

0.05
0.1

(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + �100
250ℒ𝑡𝑡𝑣𝑣 + � 1

20ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

Therefore, to determine the optimal values of the weight coefficients, a set of independent experiments was examined 
by setting the different combinations of the weight candidates (Table 2.8). 

Table 2.8. The impact of different combinations of weighting coefficients on the model performance. The final 
candidate values are marked in bold. 

Experiment Quantitative Metrics (𝜇𝜇±𝜎𝜎) 
MSE PSNR SSIM 

0𝐿𝐿𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+60𝐿𝐿ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝.+0(𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐)+100𝐿𝐿𝑡𝑡𝑣𝑣+1𝐿𝐿𝑅𝑅𝑅𝑅𝑐𝑐 56.235±36.519 31.749±3.614 0.954±0.027 
1𝐿𝐿𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+60𝐿𝐿ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝.+0(𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐)+100𝐿𝐿𝑡𝑡𝑣𝑣+1𝐿𝐿𝑅𝑅𝑅𝑅𝑐𝑐 53.175±29.341 31.837±4.267 0.957±0.031 

1𝐿𝐿𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+60𝐿𝐿ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝.+0.1(𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐)+100𝐿𝐿𝑡𝑡𝑣𝑣+1𝐿𝐿𝑅𝑅𝑅𝑅𝑐𝑐 48.591±38.947 32.830±4.101 0.960±0.019 
1𝐿𝐿𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+60𝐿𝐿ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝.+0.1(𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐)+100𝐿𝐿𝑡𝑡𝑣𝑣+20𝐿𝐿𝑅𝑅𝑅𝑅𝑐𝑐 48.413±38.700 32.959±4.339 0.961±0.020 
1𝐿𝐿𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+240𝐿𝐿ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝.+0.1(𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐)+100𝐿𝐿𝑡𝑡𝑣𝑣+20𝐿𝐿𝑅𝑅𝑅𝑅𝑐𝑐 52.182±29.381 31.862±3.962 0.961±0.041 
30𝐿𝐿𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+60𝐿𝐿ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝.+0.1(𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐)+100𝐿𝐿𝑡𝑡𝑣𝑣+20𝐿𝐿𝑅𝑅𝑅𝑅𝑐𝑐 50.439±36.468 32.463±3.830 0.962±0.019 
30𝐿𝐿𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+240𝐿𝐿ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝.+0.1(𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐 )+100𝐿𝐿𝑡𝑡𝑣𝑣+20𝐿𝐿𝑅𝑅𝑅𝑅𝑐𝑐 47.938±36.107 32.768±3.960 0.963±0.018 

30𝐿𝐿𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+60𝐿𝐿ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝.+0.05(𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+2𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐 )+250𝐿𝐿𝑡𝑡𝑣𝑣+20𝐿𝐿𝑅𝑅𝑅𝑅𝑐𝑐 45.245±35.381 33.272±4.469 0.966±0.018 
30𝑳𝑳𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+240𝑳𝑳ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝑳𝑳𝑝𝑝𝑜𝑜𝑝𝑝.+0.05(𝑳𝑳𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+𝑳𝑳𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐 )+250𝑳𝑳𝑡𝑡𝑣𝑣+20𝑳𝑳𝑅𝑅𝑅𝑅𝑐𝑐 44.290±33.785 33.271±4.267 0.966±0.018 
30𝐿𝐿𝑣𝑣𝑅𝑅𝑅𝑅𝐷𝐷𝑣𝑣+240𝐿𝐿ℎ𝑃𝑃𝑅𝑅𝐷𝐷+0.2𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝.+0.05(𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃𝑜𝑜𝑠𝑠+𝐿𝐿𝑃𝑃𝑠𝑠𝑠𝑠𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐)+100𝐿𝐿𝑡𝑡𝑣𝑣+20𝐿𝐿𝑅𝑅𝑅𝑅𝑐𝑐 46.238±34.697 33.013±4.154 0.963±0.020 
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Therefore, the set of weight coefficients led to inpainting the images with the highest quality was determined, and 
the final objective function is defined as: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 30ℒ𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 240ℒℎ𝑡𝑡𝑡𝑡𝑜𝑜 + 0.2ℒ𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 + 0.05(ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐) + 250ℒ𝑡𝑡𝑣𝑣 + 20ℒ𝑡𝑡𝑡𝑡𝑝𝑝 

 

2.2) Autoinpainting 

The protocols of the proposed autoinpainting pipeline require the choice of two hyperparameters: 1) the radius of 
the moving windows (circles) and 2) the number of top candidate regions. Accordingly, a set of independent 
experiments were examined to determine the optimal values of these two parameters. 

To specify the radius of the moving circles and the number of top candidates, a range of different values was studied, 
and the effect of these values on the segmentation accuracy was quantified (Table 2.9.). 

Table 2.9. The impact of changing the radius of the moving circles and the number of top candidate regions on 
the segmentation accuracy. The final candidate values are marked in bold. 

Top Candidates - Circle 
Radius 

Segmentation Metrics (𝜇𝜇±𝜎𝜎) 
Dice Sensitivity Specificity 

1-23 0.305±0.231 0.291±0.153 0.982±0.001 
1-25 0.308±0.189 0.289±0.114 0.984±0.001 
1-27 0.312±0.233 0.301±0.149 0.984±0.001 
1-29 0.321±0.194 0.309±0.213 0.984±0.001 
1-31 0.328±0.183 0.305±0.142 0.986±0.001 
2-23 0.395±0.192 0.381±0.183 0.999±0.000 
2-25 0.393±0.159 0.378±0.128 0.999±0.000 
2-27 0.410±0.193 0.392±0.176 0.999±0.000 
2-29 0.401±0.203 0.389±0.127 0.999±0.000 
2-31 0.403±0.143 0.395±0.142 0.999±0.000 
3-23 0.422+0.167 0.416+0.160 0.999+0.000 
3-25 0.429+0.170 0.412+0.167 0.999+0.000 
3-27 0.437+0.172 0.419+0.171 0.999+0.000 
3-29 0.433+0.174 0.415+0.174 0.999+0.000 
3-31 0.419+0.174 0.412+0.176 0.999+0.000 

 

Therefore, the radius of the moving circles was set as 27 pixels and the number of top candidate regions was 
determined as 3. 
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