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Abstract

This thesis consists of 4 papers. In Paper A we define stacky building data
for stacky covers in the spirit of Pardini and give an equivalence of (2, 1)-
categories between the category of stacky covers and the category of stacky
building data. We show that every stacky cover is a flat root stack in the
sense of Olsson and Borne–Vistoli and give an intrinsic description of it as
a root stack using stacky building data. When the base scheme S is defined
over a field, we give a criterion for when a stacky building datum comes from
a ramified cover for a finite abelian group scheme over k, generalizing a result
of Biswas–Borne.

In Paper B we compute the étale cohomology ring H∗(X,Z/nZ) for X
the spectrum of the ring of integers of a number field K. As an application,
we give a non-vanishing formula for an invariant defined by Minhyong Kim.
We also give examples of two distinct number fields whose rings of integers
have isomorphic cohomology groups but distinct cohomology ring structures.

In Paper C we generalize the results of Paper B to include the case when
X is replaced by an open subset U ⊆ X, where we have removed a finite
number of closed points from X. We show that when U is the complement
of two odd primes p and q which are congruent to 1 (mod 4), the Legendre
symbol of p over q may be interpreted as a cup product in H∗(U,Z/2Z).

In Paper D we find formulas for Massey products in étale cohomology of
the ring of integers of a number field. Then we use these formulas to, with the
help of a computer, find the first ever known examples of imaginary quadratic
fields with p-class group of rank 2 for odd p and infinite class field tower. We
also compute examples disproving McLeman’s (3, 3)-conjecture.
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Sammanfattning

Denna avhandling best̊ar av 4 artiklar. I Artikel A definierar vi stackig
byggnadsdata för stackiga övertäckningar i Pardinis anda och visar en ekvi-
valens av (2, 1)-kategorier mellan kategorin av stackiga övertäckningar och
kategorin av stackig byggnadsdata. Vi visar att varje stackig övertäckning är
en platt rotstack i Olsson och Borne–Vistolis mening och vi ger en intrinsisk
beskrivning av den som en rotstack med hjälp av stackig byggnadsdata. När
basen S är definierad över en kropp ger vi ett kriterium för när ett stac-
kigt byggnadsdatum kommer fr̊an en ramifierad övertäckning för ett ändligt
abelskt gruppschema över k. Detta generaliserar ett resultat av Biswas–Borne.

I Artikel B beräknar vi den étala kohomologiringen H∗(X,Z/nZ) d̊a X är
spektrumet av ringen av heltal av en talkropp K. Som en tillämpning, ger vi
ett kriterium i form av en formel för när en invariant definierad av Minhyong
Kim är noll eller ej. Vi ger ocks̊a exempel p̊a tv̊a olika talkroppar vars ringar av
heltal har isomorfa kohomologigrupper men olika kohomologiringstrukturer.

I Artikel C generaliserar vi resultaten i Artikel B till att innefatta fallet
d̊a X ersätts av en öppen delmängd U ⊆ X, där vi tagit bort ett ändligt
antal slutna punkter ifr̊an X. Vi visar att d̊a U är komplementet till tv̊a udda
primtal p och q, som är kongruenta till 1 (mod 4), s̊a kan Legendre symbolen
av p över q betraktas som en kopprodukt i H∗(U,Z/2Z).

I Artikel D beräknar vi formler för Masseyprodukter i étale kohomolo-
gi av ringen av heltal till en talkropp. Vi använder sedan dessa formler för
att, med hjälp av en dator, hitta de första kända exemplen p̊a kvadratiskt
imaginära talkroppar vars klassgrupp har p-rang 2, för udda p, och oändligt
p-klasskroppstorn. Vi beräknar ocks̊a exempel som motbevisar McLemans
(3, 3)-förmodan.
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Introduction and summary of
results
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1 Introduction

This thesis consists of two main parts:
The first introductory part (kappa) gives some motivation and background. The

scientific results are presented in an informal way to invite a broader audience.
The second part consists of four scientific papers, three which are more towards

number theory and one which is more towards stacks and moduli.
Paper A treats objects which we call stacky covers and the main result is a

classification of these in terms of stacky building data.
Paper B, C, and D are concerned with étale cohomology of arithmetic curves. In-

spired by ideas from algebraic topology and the analogy between arithmetic curves
and 3-manifolds, we compute the cup product for étale cohomology with finite co-
efficients in Paper B and C. In Paper D we find formulas for Massey products in the
étale cohomology ring of a proper arithmetic curve. Then we use these formulas
to, with the help of a computer, find the first ever known examples of imaginary
quadratic fields with p-class group of rank 2, for odd p, and infinite class field tower.
We also compute examples showing that McLeman’s (3, 3)-conjecture is false.
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2 Number fields and Class Field Towers

1 Class field towers

A prime number p is the sum of two squared integers

p = a2 + b2

if and only if p ≡ 1 mod 4. This was proved by Fermat in the mid 1600s [Fer94]. If
we take the integers Z and add a square root of −1, we obtain the Gaussian integers
Z[
√
−1]. Fermat’s proof depends on the fact that all elements in Z[

√
−1] can be

uniquely (up to units) factored into prime elements, just like any positive integer
can be uniquely factored into prime numbers. Fermat also characterized the prime
numbers of the form p = a2 + 2b2 or p = a2 + 3b2, but was not able to prove which
prime numbers are of the form p = a2 + 5b2. The important difference in the latter
case is that the ring Z[

√
−5] is no longer a unique factorization domain in contrast

to the case where we added
√
−1,
√
−2, or

√
−3.

Before we continue the discussion, let us take a short detour to give an idea of
how geometry comes into play. Every ring mentioned so far is an example of a ring
of integers of a number field. For instance, Z[

√
−5] is the ring of integers in the

number field Q(
√
−5).

In formal language, a number field is a finite field extension K ⊇ Q. The ring of
integers OK of K is the algebraic closure of Z in K. The ring OK is an integrally
closed Noetherian integral domain of Krull dimension one, that is, a Dedekind
domain. In particular, every non-zero prime ideal in OK is maximal.

From the point of view of algebraic geometry we now have a geometric object
SpecOK which we refer to as an arithmetic curve and to which we may apply
geometric tools such as étale cohomology. The ring OK is finitely generated and
free (since it is torsion free) as a module over Z and its rank is equal to the degree
of K ⊇ Q. This means that the canonical morphism SpecOK → SpecZ is finite,
flat, and surjective (since Z ⊆ OK is integral), i.e., a “branched covering”.

5



6 CHAPTER 2. NUMBER FIELDS AND CLASS FIELD TOWERS

SpecZ =

SpecZ[
√
−5] = ...

...

(2, 1 +
√
−5)

(3, 1 +
√
−5)

(3, 2 +
√
−5)

(
√
−5)

(7, 3 +
√
−5)

(7, 4 +
√
−5)

(11)

(2) (0)

(0)

(5) (11)(3) (7)

For every non-zero prime (hence maximal) ideal P ∈ OK we have that P ∩Z is
generated by a prime number p. The residue field of P will be finite of order q = pn

for some 1 ≤ n ≤ [K : Q] and the surjection OK → OK/P ∼= Fq corresponds to a
morphism SpecFq → SpecOK .

Back to the initial discussion, the failure of unique factorization in a ring of
integers OK is measured by the class group Cl(K). For example, the ring Z[

√
−5]

has non-trivial class group. So even though the prime 3 splits as (3) = (3, 1 +√
−5)(3, 2+

√
−5), we cannot apply Fermat’s technique since the ideals (3, 1+

√
−5)

and (3, 2+
√
−5) are not principal. In 1902 Hilbert proposed that for every number

field K there is a unique unramified abelian extension HK ⊇ K, today known as
the Hilbert class field of K, such that every element in Cl(K) becomes trivial once
extended to HK [Hil02]. The existence and uniqueness of the Hilbert class field was
proven a few years later by Philipp Furtwängler [Fur06].

The problem with unique factorization may now be overcome by going to the
Hilbert class field HQ(

√
−5) whose ring of integers is a unique factorization domain.

But the problem is solved for this example only since there are no new obstructions
to unique factorization showing up in HQ(

√
−5), that is, Cl(HQ(

√
−5)) = 0. However,

this is not always the case. For other examples of number fields K, it may very
well happen that the Hilbert class field has non-trivial class group and one has to
go one step further and take the Hilbert class field HHK of HK and the Hilbert
class field of HHK and so on, until we get a field with trivial class group. Inspired
by this phenomenon, Furtwängler asked the following question in 1925: Will the
tower

K ⊆ HK ⊆ HHK ⊆ . . .

finally stabilize or are there number fields such that this tower is infinite? This is
equivalent to asking if some field in the tower has trivial class group, since Cl(L) = 0
if and only if HL = L for any number field L.

This was an open problem until 1964 when Golod and Shafarevich found a
counter-example [Gv64] giving a group theoretic argument. More precisely, given
a prime number p, we may consider the p-class field tower. The p-class field of a
number field K is simply the subfield of the Hilbert class field in which every p-
torsion element of Cl(K) vanishes. The Galois group of the limit of the p-class field
tower is a pro p-group and Golod and Shafarevich proved a numerical inequality
between the number of generators and the number of relations for such groups.
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This inequality could then be used to prove that, for instance, the number field
Q(
√
−3 · 5 · 7 · 11 · 13 · 17) has infinite 2-class field tower.

Now let p be an odd prime. For imaginary quadratic fields K, the results of
Golod–Shafarevich, together with a result of Furtwängler, almost gives a complete
classification, in terms of the p-rank of the class group, of when the p-class field is
infinite: if we let lp(K) be the least number of times we have to take the Hilbert
class field before the tower stabilizes, then we have

lp(K) =


0 if p-rank(Cl(K)) = 0 ,

1 if p-rank(Cl(K)) = 1 ,

? if p-rank(Cl(K)) = 2 ,

∞ if p-rank(Cl(K)) ≥ 3

(see [McL08]). This shows that the only remaining case of interest is when Cl(K)
has p-rank 2. Before Paper D, there where no known examples, for odd p, of
imaginary quadratic fields K with class group of p-rank 2 and infinite p-class field
tower. We prove the following:

Theorem 1.1. There exists odd prime numbers p and imaginary quadratic fields
of discriminant D with class group of p-rank two and infinite p-class field tower.
For instance, for prime p and discriminant D, the pairs

(p,D) = (3,−3826859), (3,−8187139), (3,−11394591), (3,−13014563) ,

(5,−2724783), (5,−4190583), (5,−6741407), (5,−6965663)

give examples of such fields: for each pair in the above list, the associated quadratic
imaginary field with discriminant D has an infinite p-class field tower.

To prove this theorem we use algebraic geometry and one of our most important
results: a formula for Massey products in the étale cohomology of arithmetic curves.

McLeman showed in [McL08], using results of Vogel, that the structure of the
Galois group G of the Hilbert p-class field tower is controlled by Massey products in
the Galois cohomology H∗(G,Z/pZ). In particular, he shows that when all 3-fold
Massey products are zero, the p-class field tower is infinite. Using our formulas for
Massey products in étale cohomology and comparing the étale cohomology with
the Galois cohomology H∗(G,Z/pZ), we may use a computer to determine if the
arithmetic curve, associated to an imaginary quadratic field, has vanishing 3-fold
Massey products and hence, by McLeman’s result, an infinite class field tower.

McLeman predicted that the Hilbert p-class field tower of an imaginary quadratic
field K with class group of p-rank 2 has finite p-class field tower if and only if K has
Zassenhaus type (3, 3) [McL08, Conjecture 2.9]. We disprove McLeman’s conjecture
by finding counter-examples:
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Theorem 1.2. The (3, 3)-conjecture is false. For instance, for p a prime and D a
discriminant, the pairs

(p,D) = (5,−90868), (7,−159592)

are counter-examples to the (3, 3)-conjecture: for each pair in the above list, the
associated quadratic imaginary field with discriminant D has Zassenhaus type (5, 3)
or (7, 3), but the p-class field tower is finite.

In Paper B and C we find formulas for the cup product in étale cohomology and
in Paper D we find formulas for the Massey product in étale cohomology. Both
the cup product and the Massey product is part of a multiplicative structure on
the étale cohomology of SpecOK , which encodes important arithmetic information
about the number field K. Both theorems above illustrates how the multiplicative
structure on étale cohomology may be used to prove concrete number theoretical
statements. To give another example, we state a Proposition from Paper C, which
illustrates how the cup product encodes the classical Legendre symbol :

Proposition 1.3. Let p and q be distinct odd primes both equal to 1 (mod 4) and let
U = SpecZ \ {p, q}. Let xp and xq be the elements in H1(U,Z/2Z) corresponding
to the extensions Q(

√
p) and Q(

√
q) respectively. Then xp ` xq is completely

determined by the Legendre symbol
(
p
q

)
and vice versa. In particular, xp ` xq = 0

if and only if
(
p
q

)
= 1.

The theory of étale cohomology of arithmetic curves will be discussed in Section
4 and 5. To prove our results we use ideas from algebraic topology and much inspi-
ration comes from a fascinating analogy between number fields and 3-dimensional
manifolds. This analogy is homotopical in nature and to give a taste, we first need
to introduce the étale fundamental group. In the rest of this introduction, we will
use a more formal mathematical language.

2 The étale fundamental group

The étale fundamental group is an algebro-geometric analogue of the fundamental
group in algebraic topology. The étale fundamental group πét

1 (X, x̄) of a connected
and locally noetherian schemeX with a geometric point x̄, is a profinite group. That
is, an inverse limit of finite groups, which classifies finite étale covers Y → X in the
following sense: let (FÉt/X) be the category of finite étale morphisms Y → X and
let πét

1 (X, x̄)-sets be the category of finite sets on which πét
1 (X, x̄) acts continuously

on the left. There is an equivalence of categories

(FÉt/X)→ πét
1 (X, x̄)-sets

which takes Y → X to the fiber Yx̄ over the geometric point x̄.
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Example 2.1. Let X be the spectrum of a field k, and x̄ : Spec Ω → Spec k a
geometric point corresponding to a separable closure Ω/k.

Example 2.2. Let X be a smooth projective variety over C and let Xan be the
associated complex analytic space (see e.g. [Har77, Appendix B]). Then πét

1 (X,x)
is the profinite completion of π1(Xan, x).

3 An unexpected analogy

In the 60’s Barry Mazur started investigating an interesting analogy between knots
in 3-manifolds and primes in number rings. According to Mazur’s notes [Maz63]
from 1963–1964, the idea is originally due to David Mumford. The analogy says
that given a number field K with ring of integers OK we may think of SpecOK as
a three dimensional simply connected real manifold M , and that we may think of
a prime

SpecFq → SpecOK
as a knot

γ : S1 ↪→M .

Today, there is a long dictionary which translates concepts, from the arithmetic
side of this analogy, to the world of manifolds. To get a hint, we give an example,
which is a short version of Section 4 of Morishita’s book [Mor12].

Example 3.1. Alexander’s theorem states that any connected oriented 3-manifold
is a finite covering of the 3-dimensional sphere S3 branched over a finite union of
knots. Similarly, any arithmetic curve is a finite cover of SpecZ branched over a
finite set of primes.

Let γ, δ : S1 ↪→ S3 be knots and let Xδ = S3 \ Vδ where Vδ is a tubular neigh-
borhood of δ. The boundary of Vδ looks like a (knotted) torus and we let α be
a meridian which we think of as a knot α : S1 → S3. Take x ∈ Xδ. Then one
can show that there is a unique surjective morphism π1(Xδ, x) → Z sending α to
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1 and if we take the quotient by 2 we get a morphism ϕ : π1(Xδ, x) → Z/2Z. By
the theory of covering spaces, this corresponds to a covering space h2 : X2 → Xδ

of degree 2. The knot γ represents a class [γ] ∈ π1(Xδ, x) and it turns out that
ϕ([γ]) ≡ lk(γ, δ) (mod 2), where lk(γ, δ) denotes the linking number, i.e., the num-
ber of times the γ wraps around δ.

We get that

h−1
2 (γ) =

{
γ1 ∪ γ2 if lk(γ, δ) ≡ 0 (mod 2) ,

γ′ if lk(γ, δ) ≡ 1 (mod 2) .

This can be compared to the analogous arithmetic situation. Let p and q be
primes such that q ≡ 1 (mod 4). Let

Xq = SpecZ \ {(q)} = SpecZ[1/q]

and let Gq = πét
1 (Xq, x̄) where we choose the base point x̄ : SpecQp → SpecZ[1/q]

corresponding to a fixed embedding Q→ Qp. Let α̃ be a generator of F×q . Consider
the morphism

ϕ̃ : Gq → Gabq
∼= Z×q → Z×q /(1 + qZq) ∼= F×q → Z/2Z

sending α̃ to 1. By the theory of (étale) covering spaces, this corresponds to a
quadratic extension Q(

√
q) ⊃ Q and by taking rings of integers we get an étale

double cover h̃2 : X2 → Xq. Define

lk(p, q) =

{
0 if x2 ≡ q (mod p) has a solution ,

1 otherwise

(this is almost the Legendre symbol). To get a result analogous to the 3-manifold
case, we have to make sense of an element of πét

1 (Xq, x̄) represented by p. This is
done as follows. We have a canonical morphism

πét
1 (SpecQp, x̄) = Gal(Q̄p/Qp)→ πét

1 (Xq, x̄)
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and we define σp to be the image of the Frobenius automorphism (sending an
element to its p:th power). It turns out that ϕ̃(σp) = lk(p, q). From this one can
show that

h̃−1
2 (p) =

{
{p1, p2} if lk(γ, δ) = 0 ,

p′ if lk(γ, δ) = 1 ,

in analogy with the situation for 3-manifolds. For more examples we recommend
Morishita’s book [Mor12].

If one takes the analogy between number rings and 3-manifolds seriously, one
may hope to be able to use techniques from algebraic topology and apply them in
number theory. Paper B, C, and D are very much in this spirit as we will explain
in the next section.

4 Étale cohomology of number fields

Given a number field K with ring of integers OK and X = SpecOK , we may define
the étale cohomology groups

Hi(X,Z/nZ) .

Barry Mazur computed these groups in the 60’s [Maz73] except for the case i = 2.
In the second paper we compute the cup product in étale cohomology, revealing
the ring structure of ⊕

i

Hi(X,Z/nZ) .

Inspired by the analogy between number rings and manifolds we use methods and
ideas coming from algebraic topology. The étale cohomological dimension of X is
three and the cup product is graded commutative and unital. This means that it
is enough to compute the cup product

H1(X,Z/nZ)⊗H1(X,Z/nZ)→ H2(X,Z/nZ)

and
H1(X,Z/nZ)⊗H2(X,Z/nZ)→ H3(X,Z/nZ) ,

or in other words, it is enough to know how to take the cup product with an element
x ∈ H1(X,Z/nZ). But H1(X,Z/nZ) classifies Z/nZ-torsors, so we may choose a
Z/nZ-torsor Y → X representing x. Thinking of X just as a manifold with a
covering space Y → X, we may hope to find a “transfer sequence”

0→ Z/nZ→ P → Z/nZ→ 0 (4.1)

such that cup product with the element x is given as the connecting homomorphism
of (4.1). This is exactly what we will do.

Every Z/nZ-torsor p : Y → X is induced from a Z/dZ-torsor of the form

SpecOL → X
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for some d|n and some Galois extension L ⊇ K of degree d, unramified at all finite
primes. Since p is finite étale we have that p∗ is left adjoint to p∗ and hence there
is a counit map

N : p∗p
∗Z/nZ→ Z/nZ

which we call the norm (often called trace in the algebraic geometry literature).
Hence we have an exact sequence (the ”norm sequence”)

0→ kerN → p∗p
∗Z/nZ→ Z/nZ→ 0

and we want to find an appropriate morphism kerN → Z/nZ along which we can
push the norm sequence to obtain a transfer sequence.

To be able to make computations, we use the equivalence between the category
of locally constant abelian sheaves split by p (that is, a locally constant sheaf on
X whose pullback to Y is constant) and the category of Z/nZ-modules. When
Y is connected this takes a locally constant sheaf F and sends it to the Z/nZ-
module F(Y ) where g ∈ Z/nZ acts via F(g−1), and the inverse functor takes a
Z/nZ-module M and sends it to the abelian group scheme

(Y ×M)/(Z/nZ) ,

where Z/nZ acts diagonally. Under this equivalence, the transfer sequence takes
the form

0→ Z/nZ→ Z/nZ[G]/I2 ε−→ Z/nZ→ 0

1 7→ g − 1 g 7→ 1

where G ∼= Z/nZ is the Galois group of Y over X, g is a fixed generator, and I is
the augmentation ideal, i.e., the kernel of ε.

In Paper C, K is assumed to be a general number field with no restrictions
and X an open subscheme of SpecOK , but for simplicity of exposition, let us here
assume that K is totally imaginary and that X = SpecOK . Central to the theory
of étale cohomology of number fields is Artin–Verdier duality, which states that
there is a non-degenerate pairing

Hi(X,Z/nZ)× Ext3−i(Z/nZ,Gm)→ H3(X,Gm) ∼= Q/Z ,

where Gm is the sheaf of units. The cohomology groups can then be computed as
duals of Ext-groups, using class field theory and the Grothendieck spectral sequence.
One obtains the list

Exti(Z/nZ,Gm) ∼=


µn(K) if i = 0

Z1/B1 if i = 1

Cl(K)/n if i = 2

Z/nZ if i = 3 ,
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where

Z1 = {(a, I) ∈ K× ⊕Div(K) : div(a) + nI = 0} , and

B1 = {(b−n,div(b)) ∈ K× ⊕Div(K) : b ∈ K×} .

Here Div(K) is the group of fractional ideals of K.
Now we are in a position to give a formula for the cup product. Let x ∈

H1(X,Z/nZ) be represented by a torsor induced from an unramified Galois exten-
sion L/K of degree d|n and fix a generator σ ∈ Gal(L/K). We identifyHi(X,Z/nZ)
with the dual group Ext3−i(Z/nZ,Gm)∼. The formulas we obtain for the cup prod-
uct now look as follows:

Proposition 4.1. For y ∈ H2(X,Z/nZ) we have that x ` y ∈ H3(X,Z/nZ) ∼=
Ext0(Z/nZ,Gm)∼ ∼= µn(K)∼ satisfies the formula

〈x ` y, ξ〉 = 〈y, (a, I)〉

where b ∈ L× is an element satisfying σ(b)/b = ξn/d, and a ∈ K× and I ∈ Div(K)
are elements such that b−n = a and div(b) = IOL.

Proposition 4.2. For y ∈ H1(X,Z/nZ) we have that x ` y ∈ H2(X,Z/nZ) ∼=
Ext1(Z/nZ,Gm)∼ ∼= (Z1/B1)∼ satisfies the formula

〈x ` y, (b, b)〉 = 〈y, n
d
NL/K(I) +

n2

2d
b〉 ,

where I ∈ Div(L) satisfies

bn/dOL = I − σ(I) + div(t)

for some t ∈ L× such that NL/K(t) = b−1 .

Using the formulas above one can find examples of number fields whose rings of
integers have isomorphic étale cohomology groups in all degrees but where the ring
structure of the étale cohomologies are distinct.

5 Massey products

Let (A, d) be a differential graded algebra and let x, y, z ∈ H∗(A) be homogeneous
elements of degree a, b, c respectively, such that x ` y = y ` z = 0. Then one
may define a subset 〈x, y, z〉 ⊆ Hn(A), called the (3-fold) Massey product, where
n = a+ b+c−1. This is done as follows: By abuse of notation, we also write x, y, z
for some elements of A representing the classes above. If w ∈ A is a homogeneous
element, we also write w = (−1)deg(w)+1w. Since x ` y = y ` z = 0, there
exist elements kxy ∈ Aa+b−1 and kyz ∈ Ab+c−1 such that dkxy = −x ` y and
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dkyz = −y ` z. The sign convention here is chosen to match Dwyer’s definition
[Dwy75]. Hence we get an element

kxy ` z + x ` kyz ∈ Aa+b+c−1 .

The Leibniz rule implies that

d(kxy ` z + x ` kyz) = (−1)a+b+1x ` y ` z + (−1)(a)+(b+1)+1x ` y ` z = 0 .

and hence kxy ` z + x ` kyz defines an element in Hn(A). Hence we may define

〈x, y, z〉 = {kxy ` z + x ` kyz : dkxy = x ` y , dkyz = y ` z} ⊆ Hn(A) .

Now suppose that x′, y′, z′ are some different choices of representatives, and suppose
that dk′x′y′ = x′ ` y′ and dk′y′z′ = y′ ` z′. Writing x′ = x+ drx, y

′ = y + dry, z
′ =

z + drz for some coboundaries drx, dry, drz, we see that the elements kxy − k′x′y′
and kyz − k′y′z′ are cocycles and hence 〈x, y, z〉 gives a well-defined element

〈x, y, z〉 ∈ Hn(A)/(Ha+b−1(A) ` z + x ` Hb+c−1(A)) .

Now let p be an odd prime and let us restrict to the case when we have a
number field K and hence an arithmetic curve X = SpecOK . Then we take A to be
the differential graded algebra C∗(Ét(X),Z/pZ) associated to the étale topological
type Ét(X) of X [Fri82]. Then we have H∗(A) = H∗(X,Z/pZ). In Paper D we
find formulas for computing 3-fold Massey products in H∗(X,Z/pZ) without any
restriction on the field K.

To get a hint on what the formulas may look like, let us assume that K is an
imaginary quadratic field. Then the conjugation action gives splittings

Hn(X,Z/pZ) = Hn(X,Z/pZ)+ ⊕Hn(X,Z/pZ)−

for all n, and similarly for the dual groupsHn(X,µµµp). Suppose that (a, I) represents
a class in H1(X,µµµp) ∼= Hom(H2(X,Z/pZ),Q/Z), that is, div(a) + pI = 0. Let σ ∈
Gal(K/Q) be the generator. Then NK/Q(I) = I + σ(I) = div(b) for some b ∈ Q×,
since Cl(Q) = 0. On the other hand, if (a, I) = (σ(a), σ(I)), then I −σ(I) = div(c)
for some c ∈ K× and hence 2I = div(bc). Since 2 is invertible modulo p we get that
I is principal. Hence we may assume that I is the trivial ideal and a is a unit. But
the units of K are just −1 and 1 which are both a pth power since p is odd. Hence we
see that (a, I) = 0 in cohomology and we conclude that H1(X,µµµp)

+ = 0 and since
H2(X,Z/pZ)+ is Pontryagin dual to H1(X,µµµp)

+, we get that H2(X,Z/pZ)+ =
0. An almost identical argument shows that H1(X,Z/pZ)+ = 0. Since the cup
product is compatible with the Galois action, we see that the cup product

H1(X,Z/pZ)⊗H1(X,Z/pZ) = H1(X,Z/pZ)− ⊗H1(X,Z/pZ)− → H2(X,Z/pZ)

lands in H2(X,Z/pZ)+ which is zero. This implies that if x, y, z ∈ H1(X,Z/pZ),
then 〈x, y, z〉 ⊆ H2(X,Z/pZ) is always defined and contains a unique element
which, by abuse of notation, we denote by 〈x, y, z〉. When two of the elements
x, y, z are equal, the Massey product has a simple formula:
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Theorem 5.1. Let Lx ⊃ K be an unramified extension of degree p representing an
element x ∈ H1(X,Z/pZ), where p is an odd prime. Let y ∈ H1(X,Z/pZ) be an
element such that x ` y = 0. Then, for any (a′, J) ∈ H1(X,µµµp), the equality

〈〈x, x, y〉, (a′, J)〉 =

{
〈y,Nx(I ′) + J〉 if p = 3 ,

〈y,Nx(I ′)〉 if p > 3 ,

holds, where

• (b, a, J, I) ∈ H1(X,D(Px)) is a lift of (a′, J), that is, Nx(a) = a′, and

• I ′ ∈ Div(Lx) is a fractional ideal such that I = div(u)− ix(p−1
2 J)+(1−σx)I ′

for some element u ∈ L×x such that ix(Nx(u)) = Γxa− b.

Using this formula, we wrote a C program, using the library PARI [The22], to
find the examples of imaginary quadratic fields in Theorem 1.1 and Theorem 1.2,
in Section 1.





3 Stacky covers and root stacks

1 Ramified Galois covers

From now on the introduction turns towards Paper A. In the setting of number fields
we saw that, taking a number field K ⊆ Q one gets a ramified cover SpecOK →
SpecZ together with an action of the Galois group Gal(K/Q) which we may view
as a constant sheaf of groups, which is not always abelian. The covers treated in
Paper B and Paper C are first of all always abelian, and will come with an action
of D(A) (where D(A) denotes the diagonalizable group associated to an abstract
abelian group A). These covers are in some sense much easier to understand. Even
when A = Gal(K/Q) is abelian, it might not be the case that SpecOK → SpecZ
is a D(A)-cover. For example, taking K to be the 5th cyclotomic field gives such
an example, even though it is a ramified cover with an action of A = Gal(K/Q) ∼=
(Z/5Z)× ∼= Z/4Z. Note that Z/4Z 6∼= D(Z/4Z) since the latter is ramified over the
prime (2).

Actions by diagonalizable groups

Let S be a scheme. A diagonalizable group scheme over S is a group scheme of
the form D(A) = SpecOS [A] where A is an abstract abelian group (which we
write additively). Here OS [A] is the group ring, i.e., the free OS-algebra with local
sections

OS [A](U) =

{∑
λ∈A

aλx
λ : aλ ∈ OS(U) ,∀λ ∈ A

}

with component-wise addition and multiplication given by xλxλ
′

= xλ+λ′ . The
multiplicative unit is obtained by taking a0 = 1 and all other coefficients 0 and
the additive unit is obtained by taking all aλ = 0. The structure morphism OS →
OS [A] sends 1 to x0.

If f : X → S is affine, then an action of D(A) on X over S is equivalent to a

17
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coaction of the Hopf OS-algebra OS [A] on f∗OX :

∆: f∗OX → f∗OX ⊗OS OS [A]

a 7→
∑
λ

pλ(a)⊗ xλ .

The two axioms for a coaction implies that
∑
λ pλ = idf∗OX and pλ′ ◦ pλ = δλ′,λpλ,

where δλ′,λ is the Kronecker delta function. This means that we get a splitting

f∗OX ∼=
⊕
λ∈A

pλ(f∗OX) .

Covers

Let B be a ring. Suppose that R is a B-algebra graded by a finite abelian group A
making R a finite free B-module which is isomorphic to the regular representation
B[A] as a module, i.e.,

R ∼=
⊕
λ∈A

Rλ

where Rλ ∼= B for all λ. The canonical morphism SpecR → SpecB is an example
of a ramified D(A)-cover (see below).

Choose a generator xλ ∈ R for each graded piece Rλ. Then we have multipli-
cation morphisms

Rλ ⊗B Rλ′ → Rλ+λ′

sending xλ ⊗ xλ′ to xλxλ′ = sλ,λ′xλ+λ′ with sλ,λ′ ∈ B. We may describe R as a
coequalizer of free algebras:

B[NA×A]⇒ B[NA/(e0)]→ R

xλ,λ′ 7→ xλxλ′

xλ,λ′ 7→ sλ,λxλ+λ′

(here e0 is the basis element corresponding to 0 ∈ A).
The properties that the multiplication in R is

1. unital;

2. commutative;

3. associative;

translates to the following equalities

1. s0,λ = 1 for all λ ∈ A;
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2. sλ,λ′ = sλ′,λ for all λ, λ′ ∈ A;

3. sλ,λ′sλ+λ′,λ′′ = sλ′,λ′′sλ′+λ′′,λ for all λ, λ′, λ′′ ∈ A.̇

In a more general setting, we replace SpecB with a scheme S and we replace
SpecR by a finite, locally free scheme f : X → S, together with an action of D(A)
on X such that, locally in the Zariski topology, f∗OX is isomorphic as a comodule
to the regular representation OS [A] (as in [Ton14]). If f : X → S satisfies the
properties just described, then we call it a ramified D(A)-cover (or just a D(A)-
cover).

As we saw, this gives a splitting

f∗OX ∼=
⊕
λ∈A

Lλ

and since f∗OX is locally isomorphic to OS [A] as a comodule, it follows that each
Lλ is a line bundle and L0

∼= OS . We have multiplication morphisms

Lλ ⊗ Lλ′ → Lλ+λ′

which we think of as global sections

sλ,λ′ ∈ Γ(S,L−1
λ ⊗ L

−1
λ′ ⊗ Lλ+λ′) .

A generalized effective Cartier divisor on S is a pair (L, s) consisting of a line
bundle L with a global section s ∈ Γ(S,L). These form a category which admits a
symmetric monoidal structure given by taking tensor products of line bundles and
sections. The pair

(L−1
λ ⊗ L

−1
λ′ ⊗ Lλ+λ′ , sλ,λ′)

forms a generalized effective Cartier divisor. The relations

1. s0,λ = 1 for all λ ∈ A;

2. sλ,λ′ = sλ′,λ for all λ, λ′ ∈ A;

3. sλ,λ′sλ+λ′,λ′′ = sλ′,λ′′sλ′+λ′′,λ for all λ, λ′, λ′′ ∈ A.̇

still hold if one interprets the equality symbol as a = b if a is sent to b under
the corresponding canonical isomorphism of line bundles. For instance, we have a
canonical isomorphism

L−1
λ ⊗ L

−1
λ′ ⊗ Lλ+λ′

∼= L−1
λ′ ⊗ L

−1
λ ⊗ Lλ+λ′

sending sλ,λ′ to sλ′,λ.
In [Par91] Pardini studies ramified D(A)-covers X → S that are generically

torsors and gives building data for such covers when S is smooth and X is normal.
Tonini studied the stack of ramified G-covers [Ton14] for a fixed group G (also
without the assumption that the group G is diagonalizable).



20 CHAPTER 3. STACKY COVERS AND ROOT STACKS

Given a ramified D(A)-cover, one may ask what part of this data is forgotten
when passing to the quotient X = [X/D(A)]. It turns out that the quotient X
will remember the data (L−1

λ ⊗L
−1
λ′ ⊗Lλ+λ′ , sλ,λ′) but will forget the line bundles

Lλ. When |A| is invertible in Γ(S,OS), we may think of [X/D(A)] as “the least we
have to modify S in order to make the ramified cover X → S an étale cover”.

S
Branch locus

X

The pullback of the inertia stack IX = X ×X×SX X along the canonical
morphism X → [X/G] is isomorphic to the stabilizer group Stab (X) which is
defined as the pullback

Stab (X) G×S X

X X ×S X .

σ,prX

∆

This means that the points in X lying over the branch locus in S will have non-
trivial automorphism groups and the image of x ∈ X in X will have automorphism
group Stab (x) in X sitting in a cartesian square

Stab (x) G×S X

Spec k X ×S X .

σ,prX

(x,x)

Deligne–Falting data from ramified covers

The presentation
D(A)×S X ⇒ X →X

gives a universal commutative diagram on X :

X X ×S X

X

(1.1)

and the data of a morphism t : T →X is equivalent to the data of the pullback of
1.1 to T along t. From the group A we construct two monoids PA and QA together
with a morphism γA : PA → QA. We have a morphism ϕ : NA×A → ZA/(e0) defined
on the basis by eλ,λ′ 7→ eλ+ eλ′ − eλ+λ′ . The monoid NA×A has a basis of elements
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eλ,λ′ for (λ, λ′) ∈ A × A. We define PA = NA×A/R where R is the congruence
relation generated by the relations

eλ,λ′ ∼ eλ′,λ
e0,λ ∼ 0

eλ,λ′ + eλ+λ′,λ′′ ∼ eλ′,λ′′ + eλ′+λ′′,λ .

We then define QA = PA ×e(−,−)
A to be the monoid with underlying set PA × A

and with addition given by

(p, λ) + (p′, λ′) = (p+ p′ + eλ,λ′ , λ+ λ′) .

Finally, we define γA : PA → QA to be the canonical inclusion into the first factor.
The induced action of PA on QA is free and we get that SpecZ[QA]→ SpecZ[PA]
is a D(A)-cover. With these definitions we get a free extension of A by PA:

0→ PA → QA → A→ 0

which is universal in the sense that it maps uniquely to any other free extension
of A by a monoid P . Free extensions of A with values in a monoid P are in
bijection with (commutative) 2-cocycles A × A → P and the universal extension
0→ PA → QA → A→ 0 corresponds to the universal 2-cocycle e(−,−) : A×A→ PA
sending (λ, λ′) to eλ,λ′ .

The cover X gives a symmetric monoidal functor

L : PA → [A1
S/Gm,S ]

and the data of Diagram (1.1) is equivalent to the data of a diagram

PA [A1
X /Gm,X ]

QA .

'

This leads us to the language of root stacks as we will explain in the next section.
After replacing A by an étale sheaf A constructed intrinsically on X and replacing
the monoids PA and QA by étale sheaves of monoids associated to A we arrive at
a setting which is convenient for gluing such quotient stacks.

2 Log structures and root stacks

Classical root stacks

Consider a generalized effective Cartier divisor (L, s) on S, i.e., a line bundle L on
S with a global section s : OS → L. One may ask if there is a morphism f : X → S
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such that (f∗L, f∗s) has an nth root for some positive integer n ≥ 2. That is,
a generalized effective Cartier divisor (E , ε) on X together with an isomorphsm
E⊗n ∼= f∗L sending ε⊗n to f∗s. The nth root stack is simply the universal such
object.

Let Div(T ) be the fiber of [A1/Gm] over an S-scheme T . The nth root stack
associated to (L, s) is the stack S(L,s),n over S with objects (T, E , ε, τ) consisting of

• a scheme t : T → S,

• a line bundle E on T with a global section ε ∈ Γ(T, E), and

• an isomorphism τ : E⊗n → t∗L sending ε⊗n to t∗s.

It sits in a 2-cartesian diagram

S(L,s),n [A1/Gm]

S [A1/Gm] ,
(L,s)

(2.1)

where the right vertical arrow is given by sending the coordinate to its nth power.
We can also think of it as follows: The morphism S → [A1/Gm] induces a symmetric
monoidal functor L : N→ Div(S). Let n : N→ N be the morphism sending 1 to n.
Then S(L,s),n is the stack with objects (T, E , τ) where

1. t : T → S,

2. E : N→ Div(T ) is a symmetric monoidal functor, and

3. τ : E ◦ n→ t∗ ◦ L is an isomorphism of symmetric monoidal functors.

Example 2.1. In some cases, the root stack S(L,s),n may be constructed as a
quotient [X/µn] where X → S is a scheme. This happens when there exists a line
bundle L1/n on S and an isomorphism (L1/n)⊗n ∼= L. In this case we may define

X = Spec
n−1⊕
i=0

(L1/n)−i

with µn-action given by the grading.

This is however, not always possible since L might not have an nth root on S.
For instance, consider S = P1

C = ProjC[x, y] and L = O(1) with the global section
x. Then it is not possible to construct the root stack as a quotient of a µn-cover
since O(1) does not have an nth root when n ≥ 2.



2. LOG STRUCTURES AND ROOT STACKS 23

There is a universal generalized effective Cartier divisor (Euniv, εuniv) on S(L,s),n
obtained by pulling back the universal Gm-torsor A1 → [A1/Gm] along the projec-
tion S(L,s),n → [A1/Gm]. Let p : P → S be the Gm-torsor on S corresponding to
L. Then

p∗OP ∼=
⊕
n∈Z
Ln

as an OS-module. Consider the cartesian square (2.1). If we write S = [P/Gm,S ]
and let ϕn be the morphism sending x to xn, we have that S(L,s),n ∼= [SpecAL/Gm,S ]
where

AL ∼= p∗OP ⊗OS [x],ϕn OS [x]
∼= p∗OP [x]/(xn − s)
∼= . . . xn−1L−1 ⊕OS ⊕ xOS ⊕ · · · ⊕ xn−1OS ⊕ L⊕ . . . .

Since S(L,s),n is a quotient under a Gm-action, the universal line bundle Euniv

corresponds to a Gm-equivariant line bundle on SpecAL, which in turn is equivalent
to a Z-graded AL-line bundle. It is the shifted module Euniv = AL[1], where we
use the convention

(AL[1])i = (AL)i+1 .

Indeed, the pullback of L to E is just L ⊗ AL = AL[n] and hence AL[1] is an nth
root.

Using root stacks

To illustrate how root stacks can be used in a classical setup, let us consider the
following situation (see [Cad07] for more details). Suppose that we have a curve
C with a distinguished smooth point P ∈ C. If D ⊆ P2 = X is a curve then we
might ask if there is a morphism f : C → P2 such that C intersects D with a certain
tangency condition at the point P . Here tangency condition means the following:
fixing positive integers d and r, we could ask that f∗D = rZ+dP for some effective
Cartier divisor Z ⊆ C (which is not fixed on beforehand). This question can be
rephrased using root stacks as: does there exist a commutative diagram

CP,n XD,r

C X ,

F

π

where

1. n = r/ gcd(r, d),

2. CP,n is the nth root stack of OC(P ) with its canonical section,

3. XD,r is the rth root stack of OX(D) with its canonical section,
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4. F is representable of contact type d.

We need to explain what point (4) means here. The morphism F is given by a
triple (f, (M, t), α) where f : C → X is a morphism, (M, t) a generalized effective
Cartier divisor on CP,n, and α : (M, t)⊗r → (π∗f∗OX(D), π∗f∗sD) an isomorphism
of generalized effective Cartier divisors. We have that M ∼= π∗L ⊗ E⊗k for some
integer 1 ≤ k ≤ n − 1, where E is the universal nth root of π∗OC(P ) and L is
a line bundle on C. The morphism F is representable if and only if for every
geometric point in CP,n, the induced morphism on stabilizers is injective. It turns
out (see [Cad07, Proposition 3.3.3]) that F is representable if and only if n|r and
gcd(k, n) = 1. We have

M⊗r ∼= π∗L⊗r ⊗ π∗OC(P )⊗d

where nd = kr and we call d the contact type of the morphism F .

For point (1), note that gcd(r, d) = gcd(n(r/n), k(r/n)) = (r/n) gcd(n, k) = r/n
and hence n = r/ gcd(r, d).

This example is supposed to illustrate that root stacks can be used in Gromov–
Witten theory when counting curves in X with a certain tangency condition with
respect to a divisor D ⊆ X. This was done by Cadman–Chen when X = P2 [CC08].

Log structures à la Fontaine–Illusie

It is sometimes useful to consider a scheme X together with the data of a divisor
D ⊂ X. For instance, one may want to allow differential forms to admit poles along
D. One example to keep in mind is when X is a compactification of U = X \D.
Then X is a proper scheme and hence often easier to deal with than U . But since
one is originally interested in the (non-proper) scheme U , it is necessary to keep
track of what happens near D. This is somehow analogous to a manifold with
boundary. This leads to the theory of logarithmic geometry. It has applications for
instance in moduli theory and p-adic Hodge theory.

A logarithmic structure (log structure) on a scheme S is a pair (M, α) where
M is an étale sheaf of commutative monoids on S and α : M→OS is a morphism
of monoids with respect to multiplication in OS , such that α restricts to an iso-
morphism α−1(O×S ) ∼= O×S . A scheme S with a log structure (M, α) is called a
log scheme and is denoted (S,M). A morphism of log schemes (S,M) → (T,N )
consists of a morphism of schemes f : S → T and a morphism of sheaves of monoids
f−1N →M such that the diagram

f−1N f−1OT

M OS
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commutes. Here f−1 denotes the usual pullback of étale sheaves to avoid confusion
with other types of pullbacks. Note that f−1N → f−1OT → OS need not be a log
structure.

Let S be a regular scheme and D a reduced divisor on S with normal crossings
and U = S \D. Then we have an open immersion j : U ↪→ S and the canonical log
structure with respect to D is given byM = j∗O×U ∩OS ↪→ OS , i.e., those sections
of OS that are invertible outside D.

Given a morphism of log schemes (S,M)→ (T,N ) we may define the (relative)
module of log differentials

Ω1
S/T (log(M/N )) = Ω1

S/T ⊕ (OS ⊗ZMgp)/R

where R is the OS-submodule generated by local sections of the form

1. (dα(m), 0)− (0, α(m)⊗m) for m ∈M, and

2. (0, 1⊗ n) for n ∈ im(f−1(N )→M),

where d : OS → Ω1
S/T is the universal derivation.

In particular, if S is a regular scheme, D a reduced divisor on S with simple
normal crossings, and MD the canonical log structure, then we have the following
interpretation of Ω1

S(logM): the divisor D gives a line bundle OS(D) with a global
section sD : OS → OS(D). This yields a morphism S → [A1/Gm] and when D is
smooth, we have an isomorphism

Ω1
S(logM) ∼= Ω1

S/[A1/Gm] .

More generally, Olsson has constructed a moduli stack of log structures LogS
[Ols03] and interpreted many of the common notions of log geometry in this stack-
theoretic framework.

For a great account on log geometry, we recommend either [Ogu18] or [Kat89].

Deligne–Faltings structures

A concept very similar to that of log structures is the theory of Deligne–Faltings
structures developed in [BV12]. If P is an étale sheaf of commutative monoids on
a scheme S we may think of it as a symmetric monoidal stack with objects given
by the sections of the sheaf and a single identity morphism for every object. The
symmetric monoidal structure is given by the binary operation. Hence it makes
sense to talk about a symmetric monoidal functor from P to a symmetric monoidal
stack over S.

Let DivSét
denote the restriction of [A1

S/Gm,S ] to the small étale site. A Deligne–
Faltings structure on S consists of an étale sheaf of commutative monoids P and a
symmetric monoidal functor L : P → DivSét

with trivial kernel, i.e., if p ∈ P(U) is
a local section and Lp ∼= (OS , 1), then p = 0. Note that L may have trivial kernel
and still be non-injective.



26 CHAPTER 3. STACKY COVERS AND ROOT STACKS

There is a symmetric monoidal functor OS → DivSét
sending a local section f ∈

OS(U) to (OU , f). Given a Deligne–Faltings structure (P,L), the fiber product (of
fibered categories)M = P ×DivSét

OS turns out to be a monoid and the projection

α : M → OS is a log structure with the property that the action of O×S on M is
free, i.e., α is quasi-integral.

Conversely, a quasi-integral log structure α : M → OS is O×S -equivariant and
the induced morphism on quotient stacks is M =M/O×S → DivSét

. Hence we get:

Theorem 2.2 ([BV12, Theorem 3.6]). The category of Deligne–Faltings structures
on S is equivalent to the category of quasi-integral log structures on S.

If S is a regular scheme and D is an effective divisor with normal crossings, then
the canonical Deligne–Faltings structure with respect to D is the one associated
with the canonical log structure associated to D.

General root stacks

From now on we write DivS = [A1
S/Gm,S ]. The classical root stack can be described

as follows: Consider the diagram

N DivS

N ,

n

L

where L is the symmetric monoidal functor induced by sending 1 to the generalized
effective Cartier divisor (L, s). Then the classical root stack is the stack with objects
(T, E , τ) consisting of

• a scheme t : T → S,

• a symmetric monoidal functor E : N→ Div T , and

• an isomorphism τ : E ◦ n→ t∗L of symmetric monoidal functors.

This construction can now be generalized by replacing the constant monoids in
the diagram by (possibly distinct) étale sheaves of commutative monoids P and
Q.

3 Stacks and representations of groups

Let k be a field and G an affine algebraic group over k. Let us consider ∗ = Spec k
with the trivial action of G. Then the stack BG = [∗/G] classifies (left) G-torsors
for the fppf topology (or principal G-bundles), i.e., a morphism η : X → BG is
the same as a G-torsor P → X . The stack BG comes equipped with a canonical
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G-torsor t : ∗ → BG corresponding to the trivial torsor G → ∗ and we have a
cartesian diagram

P ∗

X BG .

p t

η

The data of a vector bundle on BG is equivalent to the data of a vector bundle E
on ∗ together with an k-linear action of G. In other words we have an equivalence
of categories

QCohBG ' RepG .

Under this equivalence, we have that

1. OBG corresponds to k with the trivial action,

2. the algebra of the canonical torsor ∗ → BG corresponds to the regular repre-
sentation, and

3. the algebra of the inertia stack IBG corresponds to OG with the action of
itself by conjugation.

We will give some intuition for point 3: We think of the inertia stack IBG as the
fibered category with objects (T,E, α) where

• T is a k-scheme,

• E → T is a G-torsor, and

• α : E → E is an automorphism of G-torsors.

We have a morphism G→ IBG defined on the level of objects by sending g ∈ G(T )
to (T,G×S T, rg) where rg : G×S T → G×S T is right translation by g. For every
h ∈ G(T ), we have a commutative diagram

G×S T G×S T

G×S T G×S T ,

rh

rg rh−1gh

rh

which says that we have an isomorphism

(T,G×S T, rg) ∼= (T,G×S T, rh−1gh)

in IBG(T ). Hence we have an induced morphism [G/G] → IBG where G acts on
itself by conjugation. It remains to check that this morphism is an isomorphism
which we leave to the reader.
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Given the morphism η : X → BG (or equivalently the G-torsor P → X ), we
have a pullback functor

η∗ : RepG→ QCoh X .

This functor is a k-linear exact faithful tensor functor, that takes a finite represen-
tation of rank n to a finite locally free sheaf of rank n.

It turns out that the following converse statement is also true (see [Nor82, Propo-
sition 2.9]): Given a k-linear exact faithful tensor functor F : RepG → QCoh X ,
that takes a finite representation of rank n to a finite locally free sheaf of rank n, we
get that SpecF (k[G]) is a G-torsor. Let Func⊗(RepG,QCoh X ) be the category
of such functors F and let Tors X = Hom(X , BG) be the category of G-torsors
on X . Then we have an equivalence of categories

Tors X ' Func⊗(RepG,QCoh X ) .

4 Stacky covers

Stacky covers are the main objects of study in Paper A. Similarly to the case of
ramified covers these are built up from a combinatorial set of data involving line
bundles with global sections. It turns out that all stacky covers are obtained as flat
(general) root stacks and vice versa.

Definition 4.1. Let X be a Deligne–Mumford stack with finite diagonalizable
stabilizers at closed points and let S be a scheme. We say that π : X → S is a
stacky cover if it is

1. flat, proper, of finite presentation,

2. a coarse moduli space, and

3. for any morphism of schemes T → S, the base change π|T : XT → T has the
property that (π|T )∗ takes line bundles to line bundles.

We denote by StCov the (2, 1)-category of stacky covers.

When G = D(A), f : X → S is a G-cover, and X = [X/G] we have a canonical
G-torsor p : X → X and we may ask what the algebra p∗OX looks like. We have
a cartesian square

X S

X BG ,

p q

where BG = [S/G] with G acting trivially on S. We have that OBG corresponds
to the A-graded OS-algebra with OS in degree zero and 0 elsewhere, i.e.,

OS ⊕ 0⊕ 0⊕ . . . ,
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and we have
q∗OS ∼=

⊕
λ∈A

OBG[λ]

with multiplication given by the canonical isomorphisms OBG[λ] ⊗ OBG[λ′] →
OBG[λ+ λ′]. Similarly, OX corresponds to the f∗OX -algebra f∗OX together with
the data of the A-grading induced by the action. Hence we conclude that

p∗OX ∼=
⊕
λ∈A

OX [λ] ,

with multiplication given by the canonical isomorphisms

OX [λ]⊗OX [λ′]→ OX [λ+ λ′] .

Example 4.2. If f : X → S is a ramified D(A)-cover, then π : X = [X/D(A)]→ S
is a stacky cover. Indeed, if S is connected then any line bundle on X is of the
form L ⊗OX [λ] for L a line bundle on S. The algebra

f∗OX ∼=
⊕
λ∈A

Lλ

and the degree zero part of OX [λ] is Lλ. The pushforward π∗ sends L ⊗ OX [λ]
to its degree zero part L⊗ Lλ which is a line bundle. Now consider one connected
component of S at a time to conclude that X → S is a stacky cover.

Example 4.3. If L is a line bundle on S and s ∈ Γ(S,L) is a global section, then
the root stack S(L,s,n) is an example of a stacky cover. Indeed, it looks étale locally
like [X/D(Z/n)] as in the previous example.

Remark 4.4. Let π : X → S be a stacky cover. Then there exists an étale
cover {Ui → S}, abelian groups Ai, and ramified D(Ai)-covers Xi → Ui with
isomorphisms X ×Ui S ' [Xi/D(Ai)]. Indeed, by standard limit arguments one
reduces to the case when S is the spectrum of a strictly henselian ring. Let X ′ →X
be an étale cover. Then X ′ → S is quasi-finite and there is a connected component
X of X ′ such that X → S is finite and X → X is still an étale cover. This
means that f : X → S is finite flat of finite presentation. One may check that
p : X → X is a D(A)-torsor for a diagonalizable group D(A) where D(A) is the
stabilizer group of the closed point of X . Thus p∗OX ∼=

⊕
λ∈AOX [λ] and since

π∗ takes line bundles to line bundles we get that f∗OX ∼=
⊕

λ∈A Lλ for some line
bundles Lλ. Hence f∗OX is locally isomorphic to the regular representation and
we conclude that X → S is a ramified cover.

Lemma 4.5. Let π : X → S be a stacky cover and let PicX /S be the relative Picard
functor. Then PicX /S is representable by an étale algebraic space. Furthermore,
if X is Deligne–Mumford, then there exists a canonical isomorphism PicX /S

∼=
π∗D(IX ).
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So from the stack X we get an étale group scheme A = PicX /S and we may
define two commutative monoids PA and QA and a morphism γ : PA → QA. We
then construct a symmetric monoidal functor

L : PA → DivSét
.

The datum (A,L) will be referred to as a stacky building datum and any such datum
gives rise to a root stack S(A,L).

Theorem 4.6. Let X → S be a stacky cover and (A,L) its associated stacky
building datum. Then we have an isomorphism

X ' S(A,L)

where the right hand side is the root stack associated to (A,L).

There is a (2,1)-category StData of stacky building data which is equivalent to
the (2,1)-category StCov of stacky covers.

Theorem 4.7. There exists an equivalence

StCov ' StData

between the (2,1)-category of stacky covers and the (2,1)-category of stacky building
data.

5 Ramification and root stacks

Given a ramified cover X → S we may associate to each component of the branch
locus, the corresponding ramification index. Conversely, suppose that we are given
a scheme S and a finite collection of Cartier divisors {Di}i∈I and positive integers
{ri}i∈I with ri ≥ 2 for all i ∈ I. We refer to the collection {Di}i∈I , {ri}i∈I as a
birational building datum. One may ask if there is a ramified cover X → S giving
rise to this birational building datum. The covers suitable in this setting are those
of Kummer type, i.e., they are fppf locally cut out by equations xri = si.

One may want to refine the notion of birational building datum to include other
types of covers as well. Here is an example.

Example 5.1. Let R = C[s, t], S = SpecR, X1 = SpecR[x, y]/(x2−s, y4− t), and
X2 = SpecR[x, y]/(x2 − s, y2 − xt). Then X1 → S is a ramified µ2 × µ4-cover and
X2 → S is a ramified µ4-cover. The ramification indices of X1 and X2 along the
two axis s = 0 and t = 0 agree but one can distinguish the two cases in that the
stabilizer group of X1 over the origin is µ2 × µ4 and the corresponding stabilizer
for X2 is µ4.
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Hence a more refined notion of birational building datum is to associate to
each divisor, instead of a number, a group, and we also associate a group GJ to
each intersection DJ :=

⋂
i∈J Di (for J ⊆ I), and for every J ′ ⊆ J , a group

homomorphism GJ′ → GJ . But a better way to package this is to say that we have
an étale sheaf of abelian groups whose support is |

⋃
i∈I Di| and which is constant

along each stratum D◦J = DJ \
⋃
i/∈J Di.

But we will need a further refinement in order to distinguish covers (or really the
root stacks) from their ramification data if we allow the divisors to be non-reduced.

Example 5.2. Consider the following two µ3-covers. Take the spectrum of C[s]→
C[s, x, y]/(x2 − sy, y2 − sx, xy − s2) where x has weight 1 and y has weight 2 and
take the spectrum of C[s] → C[s, t]/(t3 − s2). These two covers have the same
stabilizer group along the divisor s = 0.

To be able to distinguish between such covers we need a decomposition of the
branch locus. The notion of birational building datum that we will use is the
following:

Definition 5.3. Let S be a scheme. A birational building datum is a building
datum (A,L) which is regular. That is,

• A is an étale sheaf of abelian groups of finite type on S, and

• a symmetric monoidal functor L : PA → DivSét
whose image consists of gen-

eralised Cartier divisors (Lp, sp) with sp regular, and

such that the subgroup

A⊥ = {λ ∈ A : Lλ,λ′ ' (OS , 1) ,∀λ′ ∈ A(U) , U → S étale}

is trivial.

To each birational building datum (A,L) we may associate a root stack X =
S(A,L) and by considering quasi-coherent sheaves on X we arrive at a notion of
parabolic sheaves with respect to (A,L).

Then we have the following theorem.

Theorem 5.4. Let S be a scheme proper over a field k and assume that S is geo-
metrically connected and geometrically reduced. Let (A,L) be a birational building
datum and (PA, QA,L) the associated Deligne–Faltings datum. Then the following
are equivalent:

1. There exists a finite abelian group scheme G over k and a ramified G-cover
X → S with birational building datum (A,L);

2. For every geometric point s̄ in the branch locus, we have that

(i) the map Γ(S,A)→ As̄ is surjective, and
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(ii) for every λ ∈ As̄, there exists an essentially finite, basic, parabolic vector
bundle (E, ρ) on S, with respect to (A,L), such that the morphism⊕

λ′

Eeλ−eλ′ |s̄
(E(eλ′ )|s̄)λ′−−−−−−−−→ Eeλ |s̄

is not surjective, where the direct sum is over all λ′ ∈ Γ(S,A) such that
λ′s̄ 6= 0.

Example 5.5. Let π : X → A2
C = S be the root stack obtained by taking a square

root of each of the two coordinate axis in the affine plane over the complex numbers.
In this case we know that X is the quotient of a Kummer cover under the action
of G = µ2

2 = D(A) with A = Z/2Z×Z/2Z. There is a canonical G-torsor X →X
which is the spectrum over X of the OX -algebra OX :=

⊕
λ∈(Z/2Z)2 OX [λ]. This

corresponds to a parabolic sheaf E on (S,A,L) which is the one we will consider.
We have Eq = π∗(OX ⊗ Eq) where E : QA → DivXét

is the universal Deligne–
Faltings structure on X which satisfies Eeλ = (π∗π∗OX [λ])∨ ⊗ OX [λ]. To get
coordinates for X we write X = SpecC[s, t, x, y]/(x2− s, y2− t) where x and y has
weight λ1 := (1, 0) and λ2 := (0, 1) respectively. Let us write Lx = (x), Ly = (y),
and Lxy = (xy) for the free modules (ideals) of rank 1 generated by x, y and xy
respectively.

We have

Eeλ = π∗

(( ⊕
λ′∈A

OX [λ′]
)
⊗
(

(π∗π∗OX [λ])∨ ⊗OX [λ]
))

∼=
⊕
λ′∈A

π∗

(
(π∗π∗OX [λ])∨ ⊗OX [λ+ λ′]

)
∼=
⊕
λ′∈A

L∨λ ⊗ Lλ+λ′ .

To simplify the notation we write LL′ := L ⊗ L′. In particular,

Ee(1,0)
∼= (1)⊕ (x)∨ ⊕ (x)∨(xy)⊕ (x)∨(y) .

Similarly,

Eeλ−eλ′
∼=
⊕
λ′′∈A

L∨λ ⊗ Lλ′ ⊗ Lλ−λ′+λ′′ .

We have a morphism E(eλ′) : Eeλ−eλ′ → Eeλ which is A-graded and given in degree
λ′′ ∈ A by

L∨λ ⊗ Lλ′ ⊗ Lλ−λ′+λ′′
idL∨

λ
⊗sλ′,λ−λ′+λ′′

−−−−−−−−−−−−→ L∨λ ⊗ Lλ+λ′′ .
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We get

Ee(1,0)−e(1,0)
= (x)∨(x)(1)⊕ (x)∨(x)(x)⊕ (x)∨(x)(y)⊕ (x)∨(x)(xy)

Ee(1,0)−e(0,1)
= (x)∨(y)(xy)⊕ (x)∨(y)(y)⊕ (x)∨(y)(x)⊕ (x)∨(y)(1)

Ee(1,0)−e(1,1)
= (x)∨(xy)(y)⊕ (x)∨(xy)(xy)⊕ (x)∨(xy)(1)⊕ (x)∨(xy)(x) .

We have

E(e(1,0)) = (1)⊕ (s)⊕ (1)⊕ (s)

E(e(0,1)) = (t)⊕ (t)⊕ (1)⊕ (1)

E(e(1,1)) = (t)⊕ (st)⊕ (1)⊕ (s) .

We see that none of these maps is surjective in degree (1, 0) and hence if we pick
the geometric point in Theorem 5.4 to be the origin, then the criterion is fulfilled
for λ = (1, 0).
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Contribution to Paper B, C, and D

Let us refer to the author of this thesis as A. Papers B, C, and D of this thesis are
joint with Magnus Carlson.

A’s contribution to Paper B and Paper C can be found in all aspects of the
papers. From laying the foundational theoretical framework to carrying out tech-
nical computations. To give a few concrete examples: finding formulas for the
cohomology groups in the presens of real embeddings, programming examples to
gain intuition, computing the cup product formula for punctured arithmetic curves,
which was expected both by A and Carlson to have a certain form.

A’s contribution to Paper D can be found in all aspects of the paper. From
laying the foundational theoretical framework to carrying out technical computa-
tions. To give a few concrete examples: Finding small enough resolutions to be
able to find formulas for the Massey products and working out maps between all
resolutions. Computing the general formula for the Massey product. Writing a
program in C using the library PARI to compute Massey products and Zassenhaus
matrices. Realizing through programming that the Massey product reduced to a
non-connected massey product when two of the elements are equal. This resulted in
a program which was extremely much faster. Writing down a much simpler formula
for the non-connected case to be used in our computations.
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