

Degree Project in Computer Engineering

First Cycle, 15 credits

Factors Behind Successful

Software-as-a-Service Integrations

A Case Study of a SaaS Integration at Scania

WILLIAM AXBRINK

Stockholm, Sweden 2022

This page has been intentionally left blank

ii

Abstract
The topic of this thesis is to evaluate Software-as-a-Service (SaaS) integrations in
order to create a set of guidelines to help ease the integration of SaaS systems into
internal in-house developed systems. It was achieved by performing a case study
on a successful SaaS integration to locate relevant success factors to incorporate
into upcoming SaaS integrations.

The primary findings included a focus on the usage of standard solutions, ex-
perienced cooperation from the SaaS contractor and tactical usage of technical
debt that extends the whole life cycle. While there are many success factors that
aided to create a successful integration, there are still drawbacks to certain tech-
niques that will have to be decided by the specific integrations requirements if the
trade-off is worth it.

There were other success factors that weighted in but was not crucial to the
success, and certain factors that should be treated with caution due to the harmful
effect it might have upon the project.

Using the factors found in the case study, a set of guidelines with a focus on
the processes and work methodology were created to ease future SaaS integrations
for organizations and institutions.

Keywords

SaaS, Integrations, Implementation, Factors, Key Components, API, Contractors

iii

This page has been intentionally left blank

iv

Sammanfattning
Ämnet för detta arbete är att utvärdera Software-as-a-Service-integrationer (SaaS)
för att kunna skapa en uppsättning av riktlinjer för att underlätta framtida SaaS-
integrationer till internt utvecklade system. Detta uppnåddes genom att utföra
en fallstudie på en framgångsrik SaaS-integration för att kunna lära sig vilka rele-
vanta framgångsfaktorer förekom och kan användas i generalla SaaS-integrationer.

De främsta resultaten inkluderade ett fokus på att använda standardlösningar,
erfarna SaaS-leverantörer som underlättar implementering samt ett taktiskt användande
av teknisk skuld för att möta deadlines och funktionella krav.

Även om det finns flera framgångsfaktorer som hjälpt till att skapa en framgångsrik
integration så har även vissa av dessa faktorer nackdelar med vissa tekniska egen-
skaper, där prioriteringarna i projektet måste besluta ifall nyttjande av dessa fak-
torer är värt konsekvenserna.

Det fanns även andra framgångsfaktorer som vägde in men som inte var avgörande
för framgången och vissa motgångsfaktorer som bör undvikas på grund av de neg-
ativa effekter som kan förekomma.

Med hjälp av faktorerna som funnits i fallstudien skapades en uppsättning
av riktlinjer med fokus på processen och arbetsmetodiken i syfte att underlätta
framtida SaaS-integrationer för organisationer och institutioner.

Nyckelord
SaaS, Integrationer, Implementering, Faktorer, Nyckelkomponenter, API, Lever-
antörer

v

This page has been intentionally left blank

vi

Acknowledgements
I want to express my gratitude towards Scania for this amazing opportunity and
thank Karin Aldén for being a great industrial supervisor and Richard Fahlström
for enabling this opportunity. I would also like to thank everyone at Scania and
Mercur that volunteered their time for interviews about your great work.

I would also like to thank my academic supervisor Mira Kajko-Mattson for the
guidance and engagement throughout the process and thank my examiner Johan
Montelius.

vii

This page has been intentionally left blank

viii

Contents

1 Introduction 1
1.1 Background . 2
1.2 Problem . 2
1.3 Research Question . 3
1.4 Purpose . 3
1.5 Goals . 3
1.6 Research Method . 3
1.7 Commissioned Work . 4
1.8 Target Audience . 4
1.9 Scope and Limitations . 5
1.10 Benefits, Ethics and Sustainability 5
1.11 Thesis Structure . 6

2 Technological Background 7
2.1 As-a-Service . 7
2.2 API . 9
2.3 HTTP . 10
2.4 REST . 10
2.5 FTP . 10
2.6 Technical Debt . 10
2.7 Bus Factor . 11
2.8 Big Data . 11
2.9 Data Lake . 11
2.10 Data Warehouse . 12

3 Organizational Background 13
3.1 Scania . 13
3.2 Mercur . 13

ix

3.3 Viola . 14
3.4 Organizational Roles . 15

4 Research Methodology 17
4.1 Research Strategy . 17
4.2 Qualitative Research Method . 18
4.3 Research Phases . 19
4.4 Research Instruments . 24
4.5 Sampling Method . 25
4.6 Validity . 25
4.7 Ethical Requirements . 27
4.8 Evaluation Criteria . 28

5 Factors Affecting the SaaS Integration 29
5.1 Standard Software Solutions . 30
5.2 Cooperation from Contractors 31
5.3 Functional and Non-Functional Requirements 31
5.4 Motivated Team . 32
5.5 Type of Integration . 33
5.6 Communication and Collaboration 34
5.7 Planned Technical Debt . 35
5.8 Bus Factor . 35
5.9 Reliance on the Contractor . 36

6 SaaS Integration Guidelines 39

7 Discussion and Analysis 43
7.1 Context Surrounding the Factors 43
7.2 SaaS Integration Guidelines . 45
7.3 Evaluation . 47
7.4 Validity Threats . 47

8 Conclusion and Future Work 51
8.1 Conclusion . 52
8.2 Future Work . 53

x

List of Figures

2.1 A comparison of the different as-a-Service formats 8

3.1 An overview of Viola . 14

4.1 An overview of the Qualitative Research Strategy 18
4.2 An overview of the Research Phases 20

xi

This page has been intentionally left blank

xii

List of acronyms and abbreviations
Some commonly used acronyms and abbreviations are listed below. For further
explanation behind the technical meaning, see Chapter 2.

• SaaS - Software as a Service

• PaaS - Platform as a Service

• IaaS - Infrastructure as a Service

• API - Application Protocol Interface

• AWS - Amazon Web Services

• REST - Representational State Transfer

• HTTP - Hypertext Transfer Protocol

• FTP - File Transfer Protocol

• DevOps - Development and Operations

xiii

This page has been intentionally left blank

xiv

Chapter 1

Introduction

It is a common trend that companies are going online and using different new
technical solutions to mature work areas to improve efficiency (Beer and Mulder,
2020; Mićić, 2017). These technical solutions can either be developed in-house at
the company or bought from another company specializing in the specific niche
area with the needed solutions (Haider et al., 2016). In the case of the company
choosing to have an in-house developed system, they would need a development
team to develop the core business product. Systems are however often complex
and have a further need for other services in order to function.

Companies with these in-house developed systems might therefore wish to
outsource the operations and administrations of the aforementioned services to
subcontractors to ensure safe maintenance and focus on the core business (Asa-
tiani et al., 2019). This way, the subcontractor can focus on the development and
maintenance of the software that performs certain specialized functions and sell
the solution in form of a service. These Software-as-a-Service systems then be-
comes the product and saves the clients from reinventing the wheel, and they only
have to integrate the SaaS into their in-house developed system (Wulf et al., 2021).

Contractors that manage the SaaS, IaaS and PaaS systems often benefit from
being able to sell the services to multiple clients using multitenancy (Pallavi and
Jayarekha, 2014), which puts great importance on the SaaS being easily inte-
grated into the clients systems and the clients systems being flexible enough to
integrate other services. For if the systems does not integrate well, it could affect
performance, technical debt, flexibility and usage depending on the quality of the
integration (Armstrong, 2016).

What determines how well these services can be integrated into a companies
existing system? In this case study, a previously finished integration performed

1

by established software engineers is evaluated and discussed to draw conclusions
regarding what attributes are key factors for a successful integration in order to
create set of guidelines for integrating SaaS systems.

1.1 Background
It is not an easy task to integrate a SaaS into a system, and especially not one
that can easily be generalized (Wonil et al., 2012). The SaaS and the application
might work entirely different and have to either be reworked, develop middle-ware
or solve the mismatch some other way, which can be substantially more difficult
for more complex systems and SaaS handling more complex data or information.
Other difficulties that exist are also the required technical expertise in handling
communications between the systems, the domain knowledge required in handling
the data and verifying the correctness of the work.

Since software engineering is still a very immature field compared to many
other engineering areas (Sommerville, 2011; Wang, 2022), there is still a need
for standardization to improve different aspects of SaaS applications (Walraven,
2014). Therefore, it is especially important in working towards highlighting the
key factors behind prosperous integrations of SaaS systems to pave the way for
software engineering maturation.

1.2 Problem
The problem attended to in this thesis is the lack of sufficient industrial guidelines
based on key factors affecting SaaS integrations. This affects the development and
integration with the negative aspects of the different difficulties mentioned in the
Background Section 1.1.

2

1.3 Research Question
To summarize the previous problem statement, the research question has been
structured as following:

What are the primary key factors behind a successful integration of a
SaaS system into an in-house developed system?

The thesis is based on the premise of the research question in regards to collecting
data and the research process.

1.4 Purpose
The purpose of this report is to analyze and evaluate a previously finished inte-
gration process to learn from their success and mistakes. Evaluation and deter-
mination of key factors for a successful integration will be suggested as a set of
guidelines to provide insight in how to successfully integrate other SaaS systems
in the future.

1.5 Goals
The goals of this report is to provide software engineers and developers the means
of successfully integrating a SaaS system and limit any technical debt, improve
performance and maintain a secure application. Another goal is to advance the
research and help mature the field of software engineering.

1.6 Research Method
The research question of this thesis is focused on the key factors of a success-
ful SaaS integration and what guidelines should be followed. Since the thesis is
based on an previously finished integration performed by established software en-
gineers, and requires deep knowledge of the domain, process and methodology, a
qualitative and explorative research method is used to research the issues using a
inductive research approach.

Research is conducted by gathering information from interviews with the staff
related to the project and from previous research regarding system integration,
SaaS, API and other related areas.

3

The information is gathered and analyzed with content analysis methods in
order to identify common themes found related to the positive circumstances and
negative circumstances. Further details of the research method are found in Chap-
ter 4.

1.7 Commissioned Work
The work is commissioned by Scania, a Swedish market-leading company which
specializes in trucks and other large vehicles. Scania has a complex ordering
and manufacturing process due to their modular trucks being individualized for
each customer. As part of their system, they need to estimate a forecast of the
orders expected to be received during the upcoming year in order to know what
and how many of each component every type of truck might need that will be
manufactured.

Due to the complexity of estimating the forecast, a SaaS specializing in this
exact scenario was integrated to their system during a two year period in order to
utilize the previous and current collected data related to orders and other factors
to estimate a forecast.

Due to the partial success of the integration, Scania has commissioned the
author to evaluate and determine with an outsider perspective what factors deter-
mined the success in order for Scania to learn from their success and mistakes.

1.8 Target Audience
This thesis is targeted towards research, academia and industry, with a focus to-
wards the software engineering and integration area. The industry portion of the
audience will be any software developers, engineers, product owners, and other
professional roles related to the software engineering field.

The usage of this thesis for the targeted audience is primarily in providing a
set of guidelines to ease any future SaaS integrations and help plan for acquiring
SaaS systems.

4

1.9 Scope and Limitations
Since the integration and implementation is extensive, a focus will be put on the
processes and technical details and relevant factors found through interviews. Rel-
evant technical details regarding architecture, performance, data handling and de-
velopment will be used to evaluate the integration combined with the success of
the implementation process.

The report does not discuss any technical frameworks and specific technical
solutions heavily and does not put any large focus on circumstances related to
finance, economics and staffing questions. However, should a factor touch upon
these topics, it will not be limited from discussion.

1.10 Benefits, Ethics and Sustainability
The results produced by this thesis will hopefully be beneficial for software engi-
neers and developers in future integrations as a guideline in successfully perform-
ing integrations. It should also prove useful for other companies, organizations
and individuals in similar positions as the host company when integrating SaaS
solutions to their own system. The results could also be refereed to in academia
to illustrate key factors in software architecture and integrations.

Any sensitive information or data related to Scania will be treated ethically
and redacted if necessary. All interviewees has granted consent in performing the
interview and recording of the interview and the interviewees is granted the option
to remain anonymous.

The thesis holds an unbiased stance towards other organizations and draws no
comparisons between different SaaS solutions or different companies. The result
and evaluation will be focused on methodology and practices unrelated to any
specific organization or product. The specific implementation, rights and wrongs,
and other aspects will not be discussed in detail in the report in order to not let the
implementation practice color the company in good or bad light.

Due to the software engineering field having an obscure relation to sustainabil-
ity questions, there is difficulty to directly link the work towards good sustainabil-
ity practices. However, a few perspectives on the works impact on sustainability
would be lowering the bar of implementing SaaS systems directly concerned with
sustainability, such as energy consumption focused SaaS solutions.

5

1.11 Thesis Structure
The thesis is structured as following:

Chapter 2: Technological Background - The technological background re-
quired to understand and follow the thesis will be presented here.

Chapter 3: Organizational Background - The organizational background
required to understand and follow the thesis will be presented here.

Chapter 4: Research Methodology - The method used to procure this thesis
will be presented here. This chapter also features discussion of validity,
threats, ethical requirements, evaluation criteria and the choice of method
with a description of all phases.

Chapter 5: Factors Affecting the SaaS Integration - The findings and re-
sults of the case study will be presented here. This chapter will also draw
connections between findings and previous literature.

Chapter 6: SaaS Integration Guidelines - The guidelines and final results
of the thesis will be presented in this chapter based on Chapter 5.

Chapter 7: Discussion and Analysis - An analysis and discussion of the
results and thesis will be presented here with a discussion of the validity
and evaluation of the results.

Chapter 8: Conclusion and Future Work - A conclusion and answer to the
research question will be presented here together with a discussion regard-
ing future work.

6

Chapter 2

Technological Background

In this chapter the technical terminology and technologies are explained in order
to better understand the thesis. The first Section 2.1 describes the As-a-service
concept, followed by explaining what a SaaS, PaaS and IaaS is in order for the
reader to understand the context of the thesis better. The Sections 2.2, 2.3, 2.4
and 2.5 discusses the different technical aspects of API and the different protocols
that are commonly used within software systems to communicate. The Sections
2.6 and 2.7 describes the more organizational terminology of Technical Debt and
the Bus Factor to get a better understanding of the result chapter content. The
Sections 2.8, 2.9 and 2.10 discusses data related topics such as Big Data, Data
Lake and Data Warehouse to give a better understanding of the integration and
used technologies.

2.1 As-a-Service
This section describes the concept of As-a-Service and the Sections 2.1.1, 2.1.2
and 2.1.3 describe each specific type of As-a-service in the order of SaaS, PaaS
and then IaaS.

As-a-Service is a general term for services provided by a third party that op-
erates with cloud computing. A common usage for these is to outsource the in-
frastructure responsibility, development and maintenance in order to focus on the
core business (RedHat, 2020).

7

For each of the three As-a-Service abstractions, there are different amount of
services and infrastructure included as can be seen in Figure 2.1.

Figure 2.1: A comparison of the different as-a-Service formats

2.1.1 SaaS
Software-as-a-Service (SaaS) is a comprehensive form of cloud computing ser-
vices or cloud application services that delivers a whole software application often
via a web browser and is managed by an external provider (RedHat, 2020).

Some benefits with SaaS is that the companies often only pay for the func-
tions they use and that it scales according to usage. There is also often no need
to install specific client software since SaaS applications are often run via an in-

8

ternet browser (Microsoft, n.d.-d). Common examples of SaaS applications used
everyday are e-mail applications and Google Drive.

2.1.2 PaaS
Platform-as-a-Service (PaaS) is a step lower on the amount of responsibility out-
sourced. While the services and functions are still provided by cloud computing
services, the application and data is to be provided by the in-house system which
utilize the functions for features (RedHat, 2020).

Some benefits that PaaS have is the cut of development time since the platform
supplies workflow services security and other features. There is also an ease of
developing for multiple platforms and support for the application lifecycle (Mi-
crosoft, n.d.-c). A common example of PaaS is Heroku which provides containers
for developed applications and hosts it on their infrastructure.

2.1.3 IaaS
Infrastructure-as-a-Service (IaaS) is the closest to on-site development where only
the storage, servers networking and virtualization are included. The client is there-
fore responsible for all data, applications runtimes but will get all infrastructure
from the provider (RedHat, 2020).

Some benefits from IaaS is the test and development process capabilities and
scaling of the infrastructure depending on the company needs (Microsoft, n.d.-
b). A common example of IaaS are public cloud providers such as Amazon Web
Services (AWS) and Google Cloud.

2.2 API
Application Protocol Interface (API) is a way for software to communicate be-
tween each other. An application can for example send data to a server, which
retrieves the data, interprets it and handles the request before responding to the
application. Most APIs adhere to standards such as HTTP or REST (Mulesoft,
n.d.).

Some benefits from APIs are the improved collaboration, ease of innovation,
data monetization and added security which would be difficult to achieve without
the use of API (IBM, 2020).

9

2.3 HTTP
HyperText Transfer Protocol (HTTP) is a protocol for exchanging data on the web
with a client-server type of protocol. The communication occurs with individual
messages between client and servers, with the names as requests and responses
(Mozilla, n.d.).

2.4 REST
Representational State Transfer (REST) is an architectural style that is based
on sending representations of data between applications. It communicates us-
ing the HTML protocol and responds using the HTML methods GET, POST and
DELETE in order to provide a representation of the state (Sommerville, 2011).

A benefit of REST is that it scales well since it is stateless. The structure is
based on HTTP and sends the requests using that protocol, which fits well with
APIs (Fielding, 2000).

2.5 FTP
File Transfer Protocol (FTP) is a protocol for transmitting files between servers,
clients and computers in general. It is one of the older protocols for transferring
data, and is commonly used for access and data loading (Kerner and Burke, 2021).

2.6 Technical Debt
Technical Debt describes the the debt that incurs when a software engineering de-
cision in a software project occurs that benefit short term but increases complexity
in the long term due to the need of refactoring. There are different types of tech-
nical debt; strategic planned technical debt that is intentionally implemented and
non-strategic unplanned technical debt that is caused by mistakes or implemented
unknowingly due to poor planning (McConnell, 2008).

Planned technical debt can for example be used to simulate functionality not
yet implemented, with a plan to refactor it when the functionality exists. Un-
planned technical debt can happen when creating shortcuts instead of using proper
conventions for software development and other occasions where mistakes happen
unknowingly.

10

2.7 Bus Factor
The bus factor is a way to identify the resilience of a software project in case any
developers or engineers would disappear from the project. As the name suggests,
it states the minimal number of staff to be hit by a bus in order for a project to be
interrupted.

Improving documentation and knowledge transfer between the team helps to
prevent loss of knowledge in case developers disappear from the project. Even if
the code can be deciphered in what it does, reading and maintaining code written
by other developers can be a resource-intensive task (Jabrayilzade et al., 2022).

2.8 Big Data
Big Data are data sets that are considerably larger and more complex often coming
from new sources, which then needs to be handled differently due to the volume
of data compared to the traditional data sets associated with Relational Databases.

The focus is to store all data generated by all available sources, often integrat-
ing multiple sources of data to combine it. A few benefits with Big Data is that
the systems get a wider picture thanks to more information available which in turn
gives more confidence in the data since you get a more complete answer (Oracle,
n.d.).

2.9 Data Lake
Data Lakes is an alternative as a storage repository where the data can be un-
structured, raw and in a native format until it is used for analytical applications.
The data lakes stores everything in a flat architecture, as compared to the standard
way of storing in a hierarchical way with tables and dimensions (Stedman and
Lutkevich, 2021).

The Data Lake is often used to store ”Big Data” on storage repositories, which
also means that all the data is stored and not just a curated version of the data. This
type of repository is easily scalable, accessible and have a potential to be very
large. Some other benefits are that it is lower costs of storage, it is very powerful
and easy to use (Krause, 2015; Sundaram and Meena, 2016).

11

2.10 Data Warehouse
Data Warehouses are an environment where strategic information can be stored,
and compared to Data Lakes type of storage is more focused on curated data,
integrated data and subject-oriented data (Santoso and Yulia, 2017).

The data warehouses consists of a few principles with prepared data, consis-
tent data and quality data. The data should be correct, for the right person and at
the right time (Senior Data Solution Architect, personal communication, March
24, 2022).

12

Chapter 3

Organizational Background

This chapter gives some background information regarding the different organiza-
tions relevant to this thesis and organization-specific terms and names to be used.
The first two Sections, 3.1 and 3.2, describes the two involved organizations re-
lated to the integration in order to give context for the reader. The Section 3.3
then describes the context behind the integration and gives a brief overview of the
process. The final Section 3.4 describes the different roles relevant to the project
and thesis.

3.1 Scania
Scania is a provider of transport solutions which includes trucks and buses. Sca-
nia also offers vehicle financing, insurance and rental services to their customers.
Scania also manufactures industrial and marine engines (Scania, n.d.). The work
performed in this case study is performed at this organization and is commissioned
by their IT department.

3.2 Mercur
Mercur is a company specializing in delivering and implementing solutions for
business management and decision support with their in-house developed system
Mercur Business Control, a SaaS for supporting organizations with a more effec-
tive planning- and business analysis (Mercur, n.d.). Mercur is the contractor of
the SaaS used in the integration that this case study evaluates.

13

3.3 Viola
The integration between Scania’s system and Mercur’s SaaS goes by the code
name Viola, and will be referred to as such. The SaaS is an economical budget
system and is used by Scania to generate forecasts of orders based on the data from
Scania. Scania’s system refers to the internal IT environment which combines
the usage of different data storage solutions such as the Data Lake and Database
Warehouse and respective handling.

The implementation of this SaaS replaced the previously manual task of es-
timating forecasts related to orders, and the implementation was primarily fo-
cused on the functional requirements without any specific demands on the non-
functional requirements.

Figure 3.1: An overview of Viola
Source: Scania, 2022 (Edited for confidentiality and clarification)

The SaaS is connected to Scania primarily by a VPN tunnel as a cloud solution
that uses FTP to transfer information from Scania’s Data Lake. The Data Lake
contains a broad variety of Scania’s data, but the focus is on the relevant data for
the reports which are sent in a bulk to the SaaS multiple times a day. The relevant
data is the Big Data related to each Scania owned- and independent distributor’s
own sales forecast expectations, historical sales data and other factors that are

14

applicable to the forecasts and stored in the Data Lake.
Mercur’s SaaS then uses the provided data to process it and to send back the

newly curated data to the Data Lake and also transported to Scania’s Curated
Database Warehouse. The Data Warehouse can then provide the curated data to
Data & Analytics Visualization Tools such as QlikView, BSMART and Cognos.

The result of this process are reports and dashboards provided to the Sales
& Marketing sections in order to plan future shipments, material orders and other
Sales & Marketing decisions such as volume plans and management reports (Main-
tenance Manager et al., personal communication, March 2022).

3.4 Organizational Roles
This section describes the different roles and titles in order to give context to
the involved interviewee’s responsibilities. The first Section 3.4.1 describes what
DevOps is to highlight the kind of work the interviewed DevOps Technician per-
forms. The Section 3.4.2 describes Maintenance of software in order to give con-
text what the interviewed Maintenance Manager does. The same structure is fol-
lowed for the Sections 3.4.3, 3.4.4, 3.4.5, 3.4.6 and 3.4.7 for Product Owner,
Project Management, Portfolio Management, Data Solution Architect and the
Consultant Team to give context behind each role part of the thesis data collection.

3.4.1 DevOps
Development and Operations (DevOps) is a method that combines software de-
velopment with the IT operations in order to combine the software environment
directly to the development and shorten the development life cycle. It works well
with providing a continuous integration and a continuous delivery (Microsoft,
n.d.-a).

3.4.2 Maintenance
Maintenance is one of the major phases of the software life cycle, where the main
development is finished and the software is usable for its purposes but there is
still a need to maintain the application in order for it to not deprecate. This phase
covers the software from installation to being phased out (Kajko-Mattsson, 2020).

15

3.4.3 Product Owner
The Product Owner is responsible for preparing and participating in the iteration
meetings where they manage the work backlog, planning, execution and works on
solutions for the team (Scaled Agile, 2021).

3.4.4 Project Management
Project Management is handling the processes, skills, methods and knowledge to
complete different objectives related to the project. This includes managing peo-
ple, certain technology, and handling business requirements and financial topics
(APM, n.d.-b).

3.4.5 Portfolio Management
Portfolio Management is handling the organizations programmes and projects in
order to achieve the business objectives and sustain the capacity to deliver. The
handling consists of selecting, prioritising and controlling the different objectives
(APM, n.d.-a).

3.4.6 Data Solution Architect
A data solution architect works in finding solutions as how to organize enterprise
data management frameworks and create the architecture for the different existing
business needs. They can work with defining the standards, principles, architec-
ture and different data flows within the organization (Olavsrud, 2021).

16

Chapter 4

Research Methodology

This chapter describes the research methodology that this thesis has its basis in.
The first Section 4.1 describes the choice of strategy, the second Section 4.2 mo-
tivates the choices of strategies and describes the method behind it. The third
Section 4.3 describes the different phases of the thesis with regards to the meth-
ods. The fourth Section 4.4 describes the different data collection methods. The
fifth Section 4.5 describes how samples have been found for data collections. The
three final Sections, 4.6, 4.7 and 4.8, discusses validity of the method, the different
ethical requirements and the criteria which the results will be evaluated against.

4.1 Research Strategy
The chosen strategy for this thesis is a case study based strategy. Using the case
study strategy is a great choice when it comes to investigating contemporary phe-
nomenons where boundaries between the phenomenon and the surrounding con-
text are not apparent and multiple sources of evidence are to be used (Schell,
1992).

It is also an explorative option of research strategy which helps with an induc-
tive research approach, which is what the research question and context of this
thesis requires.

17

Figure 4.1: An overview of the Qualitative Research Strategy

4.2 Qualitative Research Method
Since integrations are a very wide topic with differing views and circumstances
behind each one, a qualitative approach was chosen since they are better at answer-
ing questions about experiences, meanings and the different perspectives from dif-
ferent contributors than the opposite quantitative research method (Hammarberg
et al., 2016).

A quantitative approach often involves the usage of surveys to gather a larger
amount of statistics surrounding the research topic, which therefore comes with
the limitation of requiring a larger quantity of responses which is difficult to
achieve due to the size of the team at Scania being limited.

A common data collection method associated with qualitative research meth-
ods are conducting in-depth interviews and collecting data through previous liter-
ature. Using a interview based approach have given domain-specific knowledge

18

and a breadth of knowledge surrounding the integration which helps understand
the context and influences behind circumstances related to the integration.

Since the research question was to find out what factors helped achieve the
success behind the integration, the research can be labeled as inductive and explo-
rative since the data collection and interviews are used to gain information to be
used to attempt to generalize statements based on the specific observations gained
through data collection (Bryman, 2016).

The performed interviews followed a Semi-structured Interview format, in
which the questions were open-ended based on the specific topic as a basis (Bry-
man, 2016). Instead of following a strict interview schedule, the interview at-
tempted to follow a natural flow in order to not hinder the interviewee from ex-
panding to other related areas that could be of interest. The added flexibility from
being based partially on the previous responses allowed more in-depth answers
and knowledge to be shared too. This especially helps generating qualitative data
since the respondent can go into more depth and chose their own words and give
the author a better understanding of the situation (McLeod, 2014).

Since there was the possibility that some interviews would not follow a natural
flow of conversation, there was still a comprehensive interview guide to fall back
upon in case the interview started to falter in flow. See Appendix 8.2.

4.3 Research Phases
In this section, the different research phases of the thesis are presented. The phases
correspond to the Figure 4.2. The phases are (1) Prestudy, (2) Interview Phase,
(3) Exploration of Preliminary Factors, (4) Evaluation and Improvements and
(5) Creation of the Final Guidelines. They are presented in Sections 4.3.1-4.3.5
respectively.

19

Figure 4.2: An overview of the Research Phases

4.3.1 Prestudy
The first step of the thesis was to conduct a prestudy in which the goal was to get
an overview of the integration, the host company, and the SaaS company. There
was also a goal to learn more of the current state of art related to general software
integrations in order to aid the interview process. The first section describes the
literature study performed and the second section describes the Study of State of
Practice performed at Scania.

Literature Study

A brief literature study was conducted related to SaaS, PaaS, IaaS, and integration
standardization in order to learn more about the state of art and details regarding
each technology. There was a similar conference paper related to success factors
performed 2017 by Ilyas and Khan (Ilyas and Khan, 2017), but conducted using a
quantitative method as opposed to this thesis’s qualitative method.

The literature were obtained from academic databases by searching for schol-
arly articles combined with the keyword related to the topic being researched.
These academic databases consisted primarily of Google Scholar, DIVA and Re-

20

searchGate. Literature included journal articles, conference papers, thesis papers,
books, research papers, framework documentation and scientific articles. Exam-
ples of the search phrases included the combination of the different topics being
researched and keywords such as software engineering, factors, SaaS and integra-
tion. The specific applied criteria for the literature was that the literature must be
published by a reliable publisher, relevant to the research topic and have a reliable
methodology included.

Study of State of Practice

Scania provided assistance in learning the state of practice performed within their
industry and company. The process of learning the overview and details of the
integration and surrounding organizations was conducted by meetings with the
Group Manager and Portfolio Manager. Since the integration was very data man-
agement focused, a Data Solution Architect gave a brief introduction to Scania’s
data lake and data warehouse handling, with explanations of their State of Prac-
tice related to data handling. The usage of modularisation was also relevant to the
study of Scania’s State of Practice related to software and was studied with the
help of the Portfolio Manager and internal documentation from Scania.

4.3.2 Data Collection Phase
The data collection phase is split up into two parts, the prefatory work phase where
preparations of defining scope, setting criteria and creating an interview guide are
done, and the main interview phase where the interviews are conducted and the
data is collected.

Prefatory Work

The first step of the data collection phase and prefatory work was to define the
scope of the interviews, which was focused on retrieving background information
of the participant, the system, the SaaS and the integration and also focus on open-
ended questions in order to be able to reflect deeper on the subject for a qualitative,
explorative and inductive approach.

The second step of the prefatory work was to define the respondent criteria for
the interviews, which was that the respondent should be an experienced employee
at Scania and have direct connection and experience with the Viola integration.
Other respondents not fully meeting the criteria but still proving to be valuable for

21

the research by having experience with other SaaS integrations was selected for
questionnaire’s instead.

The third step of the prefatory work was to create an interview guide based on
the findings from the prestudy. The interview guide, see Appendix 8.2, worked as
a general guide not specified for any specific role with open-ended questions. The
interview guide starts out with questions about the interviewee, partially to assess
the experience possessed in order to help quantify the validity of the responses.
The part is to let the interviewee discuss their view of the system, then their view
of the SaaS and finally discuss the integration itself and their opinions of it.

Interview Work

The interviews were conducted in a semi-structured interview format over Teams
one on one. This allowed the interviewee to answer the questions in an open man-
ner and allow the author to continue the interview based on the previous responses
and therefore receive a wider range of information and also a more narrow detailed
information.

There was also a few instances where the potential interviewee’s had relevant
experience with the area, but not specific to the integration. These instances al-
lowed for a questionnaire special tailored for their specific experience based on the
interview guide to be mailed to them. The questions in the questionnaire followed
an open-ended structure for a qualitative research approach.

The thesis was based on a case study at Scania, and therefore the choice of
interviewees was the staff and employees that were involved with the integration
or surrounding areas. Relevant research participants were identified with the help
of the author’s industrial supervisor.

The data from the interviews were gathered using a voice recording service
with the interviewee’s consent and also written down as notes. The data collected
from the mail conversations and questionnaires was saved to an external folder
together with the interview notes.

22

4.3.3 Exploration of Preliminary Factors
In order to further work towards generating a set of guidelines, the data was ana-
lyzed and interpreted in order to find what factors was relevant in the process of
integrating a SaaS system. This was done by going through a data analysis phase
to analyse the provided data from the interviews to find common themes and pat-
terns, and then a data interpretation phase to select the relevant factors from the
themes.

Data Analysis

After conducting all the relevant interviews, the next step was to interpret the notes
and data gathered. In this thesis case, it consisted of identifying what circum-
stances are discussed and grouping it as different factors. This process is called
indexing or coding the data and is part of a content analysis process where the dif-
ferent variables, which in this case are the circumstances, are recorded (Bryman,
2016).

By going further with the new generated data, the next step of the qualitative
data analysis was to thematically analyze it in order to find out what themes are re-
occurring between the interviewee’s and also explore similarities and differences
between the different views. Another point of analyzing was the missing data;
data which the interviewee did not have or have access to.

The structure of coding it consisted of first summing up the general circum-
stance, followed by a comment with an example of a scenario at Scania and then
general benefits and drawbacks to the circumstance and finally which respondent
was used as the source.

Data Interpretation

Based on the found themes from the data, a set of factors relevant to the success of
the SaaS integration could be selected and further studied. This process included
further studying the data provided from the interviews to find what benefits and
drawbacks each factor had, and interpret the findings in order to be able to later
create a set of guidelines. A continued literature study was performed in order
to verify and strengthen the found factors with other research papers specified for
each factor.

23

4.3.4 Evaluation and Improvements
Since the method is inductive and explorative, it was difficult to structure up any
preconceived idea of the results and therefore also the structure of the guidelines
and goals since that would border towards being deductive instead. Having a
preliminary factors created gave a better sense of purpose and also helped create
a better dialogue with the industrial supervisor to help towards making general
improvements to the thesis and evaluate the current state of work. This phase also
allowed for a continued literature study of the specific factors found in order to
better understand the specific circumstances.

4.3.5 Creation of Final Guidelines
The final part of the process was to write up the findings and make it clear that the
factors have implications related to the research question and motivate any con-
clusions drawn regarding the findings. The findings in this thesis are the common
themes and factors that were collected through the interview process and refined
with the data interpretation.

The findings was further refined and summarized as a set of guidelines and
evaluated against using the evaluation criteria described in Section 4.8 and general
constructive feedback received.

4.4 Research Instruments
The research instruments used to collect data have been through interviews per-
formed over online video calls. The interviews followed a semi-structured inter-
view using the interview guide as aid as seen in Appendix A.

The calls were recorded using a voice recording application on the author’s
phone, and documented using a web-based document application while writing
notes and summarized using spreadsheets to structure up the data.

Another research instrument was the used of personalized questionnaire for
respondents with relevant knowledge of the background area but not involved with
the integration. This was communicated over mail exchange.

No surveys or other quantitative research methods were used, partially due
to the limited number of involved participants not giving a quantitative approach
enough validity. There was also no involvement of company documentation of the
technical details due to policy issues.

24

4.5 Sampling Method
The sampling choice was Snowball Sampling, where the initial contact was with
the Portfolio Manager and the rest of the respondents escalated from there (Bry-
man, 2016). The choice of respondents were based on their involvement with
the project. Respondents more involved with the specific integration are therefore
granted more credibility regarding their input from the interviews. There was no
bias towards different respondents roles in the project, it was beneficial to grant a
wider perspective of the integration and view the big picture.

There was also a few respondents with no specific knowledge about the inte-
gration, but still had relevant experience with the subject and was therefore also
selected for personalized questionnaires. In total, there were four respondents in-
terviewed, four respondents selected for questionnaires and continuous dialogue
with two more respondents.

4.6 Validity
There are multiple factors to assess the validity of a qualitative study: credibil-
ity, dependability, transferability and conformability are factors used to test the
strengths and appropriateness of the used research method.

The first Section 4.6.1 discusses credibility, the second Section 4.6.2 discusses
dependability, the third Section 4.6.3 discusses transferability and the final Section
4.6.4 discusses conformability of the method.

4.6.1 Credibility
Credibility deals with the trustworthiness of the guidelines and choice of method.
Since all the data were collected using interviews and questionnaires, the credi-
bility behind the work was directly related to the respondents (Bryman, 2016).

All the respondents are to be considered experienced, and also have experi-
enced the integration if they were interviewed. Any contradictions of data from
the different sources were discussed and analyzed with whomever was the more
experienced within the specific issue. The choice of method was decided with
credibility in mind to ensure a grounded thesis.

Threats to the credibility of the data that was taken into consideration was that
certain respondents with a specific background might have less experience of other
aspects of the integration and therefore accidentally spread wrong information and

25

also the potential issue of extenuating information due to potential damage of rep-
utation. The threat of wrongful information was handled by verifying information
with continuous dialogue with the respondents having the relevant experience to
ensure that misinformation is handled properly.

4.6.2 Dependability
Dependability deals with the ability to repeat the research process in order to
reproduce the same result (Bryman, 2016). Compared to quantitative research
approaches, qualitative research approaches generally suffers from being able to
repeat the process due to the context of the situation of interviews and the case
study in question.

The threat against dependability would be lowered by performing multiple
case studies instead of just a single one in order to gain better and more general-
ized results, but due to time limitations that was not feasible other than for future
work.

4.6.3 Transferability
Transferability refers to the generalization of the findings, which in this case is
if the factors can be replicated with another type of SaaS integration (Bryman,
2016). The conclusions and findings of this thesis have been attempted to be gen-
eralized without going into too much depth with the specific scenario the case
study presented itself in. The threat of bad transferability was handled by collect-
ing data from a wide perspective of the SaaS integration.

By collecting data from sources outside of the project, the transferability was
also improved due to the increased non-niche knowledge which gives a better
generalization.

4.6.4 Conformability
Conformability refers to the ability for other researchers to be able to confirm the
results and show that the author has acted in good faith (Bryman, 2016). Threats
regarding this criteria are the confidentiality concerns of the integration details
and the respondents identifies. This threat is primarily dealt with by thoroughly
describing the process and highlighting any potential issues that might be relevant
towards the thesis credibility and conformability.

26

By attempting to be fully transparent and discussing the potential benefits and
drawbacks of the results, the potential conflict of interests and other confidentiality
issues, the work as a whole should have an increased conformability.

4.7 Ethical Requirements
Research often comes with ethical dilemmas and therefore must adhere to a set of
ethical guidelines. Qualitative research especially has importance when it comes
to ethical handling of information, consent and confidentiality which is discussed
in the Sections 4.7.1, 4.7.2 and 4.7.3.

4.7.1 Information Requirement
Information requirement refers to the responsibility of informing the respondents
of the research and the surrounding details. This was achieved by informing the
respondents upon contacting them for interviews, and also explained further in
contact and also answering any further questions from the respondents.

A threat against this requirement is the potential situation of a perceived coer-
cion due to responsibilities towards the organization, where the respondent might
have assumed this to be part of the general work requirements part of their em-
ployment.

4.7.2 Consent Requirement
Consent requirement refers to the respondents option to consent towards the in-
terview and being recorded. This was achieved by before officially starting any
interview, asking for consent before continuing. All consent was given verbally,
and not recorded due to the recording starting after given consent.

4.7.3 Confidentiality Requirement
Confidentiality requirement refers to the respondents option to remain anony-
mous. The decision to not name any of the interviewees was decided early, but to
give a sense of context regarding citations and other necessary needs when refer-
ring to any individual, they will be refereed to as their positions title. Since many
of their titles are organization specific, a generalized title will be used to give a
sense of general responsibility.

27

While there might be a chance to identify certain individuals by the few details
that might be included in the thesis, it will not be a threat towards confidentiality
wishes since no respondents expressed concerns regarding their anonymity. The
choice of anonymity of the respondents is also partially to keep the views unbiased
towards different identities.

4.8 Evaluation Criteria
The result of the thesis will be evaluated based on the two criteria usefulness and
relevancy. The first Section 4.8.1 describes the criteria usefulness and the second
Section 4.8.2 describes the criteria relevancy.

4.8.1 Usefulness
Since the planned outcome of this thesis is a set of guidelines, they will be eval-
uated based on their usefulness related to SaaS integrations. Due to time limita-
tions, this measurement will be speculative and subjective based on the author’s
and host companies perception of the usefulness.

4.8.2 Relevancy
Relevance refers to how relevant the results are to what should to be achieved in
the SaaS integration. It is partially connected to the usefulness criteria, but focuses
more on if the results are related to the core subject, rather than being valuable.

28

Chapter 5

Factors Affecting the SaaS
Integration

This chapter describes the result and findings from the data collection and discuss
potential benefits and drawbacks of utilizing the factor strategy. Each section
discusses the context, benefits, drawbacks and provides examples from the case
study.

The first Section 5.1 discusses the usage of standard software solutions, the
second Section 5.2 discusses the importance of cooperation from contractors, the
third Section 5.3 discusses the context behind functional and non-functional re-
quirements. The fourth Section 5.4 discusses the impact of having a motivated
team, the fifth Section 5.5 discusses the factor of differing types of integrations,
the sixth Section 5.6 discusses the importance of communication and collabora-
tion between teams and departments and the seventh Section 5.7 discusses the
usage of planned technical debt. The eight Section 5.8 discusses the importance
of a high bus factor and the final Section 5.9 discusses the factor of reliance on the
contractor.

29

5.1 Standard Software Solutions
Two out of four interview respondents, namely the Maintenance Manager and
the DevOps Technician, discussed the importance and implementation of Stan-
dard Software Solutions. With an experienced SaaS contractor, they were able to
provide a standard software solution as to how to integrate the systems.

Standard Software Solutions refer to the usage of a standard way to implement
and build systems, as opposed to custom implementations specializing in the spe-
cific scenario presented with the SaaS and overall task (Personal communication,
March 2022).

The used specific software solution are a standard within the host company,
however not necessarily within the industry as a whole since each organization
might have a different type of standard. The Maintenance Manager highlights the
usage of Standard Software Solutions comes with the benefit of having solution
that is easy to implement and therefore also goes faster. The rudimentary aspect
of the solution also benefits from the ease of maintenance and simplicity to repair
in case of errors. Further added regarding the ease of maintenance is the lower re-
quirement of experienced and educated staff for maintaining the application later
in the life cycle, which both saves the project money and also gives opportunities
for worse qualified candidates to break into the industry (Personal communica-
tion, March 2022; Sahu and Bhadury, 2017).

Another mentioned benefit of using Standard Software Solutions according to
the respondents, is that the SaaS contractor usually have previous experience of
integrating their services. By cooperating and allowing the contractor to work in
a similar fashion as their previous projects, they will have a more efficient time
working since they have done the work before and does not have to re-learn the
process in order to implement their work.

The drawbacks regarding using Standard Software Solutions are the techni-
cal limitations. Not specializing the solution after the systems and specifications
existing gives in general worse performance and have created other issues regard-
ing the implementation and functionality. An example in the implementation was
the use of time-based events over FTP instead of a more responsive system over
HTTP due to the limited standard software solution used in this project.

Thanks to the specific usages, functional and non-functional requirements of
this integration, the benefits outweighed the drawbacks since the system up time
and continuous provided support is not crucial to the organizational production.

30

5.2 Cooperation from Contractors
A common theme from the collected data was the importance of having an ex-
perienced SaaS contractor according to three out of four interview respondents,
namely the Maintenance Manager, the DevOps Technician and the Product Owner.
The SaaS contractor is a large part of the integration and work with the system
implementation, and any problem that might arise on their front is their responsi-
bility to solve. Especially since any problem on their front is out of the companies
reach to solve, which gives a dependency on having a collaborative and experi-
enced contractor to achieve a qualitative service (Personal communication, March
2022).

The cooperation might be consulting regarding architectural decisions or sim-
ply having a good support team to solve any operations issues that can arise with
the customer. Different contractors can offer different amount of aid and type of
help.

The benefits of the circumstance of having cooperation from the contractor is
that their previous experience will ease the implementation since they have done
similar work before. So having an experienced consultant from the contractor
can be very beneficial, and in case anything goes wrong operations wise, having
an experienced support team is also beneficial (Personal communication, March
2022; Kim et al., 2017).

The drawbacks of this circumstance is the heavy reliance on the contractor for
the work, and also the created dependency on external factors. Due to this being
an external factor, it is not always feasible to expect experienced cooperation from
the contractors.

An example of beneficial cooperation from the contractors was their decision
to adapt the the SaaS according to their customers needs and aid in the integration
(The Contractor Consultant Team, Personal communication, April 2022). To sum
it up, if the decision is between two similar SaaS products, it is a wise idea to let
the expected cooperation ability be a deciding factor.

5.3 Functional and Non-Functional Requirements
The ease of implementation heavily depends on what functional and non-functional
requirements is set on the project. While having a stricter requirements provides a
better product, it also creates more work which might become an over-engineered
product if it exceeds the realistic business requirements (Jayashetty et al., 2004).

31

Three out of four interview respondents, namely the Maintenance Manager,
Product Owner and Portfolio Manager, have provided insight regarding the func-
tional and non-functional requirements and the context behind the importance
and decisions. The Viola implementation fortunately had rather non-strict non-
functional requirements due to the perceived importance of the system and func-
tionality, which benefited in the successful implementation. The major require-
ment focus was regarding the functionality and output from the systems (Personal
communication, March 2022).

The benefits of functional requirements are the reduced ambiguity regarding
what the system is supposed to do, and non-functional requirement benefits are
setting a standard of how the system is supposed to perform. By clearly defining
the requirements, it allows for the work to be specified and focused on the required
functionality and by the performance metrics and thus reducing the risk of the
work from being over-engineered or under-developed and increase the chance of
success for software projects (Mairiza et al., 2010).

The drawback is that these requirements can vary between projects and a lack
of setting requirements can result in an inadequate integration that is still consid-
ered successful due to meeting all existing requirements.

An example from the Viola integration was the lower non-functional require-
ments being set due to there being essentially no consequences to a slow system
since there was no dependencies on the system. This allowed for focus to be
put on the functional requirements and the integration to be finished faster and
be considered successful. This is primarily a deciding factor depending on the
integration and importance of the system performance and functionality.

5.4 Motivated Team
One out of four interview respondents, namely the maintenance manager, also
credits much of the success behind the integration towards having motivated teams
of people working on the project. So the circumstance of having experienced and
engaged co-workers participate in the integration was a positive factor (Personal
communication, March 2022). This factor is however difficult to achieve for the
individual contributor, but more important for the managers to work towards to
ensure that this positive factor helps ensure a successful integration.

There are multiple different ways to motivate people, especially since each
individual have different needs to fulfill to be motivated. Common personality
types which Bass and Dunteman have separated into the groups of personalities

32

are task-oriented people, motivated by the work they perform, self-oriented peo-
ple, primarily motivated by their personal success, and interaction-oriented people
who are motivated by their co-workers actions and presence (Bass and Dunteman,
1963). Teams with a more diverse orientation of motivation, a larger focus on
motivating the team would be required.

Having a team that is motivated towards meeting the goals and achieving a
favourable integration is heavily beneficial and increases the odds of achieving
a successful integration since the organizational performance is better (Nohria et
al., 2008). The general drawback regarding this circumstance is that it is heav-
ily dependant on non-technical factors surrounding group dynamics and also the
work. A more interesting and influencing work will help with motivation but is
not always a possible circumstance and therefore makes this an unreliable factor,
albeit positive.

5.5 Type of Integration
Another circumstance to consider is what type of integration is to be performed.
There are multiple factors such as if the integration will be part of a flow or stan-
dalone, if the integration is for a new feature or if it is replacing old work.

According to two out of four interview respondents, namely the Product Owner
and Maintenance Manager, automating previously manual tasks tend to be more
forgiving regarding requirements to outperform and scale (Personal communica-
tion, March 2022). An example from the Viola integration was that the integration
was used to replace old manual practices and not part of any flow.

There are hierarchies of different integrations possible to perform and dif-
ferent approaches to consider while integrating depending on the system. And
for each integrations there are different fundamentals between processes, envi-
ronment, technical systems and human factors to consider (Rajabalinejad et al.,
2019).

There are benefits and drawbacks with the different types of possible inte-
grations, and the type of integration to be performed should be in consideration
when planning. A benefit with replacing a previously manual task is that the work
is most likely to be substantially faster even if the integration is not well imple-
mented. The drawback however is that the cost of implementation will be high
for a refactor of organizational practices and there will be costs in retraining and
maintenance afterwards too.

33

When creating all new features there will also be a different cost involved since
there is little knowledge from earlier involved. There is most likely however no
current dependencies towards the feature being implemented due to it not having
existed earlier, therefore there will be less consequences in case the integration
stalls.

5.6 Communication and Collaboration
Another factor that helped the success of the Viola integration was a good collabo-
ration between the contractor and client, and also good collaboration between the
different in-house teams for the project when collaborating between the IT team
and Business Intelligence teams.

A lack of communication can often lead to difficulties regarding requirements
and views of the process, therefore often hindering the project pace. In worst case,
poor communication can also result in project failure (Gamil and Rahman, 2017).
Not being able to properly communicate with the contractor can be troublesome
in the case of sudden technical issues according to one out of four interview re-
spondents, namely the Project Manager (Personal communication, March 2022).

This factor ties in with Functional and Non-Functional Requirements factor
since a good communication and collaboration between sections and teams will
give a broader and more detailed set of requirements, which in turn would reduce
the future need of communication due to less misunderstandings.

Another prominent way of increasing communication within the team during
the development phase is to utilize pair programming to informally review the
code while developing and brainstorm together, which according to Sommerville
is a good development process (Sommerville, 2011).

Some benefits of having a good collaboration includes being able to get mul-
tiple expertise combined and properly involved into the integration, with less hin-
drances due to misunderstandings. A drawback regarding too much focus on
communication is the risk of redundant meetings hindering work from being per-
formed. Another drawback is that given a too large team or department, collabo-
ration in general becomes more difficult in an agile sense due to the difficulty of
having to collaborate with more people (Sommerville, 2011).

34

5.7 Planned Technical Debt
One major factor that helped creating a successful integration meeting require-
ments and deadlines was to use planned technical debt according to one out of
four interview respondents, namely the Project Manager. Certain features and
parts of the systems are not relevant to get working perfectly, and can therefore
be planned to be implemented in a different part of the life cycle, such as the
maintenance part (Personal communication, March 2022).

Planned technical debt are not to be confused with regular technical debt,
which are often the result of negative choices and should still be avoided due
to the drawbacks bad technical debt have.

A few benefits of planned technical debt is that it allows to produce working
samples with a limited time, and creates a plan for the future work to be done
(Lenarduzzi et al., 2021). Without a plan ahead of when and who to solve the debt,
it can not be considered planned technical debt and is simply regular technical debt
which tends to be negative but a common aspect of software development.

The drawback of using planned technical debt is the process of knowingly
pushing problems into the future for someone else to solve. Since it is pushed
to a different part of the life cycle, there is the chance that a different section is
handling the debt and might not have the resources to solve it in a good fashion
and therefore creating new debt.

5.8 Bus Factor
An important aspect of project work is to ensure that the knowledge between
members are preserved and transferred in order for the work to be able to be
continued in case any project members disappear. The context behind this cir-
cumstance is gathered by the data collected from three out of four interview re-
spondents, namely the Maintenance Manager, the Product Owner and the Project
Manager.

There should be documentation of processes and plans written down in case
anyone should be unavailable in order to help guarantee a successful integration.
An example of this from the Viola integration was the industry wide layoffs that
happened due to the Covid-19 pandemic, interrupting and hindering the project
due to important consultants being laid off. This is an example of an external
factor that can not be planned to be circumvented, but should instead be prepared
for by using the Bus Factor principles to ensure that no knowledge is lost with

35

team members disappearing (Personal communication, March 2022).
Other common scenarios that this might be important for is team members

leaving for other projects, other external factors becoming hindrances and being
hit by a bus as the name suggests. Therefore, this negative factor should be con-
sidered and handled as the risk it is.

The benefits of planning against the sudden disappearance of team members
are that regardless if they leave or not, the added documentation is still a good
thing to have for all team members and will increase the autonomously amongst
the team. As for the individual contributor, having team members relying less
on the contributor would reduce the time spent on repeated knowledge transfer
enabling the contributor to reallocate time otherwise spent on that.

Another benefit of the added knowledge transfer is creating less dependen-
cies on each individual contributor towards the maintenance life cycle since less
qualified personnel could manage the maintenance of the system and save costs.

The drawback to this would be allocating time towards risk management in-
stead of continuous development, to a certain degree. Another drawback for the
individual contributor is the possibility of making themselves redundant by for
example doing the heavy architectural work and then being replaced by cheaper
less experienced personnel.

5.9 Reliance on the Contractor
One major negative factor of the process is the created reliance of the contractor.
If their service goes down, the client is limited to the contractors response and
unable to take matters into their own hands. The reliance of the contractor was an
important aspect according to two out of four interview respondents, namely the
Project Manager and the Maintenance Manager.

There is also a security concern regarding the contractor, where they have at
least partial access to the system through the integration which could be concern-
ing if the contractors services were breached by malign hackers. An example
of prevention of this risk from the Viola integration was the preemptive security
measurements performed by the clients information security department in order
to assert the contractors security measures were up to standard (Personal commu-
nication, March 2022).

A benefit with relying on the contractor is that the client would not have to
have trained personnel available on call in case anything goes down which is a
reduced cost, and instead the contractor will have personnel specialized on the

36

product available to handle any up time issues. Reduced responsibility of another
service would therefore be the primary benefit.

The drawback would be that if the contractor is not available or not prioritizing
the emerged problems, the client is stuck and unable to work towards solving
it. Another drawback is the security concern of allowing another semi-unknown
system into the software eco-system and therefore being reliant on the contractors
security measures holding up against malign attacks, since a successful attack on
the contractor could compromise the client too.

37

This page has been intentionally left blank

38

Chapter 6

SaaS Integration Guidelines

This chapter presents a set of guidelines based on the factors from Chapter 5. It
provides the recommended course of action, what benefits and drawbacks each
have with an alternative choice presented too. Due to every organization and
project being different, each guideline item may not always be applicable to every
scenario and each guideline will be differently prioritized.

The guidelines will be presented in the following order: (1) Use standard
software solutions, (2) Ensure cooperation from contractors, (3) Set clear re-
quirements, (4) Motivate the team, (5) Communicate and collaborate, (6) Utilize
planned technical debt, (7) Plan for the type of integration and (8) Maintain a
high bus factor.

1. Use standard software solutions

Utilizing a standardized method of implementing a software solution comes with
the benefits that it is easier to implement, will be easier to configure and maintain
and also requires less experience to work with since it is less specialized.

Drawbacks to it is that the performance might be less optimized due to us-
ing a standardized solution instead of a customized, it also increases the risk for
technical debt and might be technically limited due to the rudimentary approach.

An alternative option is to use customized software specialized for the sce-
nario, which however often comes with an increased cost and longer implementa-
tion time.

39

2. Ensure cooperation from contractors

Ensuring that the project have a good cooperation with the contractors comes with
the benefits that it is easier to utilize their expertise from previous experience and
provide a larger support team which can reduce the responsibility on the customers
end. The cooperation can be in the form of good communication or having the
SaaS altered to the customers needs.

The drawbacks of relying on cooperation from the contractor is that the re-
liance creates a dependency on the contractor to solve any issues with their ser-
vice which otherwise might be solved in-house. There is also a security risk to
consider when using SaaS systems.

An alternative option if the potential security risk and created dependency
outweighs the costs and services is to not use an external contractor, and instead
develop the solution in-house.

3. Set clear requirements

Setting clear functional and non-functional requirements comes with the benefit
that it makes the goal less obtuse and reduces risk of misunderstandings. Not
setting clear and extensive requirements can give the impression that a flawed
integration was successful since it met the few lacking goals that was set.

The process and target might change and adapt during the course of the inte-
gration, so it is important to adapt the requirements too if needed. The require-
ments might otherwise stall and side-track the development due to being outdated.

An alternative option to having clear requirements is to set obtuse require-
ments if there is no priority to have a fully functional integration due to deadlines
or intention of creating a proof of concept.

4. Motivate the team

By ensuring that the team(s) working on the integration are motivated, it increases
the productivity and improves the attitude on ensuring that the integration be-
comes successful. There is also an increased flow of information and knowledge
between motivated team members which is good for the teams knowledge transfer.

This is however dependent on the group dynamic and non-technical factors
which can be difficult for the individual contributor to work towards, making it
more of a managerial issue to solve.

40

The alternative is having an unmotivated team which should still be able to
implement a successful integration, but with adjusted deadlines and expected costs
since productivity might not be as high as with a motivated team.

5. Communicate and collaborate

Since integrations and work often span multiple sections and between the cus-
tomer and contractor, having a good communication and collaboration helps to
combine different expertise and improves the flow of information which allows
for less misunderstandings.

Too much collaboration comes with a risk of redundant meetings and creating
a risk of increasing redundant bureaucracy decisions between sections which can
stall work immensely depending.

If communicating is difficult, an alternative option is to set clearer require-
ments to adapt the lack of communication and also adjusting the deadlines and
expected costs to counter the time lost to miscommunication issues.

6. Utilize planned technical debt

By strategically using planned technical debt, less important features can be de-
layed until a later stage in the life cycle. This creates a better focus on the goal
and deadlines, lets the team plan ahead and prioritize on deadlines.

The drawback is that it pushes problems ahead and these problems might be
mishandled by other teams working on it in the future. There is also a negative
connotation with technical debt and might be forgotten with other technical debt
too.

The alternative is to deal with the development straight away and therefore
adjust the deadlines and expected costs to accommodate solving the issue instead
of letting it become technical debt.

7. Plan for the type of integration

When planning for the integration of a SaaS, it is important to consider what type
of integration will be performed when setting requirements and creating architec-
ture. Certain types will be easier and require shorter deadlines while others can
be more complicated.

However planning too heavily can make the integration less agile and affect
the work later if the project requires changes. Changes of the type of task the

41

integration replaces also requires retraining and maintenance.
The alternative for planning for the type of integration is working more agile

and adapting as time goes on depending on how the results turns out and what
needs comes up.

8. Maintain a high bus factor

Ensuring that the bus factor within the project is high allows for a better safety
net while working on the project in case a vital team member would disappear.
Having a high bus factor also means that more team members have knowledge
of each others work and increases the knowledge transfer which allows for better
organizational security.

The drawback is that an increased knowledge transfer requires more time spent
on meetings and potentially redundant documentation which otherwise could be
spent working on the integration.

The alternative to maintaining a high bus factor is dealing with the risk of
the project stalling in case a team member leaves or becomes unavailable due to
external factors.

42

Chapter 7

Discussion and Analysis

Due to every integration and every organization being different to each other, some
factors are more important than others and will have to be evaluated on a case-by-
case manner in order to assess the viability of an integration. The factors presented
in chapter 5 are also measured differently and should be treated individually when
working towards achieving certain factors and avoiding others.

The Section 7.1 discusses the implementation of factors and situational con-
text for each factor. The Section 7.2 discusses the usage of the guidelines from
Chapter 6 and the different prioritization each guideline should be treated with.
The Section 7.3 discusses the evaluation criteria and how the result have been
evaluated. The Section 7.4 discusses the validity threats and how they were han-
dled.

7.1 Context Surrounding the Factors
The decision behind usage of Standard Software Solutions greatly depend on
whether the organization can afford to spend the extra cost of having a custom
software solution and the prolonged development time and increased technical
experience required to implement something more specialized. Otherwise, for
a cheaper and more rudimentary solution, using a standard software solution is
advised.

The factor related to Cooperation from Contractors are an external factor and
should be taken into consideration when deciding on SaaS contractor along with
the SaaS functionality. Especially since good cooperation from the contractor can
provide more specific functionality tailored for the clients specific needs. If there

43

are no other options of SaaS contractor, then this factor can be excluded.
A better set of functional and non-functional requirements helps reduce the

ambiguity and give clearer goals, but the level of attention devoted for the require-
ments depend on the integration since certain systems have no need for optimized
performance or other requirements and the development would be better spent on
more important issues. Therefore, it is important to maintain a balance between
over-engineering and under-engineering the system.

Having a motivated team was an important factor in the studied integration,
but is most likely not a must-have factor for future work, albeit providing a good
circumstance. This factor is more relevant for managerial staff to provide and
would benefit the individual contributors.

Considering the type of integration that is to be performed is relevant when es-
timating the cost and time for the project. Therefore, this factor is good to consider
but most likely not a deal breaker in most integration scenarios for organizations.

Similar to the motivated team factor, having good communication and col-
laboration between and within teams are also a good factor for integrations and
work that involves multiple departments, teams, and people. This is mostly rele-
vant towards how the organization hierarchies and managerial staff organize the
communication and how the different work processes and collaboration is set up.

The usage of planned technical debt is situational for the integration and orga-
nization since certain features should not be pushed while others are less important
and it is a question of priority regarding deadlines and costs. However, technical
debt tends to be viewed negatively in general and should be avoided if possible.
This factor is mostly relevant for managerial staff, project leaders and product
owners in regard of pushing the work to another part of the life cycle in form of
technical debt.

A factor that should be considered during the integration is to keep a high bus
factor by keeping good documentation and knowledge transfer within the teams.
For like other projects, if a vital person disappears, the project might stall while
dealing with lost knowledge. Therefore, this factor is important for everyone in
the team but not something to consider beforehand and instead during the process
of integrating.

The final factor to consider is the created reliance towards the contractor when
deciding to implement an outsourced solution to the in-house system. This factor
is a organizational deciding point with regards to costs, time, support, security,
and up-time, which the most important features should prioritize the choice of
solution.

44

7.2 SaaS Integration Guidelines
The guidelines displayed in Chapter 6 will provide organizations aid in planning
and executing a SaaS integration. Having more positive fulfilled factors and cir-
cumstances from the guidelines and a clear outline of what factors might be miss-
ing from the organization and integration planning will give insight regarding the
estimated time, costs and difficulty of the planned integration. Due to organi-
zations being different and having different goals and processes, the individual
factors are difficult to quantify the specific effect of fulfillment and priority, but
combining the benefits and drawbacks of each combined with the organizational
priorities will provide a easier usage of the guidelines.

The guidelines are heavily focused on the different processes and organiza-
tional structure, with lower focus on the technical solutions than anticipated which
can be regarded as a positive thing due to the increased transferability received
since a more technical focus would limit the guidelines to technically and archi-
tecturally similar SaaS systems and in-house systems.

The first example, (1) Use standard software solutions is a guideline that is
heavily reliant on the deadline, cost, plan for maintenance and other planning
aspects whether to follow the guideline which in majority of cases will be benefi-
cial. The cases where using a customized software solution instead of a standard
software solution would be more beneficial is if there are very specific require-
ments associated with the project requiring a more customized solution and given
a lengthier deadline and higher budget. So fulfilling this guideline can be benefi-
cial but is not a must.

The guideline (2) Ensure cooperation from contractors can be a difficult guide-
line to guarantee due to the issues of it depending on external factors from the
contractors. The drawbacks are however not very heavily influencing and should
therefore be a reasonable requirement to integrate this guideline for a SaaS inte-
gration.

The guideline (3) Set clear requirements is likely the most important guideline
applicable to most cases, since clear requirements heavily reduces ambiguity and
will reduce potential miscommunication. By setting robust detailed requirements
during the planning phase and keeping the requirements relevant throughout the
integration, any mentioned drawbacks would hindered.

The fourth guideline (4) Motivate the team is good to have but not one of
the most important, and especially difficult since different individual contributors
most likely have different motivational needs which might not always be compat-
ible. Since the alternative to this guideline is simply to adjust the expected time

45

needed, it is not vital to enforce this guideline.
The fifth guideline (5) Communicate and collaborate is also an important

guideline and should be handled with a moderate amount of attention to avoid
the potential drawbacks of redundant meetings. However, with smaller teams and
projects not spanning multiple departments and teams, there is less importance of
including this guideline and should be adjusted depending on the organization and
project.

The sixth guideline (6) Utilize planned technical debt is very dependant on the
type of integration and project since given the opportunity to avoid technical debt,
it should be avoided. However, certain projects might benefit from pushing certain
features to become technical debt for the future if the integration can faster become
viable for usage without major drawbacks. This guideline is very beneficial for
the scenarios where it is applicable, but otherwise to be avoided.

The seventh guideline (7) Plan for the type of integration is less important in
the later development phases but will give a better plan regarding the architec-
ture for the integration since different types of integrations might require different
approaches which should be considered. This should however be handled with
moderation if attempting to keep the development and planning agile. Therefore,
this is one of the less important guidelines.

The eight guideline (8) Maintain a high bus factor is primarily to negate the
risk of the project stalling and might be more relevant for organizations with
higher turn-over or heavy usage of temporary consultants. Good ways to avoid
the drawbacks of redundant documentation and knowledge transfer meetings is to
aim for maintaining a moderate bus factor and attempt to balance the knowledge
transfer by focusing on self-explanatory code and architecture. It is beneficial but
not a must have with a good bus factor.

The results of the guidelines are not very specific for just SaaS integrations,
but should be able to be used for a broader perspective on similar software devel-
opment projects. The only factor specific to SaaS integrations are the Plan for the
type of integration guideline which can be dismissed if using the guidelines for
other non-integration focused projects.

46

7.3 Evaluation
The set of guidelines are evaluated based on the criteria from Section 4.8, in or-
der to measure the usefulness and relevancy. The first Section 7.3.1 describes
the evaluated usefulness and the second Section 7.3.2 d describes the evaluated
relevancy.

7.3.1 Usefulness
The author and the several involved people at the host company found the results
to be useful for a potential new SaaS integration. Due to time limitations, this is
purely based on speculations.

While some of the results seemed to be common sense and other parts might
only be useful in certain scenarios, it was still deemed as overall useful and re-
garding the specific scenarios very useful.

7.3.2 Relevancy
The author and the several involved people at the host company found the results
to be relevant to a SaaS integration. There is also a speculated relevance and use-
fulness to a broader perspective of integrations than just SaaS since many themes
and factors are recurring within software engineering.

There were results however which was less relevant to all types of SaaS inte-
grations, but was still considered relevant to majority of the different applicable
SaaS integrations available. However, since the results and discussion brought
up the few areas where certain guidelines might be less relevant, the results’ rel-
evancy was not dismissed by the evaluating people at the host company and the
author.

7.4 Validity Threats
This section discusses the different validity threats mentioned in the method Sec-
tion 4.6. The first Section 7.4.1 discusses the credibility threat, the second Section
7.4.2 discusses the dependability threat, the third Section 7.4.3 discusses the trans-
ferability threat and the final Section 7.4.4 discusses the conformability threat.

47

7.4.1 Credibility
All the four interviewee respondents were associated with Scania and the ques-
tionnaire respondents were associated with either Scania or Mercur. Each respon-
dent had substantial experience within the industry and their respective roles and
provided insight in both their work and their view of the surrounding areas.

There was only one noticeable occurrence of a contradiction in the data which
was later verified against the respondents with the most relevant expertise within
the specific area. The threat of the information being extenuated in order to not po-
tentially damage the host companies reputation is also factor that was considered
but can be discarded since very little specific knowledge of the specific integration
is shared in the thesis and doing so would also hurt the results the host company
expects to receive from this study.

7.4.2 Dependability
Due to the nature of this study being a qualitative study with a semi-structured
interview method, it reduces the dependability since a different author might get
a different conversational interview with the respondents and therefore might get
a slightly different focus on the responses. Another threat is the usage of a single
case study instead of multiple case studies which also reduces the dependability
factor.

There is however still a decent dependability to the thesis since most of the
respondents shared similar views on the process and shared similar results to ana-
lyze. For future work, providing more case studies to grant a wider and also more
specific knowledge regarding affecting factors would be beneficial.

7.4.3 Transferability
The data was collected from a wide range of differing roles from within the project
and the surrounding areas and expertise which improves the transferability, and
the data is analyzed for a wider perspective outside of the specific case study.
Academic literature and scholarly reports and articles have been used to confirm
the specific data collected and provide more credibility to it.

48

7.4.4 Conformability
Due to the ethical concerns of confidentiality, the specific respondents, interview
material and other internal data concerning the host company and the contractor
cannot be disclosed which affects the conformability. Instead, there have been a
thorough generalized description of the relevant aspects related to the processes
and the thesis. In order to be transparent, general issues of the report and method-
ology are discussed even when the specific results might not be fully related to the
findings and conclusions.

49

This page has been intentionally left blank

50

Chapter 8

Conclusion and Future Work

This chapter provides a general overview of the thesis, the background, conclu-
sion and future work. This section describes the background and thesis, the first
Section 8.1 provides the conclusions of the thesis and the second Section 8.2 dis-
cusses future work related to the thesis.

It is a common trend that companies are going online and using different new
technical solutions to mature work areas to improve efficiency. These technical
solutions can either be developed in-house at the company or bought from another
company specializing in the specific niche area with the needed solutions. Com-
panies with these in-house developed systems might therefore wish to outsource
the operations and administrations of the aforementioned services to subcontrac-
tors to ensure safe maintenance and focus on the core business. This way, the
subcontractor can focus on the development and maintenance of the software that
performs certain specialized functions and sell the solution in form of a service.

Contractors that manage the SaaS, IaaS and PaaS systems often benefit from
being able to sell the services to multiple clients, which puts great importance on
the SaaS being easily integrated into the clients systems and the clients systems
being flexible enough to integrate other services.

But what determines how well these services can be integrated into a com-
panies existing system? In this case study, a previously finished integration per-
formed by established software engineers is evaluated and discussed to draw con-
clusions regarding what attributes are key components for a successful integration.

The problem attended to in this thesis is the lack of sufficient industrial guide-
lines based on key factors affecting SaaS integrations whereas the purpose is to
analyze and evaluate a previously finished integration process to learn from their
success and mistakes in order to fulfill the goal of providing software engineers

51

and developers the means of successfully integrating a SaaS system and limit any
technical debt, improve performance and maintain a secure application.

This thesis addresses the problem in how software engineers should work with
integrating a contractors service to the clients existing internal system by creating
a set of guidelines based on the success factors, with the goal of giving the soft-
ware engineers the means of successfully integrating a SaaS system with limited
technical debt and other issues. This will be achieved by evaluating a previously
finished integration performed by established software engineers using a qualita-
tive research method and an inductive research approach.

8.1 Conclusion
Multiple interviews were performed in order to grant a picture of the system, the
process and the integration. Key factors that were brought up was the imple-
mentation of Standard Software Solutions in order to keep the work simple and
maintainable with an easy handover, a professional and experienced cooperation
from the SaaS contractor and usage of planned technical debt in order to deliver a
working system ready for usage.

While all these success factors helped create a successful integration, many of
the aspects also have drawbacks that the organizations will have to decide priori-
ties. Where certain factors will improve the cost of implementation, it might also
affect the performance and will be considered grey zones and be highly subjective.

One factor that was pivotal to a successful integration was the usage of a Stan-
dard Software Solution. The simpler standard software solution eases the imple-
mentation since it is more likely that the developers have experience since pre-
vious projects using similar solutions. The costs of implementation are therefore
also reduced since the supplementary experience will speed up the implementa-
tion process. But the major drawbacks from this solution is the possibility of being
less optimized and the procural of technical debt.

Another factor was the experienced cooperation from the contractor. Since the
SaaS is their expertise and they likely have other clients too which have required
previous integrations of similar natures adds to their collective experience. This
is however difficult to plan for since it depends on external factors, but could be a
deciding point in case of having the choice between multiple SaaS options.

A third factor was the usage of planned debt to ensure hitting deadlines in order
to get a functional system, and to plan for handling the debt within a different part
of the software life cycle. Especially since having a partially ready system can be

52

better than not having any system available at all.
Based on the found factors, a set of guidelines was created in order to further

aid future SaaS integrations for organizations and projects and to decide whether
the organization have the capabilities for a smooth integration.

The guidelines in short are as following: (1) Use standard software solutions,
(2) Ensure cooperation from contractors, (3) Set clear requirements, (4) Motivate
the team, (5) Communicate and collaborate, (6) Utilize planned technical debt,
(7) Plan for the type of integration and (8) Maintain a high bus factor whereas the
motivation and full version is presented in Chapter 6.

8.2 Future Work
Since this study was focused on the findings from the SaaS integration Viola from
Scania, it is therefore also colored by their work process. To gain a wider un-
derstanding of the factors behind successful SaaS integrations, a wider variety of
projects and companies to evaluate would be beneficial and a better understanding
of software engineering practices would also help provide a better understanding
and also increase the validity of the thesis.

Further studies into each individual factor is also a possibility as a future work
to gain a more detailed knowledge regarding the factors and their benefits, draw-
backs and effect.

To increase the validity of the evaluation criteria usefulness and relevance,
attempting to integrate a SaaS using the provided guidelines would prove the use-
fulness and help to better evaluate the results of the thesis.

Due to the high transferability of the findings, further studies of using the
guidelines and factors in other integration focused implementations with other
As-a-Service systems is a potential future work.

53

This page has been intentionally left blank

54

Bibliography

APM. (n.d.-a). What is portfolio management? Retrieved April 12, 2022, from
www. apm . org . uk / resources / what - is - project - management / what - is -
portfolio-management/

APM. (n.d.-b). What is project management? Retrieved April 12, 2022, from
www.apm.org.uk/resources/what-is-project-management/

Armstrong, J. R. (2016). Impact of system integration on reliability and maintain-
ability. INCOSE International Symposium, 26, 1307–1317. https://doi.org/
10.1002/j.2334-5837.2016.00228.x

Asatiani, A., Penttinen, E., & Kumar, A. (2019). Uncovering the nature of the
relationship between outsourcing motivations and the degree of outsourc-
ing: An empirical study on finnish small and medium-sized enterprises.
Journal of Information Technology, 34(1), 39–58. https://doi.org/10.1177/
0268396218816255

Bass, B., & Dunteman, G. (1963). Behavior in groups as a function of self-interaction,
and task orientation. The Journal of Abnormal and Social Psychology,
66(5), 419–428. https://doi.org/https://doi.org/10.1037/h0042764

Beer, P., & Mulder, R. H. (2020). The effects of technological developments on
work and their implications for continuous vocational education and train-
ing: A systematic review. Frontiers in Psychology, 11. https://doi.org/10.
3389/fpsyg.2020.00918

Bryman, A. (2016). Samhällsvetenskapliga metoder. Packt Publishing.
Fielding, R. T. (2000). Architectural styles and the design of network-based soft-

ware architectures (Doctoral dissertation). UNIVERSITY OF CALIFOR-
NIA, IRVINE.

Gamil, Y., & Rahman, I. A. (2017). Identification of causes and effects of poor
communication in construction industry: A theoretical review. Emerging
Science Journal, 1. https://doi.org/10.28991/ijse-01121

55

Haider, S. A., Samdani, G., Ali, M., & Kamran, M. (2016). A comparative analy-
sis of in-house and outsourced development in software industry. Interna-
tional Journal of Computer Applications, 141, 18–22. https://doi.org/10.
5120/ijca2016909578

Hammarberg, K., Kirkman, M., & de Lacey, S. (2016). Qualitative research meth-
ods: When to use them and how to judge them. Human Reproduction,
31(3), 498–501. https://doi.org/10.1093/humrep/dev334

IBM. (2020). What is an application programming interface (api)? Retrieved
March 25, 2022, from www.ibm.com/cloud/learn/api

Ilyas, M., & Khan, S. U. (2017). An empirical investigation of the software inte-
gration success factors in gsd environment. 2017 IEEE 15th International
Conference on Software Engineering Research, Management and Appli-
cations (SERA), 255–262. https://doi.org/10.1109/SERA.2017.7965735

Jabrayilzade, E., Evtikhiev, M., Tüzün, E., & Kovalenko, V. (2022). Bus factor in
practise. Proceedings of ICSE 2022, 1–10. https://doi.org/https://doi.org/
10.48550/arXiv.2202.01523

Jayashetty, S., Manjunatha, P. K., & Kashyap, H. (2004). Over-engineering enter-
prise architecture and business competitiveness. Enterprise Architecture
& Business Competitiveness, 2(4), 23–28. https : / / www. infosys . com /
consulting/architecture- services/white-papers/Documents/engineering-
enterprise-architecture.pdf

Kajko-Mattsson, M. (2020). Software evolution and maintenance.
Kerner, S. M., & Burke, J. (2021). What is ftp? file transfer protocol. Retrieved

April 5, 2022, from www.techtarget . com/searchnetworking /definition /
File-Transfer-Protocol-FTP

Kim, S. H., Jang, S. Y., & Yang, K. H. (2017). Analysis of the determinants of
software-as-a-service adoption in small businesses: Risks, benefits, and
organizational and environmental factors. Journal of Small Business Man-
agement, 55(2), 303–325. https://doi.org/10.1111/jsbm.12304

Krause, D. D. (2015). Data lakes and data visualization: An innovative approach
to address the challenges of access to health care in mississippi. Online
journal of public health informatics, 7. https://doi.org/10.5210/ojphi.v7i3.
6047

Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., & Arcelli Fontana, F. (2021).
A systematic literature review on technical debt prioritization: Strategies,
processes, factors, and tools. Journal of Systems and Software, 171(110827).
https://doi.org/https://doi.org/10.1016/j.jss.2020.110827

56

Mairiza, D., Zowghi, D., & Nurmuliani, N. (2010). An investigation into the no-
tion of non-functional requirements. Proceedings of the ACM Symposium
on Applied Computing, 311–317. https : / / doi . org / 10 . 1145 / 1774088 .
1774153

McConnell, S. (2008). Managing technical debt. Construx, 1–14. http : / /www.
construx.com/uploadedfiles/resources/whitepapers/Managing%20Technical%
20Debt.pdf

McLeod, D. S. (2014). The interview research method. Retrieved March 28, 2022,
from https://www.simplypsychology.org/interviews.html

Mercur. (n.d.). Om mercur solutions. Retrieved March 28, 2022, from www .
mercur.se/Om-oss

Mićić, L. (2017). Digital transformation and its influence on gdp. ECONOMICS,
5. https://doi.org/10.1515/eoik-2017-0028

Microsoft. (n.d.-a). What is devops? devops explained. Retrieved April 5, 2022,
from azure.microsoft.com/en-us/overview/what-is-devops/

Microsoft. (n.d.-b). What is iaas? infrastructure as a service. Retrieved March 25,
2022, from azure.microsoft.com/en-us/overview/what-is-iaas/

Microsoft. (n.d.-c). What is paas? platform as a service. Retrieved March 25,
2022, from azure.microsoft.com/en-us/overview/what-is-paas/

Microsoft. (n.d.-d). What is saas? software as a service. Retrieved March 25,
2022, from azure.microsoft.com/en-us/overview/what-is-saas/

Mozilla. (n.d.). An overview of http. Retrieved March 28, 2022, from developer.
mozilla.org/en-US/docs/Web/HTTP/Overview

Mulesoft. (n.d.). What is an api? Retrieved March 25, 2022, from www.mulesoft.
com/resources/api/what-is-an-api

Nohria, N., Groysberg, B., & Lee, L.-E. (2008). Employee motivation: A powerful
new model. Harvard business review, 86(7–8), 78–160.

Olavsrud, T. (2021). What is a data architect. Retrieved April 12, 2022, from
www. cio . com / article / 190852 / what - is - a - data - architect - its - data -
framework-visionary.html

Oracle. (n.d.). What is big data. Retrieved March 28, 2022, from www.oracle .
com/se/big-data/what-is-big-data/

Pallavi, G. B., & Jayarekha, P. (2014). Multitenancy in saas: A comprehensive
survey. International Journal of Scientific & Engineering Research, 5(7),
41–48.

Rajabalinejad, M., van Dongen, L., & Ramtahalsing, M. (2019). Systems inte-
gration theory and fundamentals. Safety and Reliability, 39(1), 83–113.
https://doi.org/10.1080/09617353.2020.1712918

57

RedHat. (2020). Iaas vs paas vs saas. Retrieved March 25, 2022, from www.
redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas

Sahu, P., & Bhadury, K. (2017). Standard vs custom software: How does a com-
pany make right decision? International Journal of Latest Engineering
and Management Research, 2(2), 14–21. http://www.ijlemr.com/papers/
volume2-issue2/15-IJLEMR-22058.pdf

Santoso, L. W., & Yulia. (2017). Data warehouse with big data technology for
higher education. Procedia Computer Science, 124, 93–99. https : / /doi .
org/https://doi.org/10.1016/j.procs.2017.12.134

Scaled Agile, I. (2021). Product owner - scaled agile framework. Retrieved April
12, 2022, from www.scaledagileframework.com/product-owner/

Scania. (n.d.). Scania in brief. Retrieved March 28, 2022, from www.scania.com/
group/en/home/about-scania/scania-in-brief.html

Schell, C. (1992). The value of the case study as a research strategy.
Sommerville, I. (2011). Software engineering 9th edition. Addison-Wesley.
Stedman, C., & Lutkevich, B. (2021). What is a data lake? Retrieved March 28,

2022, from www.techtarget.com/searchdatamanagement/definition/data-
lake

Sundaram, D. M., & Meena, S. V. (2016). Data lakes-a new data repository for big
data analytics workloads. International Journal of Advanced Computer
Research, 7.

Walraven, S. (2014). Middleware and methods for customizable saas (Doctoral
dissertation). Katholieke Universiteit Leuven: Arenberg Doctoral School.

Wang, Y. (2022). On the frontiers of software science and software engineering.
Frontiers in Computer Science, 3. https://doi.org/10.3389/fcomp.2021.
766053

Wonil, K., Hwan, L. J., Chuleui, H., Changhee, H., Hanku, L., & Bongshik, J.
(2012). An innovative method for data and software integration in saas.
Computers & Mathematics with Applications, 64(5), 1252–1258. https :
//doi.org/10.1016/j.camwa.2012.03.069

Wulf, F., Lindner, T., Westner, M., & Strahringer, S. (2021). Iaas, paas, or saas?
the why of cloud computing delivery model selection – vignettes on the
post-adoption of cloud computing. Proceedings of the 54th Hawaii Inter-
national Conference on System Sciences. https://doi.org/10.24251/HICSS.
2021.758

58

Appendices

59

Interview questions in Swedish
Bakgrund

● Namn?
● Hur länge har du jobbat inom den här tjänsten?
● Vilket ansvar har du?
● Hur många är det i ert team som har arbetat med detta?

Allmänt om systemet
● Vad gör ert system?
● Hur ser det ut?

○ Robust?
○ Flexibelt?
○ Arkitektur?
○ Tester?
○ Responstider?
○ Skalbarhet?

● Hur viktigt är det här systemet?

Allmänt om SaaS:et
● Vad gör SaaS:et?
● Hur ser användandet av det ut?
● Kapacitetsbegränsningar?
● Dokumentation för SaaS:et?

Om integrationen
● Hur sammankopplas systemen?
● Kan du berätta allmänt om integrationen?
● Hur tycker du processen att integrera deras SaaS gick?
● Vilka krav fanns gällande integrationen?

○ Funktionella krav?
○ Icke-funktionella krav

● Vilka förutsättningar skapade vägen för att det skulle gått bra?
● Kan du berätta om eventuell teknisk skuld?
● Vilka förutsättningar saknades för att undvika skulden?
● Hade du önskat att något var annorlunda med deras SaaS?
● Hade du önskat att något var annorlunda med ert system innan ni börjat?
● Fanns det ytterligare förändringar och funktioner ni önskat implementera?

Övrigt
● Finns det något mer du vill ta upp som jag har missat att fråga

Appendix A

60

Interview questions in English
Background

● Name?
● How long have you worked within your position?
● What are your responsibilities?
● How many in your team have worked with this integration?

Overview of their system
● Can you describe what your system does?
● What do the technical aspects of it look like?

○ Robust?
○ Flexibility?
○ Architecture?
○ Tests?
○ Response times?
○ Scalability?

● How important is this system?

Overview of the SaaS
● Can you describe what the SaaS does?
● What does the usage of it look like?
● Limitations?
● Documentation for the SaaS?

About the integration
● How are the system and SaaS connected?
● Can you describe the integration?
● How do you think the integration process went??
● What requirements existed regarding the integration?

○ Functional Requirements?
○ Non-Functional Requirements?

● What circumstances helped with the success?
● Was there any technical debt?
● What circumstances were lacking in order to avoid that debt?
● Had you wished anything was different about their SaaS?
● Had you wished anything was different about your system before you started?
● Were there any other changes you wished to have implemented?

Other
● Is there anything you would like to add that I have not asked about?

61

TRITA – EECS-EX-2022:206

www.kth.se

