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Abstract 

Queueing theory is widely used in practical queuing applications. It can be applied 

for specific models of queuing systems, especially the ones that follow the 

Markovian property. Its purpose is to predict system behaviour in order to be used 

for performance optimization. In this case study, it was used to evaluate an extended 

queuing model with agents serving multiple queues. The purpose was to try to 

capture more variability and input factors into the theoretical model and test its 

applicability on more extended models. The main objective was to use relevant 

queuing theory models to estimate the wait time using real contact center data. 

Different from the theoretical model, the service rates of the system model depended 

on how many queues an agent served concurrently, which increased the complexity 

of the model. The obtained results demonstrated some limitations that made the 

models too restrictive to be applied to a model with multi-skilled agents that were 

not equally available. Moreover, it was shown that heuristical approaches might be 

more suitable for more complex queuing systems that are not covered in queueing 

theory models.  
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Sammanfattning 

Köteori används i stor utsträckning i praktiska kö-applikationer. Den kan tillämpas 

för specifika modeller av kö-system, speciellt de som följer Markovegenskapen. 

Dess syfte är att förutse systembeteende för att kunna användas för 

prestandaoptimering. I denna fallstudie användes den för att utvärdera en utökad kö-

modell med agenter som betjänade flera köer. Syftet var att försöka fånga mer 

variabilitet och inputfaktorer i den teoretiska modellen och testa dess tillämplighet 

för mer utökade modeller. Huvudmålet var att använda relevanta kö-teorimodeller 

för att estimera väntetiden med användning av riktiga contact center data. Till 

skillnad från den teoretiska modellen, betjäningsintensiteten för systemmodellen 

berodde på hur många köer en agent betjänade samtidigt, vilket ökade komplexiteten 

av modellen. De erhållna resultaten visade begränsningar som gjorde modellen för 

restriktiv för att appliceras på en modell med fler-kvalificerade agenter som inte var 

lika tillgängliga. Utöver detta så visade det sig att heuristiska metoder kan vara mer 

lämpliga för mer komplicerade system som inte täcks av kö-teori modeller.  

 

Nyckelord 

Köhantering, Estimerad väntetid, Plats i kö, Fleranvändarsystem, 

Betjäningssystem, Köteori, Teorin för masservice 
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1 Introduction 

When people are standing in line in a public place, the characteristics of that line are 

revealed for them. Such characteristics can be the number of people waiting before 

them, the number of available serving channels, and the queuing properties, among 

other things. Observing these characteristics enables people to make their own 

estimation of the service times and how long until they will be served. Making this 

estimation might not be possible when making a call, due to the queues being 

invisible. To reduce the uncertainty that might arise about the length of the wait, 

service providers announce wait time estimates for the waiting customers. As a 

service-quality measure, this has been proven to increase the customers’ satisfaction 

with the service (Taylor and Baker 1994; Ibrahim 2018). However, if a customer 

doesn’t receive service at the specified time, it is more likely to receive a poor service 

evaluation from the customer (Taylor 1994). It is therefore important to have an 

accurate approximation of the estimated wait time (EWT) to improve the service 

quality and increase the customers’ satisfaction with the provided service.  

It can be challenging to have an effective wait time estimator that is simple to 

implement in real-life at an appropriate cost and that builds on information that is 

readily available. This especially applies for systems that have demanding scale and 

productivity requirements (Ibrahim and Whitt 2008). Calculating an estimated wait 

time involves statistical analysis and is covered in the study of queuing theory that 

is a part of operations management and applied mathematics. Queuing theory and 

other formula-based approaches mentioned further in this work provide various wait 

time estimators. All of the estimators differ depending on the amount of information 

needed for their implementation and the queuing model that is used. 

This work is a case study for a Swedish company, Bambuser AB. The company 

provides a platform for Live Video Shopping. One of Bambuser’s products is “One-

to-one”, which can enable drop-in calls as a plugin on e-commerce sites. This means 

that the customers can start a video call from the merchant’s website. The call ends 

up in a queue that displays the estimated waiting time for the arriving customer. This 

waiting time is currently computed with an approximative function. The aim of this 

study is to compare this function with other alternatives in order to achieve better 

approximations of EWT, using the information that is readily available.  

  

1.1 Background 

1.1.1 Queuing theory 

Queuing theory is the study of waiting in queues. It uses queuing models to represent 

various kinds of queuing systems that arise in practice. Each model has a formula 

that indicates how the corresponding queuing system should perform, including the 
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average amount of waiting time that will occur under a variety of circumstances. 

Understanding these models is very helpful for determining how to operate a queuing 

system in the most effective way (Hillier and Lieberman 2010). 

Two main input factors for queuing theory models are the service time and the arrival 

process. Specifying these requires a huge amount of data collection and statistical 

analysis. Further information about queuing theory, different queuing models and 

disciplines and the components of a queuing system are described in chapter 1. 

1.1.2 Distributed Multi-tenant systems 

Applications of distributed systems are split into small work units, called nodes. 

Each node acts independently and shares the same resources with other nodes. 

Having nodes communicating with one another and working together makes it 

possible to scale up computing power and make infinite amount of information and 

computation available to users across the globe (Carson and Suchter 2016). With the 

ability of supporting big applications, distributed systems face a high level of 

performance challenges and complications. Additional challenges arise with multi-

tenant distributed systems, in which a single instance of a software application serves 

multiple customers, tenants. The concepts of distributed systems and multitenant 

architecture are different topics and are not included in this study. Additional 

resources can be found in (C. -P. Bezemer et al. 2010) for multi-tenancy in Software 

as a Service (SaaS) applications, and (H. AlJahdali et al. 2014) for security concerns 

of multi-tenancy in cloud computing.  

 

1.2 Problem 

As a SaaS company, it may be hard to calculate EWT. This is due to having many 

different merchants running the same queuing service but with different queuing 

configurations. The queuing service offered multiple virtual queues where each 

queue was either associated with a competence area or a physical location/ store. 

Each queue was served by one or multiple agents. The agents could access and use 

the system on their devices while working in a store, while others could use it in an 

office space. Because of this flexibility and the changing queuing configurations, it 

may not be convenient to use the same approach of calculating EWT across all 

merchants. This creates the need for better general estimators that can be used in 

SaaS companies.  

 

1.3 Research Question 

This work addresses the following problem: How can wait time estimation be 

calculated considering resources serving multiple queues? 
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1.4 Purpose 

The purpose of this study was to evaluate the current estimation function and 

compare it to alternative available options in order to try to improve the function or 

suggest other alternatives. This would benefit the customers who use drop-in calls 

by giving them a better approximation of the waiting time and thus lead to a better 

service evaluation.  

 

1.5 Goals 

The main goals of this project were to analyze the current queuing model and test 

and evaluate alternative delay estimators. These were divided into the following 

three sub-goals: 

1. Analyse existing data of waiting times.  

2. Analyse and problematise the complexity of agents serving multiple queues.   

3. Evaluate the current EWT function by comparing it to other alternatives, 

including methods provided by queuing theory. 

 

1.6 Research Methodology 

The research methodology consisted of a literature study about queuing theory and 

the role of statistical analysis in it. This included the classification of the queuing 

model used and the computational theories that followed with it. Data analysis of the 

existing data was performed to study how they were co-related and to use the relevant 

data as parameters for estimation. 

Alternative delay estimators used by others were investigated and evaluated in order 

to, potentially, be adjusted and used to fit the queuing model from this case study. 

Relevant methods to measure and compare the accuracy of the approximation 

function were selected.  

1.7 Delimitations 

The approach that was used to answer the key question in this work was formula 

based i.e., using analytical methods and queuing theory. Other approaches that could 

be used, such as simulation and machine-learning approaches were out of the scope 

of this work. Moreover, this work did not include the analysis of more complex 

queuing models and was restricted to the more common models.  

The main factor that might have affected the results of this work was lack of 

resources. Most of the studied literature in this work concern the traditional queueing 



 

 4 

theory that can be applied on the most commonly used queues that have the 

Markovian property. There was no research found about queuing theory for extended 

queuing models that accounts for unknown server utilization of servers.  

Another factor was that some operational data that could be useful for the application 

of certain theories of EWT was not included in the given data. Additional data that 

could be relevant was, for example, which queues each agent was active on. Not 

knowing the agent availability on each queue increased the problem complexity. 

This was because the full agent utilization that was assumed by the studied literature 

in this work could not be applied.  

 

1.8 Risks, ethics, and sustainable development 

Causes of delay in the project could be lack of clarity, misunderstandings and 

inefficiency. These were mitigated by effectively communicating with the 

stakeholders to set clear parameters and address potential performance risks early in 

the planning phase. Setting up a clear timeline of the project milestones also helped 

preventing project delay. 

A vague problem statement formulation could make the project unfocused and thus 

impossible to conclude. It was therefore narrowed down before the start of the 

project, and then more specified during the work on the project.  

Regarding the ethics aspect of the project, the host company ensured that no sensitive 

user information was given to be used in this project. The data that was used 

consisted of estimated wait time vs. real wait time of calls for several merchants. An 

NDA (Non- Disclosure Agreement) was signed to restrict the use and disclosure of 

confidential data of the company. 

The time estimation strategies involved in this work did not concern sustainability 

on a large scale. The social aspect of sustainability was that uncertain estimations of 

the wait times could lead to lower customer satisfaction and thus have a negative 

impact on the company.  

1.9 Structure of the thesis 

Chapter 2 presents background information about queuing theory and related work.  

Chapter 3 presents the methodology and method used to solve the problem. This 

includes research process, data collection and analysis, and evaluation of the 

approximation methods. 

Chapter 4 presents the analysis and results of the applied methods. It includes 

performance measures and discussion of the results.   

Chapter 5 presents the conclusion, limitations and future work.  
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2 Background 

This section provides a general background information about queuing theory. 

Mathematical statistics and formulas that are used to answer our key questions are 

presented, but the mathematical analysis is excluded. Additionally, this section 

provides information about related work and other approaches that has been used for 

waiting time estimation. 

2.1 Queuing theory 

A queue is a waiting line that arises when the short-term demand for service exceeds 

its capacity (Laguna and Marklund). Queuing theory is the study of waiting in 

queues. It uses queuing models to represent various types of queuing systems. A 

queuing process describes how customers arrive at and proceed through the queuing 

system (Hillier and Lieberman). A general view of the basic queuing process and its 

components is shown in Figure 2-1. 

 

Figure 2-1: The basic queuing process (Hillier and Lieberman, Figure 17.1) 

 

The components of the basic queuing process can be summarized as follows: 

 

Input source: The source from which the customers requiring service are generated. 

It can be monitored to specify the statistical pattern from which customers are 

generated. The time between consecutive arrivals of customers is referred to as the 

interarrival time. The arrival rate is the rate at which customers arrive per unit time.  

 

Queue: The queue is where the customers wait before being served. The queue 

capacity can be finite or infinite, depending on what the queuing model states.  

 

Queue discipline: Refers to the order in which members of the queue are selected 

for service. This can be FCFS (First Come First Served), LCFS (Last Come First 

Served), Priority (certain types of customers will be served first), or random. The 

FCFS discipline is the most popular and is the one that is dealt with in this work. 

 

Service mechanism: Consists of servers (resources) providing service. The number 

of the servers and their arrangement is specified by the queueing model. The elapsed 
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time for serving one customer is known as service time. The service rate is the rate 

at which customers get served per unit time.  

2.1.1 Arrival and service time distributions 

The distributions of interarrival and service times largely determine the operational 

characteristics of queuing systems. These are usually assumed to be stochastic 

(random) and independent. For this reason, most queuing theories assume an 

exponential service time distribution, and an arrival distribution that follows a 

Poisson process. This is often referred to as a Markovian process, M, in queuing 

theory. It is a reasonable choice when the service time differs across customers. 

Additional information about the reasons behind this assumption, and when it is not 

appropriate, can be found in Laguna and Marklund (2011). Moreover, having a 

queue system that has a Markovian process means that it follows the Markovian 

property. The concept Markovian property means that given the current state, the 

future state is independent of the past state (Enger and Grandell, p.3).  

2.1.2 Kendall’s notation 

The queuing system that is used is usually classified by Kendall’s notation (Ibe 

2013). It is written in the form A/B/c/D/E/F, where: 

 

• A describes the arrival process.  

• B describes the service time distribution. 

• c (or s) is the maximum number of parallel servers. 

• D is the system capacity i.e., the maximum number of jobs allowed in the system.  

• E is the size of calling population. 

• F is the used queuing discipline. 

 

The default values for D and E is ∞, and for F is FCFS. When these are set, the 

shortcut notation becomes A/B/c. The first two attributes can take the values M = 

Markovian, meaning they follow exponential distribution, D = Deterministic, 

meaning they are constant, or G = General, which means that they follow an arbitrary 

or an unknown distribution. 

One of the most commonly used queuing configurations is depicted in Figure 2-2. It 

has a single waiting line and multiple service facilities serving in parallel with the 

FCFS discipline. This is classified as M/M/c model, where the interarrival and 

service times are assumed to follow an exponential distribution. 
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Figure 2-2: Single customer queue configuration, 

where C is the customer and S is the server (Hillier and Lieberman, Figure 17.2) 

 

2.2 Little’s Law 

Little’s law can be applied for obtaining average performance measures of queuing 

models.  It states that: 

𝐿 = 𝜆W  

𝐿𝑞 = 𝜆𝑊𝑞 

( 1 ) 

 

𝐿, 𝐿𝑞 is the mean number of customers in a system vs. in queue. 

𝜆 is the mean arrival rate (the rate at which customers arrive to the system). 

𝑊, 𝑊𝑞 is the mean time spent by a job/ customer in the system vs. in a queue. 

Waiting in the system includes the waiting in the queue and the time spent in the 

service facility. From the above equation, we can derive the waiting time given the 

number of customers in a system. For determining the number of customers in the 

system in a steady state- that is, when enough time has passed for the system state to 

be independent of the initial state and the elapsed time-, the definition of expected 

value can be used (Laguna and Marklund). This value uses Little’s law, combined 

with Erlang C-formula (Enger and Grandell), that gives the probability that a 

costumer has to wait in a queue, to produce the following for the M/M/c model: 

𝐿 = 𝐿𝑞 +
𝜆

𝜇
 

( 2 ) 
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𝐿𝑞 =
(𝜆/𝜇)𝑐𝜌

𝑐! (1 − 𝜌)2
𝑃0 

( 3 ) 

 

Where c is the number of parallel servers in the queue and 𝜇 is the service rate. 𝜌 is 

the utilization factor, which is a measure of traffic intensity. In other words, it 

describes the fraction of time that the service facility is busy. Having c servers with 

identical service rates, the utilization factor for that facility is: 

𝜌 =  
𝜆

𝑐𝜇
 

( 4 ) 

This factor must be less than 1 for the M/M/c system to reach a steady state. 

Otherwise, the arrival rate would be greater than the service rate and the queue would 

grow infinitely large (Laguna and Marklund). What remains now is determining the 

probability of having n customers or jobs in the system 𝑃𝑛. The equations differ 

depending on the used queuing model and are derived from the approach used by the 

birth-and-death process. For the M/M/c system, we have: 

𝑃0 =
1

∑
(𝜆/𝜇)𝑛

𝑛!
+

(𝜆/𝜇)𝑐

𝑐! (1 − 𝜌)
𝑐−1
𝑛=0

 

( 5 ) 

For the probability of having 0 jobs in the system. 

 

2.3 Markovian queue-length based estimator 

Ibrahim and Whitt (2008) showed that their proposed Markovian queue-length-

based estimator, Qlm, performed better than other presented alternatives for the 

M/M/s+M queuing model. Here, +M denotes an exponential abandonment rate 

distribution. Given n customers in the queue upon arrival, s servers and their service 

rate 𝜇, the abandonment rate in the system, 𝛼; Qlm is defined as: 
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Wq = ∑
1

𝑠𝜇 + 𝑖𝛼

𝑛

𝑖=0

 

2.4 Genesys solution 

A solution used by Genesys cloud services* uses a history-based approach to 

calculate the EWT. According to Genesys, their approach considers the transient 

state of the queue at any given time, thus capturing more variability in the system. 

An agent handle time is calculated from recently completed interactions in a way 

that infers the efficiency of agents. Most importantly, they state that their algorithm 

accounts for systemic changes such as agents active on multiple queues or peak vs. 

low volume intervals.  

The method starts by calculating an adjusted agent handle time of the recent calls 

to combine them into a single predicted agent handle time of one call. It is 

calculated by the following formula: 

AdjustedAHT =  
AWT ×  NumberOfAgents

PositionInQueue
 

Where:  

AWT: Actual Wait Time  

NumberOfAgents: The number of active agents on this queue 

PositionInQueue: The client’s place in the queue  

The agent handle time becomes then the median of the sampled AdjustedAHT. This value 

is then used to calculate a future EWT inference.  

EWT =
PredictedAHT ×  PositionInQueue 

NumberOfAgents
  

To make the formula robust to outliers, an Inter-Quartile-Range, IQR, is used. This 

range is 1.5x distance from the median of cached AWTs. It is used to cap potential 

outliers to an upper or a lower range. See (Bhandari 2020) to learn about how IQR 

is calculated.  

UpperEWT = [Median AWT] + 1.5 ×  IQR 

LowerEWT = [Median AWT] − 1.5 ×  IQR 

 

2.5 Performance measures 

When testing and evaluating predictors, one aspect to evaluate is how reliable the 

prediction models are, and how frequent and large errors are to be expected from 

 
* https://developer.genesys.cloud/api/rest/v2/routing/estimatedwaittime-v2#introduction accessed on (April 18, 2022) 

https://developer.genesys.cloud/api/rest/v2/routing/estimatedwaittime-v2#introduction
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each model. This will help when comparing between the models, and when 

comparing the same model’s performance when applied to new data. For this 

purpose, there are several measures that are used for evaluating the overall 

performance of the prediction model. For an ideal model, the predicted values and 

the actual values should be equal. Since this is not possible in practice, it should be 

known how large error values that could be put at risk by choosing a prediction 

model. In other words, the performance of the model should be assessed (Biecek and 

Burzykowski 2021). 

The most popular performance measure for linear models is the mean-squared error, 

MSE. It simply measures the average squared difference between the estimated 

values and the actual value, and is defined as: 

MSE =
1

𝑘
∑(𝑦𝑖 −  𝑥𝑖)2

𝑘

𝑖=1

 

Where k is the total number of records and (𝑦𝑖 −  𝑥𝑖) is the difference between the 

actual and the predicted values for the i-th observation. A lower MSE means a better 

model. This method is used by i.a. Ibrahim and Whitt (2008) to quantify the 

performance of the delay estimators.  

Other popular variants of MSE are RMSE (root-mean-squared-error) and 𝑅2 (Biecek 

and Burzykowski). The latter is a great tool for capturing data variability and is 

commonly used in linear regression models that are used to find a relationship 

between dependent and independent variables. It ranges between 0 and 1, where 1 

indicates a perfectly fitting model. 

For testing the validity of the model assumptions, the Chi-Square goodness-of-fit 

test can be used (Laguna and Marklund, 9.2.1). The test compares the actual 

observed frequency with the corresponding expected theoretical frequency, and 

given a specific significance value, it tells us whether there is a correlation or not. 

Given the lists of actual and the expected values, the Chi-test can easily be done 

using Microsoft Excel functions or by using the Χ2 formula: 

Χ2 = ∑
𝑂𝑖 − 𝑛𝑝𝑖

2

𝑛𝑝𝑖

𝑁

𝑖=1

  

Where n is the total number of observations in the sample, 𝑂𝑖 is the number of 

observations in bin 𝑖 and N is the number of bins. the product 𝑛𝑝𝑖 represents the 



 

 11 

expected frequency of bin 𝑖. After calculating the Χ2 value, it is compared with the 

critical value; the value of the Chi-Square distribution using N-1 degrees of freedom 

and a given level of significance. If the Χ2 value exceeds the critical value, then the 

assumption that the sample data follows the candidate theoretical distribution is 

rejected. 

As described in Laguna and Marklund (2011) about the goodness-of-fit tests in 

general; when the sample is small, only large differences are detected. When the 

sample is large, the tests tend to be sensitive to small differences between the sample 

data and the theoretical distribution. This property makes the test unreliable, and this 

is important to note since it might reject a hypothesis that could possibly be valid for 

an observation.  

2.6 Related work 

Besides methods proposed in operations management literature for wait time 

prediction, there have been several studies and research papers that propose 

alternative delay predictors (estimators) for more particular cases, such as for waiting 

times in hospitals (Ang, et al. 2016), airport security queues (Naji et al. 2020) or in 

call centers (Whitt 2006). Some related studies are described in this section. 

2.6.1 Alternative delay estimators 

The delay estimators developed by Ibrahim and Whitt (2008) use computer-based 

simulation to show the performance of two types of delay predictors, namely: 

history-based and queue-length based predictors. The former one uses information 

about resent logs of customer delay in the system. The second one uses the number 

of waiting customers seen upon arrival. These estimators consider overloaded, 

multiple-server queues with customer abandonments and different queueing models.  

To summarize, the authors show that the proposed Markovian queue-length based 

estimator outperforms other alternatives. This applies to systems where we have a 

general distribution and independent, identically distributed arrival times. These 

estimators are then extended in Ibrahim and Whitt (2011) for more complex systems 

with time-varying arrival- and service- rates.  

2.6.2 Data-driven service-level prediction  

Instead of queuing theory, Hou et al. ( 2021) use a data-driven approach to solve 

service level prediction problems. The authors argue that constraints imposed by the 

traditional queuing theory models cannot be met completely in real world. To reduce 

these restrictions, they use machine-learning based methods to find the relationship 

between service level and input factors from the historical data. This involves the 

exploration and usage of number of calls, the number of agents and time as inputs. 
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Finally, they show that their experimental results outperform the Erlang-A and C 

models significantly.  

2.6.3 The impact of delay announcements  

The performance consequence of delay announcements is studied in Armony, et al. 

(2008). First, two delay announcement schemes are suggested, the first is 

announcing the delay of the last costumer to enter service (DLS) and the second is 

making a fixed delay announcement (FDA). After measuring system performance of 

these schemes, customer response is modeled accordingly. The customer response 

in this study is defined as balking i.e., leaving the queue upon arrival; or reneging  

i.e., abandoning after staying a while in the queue.  

 

2.7 Summary 

Many important factors that affect the waiting times are considered and calculated 

based on general modeling assumptions. It is important to note that these 

assumptions impose restrictions when analytical models are used (Laguna and 

Marklund). Due to these restrictions, the waiting time cannot be estimated precisely. 

This applies especially to complex queuing systems with high variability of 

important factors, such as agent availability and efficiency, clients abandoning the 

queue, and varying service and arrival times, to name a few. 

It is also important to verify the validity of the assumptions before using them to 

analyze a particular queuing design. This requires a large amount of data collection 

and statistical analysis (Laguna and Marklund). 
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3 Method 

The purpose of this section is to provide an overview of the research method used in 

this work. Section 3.1 describes the research process. Section 3.2 focuses on the data 

collection techniques. Section 3.3 describes the method used for the data analysis. 

Finally, Section 3.4 describes the framework selected to evaluate the approximation 

methods.  

3.1 Research Process 

This research started with a literature study about queuing theory and related work 

about waiting time estimation. Then, the relevant data analysis tools were selected 

to study the client data provided by the company and analyse it according to the 

studied literature. This was then followed by applying Little’s and Qlm’s functions 

on this data. Afterwards, the current method used by Bambuser was evaluated and 

compared to another approach used by another company with similar queuing 

characteristics. The last approach was an attempt to go beyond queuing theory and 

try to capture more variability of the input data. 

3.1.1 Arrival and service time distributions 

Classifying the queueing model in Kendall’s notation started by analyzing the arrival 

and service times. The model could be classified as M/M/c model if they both 

followed the theoretical exponential distribution. The arrival rates were tested by 

examining if their distribution followed a Poisson distribution. Note that if the arrival 

rates followed a Poisson distribution with the mean rate 𝜆, then the inter-arrival-

times were independent and exponentially distributed with a mean of 1/𝜆 (Enger 

and Grandell, 59). The recorded service times were tested to verify if they followed 

an exponential distribution. Two merchants, A and B, were used to show the 

distributions in the results, if not otherwise stated. More details about the 

construction of the arrivals process can be found in section 4.4. 

3.1.2 Agent-utilization  

In this work, it was assumed that merchants with more than one queue in their system 

had 2 as an average number of queues per agent, according to information provided 

by the company*. Knowing this information did not reduce the complexity of the 

problem. This was because the complexity laid on measuring how available an agent 

was on each queue they were active on. This was dependent on the different arrival 

rates of these queues. For example, if an agent was active on three queues, and only 

one of these queues had arrivals at a specific time, then the agent utilization would 

 
* Information provided by the company said that most agents were active on 2-3 queues simultaneously.  
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be 100% on this queue. This would be reduced to 33% if the arrival rates were equal 

on all three queues simultaneously. The utilization could thus range between 0 and 

100 on each of these queues. In this work, the arrival rates on each queue could be 

calculated, but which particular queues each agent was active on were unknown. It 

was therefore not possible to determine an agent utilization factor for each queue. 

For simplicity, it was assumed an equal agent utilization for each queue. The agent 

utilization factor per queue was thus 50%. It is worth noting that this was a vague 

assumption that had no basis and could affect the results significantly. 

 

For merchants that had a single queue and multiple agents in their system, full agent 

utilization was assumed. This means that other factors that could affect the agent’s 

response time were ignored. 

3.1.3 Little’s Law  

Using the formulas presented in 2.2, the waiting time in a queue was calculated by 

extracting Wq from ( 1 ). Equations ( 4 ) and ( 5 ) were used in ( 3 ). Afterwards, ( 3 

) was used to calculate Lq in ( 1 ). 

In order to compute the utilization factor, 𝜌, for each merchant, data files separated 

by merchant id were used in a python script. These were then used to apply Little’s 

(or Erlang’s) formula. The number of available agents for each call was also 

retrieved to be used in the formula. Since the available agents could be active on 

multiple queues, it could either be assumed that there was a fraction of the total given 

agents available, or that the agent utilization of each agent was low. In other words, 

the values 𝑐 or 𝜇 had to be scaled first. Since 𝑃0 in the formula did not allow for c to 

be a non-integer value, scaling the service time was the optimal choice. Determining 

the scaling factor depended on the complexity of determining how active each agent 

was on each queue. However, the service rates were scaled based on the 

predetermined agent-utilization factor for each merchant. The prediction times 

obtained by Little’s formula were then written to new files to be analyzed and 

compared to the actual wait times. Merchants with only one queue were written to 

separate files than the other merchants. 

3.1.4 Queue Length based estimator, Qlm 

To test the Qlm function on the given data, the abandoned-calls rate had to be 

calculated first. Since this function performed best on a Markovian abandonment 

process, the frequencies of the abandonment rates were calculated to check the 

distribution. This was done the same way the arrival distribution was assembled, i.e. 

by counting the number of abandoned calls within each hour every day in the given 

data. Chi-square tests were made to verify the distribution assumption. The next step 

was to implement the function using python and apply it following the same 

procedure as applying Little’s function.  
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3.1.5 Genesys solution 

The approach described by Genesys was implemented as described on the website*. 

To have a sufficient number of cached records, the sample size of the most recent 

agent handle times was set to 7. The median of this sampled data was then used as a 

predicted agent handle time. To test the performance of the core function, the 

additional robustness formula was not implemented.  

As before, each of the merchant’s data was handled separately. These were then 

combined to be analyzed and compared to the current estimations and the actual wait 

times.  

3.2 Data Collection 

The data used in this research was provided by the company Bambuser. It was 

collected during a month and contained thousands of call-information for a specific 

number of merchants. It consisted of the following call-information: 

 

Merchant Id: The id of the merchant that receives calling customers. 

Ticket Id: Each call has a ticket id that distinguishes it from other calls. 

Queue Id: The queue on which a customer waits on. Each merchant can 

have several queues. 

Available agents: The number of available agents (service facilities) at the 

time of the call. 

Entered at: A timestamp for when a call entered the queue. 

Left after: The waiting time registered when a call is cancelled 

(abandoning the queue). 

Left at: A timestamp for when a call is cancelled. 

Place: A customer’s place in the system.  

Predicted wait 

time: 

The estimated wait time calculated by the currently used 

function. 

Started at: A timestamp for when a call left the queue and received a 

response from an agent. 

Waiting time: The actual wait time the customer experienced before being 

answered.  

The call durations for most calls were given on a separate sheet. These were used to 

calculate the service rates and analyze the service time distributions. 

 
* https://developer.genesys.cloud/routing/routing/estimatedwaittime-v2#introduction accessed on (April 18, 2022) 

https://developer.genesys.cloud/routing/routing/estimatedwaittime-v2#introduction
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3.3 Planned Data Analysis 

3.3.1 Software Tools 

Excel was used to display the data. It was also used to split and analyze some of the 

data. 

Python was used for implementing and testing the selected EWT functions. It was 

also used in addition to Excel to perform some data analysis. 

3.3.2 Data Analysis Technique 

The data was first analyzed to see common factors among the merchants, such as the 

most common call timings. The date and time were extracted from the timestamps 

to later be used to plot and calculate the interarrival times. Likewise, the call duration 

for most of the calls were used to plot the service-time distribution and calculate the 

mean service time.  

The data was then split to separate files based on Merchant Id, to make it easier to 

handle each merchant’s calls on their own and apply the selected methods on each 

of them separately.  

The data was cleaned by removing the rows that had the fields Available Agents, 

Entered at or Place empty. All rows that had 0 agents available were removed so that 

only queues with available agents were estimated. Afterwards, only merchants that 

had more than 25 records were considered in the testing and evaluation. 

 

3.4 Evaluation framework 

Both the MSE and a best-fit line measured by the 𝑅2 methods were used as metrics 

to evaluate the performance of the models. The model with the lowest MSE had the 

best estimation values, most of the time. The best-fit line and the  𝑅2 were used as 

additional metrics to visualize the variability of the data around the regression line, 

and thereby tell how accurate the prediction model was. The Chi-square goodness 

of fit was used to verify the validity of the assumed distributions of the arrival-rates, 

service times and abandoned calls.  

 

  



 

 

 

17 

4 Analysis and Results 

4.1 The company’s approach for EWT 

The EWT function used by Bambuser had the following parameters: 

• The number of online agents, s 

• The customers place in the system, n 

• A call duration constant, C, defined as the number of seconds 70% of the 

merchant's calls finish within 

The waiting time in queue, Wq (in seconds), was calculated as  

𝑊𝑞 = {
((𝑛 − 1) − ((𝑛 − 1) 𝑚𝑜𝑑 𝑠)

𝑠
 × 𝐶  , 𝑠 < 𝑛

60                             , 𝑠 ≥ 𝑛
 

The modulo part of the equation denotes the number of calls that have the same place 

as you in the queue, i.e., will be handled with your call in parallel. These are therefore 

subtracted from the total number of calls before you in the system. The rest is then 

divided by the number of agents to calculate the number of calls before you in the 

queue. Your waiting time then becomes the total handle time of the calls before you 

in the queue.  Theoretically, this approach transforms a single queue configuration, 

e.g. (M/M/c) into multiple queues (c × M/M/1). To illustrate with an example, 

consider a system with 3 agents, your place in the system is 8 and the average handle 

time for a call is 5 min. Your time in the queue then becomes 10 min, which is the 

total handle time of the two customers before you. This example is illustrated in 

Figure 4-1.  

 

Figure 4-1: Single queue vs. multiple queue configuration with 3 servers. The 

red circle indicates your place in the system/ queue 
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4.2 The setup of the queuing model 

The queuing model for each merchant consisted of multiple agents that could be 

active on multiple queues. Most of the calls had completely random arrivals and 

occurred independently from each other. This configuration could be described with 

Figure 2-2, but with several queuing systems served by the same service facility. The 

only aspect that was not considered there was that each agent could be active on an 

arbitrary number of queues simultaneously.  

Since the M/M/c model assumed a constant service rate for all agents, each queue 

in the current queuing model was supposed to have its own mean service rate. This 

varied according to the number of available agents and their different availability 

percentages. 

4.3 Call timings 

A distribution of the call timings shows the times where the maximum call arrivals 

occur. This distribution was drawn and can be found in Figure 0-1 in the Appendix. 

It included all hours and all days of the week for all merchants. Observing this 

distribution shows that the maximum call arrivals were between 9:00 – 17:00 

(GMT). Assuming 8 opening hours for all merchants was therefore reasonable.  

4.4 Arrival distribution 

The arrival distribution for a merchant was calculated by counting the number of 

arrivals (calls) within each hour every day in the given data. This data was first 

organized in a table that can be found in Table 0-1 in the Appendix. 

This table was then used to draw a frequency distribution that showed the most 

common numbers of arrivals in an hour. The mean was then calculated by dividing 

the total sum of arrivals by the total number of days. This gave the arrival rate 𝜆 =

3.7 calls/h ≈ 0,062 calls/min. The average time between call arrivals (the mean inter-

arrival-time) was thus  1/𝜆 ≈ 16 minutes, assuming 8 working hours a day. Figure 

4-2 shows the frequency distribution of the observed values vs. how they ideally 

would look like following a Poisson distribution. 
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Visual examination of the frequency histogram shows that the observed distribution 

and the theoretical distribution do quite follow the same pattern, in general. To test 

the significance of the differences between the two distributions, the Chi-square test 

was used, following the steps presented in (Laguna and Marklund, 9.2.1). To perform 

the test, all expected frequency values should exceed 5. Therefore, the bins that had 

lower than 5 were combined, and the number of valid bins, N, was then reduced to 

9. Having N-1 degrees of freedom (DOF) and a significance level of 5%, a critical 

value was computed to compare with our Χ2 value. As a result, testing the hypothesis 

that the sample data came from the Poisson distribution with a mean of 3.7 gave a 

higher Χ2 value than the critical value. In other words, assuming a Poisson arrival 

process was not reasonable for the tested data, under the Chi-square criterion.  

To test more samples than what Merchant A had, which was 830 calls, Merchant B 

with 3928 calls was selected and tested similarly. The test resulted in the same 

indication as above, that the observed distribution did not follow the expected 

distribution. The frequency histogram for Merchant B and the chi square values for 

both merchants can be found in the Appendix.  

The Chi-square tests did not support the Poisson input process assumption, at least 

for the two observed merchants. What followed from this was invalidating the 

assumption that the interarrival times followed an exponential distribution. 

Despite the negative test results, it was interesting to assume a Poisson input process 

to see how the model would perform. This was somewhat based on the theoretical 

assumption that the arrivals occurred randomly, without schedules or regulations. It 

was also due to the sensitivity of the Chi-square test to both the number of bins and 

the input data.  

Another approach that could be used to verify the Poisson assumption was to check 

if time varying arrivals followed a Poisson process. This could be done by verifying 

if the arrivals during the same hour every day followed a Poisson process. Since this 

would result in a fewer number of bins and lower values, the chi tests were skipped. 

Figure 4-2: The arrival distribution for merchant A with the theoretical 

Poisson distribution, given 𝝀 =  𝟑. 𝟕 𝒄𝒂𝒍𝒍𝒔/𝒉 
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However, time varying arrivals were considered and calculated to be used in 

additional tests. The results for these can be found in 4.7.3. 

In all tests, the value of the mean arrival rate was calculated per queue. This was 

done by calculating the percentage of how often a queue gets arrivals compared to 

the total number of arrivals, and then extract that from the total mean arrival rate. 

4.5 Service time distribution 

The call duration distribution (service time distribution) was calculated by counting 

the frequency of the call durations. Calculating the mean service time per customer 

from this distribution gave 7.7 min/call, which gave the mean service rate  𝜇 =

 1/7.7 ≈  0.13 calls/min. This was then given as an input to calculate the theoretical 

exponential distribution and compare it to the observed distribution, as shown in 

Figure 4-3.  

 

  

As can be seen from Figure 4-3, the observed distribution follows the theoretical 

exponential distribution. The Chi-Square test was used to validate this correlation. 

Setting the degree of freedom to 11 and the significance value to 0.05, the test gave 

a Χ2 value that was lower than the critical value. Thus, the test supported the 

assumption for this sample data. The table containing the performed calculations and 

results is added to the appendix. 

Observing the call durations for merchant B, that had significantly more data, gave 

a clearer view of the correlation between the observed and the theoretical 

distribution, as shown in Figure 4-4.  

 

Figure 4-3: The service time distribution (blue) and the theoretical exponential 

distribution with 𝝁 = 0.13 calls/min 
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Figure 4-4 shows an obvious relationship between the service time distribution and 

the theoretical exponential distribution. The Chi-Square test result, however, rejected 

this assumption. This might be due to having a large sample data, since in this case 

the test tends to be sensitive to small differences between the sample data and the 

theoretical distribution, as noted earlier.  

 

4.6 Abandonment distribution 

The total abandonment rate distribution for all merchants followed the 

characteristics of a normal distribution, as can be seen in Figure 4-5 below. The table 

for the number of abandonments during each hour for all merchants can be found in 

Table 0-2. 

 

 

 

Chi-Test results showed that the observed distribution did not strictly follow a 

Poisson distribution. It did however follow a Normal distribution with a mean value 

Figure 4-4: The service time distribution vs. the theoretical exponential 

distribution with 𝝁 = 0.23 calls/min  

  

Figure 4-5: Number of abandoned calls per hour for all 

merchants’ records 
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of 24 and a standard deviation of 9. Figure 4-6 shows the theoretical Poisson and 

Normal distributions compared to the observed data. 

 

 

 

The Poisson assumption was rejected mainly due to over-dispersion, as seen in the 

figure. Over-dispersion means that the variance is greater than the mean (Saputro et 

al. 2021). This variability of the data could be due to some merchants had a low 

abandonment mean value, and others had too high. It could also be possible that 

some days, such as holidays had more varied abandonment rates than other days. 

However, testing the abandonment distribution for merchant A with a significance 

value of 0.05 gave a Poisson distribution, as can be seen in Figure 4-7.   

 

 

 

 

 

 

Figure 4-6: The abandonment rate distribution compared to the theoretical Poisson and Normal distributions, 

with 𝝁 = 𝟐𝟒 and 𝝈 = 𝟗 

Figure 4-7: Abandoned calls distribution for Merchant A 
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4.7 Little’s Law 

4.7.1 Merchants with one queue 

Merchants with only one queue in their system were analyzed first. In cases where 

the number of available agents was high or the load on each agent was low, the result 

of the calculation gave a value close to 0. This indicated that an arriving customer 

could be served immediately. The Bambuser function technically did this by giving 

a waiting time of 60 seconds if the number of agents was greater than or equal to the 

customers place in the queue.  

 

Figure 4-8 shows Little’s and Bambuser’s predicted times compared to the actual 

waiting times. These values were for a merchant with one agent available for all 

cases except for one, where more agents were available, thus resulted in much lower 

estimated wait time for this case. The customers’ place in the queue was one for all 

cases. The straight line in the figure shows the ideal placement of the dots if the 

predicted values where equal the actual.  

 

 
 

Figure 4-8: Actual vs. Predicted times for a merchant with one queue 

 

The comparison shows that Little’s function overestimated the waiting times when 

the load per server was relatively high. This was due to a high mean arrival rate or 

low mean service rate. Since all actual waiting times ranged between 10-60 seconds, 

Bambuser’s estimations gave a better approximation for this merchant.  

 

Figure 4-9 shows the predicted results for all other merchants with one queue. In an 

ideal world, there should be a linear relationship between the predicted and the actual 

values.  
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Figure 4-9: Actual vs. Predicted times for other merchants with one queue 

 

4.7.2 Merchants with more than one queue 

Merchants with more than one queue in their system were analyzed separately. Here, 

since the agent utilization was assumed to be 50%, the load per agent was doubled. 

This resulted in a load that exceeded 1 for some cases, which resulted in an unstable 

system and thus a negative value as estimation. This occurred mostly in highly 

loaded systems where relatively fewer agents than usual were available.  

The negative prediction values were excluded from the evaluation, so that only the 

stable-state estimations were evaluated. The final result is shown in Figure 4-10. The 

linear equations of the best fit lines, y1 and y2 represent Little’s and Bambuser’s 

predictions, respectively. The R2 values were close to 0, which meant that none of 

the functions was a good predictive model. However, they showed that Bambuser’s 

function had better performance regarding the variability of the prediction values 

around the regression line.  

 

 

 

Figure 4-10: Actual vs. Predicted Waiting Times for merchants with more than a queue. The 

function y1 is the best-fit line for Little’s and y2 is for Bambuser’s function 
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4.7.3 Using time varying arrival rates 

Using a time dependent arrival rate in Little’s formula gave a slightly higher MSE 

than the time-independent result. The MSE values of the functions can be found in 

section 4.10. The difference might be due to some specific hours had no (or 

extremely low) mean arrival rate. It could also be due to more variable predictions 

since the load is much more varying. Figure 4-11 shows the predictions for merchants 

with one queue, using time-varying arrival rates.  

 

 

 

For merchants with more than one queue, the total number of records increased 

because fewer negative values were predicted. As can be seen in Figure 4-12, 

Bambuser’s predicted values were closer to the line, meanwhile Little’s predictions 

were more spread out. This is also indicated in the corresponding R2 values of each 

function, where the first is Little’s and the second is Bambuser’s.  

 

 

Figure 4-11: Time-predictions of one-queue merchants, 

using a time-varying arrival rates 

Figure 4-12: Time-dependent predictions for merchants 

with more than one queue 
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4.8 Qlm 

This function only predicted waiting times when there was at least one customer in 

the queue upon arrival. To this end, it was performed and evaluated for the customers 

that were not standing first in the queue.  

4.8.1 Merchants with one queue 

Most of the recorded data in this category did not have a high load in their system. 

Considering only the calls that were answered and that were not first in the queue 

resulted in much less records to evaluate. These are shown in Figure 4-13. 

 

 

4.8.2 Merchants with more than one queue 

Qlm prediction results for merchants with more than one queue are presented in 

Figure 4-14. As before y1 is the regression function for Qlm and y2 is for Bambuser. 

The R2 values shown in the figure tell that Bambusers function is more likely to 

predict outliers than Qlm.  

Figure 4-13: Predicted waiting times compared to the actual times. It shows the variability of 

predictions of both Bambuser’s, and the Markovian Queue-length based estimations 

Figure 4-14:Actual vs. Predicted waiting times for merchants 

with more than one queue. 
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4.9 Genesys method 

 

 

The R2 values from the figure above shows that Bambuser’s estimations were closer 

to the line whereas Genesys’ estimations had higher variance. The predicted outliers 

that were made by Genesys’ function were related to a drastic change to the number 

of agents. Table 4-1 shows a snapshot of some predicted values and how they 

changed based on agent-handle-time history and number of agents.  

 
AGENTS PLACE ACTUAL GENESYS BAMBUSER 

73 1 929,611 41,73 60 

3 1 29,797 1015,35 60 

79 1 268,13 23,49 60 

83 2 26,727 44,72 60 

81 1 119,38 22,91 60 

81 1 46,66 119,38 60 

74 1 26,534 51,07 60 

74 1 11,203 51,07 60 

74 1 176,276 26,53 60 

3 1 14,32 1259,82 60 

79 1 88,288 24,85 60 

81 2 344,002 93,32 60 

 

Table 4-1: A snapshot of Genesys predictions 

 

The values that were estimated over 1000 were a result of a low agent handle time, 

as interpreted by Genesys’ function.  

Figure 4-15: Predicted wait times of Genesys vs. Bambusers 

function relative to the actual wait times 
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4.10 Performance measures 

4.10.1 MSE and average wait time 

Table 4-2 shows the Mean Squared Errors of the Little and Qlm functions compared 

to Bambuser’s MSE.   

 
 NUMBER OF 

QUEUES 

MSE BAMBUSER 

MSE 

NUMBER 

OF 

RECORDS 

LITTLE one queue 13 622 18 680 325 

more queues 348 226 24 930 6 951 

TIME-

DEPENDENT 𝝀 

One queue 14 333 18 680 325 

More queues 808 867 24 726 7 073 

QLM one queue 93 460 69 242 35 

more queues 119 735 62 615 2 652 

GENESYS All queues 40 327 59 096 7883 

 

Table 4-2: MSE values of the different prediction functions. The underlined values are the 
lowest MSE in each category. 

 

The table shows that Little’s function performed better for merchants with one queue 

in their system under the MSE criterion. All other predictions show that Bambuser’s 

function performed better and had a more stable MSE relative to the number of 

records. 

Observing the results of the time-varying arrival rates shows that the time-

independent arrival rates gave better results. This could mean that the arrival rates 

were probably not time-dependent for all merchants or most of them.  

The MSE show that Little’s formula performed better for merchants with one queue 

than with more queues. This could be strongly associated to the predetermined agent 

utilization factor of 50% that was assigned to merchants with several queues. 

Despite the outliers that were predicted by Genesys’ function, it gave lower squared 

errors overall. This would change if more merchants had a very high variation of the 

number of available agents. One way to overcome this could be by handling each 

queue separately, since the number of available agents usually changed accordingly.  
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Table 4-3 shows the average of the estimated wait times of all records, compared to 

the average of the actual wait times. 

 
 NUMBER OF 

QUEUES 

AVERAGE 

ESTIMATED 

BAMBUSER 

AVERAGE 

ACTUAL 

AVERAGE 

NUMBER OF 

RECORDS 

LITTLE one queue 11 78 45 325 

more queues 164 89 54 6 951 

TIME-

DEPENDENT 𝝀 

One queue 18 78 45 325 

More queues 215 89 57 7 073 

QLM one queue 230 208 70 35 

more queues 315 147 86 2 652 

GENESYS All queues 41 120 59 7883 

 

Table 4-3: The average of the estimated wait times compared to the average of the actual. The 
underlined values have the closest average. 

 

The results from the table above show that the functions overestimated the wait times 

in the cases where there were several queues in the system. They also show that Qlm 

for one-queue merchants had a close average to Bambuser’s average, and they both 

overestimated the actual wait time, in general.  

4.10.2 Information required for the estimators 

The different delay estimators that were considered in this work required different 

input factors from the given data for their implementation. These factors are 

summarized in Table 4-4. 

 
FUNCTION S 𝝁 N ADDITIONAL INPUT 

BAMBUSER x  x Service time constant 

LITTLE x x  Arrival rate 

QLM x x x Queue abandonment rate 

GENESYS x  x Recent logs of actual wait times. 

 

Table 4-4: Input factors for different estimators. S=number of agents, 𝝁=service rate,  

N=place in queue. 
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4.11 Discussion 

The reason behind the low performance of Little’s and Qlm’s functions could be that 

they both assumed full availability for all agents and a constant service time for these 

agents, which was not the case in the used queuing model. Scaling the service rate 

with 50% to represent the approximation that each agent was active on two queues 

on average, with equal availability on each queue, failed to give a Lower MSE than 

the company’s method. This might indicate that it was not a fair approximation, and 

thus this scale should be dynamic based on the total agent availability of the given 

number of agents. It might otherwise indicate that the approximation of the used 

queuing model to a M/M/c +M model was not suitable. This was due to the fact that 

the chi-square tests failed in most cases, in addition to that not all merchants’ data 

were examined.  

 

For one-queue systems, Bambuser’s estimator seemed to have a realistic 

performance even though Little’s MSE had a Lower value. However, a clearer 

difference between the two functions could appear if the one-queue systems in the 

tested data were heavily loaded. The Qlm function’s results for one-queue merchants 

might need more data to test, with a heavily loaded system, in order to be evaluated. 

Figure 4-13 showed that, for 35 records, it gave close estimations to Bambuser’s 

estimations, with slightly higher errors.  

 

Using time-varying arrival rates resulted in significantly higher squared errors.  

Assuming that time-varying arrival rates followed a Poisson process should therefore 

be invalidated for the queueing model used in this work.  For this reason, the methods 

developed in Ibrahim and Whitt (2011) for time-varying arrival and service rates are 

not recommended to be implemented and tested for this case model.  

 

In general, the theoretical approaches presented here were not sufficient to be used 

as models for approximation for this case study. A common disadvantage of these 

theories, besides assuming a constant service rate for all servers, is that they 

inherently assume that all servers are equally and fully available. This is rarely the 

case in real queuing systems, especially in this case study where the availability of 

the agents depended on how many queues each of them was active on, among other 

factors. Consequently, the complexity of applying these theories arose when 

determining the mean service rate of an agent. This only affected merchants with 

more than one queue in their system. The functions were therefore firstly used 

without modifications to single-queue systems, where they were supposed to 

perform ideally compared to the multiple-queue systems. The results were that 

Little’s formula gave a lower MSE than Bambuser’s, while Qlm resulted in a slightly 

higher MSE. However, since the single-queue systems in this case were not heavily 

loaded, the performance results that followed with them should not be concluded.   
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Regarding multiple-queue systems, assuming that each agent was active on two 

queues with equal availability on each queue did not result in a lower MSE value 

than the MSE resulted by Bambuser’s function. This result could be due to all the 

generalizations and approximations imposed by the classified model. It could also 

more likely be due to the inability to account for multiple agents being active on 

multiple queues. This creates the need to find ways to encapsulate this factor into the 

used formulas if the classified model would be used. Otherwise, one should consider 

using and modifying, or even creating other queueing models that are somewhat less 

restricted to assumptions and that consider more variability factors. It also creates 

the need to consider more flexible tools and approaches, such as simulation or 

machine learning to model and represent more complex structures. Simulation might 

however be a very computationally expensive solution, but can be combined with 

the theoretical models to obtain better analytical results (Ernst et al. 2004).  

Moving on to the solution provided by Genesys, the total average estimated wait 

time and MSE indicate a better performance than the queueing theory approaches 

and the company’s approach. Implementing the additional presented feature that 

makes the formula robust to outliers would give a better result. It is therefore 

recommended for implementation and use for future test data.  
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5 Conclusions and Future work 

5.1 Conclusions 

This work attempted to capture the variability of a dynamic and extended queueing 

system with models and assumptions presented in queuing theory. The goal was to 

present an analysis of the current queuing model and use this analysis to estimate the 

wait time for the arriving customers in the queue system. Classifying the model was 

based on general assumptions that were not fully verified but approximated to a 

M/M/c+M model. After the classification of the model, two theories that applied to 

it were used to estimate the waiting time in the queue. The first one used Little’s 

formula combined with Erlang’s C-formula, while the other one was based on a 

queue-length-based delay estimator. The outcomes of applying these approaches 

resulted in reasonable approximations of EWT, but not better than the currently used 

approach.  

Other alternatives that could be applied to extended queuing models could require 

using heuristical approaches. This was already done by Bambuser and another 

company, Genesys, that considers similar queuing characteristics. These approaches 

were compared to the used queuing theory models and resulted in general in better 

estimations of the wait time, under the MSE criterion.  

To summarize, one should not rely solely on queuing theory to achieve optimal 

solutions in practical queuing system applications. This is because the assumptions 

do not always hold true in real systems and cannot handle high variability or peaks 

in the system. Despite all the limitations of queuing theory, it can be helpful for 

providing a close approximation and performance optimization for simple queuing 

models. They might however be too outdated or restrictive to be applied to modern 

applications that grow continuously and usually require more complex models. 

These outcomes are also highlighted in the “Limitations of queuing theory” 

whitepaper section presented by Special Answering Service (SAS)*.  

5.2 Limitations 

The findings of this work are not limited to wait time estimation in contact centers. 

They apply to other concepts that use queuing theory approaches for time estimation. 

The result includes an evaluation of the theoretical models and discuss some 

limitations when they are applied in practice. It is important to be aware of these 

limitations when working on extended queuing models that are not analyzed in 

queuing theory. The solutions presented by queuing theory should be studied 

thoroughly before being selected for analysis. Otherwise, other alternatives should 

be considered.  

 
*  Available at https://www.specialtyansweringservice.net/library-books/queueing-theory-call-centers/ (Accessed 17 May 2022) 

https://www.specialtyansweringservice.net/library-books/queueing-theory-call-centers/
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The analytical results obtained by this work are limited to the current setup of the 

queuing model. Changing the current routing rules of arriving jobs or changing the 

scheduling of the staff or any of the characteristics of company’s queueing model 

will require new analysis and calculations of EWT. This is because these factors are 

interdependent in queuing theory and any changes to these will affect the obtained 

analytical results. 

 

5.3 Future work 

Queuing theory appears to be restricted for use beyond the most commonly used 

queuing models. There is however lack of studies that supports or denies this 

statement. Further development of queuing theory models could be beneficial for 

future research and use of queuing theory approaches.  

Other than queuing theory approaches, it could be beneficial to have more research 

that proposes delay estimators for extended models that are more effective than the 

estimators that are considered here.   
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Figure 0-1: The call timing distribution for all merchants 



 

 

 

Arrival Distributions 

 
Table 0-1: The number of arrivals each hour a day for  merchant A. 

  Time               

Date 9 10 11 12 13 14 15 16 

2022-02-20 1 0 1 3 1 1 3 4 

2022-02-19 1 3 3 3 1 2 0 0 

2022-02-18 5 4 4 2 4 2 5 4 

2022-02-17 3 7 5 2 4 3 6 3 

2022-02-16 2 5 3 4 11 19 6 5 

2022-02-15 4 4 1 1 6 8 3 1 

2022-02-14 5 4 0 3 4 2 6 4 

2022-02-13 2 5 11 3 5 0 1 2 

2022-02-12 3 2 1 1 0 1 1 0 

2022-02-11 3 3 3 0 8 2 3 4 

2022-02-10 5 4 6 4 5 8 2 2 

2022-02-09 5 6 6 6 9 7 5 7 

2022-02-08 2 4 3 13 2 2 3 3 

2022-02-07 11 4 3 2 5 0 7 3 

2022-02-06 4 3 1 1 0 1 5 4 

2022-02-05 1 6 4 1 9 3 1 1 

2022-02-04 12 4 4 1 11 3 7 6 

2022-02-03 2 3 1 4 4 1 3 7 

2022-02-02 10 2 2 5 3 3 6 4 

2022-02-01 5 11 9 5 8 12 3 0 

2022-01-31 3 3 4 7 3 4 4 2 

2022-01-30 3 1 1 3 0 2 1 0 

2022-01-29 1 2 4 1 3 2 3 0 

2022-01-28 3 2 3 3 4 6 5 0 

2022-01-27 3 10 8 7 9 4 4 3 

2022-01-26 4 4 4 13 8 4 4 1 

2022-01-25 1 5 5 2 5 6 6 2 

2022-01-24 0 0 0 0 0 0 0 0 

Sum 104 111 100 100 132 108 103 72 
  

Figure 0-2: The arrival distribution for merchant B with the 

theoretical Poisson distribution, given 𝝀 =  𝟏𝟕, 𝟓 𝒄𝒂𝒍𝒍𝒔/𝒉 



 

 

  

 

𝚾𝟐 Results – Arrival Distributions 

 
MERCHANT A   

OBSERVATION Observed Expected 

0 23 6 

1 31 20 

2 26 38 

3 42 47 

4 37 43 

5 21 32 

6 14 20 

7 8 10 

8-19 22 8 

 
MERCHANT B 

  

OBSERVATION Observed Expected 

0-10 11 0 

11 12 7 

12 8 10 

13 15 13 

14 15 16 

15 12 19 

16 12 21 

17 7 21 

18 15 21 

19 10 19 

20 14 17 

21 8 14 

22 5 11 

23 9 9 

24 5 6 

25-50 0 0 

 

 

 

 

 

  

  

CHI SQUARE TEST   

 Merchant 

A 

Merchant 

B 

Excel Function 

DOF 8 15  

P_VALUE 4,97E-16 2,82E-38 CHISQ.TEST(Observed; 

Expected) 

CHI_SQUARE 8,99E+01  2,19E+02 CHISQ.INV.RT(P_value; 

Dof) 

CHI_INV 1,55E+01  2,50E+01 

 

CHISQ.INV.RT(0,05; 

DoF) 



 

 

𝚾𝟐 Results – Service Time Distributions 

 
MERCHANT A 

CALL 

DURATION 

Observed 

Frequency 

Exponential 

Frequency 

1 7 10 

2 13 9 

3 13 8 

4 4 7 

5 7 6 

6 7 5 

7 6 5 

8-9 8 8 

10-11 3 6 

12-14 8 6 

15-19 6 6 

20-29 7 5 

 

  
MERCHANT B 

CALL 

DURATION 

Observed 

Frequency 

Exponential 

Frequency 

1 230 179 

2 197 143 

3 142 114 

4 61 91 

5 68 73 

6 38 58 

7 38 46 

8 32 37 

9 13 30 

10 16 24 

11 17 19 

12 11 15 

13 11 12 

14 13 10 

15 8 8 

16 7 6 

17 1 5 

18-19 10 7 

20-22 5 6 

23-71 16 5 

 

  

 

  

 

 

 

 

CHI SQUARE TEST  

 Merchant A Merchant B 

DOF 11 19 

P_VALUE 4,25E-01  7,88E-14 

CHI_SQUARE 1,12E+01  1,05E+02 

CHI_INV 1,97E+01  3,01E+01 



The Abandonment Rates Process 

Table 0-2: The number of abandoned calls each hour a day for all  merchants. 

Time 

 Date 9 10 11 12 13 14 15 16 

2022-02-20 22 12 14 17 16 10 5 10 

2022-02-19 26 25 23 22 19 28 22 7 

2022-02-18 35 30 43 34 27 20 16 12 

2022-02-17 26 32 23 35 37 28 15 24 

2022-02-16 25 18 28 37 34 23 17 33 

2022-02-15 30 23 24 30 40 28 21 43 

2022-02-14 34 44 34 22 31 30 19 21 

2022-02-13 18 15 23 16 30 8 12 12 

2022-02-12 38 42 26 30 22 35 24 8 

2022-02-11 20 31 21 15 21 15 18 20 

2022-02-10 21 17 30 40 16 19 21 19 

2022-02-09 35 27 24 27 24 74 44 24 

2022-02-08 30 51 35 32 21 23 33 27 

2022-02-07 39 35 27 23 23 15 28 24 

2022-02-06 24 33 21 16 11 15 24 11 

2022-02-05 21 10 23 20 18 22 17 4 

2022-02-04 24 22 26 28 32 31 18 21 

2022-02-03 31 42 25 16 20 22 11 17 

2022-02-02 36 15 16 24 23 22 28 24 

2022-02-01 32 28 28 27 37 38 21 25 

2022-01-31 46 24 35 31 33 17 30 14 

2022-01-30 21 12 11 26 12 20 21 5 

2022-01-29 26 19 23 24 27 17 20 18 

2022-01-28 23 17 16 26 30 21 13 10 

2022-01-27 43 28 46 31 24 21 23 14 

2022-01-26 26 27 12 17 37 20 14 13 

2022-01-25 26 19 28 18 28 32 32 29 

BIN OBSERVED POISSON 

0-15 34 6 

16-20 38 42 

21-25 56 83 

26-30 40 61 

31-75 48 24 

BIN OBSERVED NORMAL 

0-10 10 13 

11-15 24 21 

16-20 38 35 

21-25 56 45 

26-30 40 43 

31-35 27 31 

36-40 10 17 

41-45 7 7 

46-75 4 3 

POISSON (ALL) NORMAL(ALL) POISSON (MERCHANT A) 

P_VALUE 6,19E-36 5,39E-01 5,96E-02 
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