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Abstract

A fundamental requirement in data analysis is fitting the data to a model
that can be used for the purpose of prediction and knowledge discovery. A
typical and favored approach is using a linear model that explains the rela-
tionship between the response and the independent variables. Linear models
are simple, mathematically tractable, and have sound explainable attributes
that make them widely ubiquitous in many different fields of applications.
Nonetheless, finding the best model (or true model if it exists) is a challeng-
ing task that requires meticulous attention.

In this PhD thesis, we consider the problem of model selection (MS) in
linear regression with a greater focus on the high-dimensional setting when
the parameter dimension is quite large compared to the number of available
observations. Most of the existing methods of MS struggle in two major areas,
viz., consistency and scale-invariance. Consistency refers to the property of
the MS method to be able to pick the true model as the sample size grows
large or/and when the signal-to-noise-ratio (SNR) increases. Scale-invariance
indicates that the performance of the MS method is invariant and stable to
any kind of data scaling. These two properties are very crucial for any MS
method. In the field of MS employing information criteria, the Bayesian
Information Criterion (BIC) is undoubtedly the most popular and widely
used method. However, the new BIC forms including the extended versions
designed for the high-SNR scenarios are not invariant to data-scaling and
our results indicate that their performance is quite unstable under different
scaling scenarios. To eradicate this problem we proposed improved versions
of the BIC criterion viz., BICR and EBICR where the subscript ‘R’ stands
for robust. BICR is based on the classical setting of order selection, whereas
EBICR is the extended version of BICR to handle MS in the high-dimensional
setting where it is quite possible that the parameter dimension p also grows
with the sample size N . We analyze their performance as N grows large as
well as when the noise variance diminishes towards zero, and provide detailed
analytical proofs to guarantee their consistency in both cases. Simulation
results indicate that the performance of the proposed MS criteria is robust to
any data scaling and offers significant improvement in correctly picking the
true model. Additionally, we generalize EBICR to handle the problem of MS
in block-sparse high-dimensional general linear regression. Block-sparsity is
a phenomenon that is seen in many applications. Nevertheless, the existing
MS methods based on information criteria are not designed to handle the
block structure of the linear model. The proposed generalization handles the
block structure effortlessly and can be employed for MS in any type of linear
regression framework.
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Sammanfattning

Ett grundläggande behov i dataanalys är att anpassa data till en mo-
dell som kan användas för prediktion eller ge ny kunskap. Ett typiskt och
föredraget tillvägag̊angsätt är att använda en linjär modell som förklarar
sambandet mellan svaret och de oberoende variablerna. Linjära modeller är
enkla, matematiskt hanterbara och har goda förklarande egenskaper som gör
dem allmänt förekommande inom många olika användningsomr̊aden. Det är
fortfarande en utmanande uppgift att hitta den bästa modellen (eller sanna
modellen om den finns) och det kräver en noggrann behandling. I denna dok-
torsavhandling behandlar vi problemet med modellval (MV) i linjär regression
med ett speciellt fokus p̊a det högdimensionella fallet när parameterdimensio-
nen är relativt stor jämfört med antalet tillgängliga observationer. De flesta
av de befintliga metoderna för MV har problem med antingen konsistens el-
ler skalningsinvarians. Konsistens hänvisar till egenskapen hos MV-metoden
att kunna välja den sanna modellen när sampelstorleken blir stor eller/och
när signal-brus-förh̊allandet (SNR) ökar. Skalningsinvarians indikerar att pre-
standan för MV-metoden är invariant och stabil för alla typer av dataskal-
ning. Dessa tv̊a egenskaper är mycket avgörande för alla MV-metoder. Inom
omr̊adet för MV som använder informationskriterier är Bayesian Information
Criterion (BIC) utan tvekan den mest populära och mest använda metoden.
De nya BIC-formuleringarna inklusive de utökade versionerna designade för
scenarierna med högt SNR är dock inte oberoende av dataskalning och v̊ara
resultat indikerar att deras prestanda är ganska instabila under olika skal-
ningsscenarier. För att eliminera detta problem föresl̊ar vi förbättrade ver-
sioner av BIC-kriteriet, nämligen BICR och EBICR där tillägget ‘R’ st̊ar för
robust. BICR är baserad p̊a det klassiska problemet för val av modellord-
ning, medan EBICR är den utökade versionen av BICR för att hantera MV i
högdimensionella problem där det är mycket möjligt att parameterdimensio-
nen p ocks̊a växer med antal sampel N . Vi analyserar deras prestanda när N
växer sig stor s̊aväl som när brusvariansen g̊ar mot noll och ger detaljerade
analytiska bevis för att garantera överensstämmelse i bägge fallen. Simule-
ringsresultat indikerar att prestandan för de föreslagna MV-kriterierna är
robusta för alla dataskalningar och erbjuder betydande förbättringar när det
gäller att korrekt välja den sanna modellen. Dessutom generaliserar vi EBICR

för att hantera problemet med MV i blockgles högdimensionell allmän linjär
regression. Blockglesa modeller förekommer i m̊anga tillämpningar. Änd̊a är
de befintliga MV-metoderna baserade p̊a informationskriterier inte utformade
för att hantera den linjära modellens blockstruktur. Den föreslagna genera-
liseringen hanterar blockstrukturen utan ansträngning och kan användas för
MV i vilken typ av linjär regression som helst.
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Chapter 1

Introduction

“Data is the new oil.”
-Clive Humby

1.1 Motivation

The 21st century is the era of data that has revolutionized the manner in which
decisions are made. In general, large volumes of data can be examined to

gain additional insights and extract important information to further enhance the
analysis and the decision making process. In this regard, a typical approach used by
statisticians, analysts, and data scientists is to employ different statistical methods
or machine-learning approaches to fit a model using the available data for making
predictions. However, since the true model is unknown, there can be several possible
candidate models that can be used to describe the data. The goal herein is then to
find the best model among the available candidate models. This is a pivotal step
in data analysis because wrong or improper choice of model can produce incorrect
predictions resulting in misleading conclusions. Thus, model selection is the task
of selecting a model from a set of candidate models, given a set of data [1, 2].

The scope of model selection is quite extensive. It plays a central role in sta-
tistical inference in many areas of science, engineering, finance, economics, biology,
ecology, etc. In a broader sense, model selection may involve various tasks such as
finding the best subset of a linear regression model, estimating the order of a poly-
nomial regression or autoregressive process, estimating the required components in
a mixture model, evaluating the number of change points in time series models, and
estimating the true variables of a non-linear system. In the deep learning domain
model selection may be concerned with finding the optimal numbers of neurons in
a layer or choosing the number of hidden layers for a deep neural network, etc.
However, we keep the scope of this thesis to statistical models. Below, we provide
a brief overview of statistical models and their role in data analysis.

1



2 CHAPTER 1. INTRODUCTION

1.2 Statistical Models

Generally, the meaning of the term “model” might vary depending on the situation
or the context at hand. In scientific studies, experts belonging to a particular
field may use the term model to refer to a particular thing in their domain, which
may completely differ from another domain/field. In this thesis, our focus is on
statistical models.

Formally, a statistical model is defined as a family of probability distributions, P,
on a sample space S, constructed to enable inferences to be drawn or decisions made
from data [3, 4]. The reasoning behind the definition is as follows. Typically it is
assumed that there exists a “true” probability distribution that generates the data.
In this regard, P represents a collection of distributions that contains a distribution
that accurately approximates the true distribution. However, in practice, P may
not always include the true distribution. Hence, the goal here is to approximate the
true structure as accurately as possible using the available data. The parameter θ
is typically used to specify the distribution in P, where θ belongs to the parameter
space Θ. Therefore, the set P is parameterized, i.e., P = {Pθ : θ ∈ Θ}, where Pθ is
a probability distribution on the sample space S with respect to parameter θ ∈ Θ.
The parameterization is said to be identifiable if distinct parameter values give rise
to distinct distributions, i.e., Pθ1 = Pθ2 implies θ1 = θ2 [4]. Below we describe the
types of statistical models available in the literature.

1. Parametric: This is the class of statistical models that has a finite number
of parameters no matter the amount of data available. These parameters
are of a fixed size, which means that the model already knows the number
of parameters it requires. The model’s complete information is represented
within its parameters. The only information needed to predict future or
unknown values from the current value is the parameters [1, 5].

Examples: A simple example of a parametric model is the family of Gaussian
distributions parametrized by θ = [µ, σ] where µ ∈ R denotes the mean value
also called the location parameter, and σ > 0 is the standard deviation also
known as the scale parameter. Any Gaussian distribution can be completely
described by just these two parameters. So the knowledge of µ and σ are
sufficient to know everything about the statistical model

P =

{
Pθ(x) =

1√
2πσ

exp

(
(x− µ)2

2σ2

) ∣∣∣∣µ ∈ R, σ > 0

}
. (1.1)

Other popular noteworthy examples of a parametric model include linear
regression model [6], logistic regression [7], linear support vector machine [8].

2. Non-parametric: In non-parametric models, the data distribution cannot
be defined in terms of a finite set of parameters. Instead, the parameters are
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often defined by assuming an infinite dimensional1 θ. Typically, θ is thought
of as a function. The amount of information that θ can capture about the
data can grow as the amount of data grows. This makes them more flexible.
Here, the structure of the model is not fixed, but very often grows in size
to accommodate the complexity of the data [9]. Well-known methods for
non-parametric models are Decision Trees [10], K-Nearest Neighbor [11], and
Support Vector Machines with Gaussian Kernels [12].

3. Semi-parametric: A semi-parametric model contains both finite and infi-
nite dimensional parameters, i.e., it has parametric and non-parametric com-
ponents [13]. However, the estimation of the finite-dimensional parametric
component is of more interest and the non-parametric component is treated
as a nuisance parameter.

1.3 Why Statistical Model

In the previous section, we described what is a statistical model and the types of
models that are being used for modeling the data. In this section, we provide a
discussion emphasizing the need for such models.

Models play a central role in the field of data analysis. Several inferences, includ-
ing prediction, control, information extraction, knowledge discovery, validation, risk
assessment, and decision making, may be made after a model has been established.
Therefore, constructing and developing appropriate models is essential for solving
difficult real-world problems. Below we highlight some of the key requirements of
statistical models as mentioned in [1].

1.3.1 Representation of Stochastic Structures

The primary need of a statistical model is to approximate the unknown true distri-
bution of probabilistic events. As shown in Fig. 1.1, the observed data is utilized
to estimate a statistical model, F , that closely mimics the true distribution G.
However, model mismatches are bound to occur in the modeling process. Hence,
F is never exactly identical to G. This is rightly stated by Burnham & Anderson,
“A model is a simplification or approximation of reality and hence will not reflect
all of reality” [14].

1.3.2 Predictions Purposes

A major requirement in any field employing advanced data analytics is making
predictions about future outcomes using historical and current data. In the present
era, organizations use predictive analytics to find patterns, behaviour, and trends

1Infinite-dimensional linear space means a space that cannot be spanned by any finite set of
elements in the set. An example of an infinite-dimensional linear space is the space of continuous
functions defined on the real line.
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Statistical Model F

True Distribution G Data
Observation

Estimation

Approximation

Figure 1.1: Estimating true distributions using statistical model (Fig. 1.1 of [1]).

in the data to identify risks and opportunities. In this regard, statistical models
can be used to predict data as accurately as possible. Making predictions is one of
the most significant roles of statistical models. Fig. 1.2 highlights the predictive
mode of statistical models.

Predictive Model

Current data x

Future data z

Estimation

Evaluation Prediction

True distribution G

Figure 1.2: Statistical models for predictive analysis (Fig. 1.2 of [1]).

1.4 Model Selection

In the previous section, we presented the definition of a statistical model and dis-
cussed the need for such models. However, while modeling stochastic structures
there may not be any unique form that can be determined deterministically. In
fact, since the true model is unknown, the stochastic structures can be modeled
using a variety of forms that differ from each other. This gives rise to the prob-
lem of model selection, i.e., how do we select or estimate a model from a set of
candidate models given a set of data? Or in other words, how do we analyze the
goodness of a model given the observed data? However, since the scope of this the-
sis encompasses linear regression models, hence we explicitly explore the methods
of statistical model selection particularly used in linear regression analysis. This
is specifically because linear regression models are perhaps the most popular and
widely used models for inference and predictions. Furthermore, their simplicity,
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ease of use, and mathematical tractability make them the most desired parametric
models in various fields of science, engineering, business, environmental studies,
and many other domains [15].

1.5 Thesis Outline and Contributions

Chapter 2: Model Selection - A Brief Overview

In this chapter, we start with a brief explanation of the linear regression architecture
and discuss its low and high-dimensional (HD) scenarios with some examples. We
highlight the challenges in the HD setting and present two popular predictor/subset
selection algorithms that are widely used for selecting significant variables in a linear
regression. The model selection problem in linear regression is formally established.
It is followed by a detailed literature review of the existing different statistical model
selection methods. Furthermore, we also discuss the drawbacks of classical model
selection methods when dealing with HD data, where the number of available mea-
surements is quite small compared to the parameter dimension.

Chapter 3: Multi-Beta-Test

In this chapter, we introduce a novel method for model selection method called
multi-beta-test (MBT) based on the hypothesis testing framework. MBT is specifi-
cally designed to perform model selection in high-dimensional linear regression that
employs a greedy predictor selection algorithm for picking the set of the most prob-
able candidate models. The candidate models chosen in this fashion should possess
a nested structure such that any smaller model is a subset of a bigger model.
This nested design is required for MBT to operate. In this regard, the orthogonal
matching pursuit is utilized for selecting the initial set of candidate models with
models starting with dimension one to a maximum dimension of K. Eventually,
MBT is used to estimate the true model. Simulation results have shown that MBT
does quite well in estimating the true model. However, it is sensitive to a tuning
parameter, which needs to be selected with care.

This chapter is based on the following published paper.

• Prakash B. Gohain, and Magnus Jansson. “Relative cost based model se-
lection for sparse high-dimensional linear regression models.” IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020.

Chapter 4: Bayesian Information Criterion - Robust

In this chapter, we re-investigate one of the most popular model selection criteria,
the Bayesian information criterion (BIC), and its high signal-to-noise-ratio (SNR)
forms proposed in [16]. These high-SNR forms of the BIC suffer from a data-scaling
problem. This data-scaling problem is a byproduct of the data-dependent penalty
design, which generates irregular penalties when the data is scaled and often leads to
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greater underfitting and overfitting losses in some scenarios when the noise variance
is too small or large respectively. We discuss this problem in detail. Furthermore,
to alleviate this problem, we present a new form of the BIC, called BIC-Robust or
BICR in short. BICR is invariant to data-scaling and we provide analytical proofs
to show that BICR is a consistent criterion, i.e., it selects the true model as the
sample size grows large and/or when the SNR increases.

This chapter is based on the following published paper.

• Prakash B. Gohain, and Magnus Jansson. “Scale-invariant and consistent
Bayesian information criterion for order selection in linear regression models.”
Signal Processing 196 (2022): 108499.

Chapter 5: Extended Bayesian Information Criterion - Robust

In the high-dimensional setting, in which the number of available measurements is
quite small compared to the parameter dimension, the classical methods of model
selection including BICR underperform and fail to achieve consistency, especially
in cases when the parameter dimension grows with the sample size. In this regard,
extended BIC (EBIC) [17], which is an extended version of the original BIC, and
extended Fisher information criterion (EFIC) [18], which is a combination of EBIC
and Fisher information criterion, were proposed. Both EBIC and EFIC are consis-
tent estimators of the true model as the number of measurements grows very large.
However, EBIC is not consistent in high-SNR scenarios where the sample size is
fixed and EFIC is not invariant to data-scaling resulting in unstable behaviour. In
this chapter, we propose a new form of the EBIC criterion called EBIC-Robust
or EBICR in short, which is invariant to data-scaling and consistent in both large
sample size and high-SNR scenarios. Analytical proofs are presented to guarantee
its consistency.

This chapter is based on the following publications.

• Prakash B. Gohain, and Magnus Jansson. “New Improved Criterion for Model
Selection in Sparse High-Dimensional Linear Regression Models.” ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2022.

• Prakash B. Gohain, and Magnus Jansson. “Robust Information Criterion
for Model Selection in Sparse High-Dimensional Linear Regression Models.”
Submitted to IEEE Transactions on Signal Processing. Preprint available at
arXiv preprint arXiv:2206.08731 (2022).

Chapter 6: Model Selection in Block-Sparse Linear Regression Models

In this chapter, we discuss model selection in block-sparse general linear regression
models. This is also termed the block multiple measurement vector (BMMV) re-
gression model. The BMMV model is the most general form of a linear regression
model. The different variations of BMMV include (i) single measurement vector
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(SMV) (ii) multiple measurement vector (MMV) (iii) block single measurement vec-
tor (BSMV). We investigate model selection only in BMMVmodel since the method
can be easily adapted to all other forms of linear regression models. EBICR pro-
posed in Chapter 5 is modified or generalized to perform model selection in sparse
BMMV regression models. In this regard, we provide the necessary steps to show
how this can be achieved. Simulation results are provided to analyze the behaviour
of the methods in this setting and compare the performance with state-of-the-art
methods for model selection in the BMMV scenario.

This chapter is based on the following publications.

• Prakash B. Gohain, and Magnus Jansson. “Model Selection in High-Dimensional
Block-Sparse General Linear Regression Models.” Submitted to IEEE Signal
Processing Letters. Preprint available at arXiv preprint arXiv:2209.01460

Chapter 7: Discussion and Conclusion

In the final chapter, we provide a comprehensive summary of the thesis, discussing
the proposed methods their advantages, and some disadvantages. Furthermore, we
highlight some of the potential future research problems in this context of model
selection.

Copyright Notice

Materials presented in Chapters 3 to 6 come from the compilation of the work
published in the aforementioned papers. Most of the passages are taken verbatim
from the corresponding publications, however, this reprint differs from the original
in typographical detail. Accepted papers are ©IEEE.





Chapter 2

Background

“A model should be as simple as it can be but no simpler.”
—Albert Einstein (1879–1955)

In the previous chapter we motivated the idea of model selection in data analysis
and described briefly statistical models and their purpose. We further mention

that this thesis focuses on model selection in linear regression due to its popularity
and ubiquitousness. In this chapter, we provide the necessary background and a
survey of different model selection methods.

2.1 Linear Regression

Generally speaking, regression analysis is a statistical technique for investigating
and modeling the relationship between a dependent variable (or response variable)
and a set of independent variables (or predictor variables) [19]. In the case of a
linear regression model, this relationship between the dependent and independent
variables is modeled using a linear approach whose unknown model parameters
are estimated from the data. The literature on linear regression is quite extensive
[6,19,20]. Consider the set of observations {yi}Ni=1 where N is the sample size. For
the ith observation yi, let the associated predictor variables be [ai1, . . . , aip]. The
linear model that maps the relationship between the response yi and the predictor
variables {aij}pj=1 is given as [6]

yi = x1ai1 + . . .+ xpaip + ei, (2.1)

for i = 1, . . . , N . Here, ei is the error term that models the misfit. Traditionally
it is often assumed that ei ∼ N (0, σ2) where σ2 is the true noise variance. In the
matrix form, we can write

y = Ax+ e, (2.2)

where y ∈ RN is the observation (also called measurement or response) vector and
A = [a1, . . . ,ap] ∈ RN×p is termed as the design matrix and aj = [a1j , . . . , aNj ]

T ∈

9
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RN×1 and j = 1, . . . , p. We now consider N ≫ p, which is the low-dimensional
scenario. The p≫ N , which is the high-dimensional setting will be discussed later.
x ∈ Rp is the unknown parameter (or regression coefficient) vector. e ∈ RN is
the associated noise vector whose elements are assumed to be i.i.d. following a
Gaussian distribution, i.e., e ∼ N (0, σ2IN ). The fundamental problem in linear
regression is estimating x given y and A. The classical solution of x is obtained
using the method of least-squares that minimizes the error between the observed
and the estimated response

x̂ = argmin
x∈Rp

∥y −Ax∥22. (2.3)

The least squares estimate is equivalent to the maximum likelihood (ML) estimate
and it is the optimal unique solution of x assuming A is full ranked. The closed
form solution is [20]

x̂ =
(
ATA

)−1
ATy. (2.4)

Note that a mandatory requirement for evaluating the solution in (2.4) is that ATA
should be full rank such that its inverse exists. Henceforth, the fitted response
vector is

ŷ = Ax̂ = A
(
ATA

)−1
ATy = Πy (2.5)

where Π is the orthogonal projection matrix. It projects y onto the span(A). In
many real-world scenarios, not all the predictor variables are significant. Perhaps
out of the p variables say only k0 of them actually contribute substantially in
generating the data. In this case, model or variable selection entails finding the
most significant set of predictor variables out of the available p variables. In a more
classical setting, if the models are nested such that a model with k parameters is
a subset of the model with k + 1 parameters, then the model selection problem is
also termed as the order selection problem.

2.1.1 High-dimensional Scenario

The high-dimensional case arises when p≫ N . Many real applications exhibit this
scenario such as in genome-wide association studies [21], high-resolution magnetic
resonance imaging [22], and high-resolution radar systems [23]. For example, in
genome-wide studies, one measures micro-array datasets built from a large amount
of profile genes expression. Here, yi denotes the expression level of one gene on the
ith sample and [ai1, . . . , aip] the biological signals (DNA micro-arrays). Typically
the number of available samples N is in the order of hundreds while the number of
genes (predictors) p is in the order of thousands. From a statistical model selection
point of view, it is desired to estimate the most important variables out of the
p variables. Thus, the primary objective is to select the significant components
among the available genes in order to establish a meaningful relationship between
DNA and the gene expression level.
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Figure 2.1: Sparse high-dimensional linear regression illustration.

The high-dimensional case is an underdetermined problem, where it is quite
possible that A contains linearly dependent columns given that p is so large. In
this case, the Gram matrix ATA is ill-conditioned such that most of the eigenvalues
are zero and hence the Gram matrix is not invertible. As such, solving for x using
the least-squares solution (2.4) is not feasible. To circumvent this problem a widely
used assumption is considering the parameter vector x to be sparse. By sparse
x it means that only a few of the elements of x are non-zero and the majority
are zero elements. This translates to that only a very few of the predictors out
of p are relevant to the data. This concept of sparsity was introduced in the
compressed sensing literature, where solving inverse problems in underdetermined
scenarios are frequently encountered. The sparsity concept is motivated by the
fact most of the high-dimensional data that occur naturally are genuinely sparse
in nature, i.e., a small subset of the signals can be used to effectively represent the
data while ignoring the rest. It is quite common nowadays to frequently encounter
high-dimensional datasets where the number of available measurements N is quite
small compared to the number of features (or parameters). However, in many
practical scenarios, just the sheer number of features does not imply that all of
them are significant. In fact, it has been observed in many cases that just a few of
the parameters are important to describe the data and perform good predictions.
Hence, the sparsity assumption does play an important role in simplifying the
subset-selection problem in linear regression without being invalid. Fig. 2.1 presents
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an illustration of the sparse high-dimensional linear model structure. The non-zero
elements of the parameter vector x are marked as colored squares and the gray
squares indicate the zero elements. This provides an idea of the sparse nature of
the parameter vector with very few non-zero elements that actually contribute to
the observed data.

Model Selection Problem: For the linear regression model in (2.2) we can for-
mally define the model selection problem in general. Whether it be a low-dimensional
setting or a high-dimensional setting the goal of the model selection problem re-
mains the same in both cases. Let us denote S as the true support of x, i.e.,
S = {i : xi ̸= 0} having cardinality card(S) = k0 ≤ p and AS as the set of columns
of A corresponding to the support S. In the sparse high-dimensional setting we
have p ≫ N and k0 ≪ p. The goal of model selection (also called best subset
selection) is estimating the unknown true support S given y and A.

2.2 Predictor Selection Algorithms

To perform model selection in linear regression, we need to first have at our disposal
a set of candidate models, whence we can choose the best model using a suitable
method or criterion. Now observe that, for the linear model in 2.2 with p number
of parameters, if we take the combinatorial approach the total number of possible
candidate models is 2p−1. A naive approach is evaluating each model using a model
selection criterion to find the true model among all 2p − 1 available candidates.
However, it is quite obvious that as p grows large, the candidate model space grows
exponentially. In such a situation, testing model by model is infeasible and in fact
impractical. To address this problem a viable approach is to perform a pre-screening
by employing a certain algorithm that can provide us with a set of most important
candidate models. We refer to such algorithms that provide us with an initial set
of candidate models as predictor selection algorithms. Below we discuss two types
of algorithms widely used to find sparse solutions in high-dimensional settings.

2.2.1 Greedy Methods

A greedy method operates by favoring a sequence of locally optimal variables thus
dumping the need for an exhaustive search over the entire parameter space. A
typical greedy method is an iterative process that starts from an initially empty
predictor index set and at each step, expands that set by one additional column
index. The column selected at each stage maximally lowers the residual l2 error
in predicting the data y from the currently active columns in the index set. The
algorithm stops when the stopping criterion is fulfilled which is necessary in order to
avoid selecting all the predictors. Popular methods in this genre include matching
pursuit [24], basis pursuit [25], orthogonal matching pursuit (OMP) [26]. Here, we
focus on OMP for our application which is discussed in detail below.

OMP is a widely used greedy algorithm for recovering sparse signals in an un-
derdetermined system of linear equations [27]. Here, we specifically consider the
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Algorithm 2.1 OMP

1: Inputs: Design matrix A, observation vector y.
2: Initialization: r0 = y,S0OMP = ∅, i = 1
3: repeat
4: Find next column index di = argmax

j

∣∣aTj ri−1
∣∣

5: Add current index: SiOMP = Si−1
OMP ∪ {di}

6: Update residual: ri =
(
In −ΠSi

OMP

)
y

7: Increment counter: i = i+ 1
8: until the stopping condition is achieved
9: Outputs: True support estimate Ŝ0 = SiOMP.

recovery of the k0-sparse vector x in the linear model 2.2. Given the design ma-
trix A ∈ RN×p, the OMP (Algorithm 1) iteratively selects the optimal columns
one by one until the stopping criterion is fulfilled. A required step in this re-
gard is to first normalize all the columns of A to be unit norm, i.e., ∥ai∥2 =
1, ∀ i = 1, 2, . . . , p. OMP starts by initializing the residual vector r0 = y, setting
the counter i = 1 and the initial empty index set S0OMP = ∅. A column’s in-
dex is selected if that column has the maximum absolute correlation value with
the residual vector ri−1, i.e., di = argmax

j
|aTj ri−1| where di denotes the col-

umn index at ith iteration and aj represents the jth column of A. ASi
OMP

de-

notes the sub-matrix of A formed using the columns indexed by SiOMP. Next,
based on the current support SiOMP, the least-squares estimate of y, i.e., ΠSi

OMP
y

is evaluated where ΠSi
OMP

= ASi
OMP

A†
Si
OMP

denotes the projection matrix onto

the span(ASi
OMP

) and A†
Si
OMP

=
(
AT

Si
OMP

ASi
OMP

)−1

AT
Si
OMP

is the Moore-Penrose

pseudo inverse of ASi
OMP

. The estimate ΠSi
OMP

y is used to update the residual

ri = y −ΠSi
OMP

y =
(
IN −ΠSi

OMP

)
y. The selection process is halted when the

stopping criterion is achieved or the number of regressors to be chosen is fixed a
priori.

2.2.2 Shrinkage Methods

The least-squares solution is too liberal and does not impose any constraint on the
value of the parameter coefficients. As such the solution of least-squares produces
an all non-zero x vector. In the large-p, small-N case, the least-squares solution is
infeasible since this is an underdetermined problem and the gram matrix ATA is
most likely singular and hence not invertible. A popular way to solve for x in the
underdetermined situation is using penalized regression methods that combines the
least-squares loss with a constraint or bound on the sum of the absolute values of
the coefficients. They are often termed as shrinkage techniques since they shrink
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the estimates of the parameters towards zero. The typical Lagrangian form is given
as [8]

x̂(λ) = min
x∈Rp

{
1

2N
∥y −Ax∥22 + λ∥x∥qq

}
, (2.6)

where λ ≥ 0 is a regularization (or tuning) parameter that controls the level of the
penalty or in other words it is a way of balancing the goodness of fit and shrinking
the coefficients. If we choose λ = 0, we end up with the usual least-squares solution,
while for λ =∞ gives an all zero x vector. For other values of λ within the range
0 < λ <∞ it produces different estimates of x. Generally, as we move from λ =∞
towards λ = 0, the number of non-zero coefficients in x̂ increases. Depending on
the choice of 0 ≤ q ≤ 2 we arrive at different versions of the penalized regression.
The penalized regression with p = 2 is called ridge regression. If we are looking for
a sparser solution ridge is not a good option since even though it tries to shrink
the coefficients to zero, they are never exactly zero unless of course for λ = ∞
when all components are exactly zero. Thus, obtaining a much sparser solution of
x is not feasible using ridge regression. The alternative to this problem is setting
q = 1, which leads to the well-known LASSO estimator [8, 28, 29]. LASSO stands
for Least Absolute Shrinkage and Selection Operator. Unlike ridge regression, the
beauty of LASSO is that it produces sparse solutions with exactly zero components.
Luckily the LASSO problem is convex w.r.t. x and hence can be solved. Efficient
algorithms to solve the LASSO for large-p do exist. A popular way of finding
the LASSO solution is using the algorithm called modified least angle regression
(LARS) [30] since it also provides the required sequence of regularization parameters
for which the support changes. Thus, one can obtain a possible set of candidate
linear regression models using the LARS algorithms where each candidate model
corresponds to a unique value of the regularization parameter λ. The goal then is
to find the best model using a suitable model selection method.

2.2.3 Support Recovery conditions for OMP

In order for OMP to correctly recover the true signal support, certain conditions
need to be fulfilled. These are referred to as support recovery conditions. Most of
these conditions are based on specific features of the design matrix A. In the com-
pressed sensing literature, different aspects of the design matrix have been proposed
to analyze the support recovery performance such as Mutual Coherence [31], and
Restricted Isometry Property (RIP) [32]. We first formally define both these terms
and then describe how they are used in the case of OMP to express the support
recovery guarantees.

Mutual Coherence: Assuming that the columns of the design matrix are nor-
malized, i.e., aTi ai = 1 the mutual coherence is then defined by [33]

M = max
1≤i̸=j≤p

∣∣aTi aj∣∣. (2.7)
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Thus, mutual coherence is a measure of the maximum cross correlation between
the columns of a matrix.

Restricted Isometry Property (RIP): A matrix A satisfies the RIP of order
k0 if there exists a constant δk0 ∈ [0, 1) such that

(1− δk0)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δk0)∥x∥22 (2.8)

holds for all x ∈ Rp with card(supp(x)) ≤ k0. In particular, the smallest constant
δk0 satisfying (2.8) is called the restricted isometry constant (RIC). In general, a
small δk indicates that any k collection of columns of the matrix A is approximately
orthonormal.

In the noise-free case (i.e., e = 0) if δk0 <
1√
k0+1

then OMP is guaranteed to

exactly recover k0-sparse signal x in exactly k0 iterations [34,35]. In the noisy case,
the latest result on the sufficient recovery condition is given in Theorem 1 of [36]
which we present as a theorem below:

Theorem 2.1 Under ∥e∥22 ≤ ϵ , suppose that A satisfies the RIP of order k0 + 1
with δk0+1 <

1√
k0+1

. Then OMP with the stopping criterion ∥rk∥22 ≤ ϵ can exactly

recover supp(x) in k0 iterations provided that

min
i∈supp(x)

|xi| >
ϵ√

1− δk0+1

+

√
1 + δk0+1ϵ

1−
√
k0 + 1δk0+1

. (2.9)

Next, we present some support recovery guarantees of OMP based on the mutual
coherence property. This is a slightly easier alternative to gauge the suitability of A
as compared to the RIP condition since it does not require an exhaustive search over
a collection of subsets. In the noiseless case, M < 1

2k0−1 is a sufficient condition for
exactly recovering a k0-sparse vector. In the bounded Gaussian noise case, Theorem
7 of [37] provides an insight to the recovery performance of OMP. This is stated
below.

Theorem 2.2 Suppose e ∼ N (0, σ2IN ), M < 1
2k0−1 and that the non-zero coeffi-

cients of x fulfill

|xi| ≥
2σ
√
N + 2

√
N logN

1− (2k0 − 1)M
. (2.10)

Then OMP with the stopping rule ∥ri∥2 ≤ σ
√
N + 2

√
N logN selects the true

support set S with probability at least 1− 1/N .

In a practical scenario, typically both the noise variance σ2 and true sparsity k0
are unknown quantities. As such, implementing OMP with ∥rk∥22 ≤ f(σ2) where
f(σ2) is some function of σ2 or with k0 iterations as the stopping criterion is not
feasible for correct subset selection in the sparse high-dimensional setting. This
motivates the need for sophisticated and practical methods for model selection in
the absence of knowledge about k0 and σ2.
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2.2.4 Support Recovery Guarantees In LASSO

Similar to OMP, there are certain conditions that need to hold in order for LASSO
to correctly recover the true sparse solution in the high-dimensional setting. In the
literature, following recovery guarantees of LASSO, several conditions have been
proposed such as the Irrepresentable condition [38], restricted eigenvalue condition,
Restricted Isometry Property, and Sparse Riesz condition [39]. Here, we briefly
discuss only the Irrepresentable condition for brevity.

Irrepresentable Condition: The authors in [38] show that for LASSO to select
the true support set both in the classical fixed p setting and in the large p setting
as the sample size N grows large, the Irrepresentable Condition is necessary, and
sufficient. Let C11 = N−1AT

SAS and C21 = N−1AT
NAS where S is the true support

set with card(supp(S)) = k0 and N = {1, . . . , p} \ S with card(supp(N )) = p− k0.
The matrix A satisfies the Irrepresentable Condition if∣∣C21(C11)

−1sign(xS)
∣∣ < 1 (2.11)

where 1 is a (p− k0)× 1 vector of ones and the inequality holds element-wise. The
sign(β) is 1 for β > 0, −1 for β < 0 and 0 if β = 0. Note that the irrepresentable
condition requires that C11 is invertible.

2.3 Model Selection Methods

Here we present a brief survey of the existing model selection methods. We discuss
three popular approaches to model selection widely used in the literature, i.e.,
methods based on hypothesis testing, information criteria, and cross-validation.

2.3.1 Hypothesis Testing

Model selection in linear regression can be performed using hypothesis testing if
there is a nested order in the candidate models. By nested we mean that any
smaller model is a subset of a bigger model. In this regard, we can reformulate the
linear model in (2.2) for the hypothesis testing problem as follows

Hk : y = Akxk + ek. (2.12)

Here, Hk denotes the hypothesis that the data y ∈ RN×1 is generated according to
the candidate model with k parameters. Ak ∈ RN×k is a sub-design matrix formed
using the first k columns of the full design matrix A ∈ RN×p where k = 1, . . . , p.
xk ∈ Rk×1 is the corresponding unknown regression coefficient vector. ek ∈ RN×1

is the associated noise vector, such that e ∼ N (0, σ2
kIN ), where σ2

k is the unknown
noise variance corresponding to hypothesis Hk.

A sequence of hypotheses, Hk holds true versus Hk+1 holds true k = 1, 2, ...,
can be tested sequentially. In this case, Hk is the null hypothesis and Hk+1 is the
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alternate hypothesis. In hypothesis testing based model selection, a test statistic
is involved that is evaluated using the data available. Typically, based on the
assumed statistical properties of the random quantity, the test statistic would follow
a certain distribution under the null hypothesis. To perform the test itself and make
a decision, a threshold is required, which is obtained based on the significance level
chosen by the user. To decide what hypothesis is true, the test statistic is compared
with the threshold. As long as the alternate hypothesis Hk+1 is true, the test
continues to progress ahead starting from k = 1, 2, . . ., and so on. Once the null
hypothesis Hk is accepted, the test procedure stops and the model Hk is selected.

A classical and widely used approach for accessing the goodness of fit of com-
peting parametric statistical models is the generalized likelihood ratio test (GLRT).
Consider the following hypotheses given observed data y

Hm : L (θm|y)
Hq : L (θq|y) ,

(2.13)

where L (θm|y) and L (θq|y) are the likelihood functions under hypothesis Hm and
Hq, respectively, and θm, θq being their corresponding unknown parameters. Note
that the subscript denotes the dimension or order of the model with m < q. Then
the GLRT computes the following test statistic

Λ =
L
(
θ̂m
∣∣y)

L
(
θ̂q
∣∣y) (2.14)

where θ̂m and θ̂q are maximum likelihood estimates of θm and θq, respectively
evaluated as follows

θ̂i = argmax
θi

{L(θi|y)} . (2.15)

To decide between the two models with orders m and q, is performed as follows

Λ
Hm

≶
Hq

η (2.16)

where η is a pre-specified threshold chosen for a particular probability of false
positive. GLRT can be used to perform model (order) selection in the linear re-
gression problem (2.12). Under the assumption of the i.i.d Gaussian noise elements
ei ∼ N (0, σ2), the likelihood ratio given by 2.14 boils down to the following test
statistic

F =

(
RSSm−RSSq

q−m

)
(

RSSq

N−q

) =
X
d1
Y
d2

(say), (2.17)

where RSS stands for residual sum of squares and is computed as follows

RSS = ∥y − ŷ∥22 (2.18)
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ŷ is the predicted measurement. RSSm and RSSq denotes the residual sum of
squares of model Hm and Hq, respectively. Under the null hypothesis that model
Hq is unable to provide a remarkably better fit than model Hm, and the i.i.d.
Gaussian assumption of ei, the X and Y terms in 2.17 are independent Chi-squared
distributed random variables with d1 and d2 degrees of freedom, respectively, where
d1 = q−m and d2 = N − q. Now from probability theory, the ratio (X/d1)/(Y/d2)
follows a F -distribution with d1 and d2 degrees of freedom. Technically, since
q > m, as such Hq will always give a better fit to the data and lower fitting error as
compared to model Hm (or any other model with fewer parameters). The purpose
of the F -test is to determine if the added parameters have a significant contribution
to the overall fit. The null hypothesis (in this case Hm) is rejected if the F value
calculated is greater than the critical value of the F -distribution for some chosen
false-rejection probability (Typical values are 0.05 or 0.1).

Another common way to represent the GLRT for the linear regression is by
reformulating the test statistic using the log function in the following manner

ΛLLR = −2 ln

L
(
θ̂m
∣∣y)

L
(
θ̂q
∣∣y)

 = 2 lnL
(
θ̂q
∣∣y)− 2 lnL

(
θ̂m
∣∣y) , (2.19)

where the subscript LLR stands for log-likelihood ratio. Under the null hypothesis
where q > m ≥ k0 and bearing the i.i.d Gaussian noise assumption, the test statistic
ΛLLR asymptotically follows a central chi-squared distribution with q −m degrees
of freedom, i.e., ΛLLR ∼ χ2

(q−m) [40]. Thus, we can decide between two models
with orders m and q, respectively using a similar approach as in 2.16 where the
threshold is set based on the χ2

q−m distribution for some chosen probability of false
selection.

Popular methods for implementing model selection in linear regression using
sequential hypothesis testing include forward selection, backward elimination, and
stepwise regression.

Forward Selection is often used to provide an initial screening of the candidate
variables when a large group of variables exists. For example, suppose we have a
hundred or more variables to choose from, this is way beyond the domain of all
possible regression procedures. A reasonable strategy would be to use the forward
selection procedure to obtain the best ten to fifteen variables in decreasing order of
significance and then apply the existing model selection algorithm to the variables
in this subset. The method begins with no candidate variables in the model. A
variable is selected that has the highest statistically significant improvement of the
fit. In this context, quantities like R-Squared or p-values (e.g., based on the F
statistic) could be used to measure the statistical significance of the variables. A
variable with a higher R-squared value or equivalently smaller p-value is statistically
more significant. This process is repeated and at each step, a variable is added that
increases the statistical significance the most. The process is stopped when none of
the remaining variables improves the model to a statistically significant extent. An
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important aspect of this method is that once a variable enters the model, it cannot
be deleted [41].

Backward Selection is technically the reverse of the forward selection. It
starts with all candidate variables already in the model. At each step, the variable
that is the least significant statistically is removed. This process continues until
no non-significant variables remain. The user sets the significance level at which
variables can be removed from the model. A variable once removed cannot be
added again to the model [41].

Stepwise regression is a mix of forward and backward selection approaches.
It is a variant of the forward selection in that all candidate variables in the model
are examined to see whether their significance has decreased below the predeter-
mined tolerance threshold after each stage in which a variable was added. If a
non-significant variable is discovered, it is eliminated from the model. Stepwise re-
gression needs two significance levels: one for adding variables and one for deleting
variables. In order to prevent stepwise regression from entering an infinite loop, the
cutoff probability for adding variables should be lower than the cutoff probability
for deleting variables [42].

Classical statistical hypothesis testing for model selection in linear regression
works well when the models have a nested structure. However, in many scenarios,
the nested assumption may not hold. In this case, if we want to employ a hypoth-
esis testing based method for model selection, the first step is obtaining a nested
sequence of models such that we prefer model Hi over model Hi+1. This can be
accomplished by using predictor selection algorithms that generate a monotonic
sequence of predictor indices such as OMP. However, using greedy methods (e.g.
OMP) to obtain this sequence of models causes the test statistic under the null hy-
pothesis to deviate from the known distribution. As such, we cannot use the test as
it is and some finer modifications are necessary to deal with the statistical changes
due to the data-dependent greedy selection of predictor variables. This point will
be further discussed in Chapter 3 where we propose the Multi-Beta-Test, a model
selection method for linear regression based on hypothesis testing and employed
along with OMP.

2.3.2 Information Theoretic Criteria

In the previous section, we discussed how hypothesis testing can be used for model
selection in linear regression. We also mentioned some issues in using hypothesis
testing based methods, primarily the requirement of a nested structure of models
to be tested and the deviation of the distribution under the null hypothesis from
its true distribution when using greedy algorithms for variable selection in order
to obtain a nested sequence of models. These issues can be easily avoided if we
employ information theoretic approaches for model selection. In this case, we may
reformulate the linear model in (2.2) as follows

HI : y = AIxI + eI , (2.20)
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where I ⊂ {1, . . . , p}, AI ≡ (aj , j ∈ I). xI and eI ∼ N (0, σ2
IIN ) are the associated

parameter vector and noise vector, respectively. The ML estimate of the noise
variance under HI is σ̂2

I = yΠ⊥
I y/N .

The literature on information theoretic criteria is quite extensive [2, 14, 43–45].
A typical information criterion based model selection rule picks the best model that
minimizes some statistical metric as

Ŝ = argmin
I∈J

{f(HI) + P(I)}, (2.21)

where Ŝ is the true model estimate, J is the set of candidate models under consid-
eration and HI denotes the model with support I. The statistical metric consists
of two parts: (1) f(HI) representing the goodness of fit of model HI and (2) P(I)
is the penalty term that compensates for overparameterization. The literature on
model selection is quite extensive. Some of the popular classical model selection
rules include Akaike information criterion (AIC) [46], Bayesian information crite-
rion (BIC) [47], minimum description length (MDL) [48], gMDL [49], nMDL [50],
and penalizing adaptively the likelihood (PAL) [51]. Below a brief summary of
some of the popular criteria is provided.

AIC : The first and one of the most well-known information criterion is the Akaike
information criterion developed by Hirotugu Akaike in 1974 [46]. The basic tenet
of AIC is to estimate the goodness of a statistical model by gauging how closely
the prediction distribution specified by the model resembles the actual true distri-
bution. Akaike adopted the Kullback–Leibler information (divergence) to measure
this closeness, which led to the derivation of AIC. For the linear regression in (2.20)
the AIC value of a model with support I is defined as

AIC(I) = N ln(σ̂2
I) + 2k, (2.22)

where k = card(I) is the number of model parameters. Given a set of candidate
models for the data, the model with the minimum AIC value is preferred. Notice
that AIC assigns goodness of fit to a model based on the likelihood function, but
it also contains a penalty that grows in proportion to the number of parameters in
the model. The penalty inhibits overfitting, which is desirable because increasing
the number of parameters in the model almost always enhances the goodness of
fit, but we may end up with a model with too many unwanted parameters. In
practice, AIC does a good job of minimizing the underfitting probability, however,
it suffers from an overfitting problem. If we assume that the true model generating
the data is indeed present in the collection of candidate models, then for AIC it can
be shown that the probability of underfitting→ 0 and the probability of overfitting
→ constant > 0 as the sample size N →∞. Hence, AIC is not a consistent model
selection criterion [52]. This inconsistency is arising because the penalty term of
AIC (2k) is too small and fails to compensate appropriately as the model size in-
creases, hence the overfitting issue.
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BIC : In 1978, Schwarz presented a new information criterion now popularly known
as the Bayesian information criterion (BIC) [47]. BIC is formulated from the maxi-
mum a-posteriori or MAP estimator, which has its roots in the Bayesian framework.
Under this regime, the model that maximizes the posterior probability is selected.
The BIC value of a model with support I is defined as

BIC(I) = N ln(σ̂2
I) + k logN, (2.23)

where k is the model dimension and N is the sample size. The BIC picks the
model that minimizes (2.23). As compared to AIC, BIC is a consistent criterion,
i.e., the probability of correctly detecting the true model → 1 as N → ∞. This is
precisely because the penalty value of BIC for an arbitrary model with dimension k
(k logN) grows large as the number of measurements N →∞ and is not fixed as in
the case of AIC, thus providing a much higher penalty for overfitting. BIC will be
discussed in more detail in Chapter 4, particularly in the context of model selection
in linear regression. The different forms of the BIC are also presented and the
newly developed BIC-Robust (BICR in short) to handle the data scaling problem
that exists in the high-SNR forms of the BIC. Fig. 2.2 provides a comparison
of AIC and BIC scores of a linear regression model as a function of the model
dimension k. The models are assumed to be nested. The true support is chosen as
S = {1, 2, 3, 4}, hence k0 = 4. Also for the simulation purpose we consider N = 60
and p = 20. The model scores are computed up to k = 12. If we look at the BIC
plot, the model score starts from a high value at k = 1 (i.e., the model with only
predictor a1) and it gradually diminishes as k increases, or in other words as we
add more predictors to the model. It reaches a minimum value at k = 4, which is
indeed the true model order. For k > 4, the BIC score starts growing as k increases.

Minimum AIC score

Minimum BIC score

Figure 2.2: Comparing the AIC and BIC score as a function of model dimension k
with N = 60, p = 20, SNR = 3 dB and S = {1, 2, 3, 4}.
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Therefore, BIC performs a correct model order selection. On the contrary, the AIC
score reaches a low value at k = 4, however, we do observe that there are values of
k for which the AIC score is much lower. Hence, in this case, AIC fails to select
the true model order. This small example in a way illustrates the overfitting issue
of AIC and underlines the drawback of its penalty to handle larger dimensions.

Another model selection criterion that has a similar structure to BIC but derived
from a completely different approach based on coding arguments and the minimum
description length principle (MDL) is the MDL criterion [48, 53]. In MDL, the
parameters are derived using the MDL principle under the assumption that there
is no prior knowledge about the model parameters. There are two popular upgrades
of the MDL criterion namely the gMDL [49] and the nMDL [50]. Both these criteria
were designed to solve the consistency issue of MDL in the high-SNR regime.

Information criteria are excellent methods of model selection. They have proved
to be very useful and reliable in selecting a good model based on the available data.
Hence, they are ubiquitous in many fields. However, when dealing with high-
dimensional scenarios where p≫ N , these classical methods tend to heavily overfit
and fail to guarantee consistency especially when p grows with N . This issue has
been thoroughly discussed in [17] and [18], where the authors provide extended ver-
sions of BIC to handle the large-p small-N problem and to guarantee consistency
in both large-N and high-SNR scenarios. In [17] the authors add a binomial co-
efficient penalty to the BIC’s objective function that leads to the extended family
of the BIC termed as extended BIC (EBIC). This extra penalty negates the idea
of assigning uniform prior probability to the models used in the original BIC and
allocates a dynamic prior that depends on the model dimension. As the model
dimension increases, the prior probability assigned to the model diminishes. This
is in tune with the law of parsimony where we prefer smaller models over larger
ones. It is shown that under a suitable asymptotic identifiability condition, EBIC
can consistently select the true model as the sample size N grows to infinity. The
EBIC score for a linear regression model with support I is evaluated as

EBIC(I) = N ln(σ̂2
I) + k ln(N) + 2γk ln(p), (2.24)

where γ ∈ (0, 1) is a tuning parameter. Fig. 2.3 compares the model score versus
the dimension k for BIC and EBIC. The considered parameters are N = 100,
p = 500 SNR = 6 dB. OMP is used to pick a set of initial significant predictors
up to maximum cardinality k = 11. In this case, OMP indeed recovers the true
support S = {1, 2, 3, 4} in the fist k0 = 4 iterations. It is quite clear from the
figure that BIC fails in handling the high-dimensional scenario. Thus, the penalty
of the classical BIC is insufficient to counteract the large-p case and the greedy
selection procedure. On the contrary, EBIC successfully handles the large-p small-
N scenario. The minimum EBIC score occurs at k = 4, which is the true sparsity.
Hence, for the above problem, employing EBIC for model selection will result in
the selection of the true model. However, if instead BIC is used we end up with an
overfitted model with a total of 11 parameters where 4 are true and 7 are false.
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Figure 2.3: Information criterion score versus model dimension k with N = 100,
p = 500, SNR = 6 dB and S = {1, 2, 3, 4}

The performance of EBIC is quite appreciable in large sample scenarios. How-
ever, the empirical performance of EBIC can sometimes be unsatisfactory for prac-
tical sizes of N . Moreover, in scenarios when N is fixed but the noise variance,
σ2, tends to zero, results show that EBIC is inconsistent [18]. To handle the con-
sistency issue for decreasing noise variance scenario, the authors in [18] proposed
an improved criterion for model selection in the high-dimensional setting known as
the extended Fisher information criterion (EFIC). We can view EFIC as a combi-
nation of EBIC and FIC [54] and it alleviates the inconsistency problem of EBIC
in high-SNR. The EFIC score for a model with support I is evaluated as

EFIC(I) = (N − k − 2) ln∥yΠ⊥
I y∥22 + k ln(N) + ln

∣∣AT
IAI

∣∣+ 2ck ln(p), (2.25)

where c > 0 is a tuning parameter. Fig. 2.4 highlights this point. It presents the
probability of correct model selection (PCMS) versus SNR in dB. We consider the
scenario where N is small and fixed, while p≫ N . As SNR increases, EFIC is seen
to achieve empirical consistency, i.e., PCMS→ 1 as SNR→∞. This is however not
true for EBIC. A significant performance gap is observed between the two methods.
Also, the PCMS of EBIC does not tend to one even when SNR reaches a very high
value. The authors in [18], show that under a certain asymptotic identifiability
condition, EFIC is consistent, i.e., PCMS → 1 as N → ∞ and/or SNR → ∞.
However, EFIC suffers from a data scaling problem because its penalty is data-
dependent. This point will be further discussed in Chapter 5 where we present
the modified criterion called EBICR to resolve the data scaling issue and guarantee
consistency in both large-N and high-SNR scenarios.
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Figure 2.4: PCMS versus SNR (dB) with N = 55, p = 1000, and S = {1, 2, 3, 4, 5}.

2.3.3 Cross-Validation

Cross-validation (CV) is a well-known model selection method that evaluates the
best model based on the predictive ability of the models under consideration. CV
does not require the knowledge or the need to compute the likelihood of the gener-
ating function or any other quantity that depends on the statistical assumption of
the underlying model, which makes it a very general approach for model selection.
CV is based on a data splitting procedure. Given a dataset, a segment of the data
is used for fitting each competing candidate model and the remaining data is used
to measure the predictive performances of the models by the validation errors. The
model with the best overall predictive performance is selected [55,56].

Depending on how the data is split for fitting and validation, CV can be classified
into different types. If we have N data samples, we hold one sample and use
the remaining N − 1 for fitting a model, and the withheld one data sample for
validation, this form of the CV is called leave-one-out (LOO) or delete-1 CV. Here,
the predictive performance is evaluated for all the data points, and the model with
the best average performance is selected [57]. It has been observed that LOO is
asymptotically equivalent to AIC [58] and is inconsistent as N →∞. On the other
hand, instead of leaving one sample out for validation if we leave Nv samples out,
then this is called delete-Nv CV. Under the assumption Nv/N → 1, delete-Nv CV
is consistent as N →∞.

The other approach to CV is theK-fold CV. Here, the entire dataset is randomly
divided into K partitions of equal size such that each partition has N/K data
samples. Out of the K partitions, data from K − 1 partitions are used to fit the
model and the remaining data from the single partition is used to validate the
predictive performance. The CV process is then repeated K times, with data from
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each of the K partitions used exactly once as the validation set. Finally, the K
predictive results of each model are averaged to obtain a generalized performance
across the K partitions. These averaged results can be scrutinized to select the
best model.

CV works well when the size of the candidate model space is small and the
sample sizeN is large. However, in the large-p small-N scenario, employing CV may
not be viable as it tends to have high variance [59]. Also, CV-based procedures can
be computationally intensive and their performance in high-dimensional problems
is not satisfactory [60,61].





Chapter 3

Multi Beta Test

“All models are wrong but some are useful.”
—George E. P. Box (1919–2013)

In Chapter 2, we discussed how hypothesis testing can be used for model se-
lection in linear regression. We also further highlighted that, when a greedy

approach is employed for predictor selection, the statistical distribution of the test
statistic under the null hypothesis changes. This happens because the greedy pro-
cedure has intentionally chosen the strongest predictor among all of the available
choices, hence the models no longer have a pre-defined nested structure but a se-
quence that is data dependent [29]. This chapter proposes a novel model selection
method named Multi-Beta-Test (MBT) for the sparse high-dimensional linear re-
gression, that employs a greedy algorithm for predictor selection. The estimation
of the correct subset in the linear regression problem is formulated as a series of
hypothesis tests where the test statistic is based on the relative least-squares cost
of successive parameter models. Extensive simulation results are performed to
analyze the behaviour of MBT under different data parameter settings. Further-
more, the performance of MBT is compared to existing model selection methods for
high-dimensional parameter space such as extended Bayesian information criterion
(EBIC), extended Fisher Information criterion (EFIC), residual ratio thresholding
(RRT), and orthogonal matching pursuit (OMP) with a priori knowledge of the
sparsity.

3.1 Proposed Method

Consider the standard linear regression model as described in 2.2,

y = Ax+ e. (3.1)

Here y is the N dimensional vector of real measurement responses, A ∈ RN×p is the
known design matrix and comprising of the column vectors {a1, . . . ,ap} also known

27
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as regressors. The vector e ∈ RN is the error or noise vector whose elements are
assumed to be independent and identically Gaussian distributed, e ∼ N (0, σ2IN ).
The parameter σ2 ≥ 0 is the unknown noise variance. Here, we consider the high-
dimensional setting where p > N or p ≫ N , i.e., A has more columns than rows.
This is an underdetermined system with many solutions and classical methods such
as ordinary least-squares are no longer applicable. A practical and widely used
valid assumption to handle the p ≫ N situation is to assume that the underlying
unknown parameter vector x ∈ Rp is sparse. By sparse it means that only a few
of the elements of x are non-zero, i.e., the support of x given by S0 = {i : xi ̸= 0}
has cardinality card(S0) = k0 ≪ min(N, p). In this case, x is termed as a k0-sparse
vector [62]. In this section, we present in detail a novel method called MBT for
estimating the true sparsity k0. OMP with K ≪ N iterations is used for predictor
selection as it provides a sequence of nested models up to maximum cardinality K.
Here, we assume that k0 < K, which is a necessary condition for MBT to be able
to select the true sparsity.

Let AS ∈ RN×s be a matrix constructed using some columns from the design
matrix A with support S ⊂ {1, 2, . . . , p} and cardinality card(S) = s≪ min(N, p).
Let xS ∈ Rs be the unknown regressor coefficient vector corresponding to AS . The
linear regression model then can be rewritten as y = ASxS + e. The method of
least-squares provides estimates of xS by minimizing the least-squares cost function
VS(xS) = ∥y −ASxS∥22 where ∥·∥2 denotes the Euclidean vector norm. The mini-
mizer is x̂S = (AT

SAS)
−1AT

Sy and the least-squares estimate of the output response
y is ΠSy [63]. Then, for the design matrix AS with support S, the least-squares
cost is

VS = ∥(I−ΠS)y∥22 =
∥∥Π⊥

S y
∥∥2
2
= yTΠ⊥

S y, (3.2)

where Π⊥
S is the orthogonal projection matrix onto the null space of AT

S . Now
consider a new matrix AI ∈ RN×k with support I ⊂ {1, . . . , p} having cardinality
card(I) = k and consisting of columns from the original design matrix A but not
present in AS . Concatenating AS and AI forms the new matrix [AS AI ]. The
new least-squares cost after incorporating AI is evaluated as

V[S,I] =
∥∥∥Π⊥

[AS AI ]
y
∥∥∥2
2
=
∥∥∥y −ΠSy −ΠΠ⊥

S AI
y
∥∥∥2
2

=
∥∥∥Π⊥

S y −ΠΠ⊥
S AI

y
∥∥∥2

=
(
Π⊥

S y −ΠΠ⊥
S AI

y
)T (

Π⊥
S y −ΠΠ⊥

S AI
y
)

= VS − yTΠΠ⊥
S AI

y, (3.3)

where ΠΠ⊥
S AI

is the projection onto the space spanned by Π⊥
SAI defined as

ΠΠ⊥
S AI

= Π⊥
SAI

(
AT

IΠ
⊥
SAI

)−1
AT

IΠ
⊥
S . (3.4)
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Using (3.2) and (3.3), the relative cost is evaluated as

wI =
VS − V[S,I]

VS
=

yTΠΠ⊥
S AI

y

yTΠ⊥
S y

. (3.5)

Substituting (3.4) in (3.5)we get

wI =
yTΠ⊥

SAI(A
T
IΠ

⊥
SAI)

−1AT
IΠ

⊥
S y

yTΠ⊥
S y

. (3.6)

Thus, wI is a measure of the decrease in the least-squares cost relative to VS after
addition of k extra columns of A. Next, we derive the statistical properties of wI .
For this let us assume that S = S0, the true support of x. Then the true data model
is y = ASxS + e. Furthermore, the projection matrix Π⊥

S can be decomposed as
Π⊥

S
= UUT where U ∈ RN×(N−s) is a semi-orthogonal matrix whose columns span

the null space of AS . We also denote ẽ = UTe ∼ N (0, σ2IN−s) where s = card(S)
and let ÃI = UTAI ∈ R(N−s)×k where k = card(I) and N − s > k . Therefore,
when S is the true subspace we can rewrite (3.6) using the above substitutions and
the fact that Π⊥

SAS = 0 as

wI =
eTUUTAI(A

T
IUUTAI)

−1AT
IUUTe

eTUUTe

=
ẽT ÃI(Ã

T
I ÃI)

−1ÃT
I ẽ

ẽT ẽ
=

ẽT Π̃I ẽ

ẽT ẽ

=
ẽT Π̃I ẽ

ẽT (IN − Π̃I +ΠI)ẽ

=
ẽT Π̃I ẽ

ẽT Π̃I ẽ+ ẽT Π̃⊥
I ẽ

=
X1

X1 +X2
,

where Π̃I is the projection matrix onto the span of ÃI . Next, observe that X1

and X2 are independent random variables distributed as X1 ∼ χ2(k) and X2 ∼
χ2(N − s − k). It is well known from theory that if X1 and X2 are independent
chi-squared distributed random variables then wI follows a Beta distribution with
parameters k/2 and (N − s− k)/2 [64], i.e.,

wI ∼ B
(
k

2
,
N − s− k

2

)
. (3.7)

Now, from (3.5) we see that minimizing the least-squares cost V[S,I] over I is
equivalent to maximizing the relative cost wI . Let us denote

wI∗ = max
Ii

wIi
; Ii ⊂ {1, 2, . . . , p} \ S ; card(Ii) = k,
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where {1, 2, . . . , p} \ S denotes the set difference between the two sets and i =
1, 2, . . . ,

(
p−s
k

)
. Now, the probability that the maximum relative cost wI∗ is less

than some threshold γ can be expressed as

Pr (wI∗ < γ) = Pr

(
wI1

< γ & . . . & wI
(p−s

k )
< γ

)
= 1− Pr

(
wI1

> γ or . . . wI
(p−s

k )
> γ

)
∴ P(wI∗ < γ) ≥ 1−

(
p− s
k

)
Pr (wI > γ) , (3.8)

where the last inequality follows from the union bound. Hence, (3.8) defines a
lower bound on the probability Pr(wI∗ < γ). Setting this lower bound probability
to some value β ∈ (0, 1) we get(

p− s
k

)
Pr (wI > γ) = 1− β

Pr (wI < γ) = 1− 1− β(
p−s
k

) = ρ (say). (3.9)

Since wI ∼ B (k/2, (N − s− k)/2), the threshold γ can be evaluated as

γ = B−1

(
ρ ;

k

2
,
N − s− k

2

)
, (3.10)

where B−1(·) is the inverse beta cumulative distribution function.
The MBT is summarized in Algorithm 2. First, specify the design matrix A

and the measurement vector y. Then run K iterations of OMP to identify the most
appropriate K column vectors of A in order of decreasing significance. This gives
us the OMP generated index set SKOMP. Next, at each iteration s = 1, . . . , (K −
1), compute the least-square cost VSs

OMP
and generate a sequence of relative cost

{wI(k)} and the corresponding sequence of threshold {γ(k)} for k = 1, . . . , (K−s).
The true sparsity k0 is estimated as the value of s at which wI(k) < γ(k), ∀k =
1, . . . , (K − s).

3.2 Simulation Results

In this section, simulation results are presented to evaluate the performance of
MBT. The performance is measured in terms of the probability of correct model
selection (PCMS) versus two varying parameters (1) number of measurements, N
and (2) dimension of parameter space, p. Since a high-dimensional scenario is
considered, p > N in all cases. The design matrix A ∈ RN×p is generated with
independent entries following normal distribution N (0, 1). The columns of A are
normalized to have unit Euclidean (l2) norm. Since the parameter vector x is
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Algorithm 3.1 MBT as used with OMP

1: Input: Design matrix A, measurement vector y
2: Run K iterations of OMP to get index set SKOMP

3: for s = 1 to K − 1 do
4: Compute VSs

OMP
= yTΠ⊥

Ss
OMP

y

5: for k = 1 to K − s do

6: wI(k) =
VSs

OMP
−V

Ss+k
OMP

VSs
OMP

7: Compute threshold γ(k)
8: end for
9: if wI(k) < γ(k),∀k then

10: break
11: else
12: Continue
13: end if
14: end for
15: Estimated true sparsity k̂0 = s
16: Estimated true support Ŝ0 = SsOMP

17: Estimated parameter vector x̂Ŝ0
= (AT

Ŝ0
AŜ0

)−1AT
Ŝ0
y.

assumed to be sparse, the true support cardinality is fixed at k0 = 5. The non-zero
entries of x are taken as xi = 1 where the indices i are taken uniformly at random
from {1, . . . , p}. The SNR in dB is SNR (dB) = 10 log10(σ

2
s/σ

2), where σ2
s and

σ2 denote signal and noise power, respectively. The signal power is computed as
σ2
s = ∥Ax∥22/N . Based on σ2

s and the chosen SNR (dB), the noise power is set
as σ2 = σ2

s/10
SNR (dB)/10. The PCMS is estimated over 1000 Monte Carlo trials.

To maintain randomness in the data, a new design matrix A is generated at each
Monte Carlo trial. For OMP we set K = 20. After K iterations we have the OMP
generated index set SKOMP where card

(
SKOMP

)
= K. For example, say we get the

OMP generated index set as SKOMP = [10, 2, 4, 8, 31, 96, 5], where K = 7 in this case.
Then the candidate models are {10}, {10, 2}, {10, 2, 4}, {10, 2, 4, 8}, {10, 2, 4, 8, 31},
{10, 2, 4, 8, 31, 96}, {10, 2, 4, 8, 31, 96, 5}. The order of each successive model grows
by one. Hence, OMP generates a monotonic nested set of candidate models where
any candidate model is a subset of its successor, i.e.,M1 ⊂M2 ⊂ . . . ⊂MK . Here,
we compare the performance of MBT, withviz., EBIC, EFIC, and RRT. EBIC and
EFIC are defined in (2.24) and (2.25). In RRT, the following residual ratio statistic
is evaluated as [65]

RR(k) = ∥rk∥2/∥rk−1∥2, (3.11)

where ∥r∥k2 = ∥yΠ⊥
I y∥22 and k = 1, . . . ,K. The RRT algorithm is shown in Al-

gorithm 3.2 where it is implemented along with OMP with K iterations and the
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Algorithm 3.2 RRT with OMP

1: Inputs: Design matrix A, observation vector y.
2: Step 1 Run K iterations of OMP
3: Step 2 Compute RR(k) for k = 1, . . . ,K
4: Step 3 Compute kRRT = max{k : RR(k) ≤ ΓαRRT (k)}
5: Outputs: True support estimate Ŝ0 = SkRRT

OMP .

quantity ΓαRRT (k) is evaluated as

ΓαRRT (k) =

√
B−1

(
ρ;
N − k

2
,
1

2

)
, (3.12)

where α ∈ (0, 1] is a tuning parameter and ρ = α
K(p−k−1) . In all of the methods

described above, the tuning parameter plays a very crucial role in their performance
in selecting the true model. Different values of the tuning parameter for the same
method may produce diverse performance curves for the same data set, which makes
it hard to compare different methods. For our convenience, we chose the following
values of the tuning parameter γ = 1 (EBIC), c = 1 (EFIC), α = 0.1 (RRT). These
values are motivated by their respective original papers.

Fig. 3.1 presents the plot for the probability of correct model selection versus
the number of measurements, N . For this case the parameters considered are
SNR = 2 dB, p = 500, k0 = 5 and two different β values are taken into account,
β = [0.95, 0.99], to highlight the effect of β in the performance of MBT. It can be
seen from the figure that for the given setup and β = 0.95, the proposed method

Figure 3.1: PCMS versus N when SNR = 2 dB, p = 500, and k0 = 5.
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Figure 3.2: PCMS versus p when SNR = 3 dB, N = 80, and k0 = 5.

MBT gives a slightly higher probability of correct model selection compared to
EFIC, EBIC, and RRT for lower values of N(< 120). On increasing N further, the
maximum PCMS for MBT (β = 0.95) settles at close to 0.95. On the contrary,
MBT with β = 0.99 achieves a maximum probability close to 0.99 with the increase
in N , but at lower measurements (N < 160) its performance degrades compared
to EFIC and EBIC. The performance is also compared to OMP-oracle, which is
OMP with known a priori knowledge of sparsity k0 and is the optimal performance
that OMP can achieve. RRT with α = 0.1 has a lower performance for N < 160,
however, as N grows the PCMS goes close to one.

Fig. 3.2 illustrates the probability of correct model selection versus parameter
dimension, p for SNR = 3 dB, N = 80, k0 = 5 and β = [0.90, 0.99]. The perfor-
mance of all the methods decreases with the increase in the parameter dimension p.
However, it is seen that MBT (with β = 0.90) provides a higher probability of cor-
rect selection as compared to EFIC, EBIC, and RRT for higher model dimensions
under low N and SNR values.

3.2.1 Effect of β On The Performance of MBT

The choice of the tuning parameter β is crucial to the performance of MBT. If
the value of β is too close to one, it will result in high underfitting losses in the
small-N and low-SNR regions. This is because a high β value corresponds to a
high threshold value used in the hypothesis test. As such, regression coefficients
having small magnitudes have a high probability of failing the test and hence getting
dropped from the final support leading to an underfitted model. A higher value
of β is desired when the sample size is large and/or the SNR is high such that
the noise level is relatively lower than the signal components. This will ensure
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Figure 3.3: Performance of MBT versus N for different values of β. Here SNR = 3
dB, p = 500 and k0 = 5.

Figure 3.4: Performance of MBT versus SNR for different values of β. Here N = 80,
p = 500 and k0 = 5.

that the true predictors are not dropped prematurely and at the same time avoid
picking noisy components. On the other hand, a small β value is equivalent to a
lower threshold. This will lead to higher overfitting loss even in the large-N and
high-SNR scenarios since the threshold might be too close to the noise level, thus
picking up false components.

Fig. 3.3 and 3.4 presents the performance of MBT versus N and SNR, re-
spectively for three different values of β, viz., 0.90, 0.95, and 0.999. It is clearly
observed from both the figures that MBT with β = 0.9, 0.95, achieves higher prob-
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ability of correct model selection than MBT with β = 0.999 for N < 140 and SNR
< 6 dB for the considered data setting. However, as N and SNR increases, MBT
with β = 0.999 reaches correct detection probability very close to one. But the
probability of correct detection for MBT with β = 0.90 and 0.95 gets saturated
around 0.90 and 0.95, respectively, and does not rise further even as N and SNR
increases. These results clearly highlight that the choice of the tuning parameter
can significantly affect MBT’s accuracy in correctly selecting the true model.

3.3 Summary

In this chapter, a novel model selection method called Multi-Beta-Test or MBT is
proposed that efficiently estimates the true support in a sparse high-dimensional
linear regression model. The working principle of MBT is based on a hypothesis
testing framework that uses a test statistic computed from the residual. Numerical
simulations with synthetic data and performance comparison with the state-of-the-
art methods have shown that MBT can provide performance similar to or slightly
better than the existing methods in some scenarios with a specific value of the tuning
parameter. Results also show that MBT is sensitive to the tuning parameter β,
which needs to be adjusted a-priori to achieve optimal results. However, in practical
scenarios, this can be a bit challenging to decide on the right value of β. This is
part of future work to formulate a way for dynamically setting β in an automatic
data-driven fashion.





Chapter 4

Bayesian Information Criterion -
Robust

“Science is a way of thinking much more than it is a body of knowledge.”
—Carl Sagan (1934–1996)

The Bayesian Information Criterion (BIC) is one of the most well-known criteria
used for model order estimation in linear regression models. However, in its

popular form, BIC is inconsistent as the noise variance tends to zero given that
the sample size is small and fixed. Several modifications of the original BIC have
been proposed that takes into account the high-SNR consistency, but it has been
recently observed that the performance of the high-SNR forms of the BIC highly
depends on the scaling of the data. This data-scaling problem is a byproduct of
the data-dependent penalty design, which generates irregular penalties when the
data is scaled and often leads to greater underfitting or overfitting losses in some
scenarios. In this chapter, we present a new form of the BIC for order selection in
linear regression models where the parameter vector dimension is small compared
to the sample size. The proposed criterion eliminates the data-scaling problem and
at the same time is consistent for both large sample sizes and high-SNR scenarios.

4.1 Introduction and Problem Formulation

In Chapter 3, we presented a scheme for estimating the “true” subset in a sparse
high-dimensional linear regression model. In this chapter, we take a step back and
re-examine the classical problem of model order selection in the linear regression
setting. Model order selection is a very fundamental problem in many fields of
science, engineering, and statistics wherever data fitting and prediction procedures
are employed. The goal of model order selection is to estimate the best (or true)
dimension of the parametric model using the observed data available. The outcome
of a model order selection is an integer-value describing the dimension of the model

37
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[66]. Consider the following linear model

Hk : y = Akxk + e. (4.1)

Here, y ∈ RN×1 is the data vector, Ak ∈ RN×k is a sub-design matrix formed
using the first k columns of the full design matrix A ∈ RN×p (which is known)
where k ≤ p < N . xk ∈ Rk×1 is the corresponding unknown regression coefficient
vector. e ∈ RN×1 is the associated noise vector, which is assumed to be Gaussian
distributed with zero mean and covariance matrix equal to σ2

kIN , where σ2
k is the

unknown noise variance corresponding to hypothesis Hk. For future analysis we
use just σ2 (without the subscript k) to signify the unknown “true” noise variance.
Hk denotes the hypothesis that the data y is truly generated according to (4.1).
The hypotheses H1,H2, , . . . ,Hp are assumed to be nested, i.e., Ak is a sub-block
of Ak+1 for k < p. However, note that this is not true in all cases. The integer
subindex k ∈ [1, p] in (4.1) indicates the order (or dimension) of the model. Let
k0(> 0) denote the true model order, then xk ̸= 0 for k = 1, . . . , k0 and xk = 0
for k = k0 + 1, . . . , p. The true order k0 (which is an integer value) is unknown
and the model order selection problem involves the detection or estimation of this
parameter.

A popular means of solving this problem is by using information theoretic cri-
teria [14,43–45]. Such a criterion assigns a score to each candidate model based on
some underlying statistical principle and the model with the lowest score is selected
as the final model. For the linear model in (4.1), let p(y|θk) denote the probability
density function (pdf) of the data vector y, where θk is the vector consisting of all
the unknown parameters associated with the kth candidate model. Then a gen-
eral information theoretic criterion selects the model that minimizes the following
metric

f(k) = −2 ln p
(
y
∣∣θ̂k)+ P(k); k = 1, . . . , p (4.2)

where θ̂k is the maximum likelihood estimate (MLE) of θk and P(k) is the penalty
that compensates for overparameterization. Therefore, the model order is selected
as

k̂ = argmin
k∈{1,...,p}

{
f(k)

}
, (4.3)

where k̂ denotes the model order estimate. In this regard, a popular criterion
for model order selection is the Bayesian information criterion (BIC), which was
introduced by Schwarz [47] and is one of the most widely known and ubiquitous
tools used in statistical model order selection. The BIC score for a model of order
k is given as

BIC(k) = −2 ln p
(
y
∣∣θ̂k)+ k lnN, (4.4)

where k lnN is the penalty term, which compensates for overparameterization. BIC
gained popularity due to its computational simplicity and consistent performance in
various fields. BIC is formulated on the maximum a-posteriori (MAP) framework of
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Bayesian estimation and is a consistent criterion i.e., it will almost surely select the
true model order as the sample size N → ∞. However, in [67], the authors have
added a new consistency requirement in the context of linear regression models,
which is, given that N is small and fixed, the probability of selecting the true order
should also tend to one as σ2 → 0. Hence, with the inclusion of this new consistency
requirement, an order selection criterion is said to be consistent if it satisfies the
following conditions:

Pr
{
k̂ = k0

}
→ 1 as N →∞ with fixed σ2

Pr
{
k̂ = k0

}
→ 1 as σ2 → 0 with fixed N.

(4.5)

It has been shown in [67] that when N is small and fixed, BIC is an inconsistent
estimator of model order in nested model selection as σ2 → 0.

To circumvent this problem, the authors in [16] proposed different high signal-
to-noise-ratio (SNR) forms of BIC that guarantees consistency as σ2 → 0. Please
note that in [16], the notion of high-SNR or SNR→ ∞ is attributed to σ2 → 0.
However, the high-SNR forms of the BIC proposed in [16] suffer from a scaling
problem. This scaling problem arises due to the fact that the penalty contains a
data-dependent term, which leads to different penalization when the data is scaled
or whether σ2 > 1 or σ2 < 1. This is definitely not a desirable property for any
model order selection criterion. In this chapter, we investigate this data-scaling
problem and propose an alternate form of the BIC that eliminates this problem
and at the same time is consistent as SNR→∞ as well as when N →∞.

At this point, it is important to highlight that there are other order selection cri-
teria that obey the consistency requirements given in (4.5) and are also devoid of any
scaling issues. Examples of such criteria include normalized maximum likelihood
(NML) [50], g-maximum description length (gMDL) [49], exponentially embed-
ded family (EEF) [68], penalizing adaptively the likelihood (PAL) [51]. However,
our emphasis herein is on BIC partly because of the following reason: In high-
dimensional models where p≫ N and assuming a non-nested structure, the order
selection problem can be redefined as a subset selection problem where the goal is
to estimate the true support set S = {k : xk ̸= 0} in the linear model y = Ax+ e.
In such cases, the classical model selection methods including the original BIC are
ineffective and prone to overfitting [17,69,70]. However, unlike other existing meth-
ods, BIC can be extended, in a relatively straightforward manner to handle such
large-p small-N scenarios. Examples of such rules include extended BIC [17] and
extended Fisher information criterion [18], which we have briefly mentioned in the
previous chapters.

To help the reader, we restate the notations used in this chapter. Boldface
letters denote matrices and vectors. The notation (·)T stands for transpose. Πk =
Ak(A

T
kAk)

−1AT
k denotes the orthogonal projection matrix on the span of Ak and

Π⊥
k = IN −Πk denotes the orthogonal projection matrix on the right null space of

AT
k . IN is aN×N identity matrix. The notation |X| denotes the determinant of the

matrix X. X ∼ N (0, 1) denotes a normal distributed random variable with mean 0
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and variance 1. X ∼ χ2
k is a central chi-squared distributed random variable with

k degrees of freedom, X ∼ χ2
k(λ) is a noncentral chi-squared distributed random

variable with k degrees of freedom and non-centrality parameter λ. X ∼ B(α, β) is
a beta distributed random variable with parameters α and β. The notation X

d−→ Y
means that the random variable X converges in distribution to Y . The symbol c
denotes a constant and will be used as a generic placeholder for all constant terms.

4.2 BIC and its Forms

To motivate the proposed criterion we start with a brief derivation of the original
BIC that is based on the MAP estimator [16,43,47]. The pdf of the data vector y
in (4.1) under hypothesis Hk is

p (y|θk,Hk) =
1

(2πσ2
k)
N/2

exp

{
− ∥y −Akxk∥22

2σ2
k

}
(4.6)

where θk = [xTk , σ
2
k]
T and ∥·∥2 denotes the Euclidean norm. Under hypothesis Hk,

the MLEs of xk and σ2
k are obtained as [63]

x̂k =
(
AT
kAk

)−1
AT
k y (4.7)

σ̂2
k =

1

N
∥y −Akx̂k∥22 =

yTΠ⊥
k y

N
. (4.8)

Hence, θ̂k = [x̂Tk , σ̂
2
k]
T . Let p(θk|Hk) denote the prior pdf of the parameter vector

θk under Hk. Then we have the joint density

p(y,θk|Hk) = p(y|θk,Hk)p(θk|Hk) (4.9)

and the marginal distribution is

p(y|Hk) =
∫
p(y|θk,Hk)p(θk|Hk)dθk. (4.10)

The posterior probability Pr(Hk|y) is given by

Pr(Hk|y) =
p(y|Hk) Pr(Hk)

p(y)
. (4.11)

The MAP estimator chooses the model with the largest posterior probability

k̂MAP = argmax
k∈[1,...,p]

{Pr(Hk|y)} . (4.12)

Traditionally it is assumed that all hypotheses {Hk}pk=1 of interest are equiprobable
such that the prior probability of each hypothesis is Pr(Hk) = 1

p for all k. This
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implies that the MAP estimate is equivalently given by maximizing p(y|Hk) as both
Pr(Hk) and the marginal p(y) are independent of k. To find the MAP estimate we
need to compute the integration in (4.10). In this context, this is most commonly
evaluated under the assumption that the number of samples N and/or the SNR
are large enough and using the so-called Laplace’s approximation that involves a
second order Taylor expansion of ln p(y|θk,Hk) around the MLE

ln p(y|θk,Hk) ≈ ln p(y|θ̂k,Hk) + (θk − θ̂k)
T ∂ ln p(y|θk,Hk)

∂θk

∣∣∣∣
θk=θ̂k

+
1

2
(θk − θ̂k)

T

[
∂2 ln p(y|θk,Hk)

∂θk∂θTk

∣∣∣∣
θk=θ̂k

]
(θk − θ̂k).

(4.13)

In (4.13), the first order term is zero when evaluated at the MLE. Moreover, the
prior p(θk|Hk) is assumed to be essentially flat over the “practical support” of
p(y|θk,Hk). With this we can write (4.10) as

p(y|Hk) ≈ p(y|θ̂k,Hk)p(θ̂k|Hk)
∫

exp

{
− 1

2
(θk − θ̂k)

T Ĵk(θk − θ̂k)

}
dθk︸ ︷︷ ︸

T

(4.14)

where Ĵk is the sample Fisher information matrix (FIM) under Hk evaluated at
the MLE

Ĵk = −∂
2 ln p(y|θk,Hk)
∂θk∂θTk

∣∣∣∣
θk=θ̂k

. (4.15)

Now, observe that for the linear regression model in (4.1) we have

− ln p(y|θk,Hk) =
N

2
σ2
k +
∥y −Akxk∥22

2σ2
k

+
N

2
ln 2π. (4.16)

Hence, obtaining the second order partial derivatives and evaluating at the MLE
gives

Ĵk =

[
1
σ̂2
k
AT
kAk 0

0 N
2σ̂4

k

]
. (4.17)

Comparing to the multivariate Gaussian pdf we can express the factor T in (4.14)
as

T =
(2π)(k+1)/2∣∣Ĵk∣∣1/2

∫
e−

1
2 (θk−θ̂k)

T Ĵk(θk−θ̂k)

(2π)(k+1)/2
∣∣Ĵk∣∣−1/2

dθk︸ ︷︷ ︸
=1

=
(2π)(k+1)/2∣∣Ĵk∣∣1/2 , (4.18)

where we assume that Ĵk is non-singular. From (4.14) and (4.18) we get

ln p(y|Hk) ≈ ln p(y|θ̂k,Hk) + ln p(θ̂k|Hk) +
k + 1

2
ln(2π)− 1

2
ln
∣∣Ĵk∣∣. (4.19)
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Now, for the linear regression model, the pdf p(y|θ̂k,Hk) is

p
(
y|θ̂k,Hk

)
=

exp

{
− ∥y−Akx̂k∥2

2

2σ̂2
k

}
(2πσ̂2

k)
N/2

= (σ̂2
k)

−N/2(2π)−N/2 exp{−N/2}

=⇒ −2 ln p
(
y|θ̂k,Hk

)
=N ln σ̂2

k +N ln 2π +N. (4.20)

Therefore, using (4.20), we can rewrite (4.19) as

−2 ln p(y|Hk) ≈ N ln σ̂2
k + ln

∣∣Ĵk∣∣− 2 ln p(θ̂k|Hk)− k ln 2π− ln 2π +N ln 2π +N︸ ︷︷ ︸
constant

.

(4.21)
The constant terms do not depend on the dimension k and hence can be neglected.
Consequently, the MAP based model order estimate of the linear regression model
is obtained as

k̂MAP = argmin
k∈[1,...,p]

{
N ln σ̂2

k + ln
∣∣Ĵk∣∣− 2 ln p(θ̂k|Hk)− k ln 2π

}
. (4.22)

The transition from the above MAP criterion to BIC involves some further ap-
proximations. Firstly, the contribution from the prior term i.e., ln p(θ̂k|Hk) can be

neglected if we consider it to be flat and uninformative. Traditionally, p(θ̂k|Hk) is
assumed to be independent of N and SNR, hence it behaves as an O(1) quantity.
Secondly, for large sample sizes, the term k ln(2π) can be ignored as it becomes
much smaller than the first two terms. However, note that for small sample sizes
and low-SNR scenarios this term can have some significant impact on the per-
formance, which we will see later in the proposed criterion. Thus, ignoring the
term ln p(θ̂k|Hk) as well as k ln 2π from (4.22) we obtain what we refer to as the
“fundamental” form of the BIC

BICfund(k) = N ln σ̂2
k + ln

∣∣Ĵk∣∣. (4.23)

In the derivation of the original form of the BIC for linear regression models, certain
assumptions are made on the sample FIM Ĵk associated with the model. For large-
N the most commonly used assumption is that (see, e.g., [16, 71])

1

N
Ĵk =

[
1
N

AT
k Ak

σ̂2
k

0

0 1
2σ̂4

k

]
= O(1). (4.24)

Considering σ̂2
k to be O(1) for large N , clearly this assumption is equivalent to

lim
N→∞

{
AT
kAk

N

}
= Mk, (4.25)
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where Mk is a k × k positive definite matrix that is bounded as N → ∞. The
above assumption on the design matrix Ak is true in many applications but not all
(see [16,72] for more details). However, we stick with (4.25) for further analysis in
this paper in order to not distract the readers from the main points of the current
contribution. Now, the term ln

∣∣Ĵk∣∣ in (4.23) can be expanded using (4.17) as

ln
∣∣Ĵk∣∣ = ln

[
N

2(σ̂2
k)
k+2

∣∣AT
kAk

∣∣] = ln(N/2)− (k + 2) ln σ̂2
k + ln

∣∣AT
kAk

∣∣. (4.26)

Using (4.25), it is possible to show that for large N

ln
∣∣AT

kAk

∣∣ = ln

∣∣∣∣N · AT
kAk

N

∣∣∣∣ = k lnN +O(1). (4.27)

Substituting (4.26), (4.27) in (4.23) and ignoring the term ln(N/2), which is inde-
pendent of k, and the O(1) terms (which includes σ̂2

k as well) lead to the original
and well-known form of the BIC

BIC(k) = N ln σ̂2
k + k lnN. (4.28)

This form of the BIC is consistent for large sample sizes, i.e., limN→∞ Pr(k̂ = k0) =
1. However, as mentioned earlier, (4.28) is inconsistent for fixed N and increasing

SNR scenarios, i.e., limSNR→∞ Pr(k̂ = k0) ̸= 1. To alleviate this problem, the
authors in [16] proposed different high-SNR forms of the BIC, which we will briefly
discuss in the next section to set the right context.

4.2.1 High-SNR Forms of BIC

In [16], the authors have argued that when dealing with small-N high-SNR scenar-
ios, (4.28) is not the proper form of BIC. In such cases, it is important to derive
the proper forms of BIC in order to correctly detect the true model order. The key
assumption in [16] is that the SNR takes on large values due to the fact that the
power of the noise in the data is small, where the notion of ‘small’ is attributed to
the following

σ̂2
k ≪ 1, for k ≥ k0. (4.29)

Next, normalization of the sample FIM Ĵk is performed with respect to σ̂2
k. To

achieve this the authors in [16] have chosen the following matrix

L
−1/2
SNR =

[√
σ̂2
kIk 0
0 σ̂2

k

]
. (4.30)

Now it is possible to show that for the small and fixed N case∣∣∣L−1/2
SNR ĴkL

−1/2
SNR

∣∣∣ = ∣∣∣∣AT
kAk 0
0 N/2

∣∣∣∣ = O(1), (4.31)
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where O(1) is a term independent of σ̂2
k. Using (4.31), the ln

∣∣Ĵk∣∣ term in BICfund

(4.23) can be expressed as

ln
∣∣Ĵk∣∣ = ln

[∣∣LSNR

∣∣∣∣∣L−1/2
SNR ĴL

−1/2
SNR

∣∣∣]
= −(k + 2) ln σ̂2

k +O(1). (4.32)

Finally inserting (4.32) in (4.23) leads to the high-SNR form of the BIC as proposed
in [16]

BICSNR(k) =

{
N ln σ̂2

k − (k + 2) ln σ̂2
k if σ̂2

k < 1

N ln σ̂2
k otherwise

(4.33)

which can be re-written compactly as

BICSNR(k) = N ln σ̂2
k +max{0,−(k + 2) ln σ̂2

k}. (4.34)

BICSNR is consistent as σ2 → 0 for fixed N but inconsistent as N → ∞ and fixed
σ2 > 0.

4.2.2 Combined Forms of BIC

At this point, it is difficult to ascertain which form of BIC to use for model order
selection. If we are dealing with large-N case then we choose the standard BIC
(4.28). On the other hand if it is small-N high-SNR scenario we use BICSNR (4.34).
However, in most of the real-world data, deciding whether N is large or small or
similarly if SNR is high or low is not easy to deduce. In such cases, [16] proposes to
choose between BIC and BICSNR by picking the criterion with the largest penalty.
This leads to the combined form of BIC :

BICN,SNR(k) = N ln σ̂2
k +max{k lnN,−(k + 2) ln σ̂2

k}. (4.35)

Furthermore, if both N and SNR are high or if N is large but SNR is low then [16]
proposes another combined form of BIC where the penalties of the two criteria
BIC and BICSNR are added together to produce a sum penalty, which leads to the
following combined form of BIC :

B̃ICN,SNR(k) = N ln σ̂2
k + k lnN − (k + 2) ln σ̂2

k. (4.36)

The above criterion (4.36) satisfies the consistency requirements in (4.5). In the
next section, we discuss the data-scaling problem of the above high-SNR forms of
the BIC.

4.3 Data-Scaling Problem

The penalty term in the original BIC (4.28) is independent of σ̂2
k, hence it does

not suffer from any data-scaling issues. However, in the high-SNR and combined
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forms of the BIC, the penalty term is dependent on the data via σ̂2
k. As such, their

behaviour is irregular under changing signal and noise statistics, or in other words,
they are not scale-invariant. To understand the scaling problem let us study the
combined BIC criterion given in (4.36). If we scale the data y, the noise variance
σ̂2
k will be scaled as well. For the first term (i.e., N ln σ̂2

k) it does not matter as
it will only introduce a constant that is independent of k. However, for the third
term (−(k+2) ln σ̂2

k) it will affect the relative penalty for different k. To elaborate
this point consider the difference

B̃ICN,SNR(k)− B̃ICN,SNR(k0) =N ln(σ̂2
k/σ̂

2
k0) + (k − k0) lnN − (k + 2) ln σ̂2

k+

(k0 + 2) ln σ̂2
k0

=(N − 2) ln(σ̂2
k/σ̂

2
k0) + (k − k0) lnN − k ln σ̂2

k+

k0 ln σ̂
2
k0 . (4.37)

Now, if the data y is scaled by a constant c, the estimated noise variances are scaled
by c2 and the difference becomes

B̃ICN,SNR(k)− B̃ICN,SNR(k0) =(N − 2) ln(σ̂2
k/σ̂

2
k0) + (k − k0) lnN − k ln σ̂2

k+

k0 ln σ̂
2
k0 + (k0 − k) ln c2, (4.38)

where σ̂2
k and σ̂2

k0
are as before, i.e., based on the unscaled data. It is clearly ob-

served that (4.37) and (4.38) are not equal and the difference after scaling contains
an additional term (k0 − k) ln c2. Thus, this form of the BIC is not immune to
scaling issues. Same issue persists for BICSNR and BICN,SNR as well. Moreover,
in [16], it is assumed that SNR is high because σ2 ≪ 1. But this assumption is
not true always since we can have higher SNR values due to strong signal power
where σ2 may be greater than 1. The proposed high-SNR forms of the BIC in [16]
do not capture this in their penalty term leading to irregular penalization under
different signal and noise statistics. For example, consider a high-SNR scenario
where σ2 > 1. In this case, the penalty term of BICSNR(k)(4.34) is zero for values
of k ≥ k0. It is clearly evident that the outcome is overfitting. A similar problem
is encountered in B̃ICN,SNR(k) (4.36). For high-SNR scenarios with σ2 > 1, the
−(k+2) ln σ̂2

k term will be negative leading to decrease in the penalty for values of
k ≥ k0 resulting in overfitting. Hence, it is evident from the above discussion that
we do need proper high-SNR forms of the BIC, which are immune to such changes
in signal and noise statistics.

4.4 BIC Robust

In the previous section we saw that in order to achieve consistency as SNR →
∞, the penalty term of BIC requires a data-dependent term. At this stage, we
cannot completely deviate away from this structure of the BIC, but we do need
slight modification to eliminate the scaling problem and maintain the consistency
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requirements. From the MAP criterion in (4.22), ignoring only the prior probability

term ln p(θ̂k|Hk), we get the basic form of the BIC robust or BICR in short

BICbasic
R (k) = N ln σ̂2

k + ln
∣∣Ĵk∣∣− k ln 2π. (4.39)

In order to have a scaling-free form of the BIC that is consistent for both large-N
and high-SNR, the penalty term should contain quantities which are functions of
both N and SNR. In this regard, we consider normalization of Ĵk for both large-N
and high-SNR scenarios. To achieve this consider the following matrix

L−1/2 =

√ 1
N

√
σ̂2
k

σ̂2
0
Ik 0

0
√

1
N
σ̂2
k

σ̂2
0

 . (4.40)

Here, (4.40) has a similar structure as (4.30) but with an additional factor of σ̂2
0

where

σ̂2
0 =
∥y∥22
N

. (4.41)

The factor σ̂2
0 in the normalization matrix L is used in order to eliminate the scaling

problem. This is motivated by the fact that given (4.25), when SNR is a constant
we have

E[σ̂2
0 ]→ c & Var[σ̂2

0 ]→ 0 as N →∞. (4.42)

Furthermore, from the considered generating linear model (4.1), for fixed sample
sizes (0 < N <∞) we have

E[σ̂2
0 ]→ c & Var[σ̂2

0 ]→ 0 as σ2 → 0. (4.43)

A detailed analysis of the factor σ̂2
0 is provided in Appendix 4.B. Now, using (4.17),

(4.25) and (4.40) it is possible to show that

∣∣∣L−1/2ĴkL
−1/2

∣∣∣ = ∣∣∣∣∣ 1
σ̂2
0

AT
k Ak

N 0

0 1
2σ̂4

0

∣∣∣∣∣ = O(1), (4.44)

where O(1) is a term that is bounded as N →∞ and σ2
k → 0, and therefore may be

discarded with little effect on the criterion. Using (4.44), the ln
∣∣Ĵk∣∣ term in (4.39)

can be expressed as

ln
∣∣Ĵk∣∣ = ln

[∣∣L∣∣∣∣∣L−1/2ĴkL
−1/2

∣∣∣] = ln |L|+O(1), (4.45)
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where

ln |L| = ln

∣∣∣∣∣∣
N
(
σ̂2
0

σ̂2
k

)
Ik 0

0 N
(
σ̂2
0

σ̂2
k

)2
∣∣∣∣∣∣

= (k + 1) lnN + (k + 2) ln

(
σ̂2
0

σ̂2
k

)
= k lnN + (k + 2) ln

(
σ̂2
0

σ̂2
k

)
+ lnN. (4.46)

The lnN term in (4.46) is a constant term independent of the model dimension k
and can be ignored. Using (4.45) and (4.46) in (4.39) (after ignoring the constant
and O(1) terms), we get the new form of BICR given as

BICR(k) = N ln σ̂2
k + k lnN + (k + 2) ln

(
σ̂2
0

σ̂2
k

)
− k ln 2π

= (N − k − 2) ln σ̂2
k + k ln

(
N

2π

)
+ (k + 2) ln σ̂2

0 .

(4.47)

The proposed new criterion BICR contains an additional quantity in the penalty
term that is (k+2) ln σ̂2

0 . In this way, the ratio σ̂2
0/σ̂

2
k is: (1) always greater than or

equal to one and (2) independent of the scaling of y. The first property is perhaps
not necessary but seems reasonable if one views the penalty terms separately (the
one dependent on N and the one dependent on σ̂2

k) and require them to be non-
negative. The scaling independence is clearly desirable. The ratio σ̂2

0/σ̂
2
k is O(1)

for k < k0 and O(SNR) for k ≥ k0 if SNR ≫ 1. Moreover, note that σ̂2
0 is on the

order of unity, i.e., the same order as terms we typically have neglected in the case
of BIC and high-SNR forms of the BIC. It also leads to a penalty that is a function
of SNR and performs no matter whether the SNR is high because the signal is
strong or because the noise is weak. There are of course other alternatives possible
with at least partially similar properties, e.g., using yTΠky/N instead of σ̂2

0 . This
would lead to a penalty involving an SNR measure and be independent of scaling
but will not guarantee a positive penalty term associated with the SNR (the ratio
of yTΠky/N and σ̂2

k may typically take on small values for small k).

Next, we present the following analysis highlighting the signal scaling immunity
of BICR. Consider the difference

BICR(k)− BICR(k0) =(N − 2) ln(σ̂2
k/σ̂

2
k0) + (k − k0) ln(N/2π)− k ln σ̂2

k+

k0 ln σ̂
2
k0 + (k − k0) ln σ̂2

0 . (4.48)

In a similar fashion, if the data y is scaled by c, the estimated noise variances
(σ̂2
k and σ̂2

k0
) as well as the term σ̂2

0 are scaled by c2. Therefore, in this case the
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difference becomes

BICR(k)− BICR(k0) =(N − 2) ln(σ̂2
k/σ̂

2
k0) + (k − k0) ln(N/2π)− k ln σ̂2

k+

k0 ln σ̂
2
k0 + (k − k0) ln σ̂2

0 + (k0 − k) ln c2 − (k0 − k) ln c2

=(N − 2) ln(σ̂2
k/σ̂

2
k0) + (k − k0) ln(N/2π)− k ln σ̂2

k+

k0 ln σ̂
2
k0 + (k − k0) ln σ̂2

0 . (4.49)

It is clearly observed that the unscaled (4.48) and scaled (4.49) differences are equal,
which underlines the advantage of the proposed criterion.

Finally, note that as compared to the fundamental form of the BIC (4.23), here
in BICR we have considered retaining a term that was previously ignored under large
sample and/or high-SNR approximations. This term is “k ln 2π” whose significance
is small when N is large and/or SNR is high. However, in the numerical analysis
performed, it is found that this term can play an important role in improving
the PCOS in low regions of N and/or SNR. Since for large-N and/or high-SNR
scenarios, the effect of this term is negligible, there is no harm in keeping this term
in the criterion. Moreover, in real scenarios deciding if the data length is large or
if we are dealing with a high-SNR case is not possible to ascertain with precision.
Hence, having this term in the criterion can be beneficial in certain cases without
hampering performance.

4.5 Proof of Consistency

In this section, we provide the necessary proofs to show that BICR is a consistent
criterion, i.e., it satisfies (4.5). First, we show consistency with respect to increasing
SNR and then with respect to increasing sample size. Note that BICR falls under
the class of methods discussed in [71,73]. Hence, the high-SNR consistency of BICR

then follows from the analyses in [71, 73]. However, for completeness, we provide
proof of consistency for both high-SNR and large-N cases.

4.5.1 Consistency as σ2 → 0 or SNR→∞ for fixed N

Here we evaluate the consistency of BICR as the true noise variance σ2 becomes
vanishingly small. We consider two cases. The first is the overfitting scenario where
we investigate the probability of BICR choosing more than k0 variables. Second is
the underfitting case where we evaluate the probability of BICR choosing less than
k0 variables as σ2 → 0.

Over-Fitting Case

Let us compute the probability that BICR would prefer a model of order (k0 + i)
where 0 < i ≤ p − k0, to the model of order k0 as σ2 → 0, i.e., Pr{BICR(k0) >
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BICR(k0 + i)}, which after some rewriting gives

Pr
{
(N−k0−2) ln σ̂2

k0−(N−k0−i−2) ln σ̂
2
k0+i−i ln(N/2π)−i ln(σ̂

2
0) > 0

}
. (4.50)

Now let us define the random variable

Xk =
σ̂2
k

σ2
, then N ·Xk ∼ X 2

N−k ∀k ≥ k0. (4.51)

See Appendix 4.C for details. Hence, E[Xk] = (N − k)/N and Var[Xk] = 2(N −
k)/N2. This implies that the variables Xk are independent of σ2 for k ≥ k0. Now,
we can express

(N − k0 − 2) ln σ̂2
k0 = lnXN−k0−2

k0
+ (N − k0 − 2) lnσ2, (4.52)

and similarly,

(N − k0 − i− 2) ln σ̂2
k0+i = lnXN−k0−i−2

k0+i
+ (N − k0 − i− 2) lnσ2. (4.53)

Therefore, we can rewrite (4.50) as

Pr

{
ln

(
XN−k0−2
k0

XN−k0−i−2
k0+i

)
+ ln(2π/N)i + ln(1/σ̂2

0)
i > ln(1/σ2)i

}
, (4.54)

which after exponentiation gives

Pr

{(
XN−k0−2
k0

XN−k0−i−2
k0+i

)(
2π

N

)i(
1

σ̂2
0

)i
>

(
1

σ2

)i}
. (4.55)

Let the random variable Y denote the entire left-hand side of (4.55) and let W =
XN−k0−2
k0

/XN−k0−i−2
k0+i

. From (4.43) we have lim
σ2→0

σ̂2
0 = c. This implies that the

random variable Y
d−→ cW as σ2 → 0 where c > 0 is some constant. The random

variable W is independent of σ2 and the right-hand side of (4.55) grows unbounded
as σ2 → 0. Hence, the probability of overfitting (4.55) tends to zero as σ2 → 0, i.e.,

lim
σ2→0

Pr
{
BICR(k0) > BICR(k0 + i)

}
= 0. (4.56)

Under-Fitting Case

We compute the probability that BICR would prefer a model of order (k0−i) where
0 < i < k0, to the model of order k0 as σ2 → 0, i.e., Pr{BICR(k0) > BICR(k0− i)},
which after some rewriting gives

Pr
{
(N−k0−2) ln σ̂2

k0−(N−k0+i−2) ln σ̂
2
k0−i+i ln(N/2π)+i ln(σ̂

2
0) > 0

}
. (4.57)
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Now using (4.51) in (4.57) and after exponentiation we get

Pr

{(
XN−k0−2
k0(

σ̂2
k0−i

)N−k0+i−2

)(
N

2π

)i (
σ̂2
0

)i
>

(
1

σ2

)N−k0−2
}
. (4.58)

Let the random variable Y denote the entire left-hand side of (4.58). From the
properties of least-squares estimates we have (proof is provided in Appendix 4.C)

lim
σ2→0

E
[
σ̂2
k

]
= c & lim

σ2→0
Var

[
σ̂2
k

]
= 0, ∀k < k0. (4.59)

Also the random variable XN−k0−2
k0

is independent of σ2 and lim
σ2→0

σ̂2
0 = c (4.43).

This implies that the random variable Y
d−→ cXN−k0−2

k0
as σ2 → 0 and the right-hand

side of (4.58) grows unbounded as σ2 → 0. Thus, the probability of underfitting
(4.58) tends to zero as σ2 → 0, i.e.,

lim
σ2→0

Pr
{
BICR(k0) > BICR(k0 − i)

}
= 0. (4.60)

Thus, from (4.56) and (4.60) we conclude that BICR satisfies Pr{k̂ = k0} → 1 as
σ2 → 0.

4.5.2 Consistency as N →∞ for Fixed σ2 (0 < σ2 <∞)

In this section, we evaluate the consistency of BICR as the sample size N grows
large. As in the previous section, we consider two cases. The first is the overfit-
ting scenario where we investigate the probability of BICR choosing more than k0
variables. Second, the underfitting case where we evaluate the probability of BICR

choosing less than k0 variables as N →∞ when the true noise variance σ2 is fixed.

Over-Fitting Case

We compute the probability that BICR will choose a model of order (k0 + i) to the
model of order k0 as N → ∞, i.e., Pr{BICR(k0 + i) < BICR(k0)}, 0 < i ≤ p− k0,
which after some rewriting gives

Pr

{
(N − k0 − i− 2) ln

(
σ̂2
k0+i

σ̂2
k0

)
+ i ln

(
N

2π

)
+ i ln

(
σ̂2
0

σ̂2
k0

)
< 0

}
. (4.61)

Let us denote X =

(
σ̂2
k0+i

σ̂2
k0

)
, then X ∼ B

(
N−k0−i

2 , i2
)
(the proof is given in Lemma

4.3 of Appendix 4.A). Now define another random variable Z = 1 −X, then Z ∼
B
(
i
2 ,

N−k0−i
2

)
(mirror-image symmetry). Hence,

E[Z] =
1

1 + β/α
= O

(
1

N

)
and Var[Z] =

αβ

(α+ β)2(α+ β + 1)
= O

(
1

N2

)
,

(4.62)
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where α = i
2 and β = N−k0−i

2 . Now, for large N case we have

(N − k0 − i− 2) lnX ≈ N ln(1− Z) ≈ −NZ, (4.63)

where the last approximation follows by linearization of the logarithm for small Z.
From above it follows that

lim
N→∞

E[NZ] = i and lim
N→∞

Var[NZ] = i/2. (4.64)

Hence, for large N , the term (N − k0 − i − 2) ln
(
σ̂2
k0+i

/σ̂2
k0

)
is approximately a

random variable with finite mean and variance. Furthermore, lim
N→∞

σ̂2
0 = c > 0 (see

Appendix 4.B) and lim
N→∞

σ̂2
k0

= σ2 (see Appendix 4.C). Then we get

lim
N→∞

Pr

{
(N − k0 − i− 2) lnX + i ln

(
N

2π

)
+ i ln

(
σ̂2
0

σ̂2
k0

)
< 0

}
= 0, (4.65)

because the left-hand side of the inequality grows with lnN . Thus, the probability
of overfitting tends to zero as N →∞, i.e.,

lim
N→∞

Pr
{
BICR(k0 + i) < BICR(k0)

}
= 0. (4.66)

Under-Fitting Case

Let us compute the probability that BICR would prefer a model of order (k0 − i)
to the model of order k0 as N → ∞, i.e., Pr{BICR(k0 − i) < BICR(k0)} where
0 < i < k0. After some rewriting, we get

Pr

{
(N − k0 + i− 2) ln

(
σ̂2
k0−i
σ̂2
k0

)
− i ln

(
N

2π

)
− i ln

(
σ̂2
0

σ̂2
k0

)
< 0

}
. (4.67)

From Appendix 4.B and 4.C we have lim
N→∞

σ̂2
0 = c and lim

N→∞
σ̂2
k0

= σ2 respectively.

Therefore, the random variable σ̂2
0/σ̂

2
k0

d−→ c > 0 as N →∞. Furthermore, consider
the sub-matrix Ai such that [Ak0−i, Ai] = Ak0 . Then, we have

yTΠ⊥
k0
y

N
=

yT
(
IN −Πk0−i −ΠΠ⊥

k0−iAi

)
y

N

=
yTΠ⊥

k0−iy

N
−

yTΠΠ⊥
k0−iAi

y

N

=⇒ σ̂2
k0−i = σ̂2

k0 + C, (4.68)

where C =
yTΠ

Π⊥
k0−i

Ai
y

N > 0 and ΠΠ⊥
k0−iAi

is the projection on to the space

spanned by Π⊥
k0−iAi defined as

ΠΠ⊥
k0−iAi

= Π⊥
k0−iAi

(
AT
i Π

⊥
k0−iAi

)−1
AT
i Π

⊥
k0−i (4.69)
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and Π⊥
k0−i is the orthogonal projection matrix on the right null space of AT

k0−i.
Hence, from (4.68) we can say that σ̂2

k0−i > σ̂2
k0

for 0 < i < k0. Thus,

ln

(
σ̂2
k0−i
σ̂2
k0

)
= ln

(
σ̂2
k0

+ C

σ̂2
k0

)
= ln (1 + C ′) , (4.70)

where C ′ = C/σ̂2
k0
> 0. This implies that

lim
N→∞

Pr

{
N ln(1 + C ′)− i ln

(
N

2π

)
− i ln

(
σ̂2
0

σ̂2
k0

)
< 0

}
= 0, (4.71)

since N ln(1 + C ′) is the dominating term here as it tends to infinity much faster
than the lnN term. Hence, the probability of underfitting for BICR tends to zero
as the sample size grows large, i.e.,

lim
N→∞

Pr
{
BICR(k0 − i) < BICR(k0)

}
= 0. (4.72)

Therefore, from (4.66) and (4.72) we can conclude that BICR satisfies Pr{k̂ =
k0} → 1 as N →∞.

4.6 Simulation Results

In this section, we provide numerical simulation results to analyze the behaviour of
the proposed scale-invariant consistent criterion BICR and compare its statistical
performance with the other forms of BIC as well as with NML, gMDL, and PAL.
Next, we briefly present these criteria before moving to the details of the simulations
and results.

4.6.1 Existing Popular High-SNR Criteria for Order Selection

1. The NML criterion, derived in [50], and it is given by

NML(k) = (N − k) ln(σ̂2
k) + k ln(R̂k) + (N − k− 1) ln

(
N

N − k

)
− (k+1) ln k

(4.73)
where

R̂k = yTy −Nσ̂2
k = yTΠky (4.74)

is the fitted sum of squares. It is shown in [71] that NML is consistent when
σ2 → 0.

2. The gMDL criterion, developed by Hansen and Yu [49], is based on the
Bayesian mixture form of MDL. It is called gMDL for its use of the g-prior
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and is given by

gMDL(k) =

(
N − k

2

)
ln

(
Nσ̂2

k

N − k

)
+
k

2
ln

(
R̂k
k

)
+ lnN, (4.75)

where R̂k is as given in (4.74). It has been shown in [71] that gMDL is
consistent as σ2 → 0.

3. The PAL criterion was developed by Stoica and Babu [51] and is given by

PAL(k) = N ln σ̂2
k + k ln(p)

ln(rk + 1)

ln(ρk + 1)
(4.76)

where

rk = N ln

(
σ̂2
0

σ̂2
k−1

)
; ρk = N ln

(
σ̂2
k−1

σ̂2
p

)
, (4.77)

and σ̂2
0 as given in (4.41). The primary motivation behind the design of the

PAL rule is to achieve the following properties for the penalty term in both
large-N and high-SNR case:

a) for k ≤ k0 the penalty term should be small enough so that the function
in (4.76) decreases with increasing k, and

b) for k > k0 the penalty term should be sufficiently large such that the
function in (4.76) increases with increasing k.

4.6.2 General Simulation Setup

In the simulations, we consider the linear regression model y = Ax+ e, where the
design matrix A ∈ RN×p is generated with independent entries following normal
distribution N (0, 1). The SNR in dB is SNR (dB) = 10 log10(σ

2
s/σ

2), where σ2
s and

σ2 denote signal and true noise power, respectively. The signal power is computed as
σ2
s = ||Ak0xk0 ||22/N . Based on σ2

s and the chosen SNR (dB), the noise power is set
as σ2 = σ2

s/10
SNR (dB)/10. Using this σ2, the noise vector e is generated following

N (0, σ2IN ). The probability of correct order selection (PCOS) is estimated over
5000 Monte Carlo trials. To maintain randomness in the data, a new design matrix
A is generated at each Monte Carlo trial.

4.6.3 Model Order Selection versus SNR

The first simulation is analyzing the behavior of the methods as a function of SNR
when N is small and fixed. To particularly highlight the data-scaling problem and
visualize the behaviour of other forms of BIC with respect to BICR, we consider
two scenarios. In the first scenario we assume the true regression coefficient vector
to be xk0 = [0.1, 0.1, 0.1, 0.1, 0.1]T . Thus, the data is generated as

y = 0.1a1 + 0.1a2 + 0.1a3 + 0.1a4 + 0.1a5 + e. (4.78)
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In the second scenario, we assume the true regression coefficient vector to be xk0 =
[10, 10, 10, 10, 10]T . Thus, in this case the data is generated as

y = 10a1 + 10a2 + 10a3 + 10a4 + 10a5 + e, (4.79)

where e is the Gaussian noise vector (independent of ak) with zero mean and
covariance matrix σ2IN . Note that in the simulations we compute σ2 based on the
chosen SNR level and the current signal power value σ2

s = ∥Ak0xk0∥22/N . Hence,
both models (4.78) and (4.79) will have the same SNR. Furthermore, for both the
models, k0 = 5, p = 10 and the regressor coefficients xk = 0 for all k > k0.

(a) xk0 = [0.1, 0.1, 0.1, 0.1, 0.1]T

(b) xk0 = [10, 10, 10, 10, 10]T

Figure 4.1: The PCOS versus SNR (dB) for N = 15, p = 10 and k0 = 5.
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Fig. 4.1 illustrates the PCOS versus SNR (dB) for N = 15. This is a small-
N increasing SNR scenario. Fig. 4.1a corresponds to the first case where xk0 =
[0.1, 0.1, 0.1, 0.1, 0.1]T and Fig. 4.1b corresponds to the second case with xk0 =
[10, 10, 10, 10, 10]T . Comparing Fig. 4.1a and Fig. 4.1b, the first major observation
is that the behavior of BICR, PAL, NML and gMDL is robust to the scaling and
immune to such changing signal and noise statistics as compared to the other high-
SNR forms of BIC viz. BICSNR and B̃ICN,SNR. PAL is expected to perform better
than BIC, which can be observed here, but its convergence rate (order of ln ln(SNR))
is very slow when N is low and SNR → ∞. Except for BIC, which we know is
inconsistent as SNR→∞, and PAL, which has a slow convergence rate, the PCOS
for all other criteria approaches one as SNR increases. The poor performance of
BICSNR and B̃ICN,SNR compared to the other methods in Fig. 4.1a and Fig. 4.1b
can be explained as follows: The entries in the design matrix A are drawn from
N (0, 1). When xk0 = [0.1, 0.1, 0.1, 0.1, 0.1], it is more likely that the signal power
σ2
s = ∥Ak0xk0∥22/N < 1. This implies that for SNR > 0 dB, σ2 ≪ 1 and as such

the −(k + 2) ln σ̂2
k term in the penalty of both BICSNR and B̃ICN,SNR is positive

and may become quite large in value, thus producing a much bigger overall penalty,
which leads to underfitting issues. On the contrary, for xk0 = [10, 10, 10, 10, 10]T ,
it is more likely that σ2

s ≫ 1 and therefore σ2 > 1 for a wider range of SNR ≥ 0
dB. This implies that the penalty of BICSNR is 0 and the −(k + 2) ln σ̂2

k term of

B̃ICN,SNR is negative for values of SNR ≥ 0 dB. This lowers the overall penalty of

B̃ICN,SNR and leads to overfitting issues, whose effect we see in Fig. 4.1b.

4.6.4 Model Order Selection versus N

In analyzing the performance of the different criteria as a function of N , we consider
a relatively harder case where the regression coefficients are unequal and in decreas-
ing order of amplitude. Generally in such situations, there is a chance that most of
the order selection rules will have a higher tendency to underfit. In the first scenario,
we assume the true regression coefficient vector to be xk0 = [0.5, 0.4, 0.3, 0.2, 0.1]T

and the data generation is as follows

y = 0.5a1 + 0.4a2 + 0.3a3 + 0.2a4 + 0.1a5 + e. (4.80)

In the second scenario, we assume the true regression coefficient vector to be xk0 =
[50, 40, 30, 20, 10]T . Thus, in this case the data is generated as

y = 50a1 + 40a2 + 30a3 + 20a4 + 10a5 + e. (4.81)

Similarly, for both the models p = 10, k0 = 5 and xk = 0 for all k > k0.
Fig. 4.2 shows the PCOS vs N for a fixed SNR of 3 dB. This is a low-SNR

increasing N scenario. Fig. 4.2a corresponds to xk0 = [0.5, 0.4, 0.3, 0.2, 0.1]T and
Fig. 4.2b corresponds to xk0 = [50, 40, 30, 20, 10]T . Comparing both the figures,
the first clear observation is that BICSNR is inconsistent, which is obvious since it is
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(a) xk0 = [0.5, 0.4, 0.3, 0.2, 0.1]T

(b) xk0 = [50, 40, 30, 20, 10]T

Figure 4.2: The PCOS versus N for SNR = 3 dB, p = 10 and k0 = 5.

not designed to handle large sample sizes under low and fixed SNR cases. Secondly,
the PCOS for BICR, PAL, NML, gMDL, and BIC approaches one as N increases.
Furthermore, performances of BICR, NML, and gMDL are quite similar for this case
and they undergo the minimum underfitting loss compared to the other methods.
Also, observe that the behaviour of BICR and BIC are quite close. This is because
for low-SNR conditions (3 dB in this case), the (k + 2) ln(σ̂2

0/σ̂
2
k) term of BICR

behaves very close to a O(1) quantity for k ≥ k0. This implies that the k lnN term
dominates the penalty, which is the same for BIC as well and as such the behaviour
of BIC and BICR are very similar here. The performance of B̃ICN,SNR is at par with
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the other methods for the case when xk0 = [0.5, 0.4, 0.3, 0.2, 0.1]T . However, due

to its inability to handle the signal scaling problem, B̃ICN,SNR struggles to achieve
convergence when xk0 = [50, 40, 30, 20, 10]T and requires quite a large sample size
to reach PCOS = 1.

As mentioned before, Fig. 4.1 and Fig. 4.2 showcased the scenarios correspond-
ing to small-N increasing SNR and low-SNR increasing N , respectively. In the final
figure, Fig. 4.3, we present a high-SNR increasing N scenario where the plot shows
the PCOS versus N for a fixed SNR of 25 dB. All other parameters are the same
as in Fig. 4.2. Comparing Fig. 4.3a and Fig. 4.3b , the first clear observation is

(a) xk0 = [0.5, 0.4, 0.3, 0.2, 0.1]T

(b) xk0 = [50, 40, 30, 20, 10]T

Figure 4.3: The PCOS versus N for SNR = 25 dB, p = 10 and k0 = 5.



58 CHAPTER 4. BAYESIAN INFORMATION CRITERION - ROBUST

that when the SNR is relatively high, BICR provides a better convergence rate with
increasing N as compared to BIC in particular and in some cases of the high-SNR
forms of the BIC (Fig. 4.3b). Secondly, the behaviour of BICR, gMDL, and NML
are more or less similar in this scenario (as well as in the previous scenarios see Fig.
4.1 and Fig. 4.2) and as such no conclusion can be made as to who is the winner
among them. However, as mentioned before, when it comes to high-dimensional
data with large parameter dimension, the BIC framework can prove to be a major
advantage compared to the existing methods of model selection.

4.6.5 Remarks from Simulation Results

The main points of discussion from the simulation results are as follows:

• BICR is consistent estimator of the true model order in nested model selection
when N is fixed and SNR→∞ as well as when SNR is constant and N →∞.

• BICR completely eliminates the data-scaling problem.

• In case of the proposed high-SNR forms of BIC in [16], to know which form of
the BIC to apply for model selection we require knowledge of whether we are
dealing with a small-N , high-SNR scenario, or large-N , low-SNR scenario.
This information is hard to extract from the data which makes it difficult to
choose the right BIC criterion. On the contrary, BICR mitigates this problem.
From the numerical simulations, it is observed that the average performance
of BICR is pretty robust in small-N , high-SNR as well as in large-N , low-SNR
scenarios. Hence, BICR does not require such prior information or the need
to extract such information from the data. This makes BICR a more versatile
model order selection criterion.

• In terms of performance, the proposed BICR clearly surpasses all the other
forms of BIC considered in the analysis. However, as compared to gMDL and
NML (which are derived based on other frameworks/arguments) the difference
in performance is small. Nevertheless, with the current upgradation of the
BIC framework, it is now able to compete with state-of-the-art methods.

4.7 Summary

In this chapter, we discussed the data-scaling problem present in the high-SNR
forms of the BIC in the context of order selection for linear regression models. These
high-SNR forms are not scale-invariant due to the data-dependent penalty design,
leading to unstable behaviour under different signal and noise statistics. To resolve
this scaling issue, we proposed a new form of the BIC named as BICR (where the
subscript R stands for robust) by modifying the existing high-SNR forms of the BIC.
BICR is scale-invariant and resilient to the dynamics of signal and noise statistics.
Numerical simulations with synthetic data verified that BICR is robust to scaling
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and clear performance benefits are observed as compared to the earlier proposed
high-SNR forms of the BIC. Moreover, its performance is similar or slightly better
than existing state-of-the-art high-SNR scale-invariant order selection criteria such
as NML, gMDL, and PAL. Additionally, we analytically examined the consistency
behaviour of BICR as σ2 → 0 as well as when N →∞. In both instances, we have
shown that the probability of BICR selecting the true model order approaches one.
However, note that the proposed modification is semi ad-hoc in nature and as such a
deeper motivation for the rule is desired. Nevertheless, the primary objective was to
design a scale-invariant robust form of BIC that guarantees consistent performance
in large-N and high-SNR cases. As future work, we intend to extend the proposed
BICR to model selection in high-dimensional data settings (p ≫ N) employing
greedy or shrinkage methods for regressor selection.
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Appendix

4.A Lemmas

Lemma 4.1 Let y be a N × 1 dimensional vector following y ∼ N (µ, σ2IN ) and
Z be a N × N symmetric, idempotent matrix with rank(Z) = r. Then the ratio
yTZy/σ2 has a non-central chi-square distribution χ2

r(λ) with r degrees of freedom
and non-centrality parameter λ = µTZµ/σ2 (See, e.g., Chapter 5 of [74]).

Lemma 4.2 Let V1 and V2 be two subspaces of RN with orthogonal projection ma-
trices Π1 and Π2, respectively. Then the following three statements are equivalent
(Theorem 2.11, [75]).

1. V1 ⊂ V2.

2. Π2 −Π1 is the orthogonal projector onto V2 ∩ V ⊥
1 .

3. Π1Π2 = Π2Π1 = Π1.

Lemma 4.3 For the general linear model y = Ax + e where e ∼ N (0, σ2IN ),
given the assumption that the candidate models are nested and k0 is the true model
order such that xk ̸= 0 for k = 1, . . . , k0 and xk = 0 for k = k0 + 1, . . . , p, then

the ratio

(
σ̂2
k0+i

σ̂2
k0

)
for i = 1, . . . , p− k0 follows a Beta distribution with parameters

α = N−k0−i
2 and β = i

2 .

Proof: Given the ratio X =
(
σ̂2
k0+i

/σ̂2
k0

)
, we can expand it as follows

X =

(
σ̂2
k0+i

σ̂2
k0

)
=
yTΠ⊥

k0+i
y

yTΠ⊥
k0
y

=
eTΠ⊥

k0+i
e

eTΠ⊥
k0
e

(Using 4.93) (4.82)

=
eTΠ⊥

k0+i
e

eT (IN −Πk0+i +Πk0+i −Πk0) e
(4.83)

=

{
eTΠ⊥

k0+i
e

}
/σ2{

eTΠ⊥
k0+i

e+ eT (Πk0+i −Πk0) e

}
/σ2

=
X1

X1 +X2
(4.84)

where X1 = eTΠ⊥
k0+i

e/σ2 and X2 = eT (Πk0+i −Πk0) e/σ
2. Here, span(Ak0) ⊂

span(Ak0+i), therefore using Lemma 4.2 we have Πk0Πk0+i = Πk0+iΠk0 = Πk0 .
Now, we can show that the product Π⊥

k0+i
(Πk0+i −Πk0) = 0, which implies that

the random variables X1 and X2 are statistically independent. Furthermore, from
Lemma 4.2 we can say that (Πk0+i−Πk0) is a projection matrix projecting on the
column space of span(Ak0+i) ∩ span(Ak0)

⊥ of dimension k0 + i − k0 = i. Hence,
X2 ∼ χ2

i , and from results as in Appendix 4.C we have X1 ∼ χ2
N−k0−i. It is well
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known that if X1 ∼ χ2
k1

and X2 ∼ χ2
k2

are two independent random variables then

the ratio X1

X1+X2
∼ B

(
k1
2 ,

k2
2

)
[76]. Hence, we can conclude

X ∼ B
(
N − k0 − i

2
,
i

2

)
. (4.85)

4.B Statistical Analysis of σ̂2
0

From the generating model (4.1), the true data vector follows y ∼ N
(
Ak0xk0 , σ

2IN
)
.

Consider σ̂2
0 defined in (4.41)

σ̂2
0 =
∥y∥22
N

=

(
σ2

N

)
yT INy

σ2
. (4.86)

From Lemma 4.1 we have

yT INy

σ2
∼ χ2

N (λ) where λ =
∥Ak0xk0∥22

σ2
. (4.87)

This implies that (
N

σ2

)
σ̂2
0 ∼ χ2

N (λ). (4.88)

Therefore, the mean and variance of σ̂2
0 are:

E[σ̂2
0 ] =

σ2

N
(N + λ) = σ2 +

∥Ak0xk0∥22
N

Var[σ̂2
0 ] = 2

σ4

N2
(N + 2λ) = 2

σ4

N
+ 4

σ2

N2
∥Ak0xk0∥22.

(4.89)

Hence, for a fixed N ,

lim
σ2→0

E[σ̂2
0 ] =

∥Ak0xk0∥22
N

& lim
σ2→0

Var[σ̂2
0 ] = 0. (4.90)

Further, when SNR or σ2 is fixed, using the assumption limN→∞

{
AT

k Ak

N

}
= Mk

we get
lim
N→∞

E[σ̂2
0 ] = σ2 + xTk0Mk0xk0 & lim

N→∞
Var[σ̂2

0 ] = 0, (4.91)

where Mk0 is a bounded positive definite matrix.

4.C Statistical Analysis of σ̂2
k

The noise variance estimate under hypothesis Hk can be rewritten as

σ̂2
k =

(
σ2

N

)
yTΠ⊥

k y

σ2
. (4.92)
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Case k ≥ k0:
The true model t∗ = Ak0xk0 lies in a linear subspace spanned by the columns
of Ak0 . Consequently, because of the assumed nested structure of A, we have
Π⊥
k t

∗ = 0 for all k ≥ k0. This implies that yTΠ⊥
k y = eTΠ⊥

k e for all k ≥ k0. Thus
we have,

yTΠ⊥
k y

σ2
=

eTΠ⊥
k e

σ2
∼ χ2

N−k (Using Lemma 4.1), ∀ k ≥ k0. (4.93)

This implies that (
N

σ2

)
σ̂2
k ∼ χ2

N−k, ∀ k ≥ k0. (4.94)

Therefore, the mean and variance of σ̂2
k for k ≥ k0 are:

E[σ̂2
k] =

σ2

N
(N − k) & Var[σ̂2

k] = 2
σ4

N2
(N − k), ∀ k ≥ k0. (4.95)

Hence, for a fixed N ,

lim
σ2→0

E[σ̂2
k] = 0 & lim

σ2→0
Var[σ̂2

k] = 0, ∀ k ≥ k0. (4.96)

Moreover, when σ2 is constant,

lim
N→∞

E[σ̂2
k] = σ2 & lim

N→∞
Var[σ̂2

k] = 0, ∀ k ≥ k0. (4.97)

Case k < k0:
For k < k0 the random variable σ̂2

k follows a noncentral chi-square distribution (cf.
Lemma 4.1)(

N

σ2

)
σ̂2
k ∼ χ2

N−k(λ) where λ =
(Ak0xk0)

TΠ⊥
k (Ak0xk0)

σ2
, ∀ k < k0. (4.98)

Therefore, the mean and variance of σ̂2
k for k < k0 are:

E[σ̂2
k] =

σ2

N
(N − k + λ) & Var[σ̂2

k] = 2
σ4

N2
(N − k + 2λ), ∀ k < k0. (4.99)

Hence, for a fixed N ,

lim
σ2→0

E[σ̂2
k] =

(Ak0xk0)
TΠ⊥

k (Ak0xk0)

N
& lim

σ2→0
Var[σ̂2

k] = 0, ∀ k < k0. (4.100)

Furthermore, we can show that

(Ak0xk0)
TΠ⊥

k (Ak0xk0)

N
= xTk0

[
AT
k0
UUTAk0

N

]
xk0 = xTk0

[
ÃT
k0
Ãk0

N

]
xk0 ,

(4.101)
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where Π⊥
k = UUT , Ãk0 = UTAk0 ∈ R(N−k)×k0 and U ∈ RN×(N−k) is a semi-

orthogonal matrix whose columns span the null space of Ak. Therefore, under the
assumption (4.25), when σ2 is fixed we have

lim
N→∞

E[σ̂2
k] = σ2 + xTk0M̃k0xk0 & lim

N→∞
Var[σ̂2

k] = 0, ∀ k < k0 (4.102)

where M̃k0 =
ÃT

k0
Ãk0

N is a bounded positive definite matrix.





Chapter 5

Extended Bayesian Information
Criterion-Robust

“The greatest enemy of knowledge is not ignorance, it is the illusion
of knowledge.”

—Stephan Hawking (1942–2018)

Model selection in linear regression models is a major challenge when deal-
ing with high-dimensional data where the number of available measurements

(sample size) is much smaller than the dimension of the parameter space. Tradi-
tional methods for model selection such as Akaike information criterion, Bayesian
information criterion (BIC), and minimum description length are heavily prone to
overfitting in the high-dimensional setting. In this regard, extended BIC (EBIC),
which is an extended version of the original BIC, and extended Fisher information
criterion (EFIC), which is a combination of EBIC and Fisher information crite-
rion, are consistent estimators of the true model as the number of measurements
grows very large. However, EBIC is not consistent in high signal-to-noise-ratio
(SNR) scenarios where the sample size is fixed and EFIC is not invariant to data-
scaling resulting in unstable behaviour. In this chapter, we present a new form
of the EBIC criterion called EBIC-Robust (or EBICR in short), which is invariant
to data-scaling and consistent in both large sample sizes and high-SNR scenarios.
Analytical proofs are presented to guarantee its consistency. Simulation results in-
dicate that the performance of EBICR is quite superior to that of both EBIC and
EFIC.

5.1 Introduction

In Chapter 4, we proposed a robust form of the classical BIC to mitigate the data-
scaling problem in the high-SNR forms of the BIC. In this chapter, we expand this
concept to handle model selection in high-dimensional settings where p≫ N . Our

65



66
CHAPTER 5. EXTENDED BAYESIAN INFORMATION

CRITERION-ROBUST

primary focus is on model selection in high-dimensional linear regression models
associated with the maximum likelihood (ML) method of parameter estimation.
Consider the linear model

y = Ax+ e, (5.1)

where y ∈ RN is the measurement vector and A ∈ RN×p is the known design
matrix. We are considering a high-dimensional setting, hence p > N . Also, we
consider the case where p is not fixed but it can grow with N . Here, we link
p to N as p = Nd, where d > 0 is a real value. This is a common setting in
the model selection literature [17, 18, 77]. e ∈ RN is the associated noise vector
whose elements are assumed to be i.i.d. following a Gaussian distribution, i.e.,
e ∼ N (0, σ2IN ) where σ2 is the unknown true noise power. x ∈ Rp is the unknown
parameter vector. Here, x is assumed to be sparse, which implies that very few
of the elements of x are non-zero. We denote S as the true support of x, i.e.,
S = {i : xi ̸= 0} having cardinality card(S) = k0 ≪ N and AS as the set of
columns of A corresponding to the support S. The goal of model selection is
estimating S given y and A.

Among the classical methods of model selection, BIC has been quite successful
due to its simplicity and consistent performance in many fields. BIC is asymptoti-
cally consistent in selecting the true model as N grows very large given that p and
the true noise variance σ2 is fixed. However, its performance in high-dimensional
settings when p > N is not satisfactory and it has a tendency to select more
co-variates than required, thus overfitting the model [17]. To handle the large-p
small-N scenario, the authors in [17] proposed a novel extension to the original
BIC called extended BIC (EBIC), that takes into account both the number of
unknown parameters and the complexity of the model space. EBIC adds dynamic
prior model probabilities to each of the models under consideration that is inversely
proportional to the model set dimension. This eliminates the earlier assumption of
assigning uniform prior to all models irrespective of their sizes, which goes against
the principle of parsimony. Under a suitable asymptotic identifiability condition,
EBIC is consistent such that it selects the true model as N tends to infinity [17].
However, the consistent behaviour of EBIC fails when N is small and fixed and σ2

tends to zero [18]. This new consistency requirement was first introduced in [68],
where the authors highlighted that the original BIC is also inconsistent for fixed N
and decreasing noise variance scenarios where N > p.

To overcome the drawbacks of EBIC, the authors in [18] proposed a novel crite-
rion called extended Fisher information criterion (EFIC) that is inspired by EBIC
and the model selection criteria with Fisher information [54]. The authors ana-
lyzed the performance of EFIC in the high-dimensional setting for two key cases:
(1) when σ2 is fixed and N tends to infinity; (2) when N is fixed and σ2 tends to
zero. In each case, it was shown that EFIC selects the true model with a probability
approaching one. However, as indicated in our simulations, EFIC is not invariant
to data-scaling and it tends to suffer from overfitting issues (and sometimes under-
fitting) in practical sizes of N when the data is scaled. This scaling problem is a
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result of the data dependent penalty design that may blow the penalty to extremely
small or large values depending on how the data is scaled.

Apart from the criteria mentioned above, there are other non-information the-
oretic methods available for model selection. One such popular method is cross-
validation (CV) [78]. However, the performance of CV is quite poor in sample
scarce scenarios with large parameter dimensions and even though CV is unbiased,
it can have high variance [59]. Recent additions to the list of model selection meth-
ods for high-dimensional data are Residual Ratio Thresholding (RRT) [65] and
Multi-Beta-Test (MBT) [70]. Both are non-information theoretic methods based
on hypothesis testing using a test statistic. They operate along with a greedy vari-
able selection method such as orthogonal matching pursuit (OMP) [37] and involve
a tuning parameter ∈ [0, 1], that controls the false-discovery rate. However, there
is no optimal way to set it, and as such their behaviour may tend to overfit or un-
derfit depending on the chosen tuning parameter value. Moreover, in their current
form, they can only be used with algorithms that generate monotonic sequences of
support estimates such as OMP, which restricts their usability.

In this chapter, we present a modified criterion for model selection in high-
dimensional linear regression models called EBIC-Robust or EBICR in short, where
the subscript R stands for robust. EBICR is a scale-invariant and consistent crite-
rion. To guarantee the consistency, we provide analytical proofs to show that under
a suitable asymptotic identifiability condition, EBICR selects the true model with
a probability approaching one as N →∞ as well as when σ2 → 0.

The notations used here are restated for convenience. Boldface letters denote
matrices and vectors. The notation (·)T stands for transpose. AI denotes a sub-
matrix of the full matrix A formed using the columns indexed by the support set
I. ΠI = AI(A

T
IAI)

−1AT
I denotes the orthogonal projection matrix on the span

of AI and Π⊥
I = IN −ΠI denotes the orthogonal projection matrix on the null

space of AT
I . The notation

∣∣X∣∣ denotes the determinant of the matrix X and ∥·∥2
denotes the Euclidean norm. X ∼ N (0, 1) denotes a normal distributed random
variable with mean 0 and variance 1. X ∼ χ2

k is a central chi-squared distributed
random variable with k degrees of freedom, whereas X ∼ χ2

k(λ) is a noncentral chi-
squared distributed random variable with k degrees of freedom and non-centrality
parameter λ.

5.2 Background

Given the linear model (5.1), the entire process of model selection or in other words
estimating the true support set S involves two major steps: (i) Predictor/subset
selection, which includes finding a competent set of candidate models out of all the
(2p − 1) possible models. In our work, we consider the set of competing models as
the collection of all plausible combinatorial models up to a maximum cardinality
K, under the assumption that k0 ≤ K ≪ N ; (ii) estimating the true model among
the candidate models using a suitable model selection criterion.
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Now, for any arbitrary candidate model with support I having cardinality
card(I) = k, the linear model in (5.1) can be reformulated as follows

HI : y = AIxI + eI , (5.2)

where HI denotes the hypothesis that the data y is truly generated according to
(5.2), AI ∈ RN×k is the sub-design matrix consisting of columns from the known
design matrix A with support I, xI ∈ Rk is the corresponding unknown parameter
vector and eI ∈ RN is the associated noise vector following eI ∼ N (0, σ2

IIN ) where
σ2
I is the unknown noise variance corresponding to the hypothesis HI .

5.2.1 Bayesian Framework for Model Selection

To motivate the proposed criterion we start by describing the Bayesian framework
that leads to the maximum a-posteriori (MAP) estimator, which in turn forms the
backbone for deriving BIC and its extended versions, viz., EBIC, EFIC, as well
as the proposed criterion EBICR. Now, for the considered model in (5.2), the
probability density function (pdf) of the data vector y is given as

p(y|θI ,HI) =
exp{−∥y −AIxI∥22/2σ2

I}
(2πσ2

I)
N/2

, (5.3)

where θI = [xTI , σ
2
I ]
T comprises of all the parameters of the model. Under hypoth-

esis HI , the maximum likelihood estimates (MLEs) of θ̂I = [x̂TI , σ̂
2
I ]
T are obtained

as [63]

x̂I =
(
AT

IAI
)−1

AT
Iy & σ̂2

I =
yTΠ⊥

I y

N
. (5.4)

Let p(θI |HI) denote the prior pdf of the parameter vector θI under HI . Then we
have the joint probability

p(y,θI |HI) = p(y|θI ,HI)p(θI |HI) (5.5)

and the marginal distribution of y is

p(y|HI) =

∫
p(y|θI ,HI)p(θI |HI)dθI . (5.6)

The posterior probability Pr(HI |y) is given by

Pr(HI |y) =
p(y|HI) Pr (HI)

p(y)
, (5.7)

where Pr(HI) is the prior probability of the model with support I. The MAP
estimator picks the model with the largest posterior probability Pr(HI |y). Ignoring
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p(y) which is a normalizing factor and independent of I, the MAP estimate of S
is equivalently given by

ŜMAP = argmax
I

{
ln p(y|HI) + lnPr (HI)

}
. (5.8)

To compute the MAP estimate, we need to evaluate the integral in (5.6). Tradi-
tionally, under the assumption that N and/or SNR are large, we can obtain an
approximation of ln p(y|HI) using a second order Taylor series expansion, which
gives (see [16,79] for details)

ln p(y|HI) ≈ ln p(y|θ̂I ,HI) + ln p(θ̂I |HI) +
k + 1

2
ln(2π)− 1

2
ln
∣∣F̂I

∣∣, (5.9)

where k = card(I) and F̂I is the sample Fisher information matrix under HI given
as [63]

F̂I = −∂
2 ln p(y|θI ,HI)

∂θI∂θTI

∣∣∣∣
θI=θ̂I

. (5.10)

Evaluating (5.10) using (5.3) and (5.4) we get [16]

F̂I =

[
1
σ̂2
I
AT

IAI 0

0 N
2σ̂4

I

]
. (5.11)

Now, for the considered linear model we have

−2 ln p(y|θ̂I ,HI) = N ln σ̂2
I + const. (5.12)

Therefore, using (5.12), we can rewrite (5.9) as

−2 ln p(y|HI) ≈ N ln σ̂2
I + ln

∣∣F̂I
∣∣− 2 ln p(θ̂I |HI)− k ln 2π + const. (5.13)

Furthermore, it is assumed that the prior term in (5.9), i.e., ln p(θ̂I |HI) is flat
and uninformative, and hence disregarded from the analysis. Thus, dropping the
constants and the terms independent of the model dimension k, we can equivalently
reformulate the MAP based model estimate as

ŜMAP = argmin
I

{
N ln σ̂2

I + ln
∣∣F̂I

∣∣− k ln 2π − 2 lnPr (HI)
}
. (5.14)

5.2.2 BIC

The BIC can be obtained from the MAP estimator in (5.14). The term −k ln 2π
is ignored as it weakly depends on the model dimension k and hence is typically
much smaller than the dominating terms. Moreover, the prior probability of each
candidate model is assumed to be equiprobable. Hence, the −2 lnPr(HI) term is

dropped as well. Now, expanding the ln |F̂I | term of (5.14) using (5.11) we have

ln
∣∣F̂I

∣∣ = ln(N/2)− (k + 2) ln σ̂2
I + ln

∣∣AT
IAI

∣∣ . (5.15)
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Here, the following property of the design matrix A is assumed [16,71]

lim
N→∞

{
N−1(AT

IAI)
}
= MI = O(1), (5.16)

where MI is a k × k positive definite matrix and bounded as N → ∞. The
assumption in (5.16) is true in many applications but not all (see [72] for more
details). Using (5.16), it is possible to show that for large N

ln
∣∣AT

IAI
∣∣ = ln

∣∣∣∣N ·N−1(AT
IAI)

∣∣∣∣ = k lnN +O(1). (5.17)

Furthermore, σ̂2
I is considered to be of O(1) as well since it does not grow with N .

As such, the O(1) term, (k + 2) ln σ̂2
I and ln(N/2) (a constant) are ignored from

(5.15). This leads to the final form of the BIC

BIC(I) = N ln σ̂2
I + k lnN. (5.18)

BIC is consistent when p is fixed and N →∞. However, it is inconsistent when N
is fixed and σ2 → 0 [67,79] as well as when p > N and p grows with N [17].

5.2.3 EBIC

The authors in [17] proposed an extended version of the BIC, i.e., EBIC, to mitigate
the drawbacks of BIC for large-p small-N scenarios. EBIC can be derived from the
MAP estimator in (5.14), using the same assumptions as in BIC, except for the prior
probability term Pr(HI). In EBIC, the idea of equiprobable models is discredited,
and instead, a prior probability is assigned that is inversely proportional to the size
of the model space. Thus, a model with dimension k is assigned prior probability

of Pr(HI) ∝
(
p
k

)−γ
, where 0 ≤ γ ≤ 1 is a tuning parameter. Thus, the EBIC is

EBIC(I) = N ln σ̂2
I + k lnN + 2γ ln

(
p

k

)
. (5.19)

When γ = 0, EBIC boils down to BIC (5.18). Moreover, unlike BIC, EBIC is
consistent in selecting the true model for p ≫ N cases where p grows with N .
However, empirical experiments performed in [18] show that in situations when N
is small and fixed, EBIC is inconsistent as σ2 → 0.

5.2.4 EFIC

To circumvent the shortcomings of EBIC in high-SNR cases, the authors in [18]
proposed EFIC. In EFIC, the assumptions imposed on the sample FIM (5.15) are
removed and the entire structure is included as it is in the criterion except for the
constant term ln(N/2). Some further simplifications are involved:

N ln σ̂2
I = N ln

∥∥Π⊥
I y
∥∥2
2
−N lnN (5.20)

(k + 2) ln σ̂2
I = (k + 2)

[
ln
∥∥Π⊥

I y
∥∥2
2
− lnN

]
. (5.21)
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The −N lnN and −2 lnN term of (5.20) and (5.21) respectively are independent
of the model dimension k and hence ignored. Similar to EBIC the prior probability

term is assumed to be proportional to the model space, hence Pr(HI) ∝
(
p
k

)−c
,

where c > 0 is a tuning parameter. Furthermore, under the large-p approximation
and since k ≤ K ≪ p, the ln

(
p
k

)
term is approximated as

ln

(
p

k

)
=

k−1∑
i=0

ln(p− i)− ln(k!) ≈ k ln p. (5.22)

Hence, for large-p case, it is possible to set −2 ln p(HI) ≈ 2ck ln p. Thus, the EFIC
is given as

EFIC(I) = N ln
∥∥Π⊥

I y
∥∥2
2
+k lnN+ln

∣∣AT
IAI

∣∣−(k+2) ln
∥∥Π⊥

I y
∥∥2
2
+2ck ln p. (5.23)

If we replace p = Nd, then the last term in (5.23) can be written as 2ckd lnN . EFIC
is consistent in both large-N and high-SNR scenarios [18]. However, EFIC suffers
from a scaling problem due to the inclusion of the data-dependent penalty term

(i.e., − (k + 2) ln
∥∥Π⊥

I y
∥∥2
2
) and as such, the performance of EFIC is not invariant

to data-scaling. This point will be further discussed in Section 5.3.1.

5.3 Proposed Criterion: EBIC-Robust (EBICR)

In this section, we present the necessary steps for deriving EBICR. EBICR can be
seen as a natural extension of BICR for performing model selection in large-p small-
N scenarios. Below, we provide a detailed derivation and establish the connection
to BICR. The initial steps are identical to that in Chapter 4, however, we present
them here for completeness. We perform normalization of F̂I considering large-
N and high-SNR scenario. For this we factorize the ln

∣∣F̂I
∣∣ term in (5.14) in the

following manner

ln
∣∣F̂I

∣∣ = ln
[∣∣L∣∣ ∣∣∣L−1/2F̂IL

−1/2
∣∣∣]

= ln |L|+ ln
∣∣∣L−1/2F̂IL

−1/2
∣∣∣︸ ︷︷ ︸

T

. (5.24)

The goal here is to choose a suitable L matrix that normalizes the sample FIM F̂I
such that the T term in (5.24) is O(1), i.e., in this case T should be bounded as
N → ∞ and/or σ2 → 0. To accomplish this objective, we choose the following
L−1/2 matrix

L−1/2 =

√ 1
N

√
σ̂2
I
σ̂2
0
Ik 0

0
√

1
N
σ̂2
I
σ̂2
0

 , (5.25)
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where σ̂2
0 = ∥y∥22/N . The factor, σ̂2

0 , is used in L−1/2 in order to neutralize the
data-scaling problem and is motivated by the fact that given (5.16), when the SNR
is a constant, we have

E[σ̂2
0 ]→ const. & Var[σ̂2

0 ]→ 0 (5.26)

as N → ∞. Furthermore, from the considered generating model in (5.1), when N
is fixed, (5.26) is also satisfied as σ2 → 0 (see Appendix 5.B for details on σ̂2

0). Now
using (5.11), (5.25) and the assumptions in (5.16), (5.26), it is possible to show that

∣∣∣L−1/2F̂IL
−1/2

∣∣∣ = ∣∣∣∣∣ 1
σ̂2
0

AT
IAI
N 0

0 1
2σ̂4

0

∣∣∣∣∣ = O(1), (5.27)

as N →∞ and/or σ2 → 0 and therefore may be discarded without much effect on
the criterion. Furthermore, the ln

∣∣L∣∣ term can be expanded as follows

ln |L| = ln

∣∣∣∣∣∣
N
(
σ̂2
0

σ̂2
I

)
Ik 0

0 N
(
σ̂2
0

σ̂2
I

)2
∣∣∣∣∣∣

= (k + 1) lnN + (k + 2) ln

(
σ̂2
0

σ̂2
I

)
. (5.28)

Therefore, using (5.27) and (5.28) we can rewrite (5.24) as

ln
∣∣F̂I

∣∣ = k lnN + (k + 2) ln

(
σ̂2
0

σ̂2
I

)
+O(1) + lnN. (5.29)

Next, for the model prior probability term −2 lnPr(HI) in (5.14), a similar propo-

sition is taken as in EBIC such that Pr(HI) ∝
(
p
k

)−ζ
, where ζ ≥ 0 is a tuning

parameter. For large-p, we follow a similar approach as in EFIC by employing the
following approximation ln

(
p
k

)
≈ k ln p . This gives

−2 lnPr(HI) = 2ζk ln p+ const. (5.30)

Now, substituting (5.29), (5.30) in (5.14) and dropping the O(1), the lnN term

(independent of k), the constant and the p(θ̂I |HI) term we arrive at the EBICR:

EBICR(I) =N ln σ̂2
I + k ln

(
N

2π

)
+ (k + 2) ln

(
σ̂2
0

σ̂2
I

)
+ 2kζ ln p. (5.31)

If we use the relation p = Nd, the last term in (5.31) can be replaced with 2kζd lnN .
The true model is estimated as

ŜEBICR = argmin
I

{
EBICR(I)

}
. (5.32)
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It can be observed from (5.31) that the penalty of EBICR is a function of the number
of measurements N , the ratio (σ̂2

0/σ̂
2
I) and the parameter dimension p. Notice that

the ratio (σ̂2
0/σ̂

2
I) is always greater than one and independent of the scaling of

y. Furthermore, when S ̸⊂ I, the ratio (σ̂2
0/σ̂

2
I) ≈ O(1) and for S ⊂ I we have

(σ̂2
0/σ̂

2
I) ≈ O(SNR + 1). Hence, the behaviour of the penalty can be summarized

as follows: (i) For fixed p and SNR, as N → ∞ the penalty grows as O(lnN);
(ii) If N and p are constant, as SNR → ∞, the penalty grows approximately as
O (ln(SNR + 1)) for all I ⊃ S; (iii) when SNR is a constant and given that p grows
with N , then as N →∞ the penalty grows as O(lnN) +O(ln p).

5.3.1 Scaling Robustness as Compared to EFIC

In this section, we elaborately discuss the data-scaling problem. Ideally, any model
selection criterion should be invariant to data-scaling, which means that if y is
scaled by any arbitrary constant C > 0, the equivalent penalty for each of the
models I should not change. This property is necessary because otherwise the
behaviour of the model selection criterion will be unreliable and may suffer from
overfitting or underfitting issues when the data is scaled. As mentioned before,
the penalty of EFIC is not invariant to data-scaling. This can be observed from
the following analysis. Let ∆ = card(I) − card(S). Now, consider the difference
assuming I ≠ S

EFIC(I)− EFIC(S) = (N − 2) ln

∥∥Π⊥
I y
∥∥2
2∥∥Π⊥

S y
∥∥2
2

+ ln

∣∣AT
IAI

∣∣∣∣AT
SAS

∣∣ − k ln∥∥Π⊥
I y
∥∥2
2

+ k0 ln
∥∥Π⊥

S y
∥∥2
2
+∆(lnN + 2c ln p)

= DEFIC (say). (5.33)

Ideally, for correct model selection, DEFIC > 0 for all I ≠ S. Now, if we scale
the data y by a constant C > 0, the data dependent term becomes ln∥Π⊥

I Cy∥22 =
lnC2 + ln∥Π⊥

I y∥22 and the difference becomes

EFIC(I)− EFIC(S) = DEFIC −∆ lnC2. (5.34)

It is evident that (5.33) and (5.34) are unequal and the difference after scaling
contains an additional term −∆ lnC2. This implies that scaling changes the EFIC
score difference between any arbitrary model I and the true model S. Hence,
depending on the C value (C < 1 or C ≥ 1) and ∆ > 0 or ∆ < 0, the difference in
(5.34) may become negative leading to a false model selection. Thus, EFIC is not
invariant to data-scaling. On the contrary, consider the difference for EBICR,

EBICR(I)− EBICR(S)

= (N − 2) ln

(
σ̂2
I
σ̂2
S

)
− k ln σ̂2

I + k0 ln σ̂
2
S +∆ ln σ̂2

0 +∆

[
ln

(
N

2π

)
+ 2ζ ln p

]
= DEBICR

(say) (5.35)
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Now, scaling y by C, scales the noise variance estimates σ̂2
I , σ̂

2
S and σ̂2

0 by C2,
however, the difference remains the same, i.e., DEBICR . This is because in this case
the −∆ lnC2 term is cancelled by +∆ lnC2 generated by ∆ ln σ̂2

0 . Hence, EBICR

is invariant to data-scaling, which is a desired property of any model selection
criterion.

5.4 Consistency of EBICR

In this section, we provide the necessary proofs to show that EBICR is a consistent
criterion. Generally speaking, a model selection criterion with Ŝ as its estimate of
the true model S is consistent if it satisfies the following conditions [18]

lim
σ2→0

Pr{Ŝ = S} = 1 & lim
N→∞

Pr{Ŝ = S} = 1. (5.36)

Let us define the set of all overfitted models of dimension k as

Iko = {I : card(I) = k,S ⊂ I} , (5.37)

and the set of all misfitted models of dimension k as

Ikm = {I : card(I) = k,S ̸⊂ I} . (5.38)

Furthermore, let O denote the set of all Iko for k = k0+1, . . . ,K, and let M denote
the set of all Ikm for k = 1, . . . ,K, i.e.,

O =

K⋃
k=k0+1

Iko and M =

K⋃
k=1

Ikm , (5.39)

where K is some upper bound for k0 and k0 ≤ K ≪ N . In practice, EBICR picks
the true model S, if the following conditions are satisfied:

C1 : EBICR(S) < EBICR(I) ∀ I ∈ O (5.40)

C2 : EBICR(S) < EBICR(I) ∀ I ∈M. (5.41)

5.4.1 Asymptotic Identifiability of the Model

In general, the model is identifiable if no model of comparable size other than
the true submodel can predict the noise free response almost equally well [17].
In the context of linear regression, this is equivalent to say y = ASxS ̸= AIxI
for

{
I : card(I) ≤ card(S), I ≠ S

}
. The identifiability of the true model in

the high-dimensional linear regression setup is uniformly maintained if the minimal
eigenvalue of all restricted sub-matrices, AT

IAI for {I : card(I) ≤ 2K}, is bounded
away from zero [18]. A sufficient assumption on the design matrix A to prove the
consistency of EBICR is the sparse Riesz condition [39]:

lim
N→∞

{
N−1

(
AT

IAI
)}

= MI , ∀ card(I) ≤ 2K, (5.42)

where MI denotes a bounded positive definite matrix.
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5.4.2 Consistency as σ2 → 0 or SNR→∞ for Fixed N

In this subsection, we examine whether EBICR selects the true model S as σ2 goes
vanishingly small (or equivalently SNR→∞) under the assumption that N is fixed.
We formulate this into a theorem as follows:

Theorem 5.1 Assume that N and p are fixed and the matrix A satisfies the condi-
tion given by (5.42). If K ≥ k0, then Pr {EBICR(S) < EBICR(I)} → 1 as σ2 → 0
for all I ≠ S and card(I) = 1, . . . ,K.

Proof. The proof consists of two parts. In part (a) we show that the probability
of overfitting (S ⊂ ŜEBICR) tends to 0 as σ2 → 0, which in this case is equivalent
to showing limσ2→0 Pr(C1) = 1, cf. (5.40). In part (b) we show that the probability
of misfitting (S ̸⊂ ŜEBICR

) also tends to 0 as σ2 → 0, which is equivalent to
limσ2→0 Pr(C2) = 1, cf. (5.41).

(a) Over-fitting case (S ⊂ ŜEBICR
): Consider the set of overfitted subsets having

cardinality k, which we have denoted as Iko . Let Ij denote the jth subset in the

set Iko . The total number of subsets in Iko is
(
p−k0
∆

)
where ∆ = k − k0 . For any

overfitted subset Ij ∈ Iko , consider the following inequality

EBICR(S) < EBICR(Ij), Ij ∈ Iko , (5.43)

where j = 1, . . . ,
(
p−k0
∆

)
. Using the relation p = Nd and after some straightforward

rearrangement of (5.43) we get

(N − k0 − 2) ln σ̂2
S − (N − k − 2) ln σ̂2

Ij
−∆(1 + 2ζd) lnN −∆ ln σ̂2

0 +∆ ln 2π < 0.

(5.44)

Let us define a random variable XIj = σ̂2
Ij
/σ2, then

N ·XIj ∼ χ2
N−k, ∀ Ij ∈ Iko . (5.45)

This implies that the variables XIj
are independent of σ2. Now, we can express

(N − k − 2) ln σ̂2
Ij

= lnXN−k−2
Ij

+ (N − k − 2) lnσ2, (5.46)

and similarly by defining XS = σ̂2
S/σ

2 we get

(N − k0 − 2) ln σ̂2
S = lnXN−k0−2

S + (N − k0 − 2) lnσ2. (5.47)

Using (5.46) and (5.47) in (5.44) and after exponentiation we get(
XN−k0−2

S
XN−k−2

Ij

)(
1

N

)∆(1+2ζd)(
2π

σ̂2
0

)∆

<

(
1

σ2

)∆

. (5.48)
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Let EkIj
denote the entire left hand-side and let ηk denote the right-hand side of the

inequality in (5.48). Let I∗ ∈ Iko denote the subset that produces the maximum
value of EkIj

among all such subsets Ij ∈ Iko . Then, let us denote

EkI∗ = max
Ij∈Ik

o

{
EkIj

}
, j = 1, 2, . . . ,

(
p− k0
∆

)
. (5.49)

The condition C1 in (5.40) is satisfied as σ2 → 0 under the event EkI∗ < ηk, for all
k = k0 + 1, . . . ,K. Now, we can express the probability that EkI∗ < ηk as follows

Pr
(
EkI∗ < ηk

)
= Pr


(p−k0

∆ )⋂
j=1

(
EkIj

< ηk

)
= 1− Pr


(p−k0

∆ )⋃
j=1

(
EkIj

> ηk

)
≥ 1−

(
p− k0
∆

)
Pr
(
EkIj

> ηk

)
=⇒ Pr

(
EkI∗ > ηk

)
≤
(
p− k0
∆

)
Pr
(
EkIj

> ηk

)
, (5.50)

where the inequality follows from the union bound. Now consider the following

probability Pr
{
EkIj

> ηk

}
for any arbitrary subset Ij ∈ Iko , which can be expressed

as

Pr

{(
XN−k0−2

S
XN−k−2

Ij

)(
1

N

)∆(1+2ζd)(
2π

σ̂2
0

)∆

>

(
1

σ2

)∆
}
. (5.51)

LetW = XN−k0−2
S /XN−k−2

Ij
. Notice that the random variableW is independent of

the noise variance σ2 and since N is fixed W is bounded as σ2 → 0. Furthermore,
lim
σ2→0

σ̂2
0 = c (see Appendix 5.B) and the right-hand side of the inequality in (5.51)

grows unbounded as σ2 → 0. Thus, we have

lim
σ2→0

Pr
{
EkIj

> ηk

}
= 0. (5.52)

Therefore, using (5.50) and the result in (5.52), we have

lim
σ2→0

Pr
(
EkI∗ > ηk

)
= 0, ∀ k = k0 + 1, . . . ,K. (5.53)
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Finally, using the union bound, and the result in (5.53), we get

Pr {C1} =Pr

{
K⋂

k=k0+1

EkI∗ < ηk

}

≥1−
K∑

k=k0+1

Pr
{
EkI∗ > ηk

}
→ 1, (5.54)

as σ2 → 0.
(b) Misfitting case (S ̸⊂ ŜEBICR): Let Ij be any arbitrary jth subset belonging

to the set of misfitted subsets of dimension k, i.e., Ikm. We consider the following
inequality

EBICR(S) < EBICR(Ij), Ij ∈ Ikm, (5.55)

where j = 1, . . . , t. Here, t denotes the total number of subsets in the set Ikm and
t =

(
p
k

)
if k < k0, otherwise t =

(
p
k

)
−
(
p−k0
∆

)
if k ≥ k0, where ∆ = k− k0. Denoting

XS = σ̂2
S/σ

2, rearranging and applying exponentiation we can express (5.55) as(
XN−k0−2

S
(σ̂2

Ij
)N−k−2

)(
1

N

)∆(1+2ζd)(
2π

σ̂2
0

)∆

<

(
1

σ2

)N−k0−2

. (5.56)

Similar to the overfitting case, let EkIj
denote the entire left-hand side and η the

right-hand side of (5.56). Also, let EkI∗ = max
Ij∈Ik

m

{
EkIj

}
for j = 1, . . . , t, where I∗

is the subset that leads to the maximum value of EkIj
among all such subsets of

dimension k. The condition C2 in (5.41) is satisfied as σ2 → 0 under the event
EkI∗ < η, for all k = 1, . . . ,K. Now, we can express the probability that EkI∗ < η as

Pr
(
EkI∗ < η

)
=Pr


t⋂

j=1

(
EkIj

< η
)

=⇒ Pr
(
EkI∗ > η

)
≤ tPr

(
EkIj

> η
)
, (5.57)

where the inequality follows from the union bound. Now consider the following
probability for any arbitrary subset Ij ∈ Ikm

Pr
(
EkIj

> η
)
= Pr

{(
XN−k0−2

S
(σ̂2

Ij
)N−k−2

)(
1

N

)∆(1+2ζd)(
2π

σ̂2
0

)∆

>

(
1

σ2

)N−k0−2}
.

(5.58)

Here, XN−k0−2
S is independent of σ2 and N is fixed, therefore XN−k0−2

S is bounded
as σ2 → 0. Also σ̂2

Ij
→ ∥Π⊥

Ij
ASxS∥22/N in probability as σ2 → 0 and since

we are in the misfitting scenario, from Lemma 5.4 in Appendix 5.A we have
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∥Π⊥
Ij
ASxS∥22/N > 0. Furthermore, lim

σ2→0
σ̂2
0 = const. (see Appendix 5.B) and

the right-hand side of the inequality in (5.58) grows unbounded as σ2 → 0. Hence,

lim
σ2→0

Pr
{
EkIj

> η
}
= 0. (5.59)

Using (5.57) and the result in (5.59) we get

lim
σ2→0

Pr
{
EkI∗ > η

}
= 0, ∀ k = 1, . . . ,K. (5.60)

Finally, using the union bound and the result in (5.60), we get

Pr {C2} ≥ 1−
K∑
k=1

Pr
{
EkI∗ > η

}
→ 1 as σ2 → 0. (5.61)

From (5.54) and (5.61) we can conclude that EBICR is consistent as σ2 → 0, which
proves Theorem 1.

5.4.3 Consistency as N →∞ when σ2 is Fixed (0 < σ2 <∞)

In this section, we prove the consistency of EBICR as the sample size N →∞ given
that σ2 is fixed and under the setting p = Nd for some d > 0. This leads to the
following theorem.

Theorem 5.2 Assume that p = Nd for some constant d > 0, the SNR is fixed and
the matrix A satisfies (5.42). If K ≥ k0, then Pr {EBICR(S) < EBICR(I)} → 1
as N →∞ for all I ≠ S and card(I) = 1, . . . ,K under the condition ζ > 1−1/2d.

Proof. As in the previous section, we have two parts of the proof. Part (a) is
the overfitting case where we show that Pr(C1)→ 1 as N →∞ and part (b) is the
misfitting case where we show that Pr(C2)→ 1 as N →∞.
(a) Overfitting case (S ⊂ ŜEBICR

): Let Ij ∈ Iko be any overfitted subset of dimen-
sion k. Consider the following inequality

EBICR(Ij) > EBICR(S), Ij ∈ Iko . (5.62)

Denoting ∆ = k − k0 and rearranging (5.62) we get

(N − k − 2) ln

(
σ̂2
Ij

σ̂2
S

)
+∆(1 + 2ζd) lnN +∆ ln

(
σ̂2
0

σ̂2
S

)
−∆ ln 2π > 0. (5.63)

Let EkIj
denote the entire left side of the inequality (5.63) and I∗ denote the subset

that leads to the minimum value of EkIj
among all such subsets of dimension k.

Hence,

EkI∗ = min
Ij∈Ik

o

{
EkIj

}
, j = 1, 2, . . . ,

(
p− k0
∆

)
. (5.64)
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The condition C1 in (5.40) is satisfied as N → ∞ under the event EkI∗ > 0, for all
k = k0 + 1, . . . ,K. Expanding the ratio we have

ln

(
σ̂2
Ij

σ̂2
S

)
= ln

(
eTΠ⊥

Ij
e

eTΠ⊥
S e

)

= ln

[
eT
(
I−ΠIj +ΠS −ΠS

)
e

eTΠ⊥
S e

]

= ln

(
eTΠ⊥

S e− eTΠIj\Se

eTΠ⊥
S e

)

= ln

(
1−

eTΠIj\S

eTΠ⊥
S e

)
, (5.65)

where ΠIj\S = ΠIj
−ΠS . Now we can write

min
1≤j≤T

{
(N − k − 2) ln

(
σ̂2
Ij

σ̂2
S

)}
= (N − k − 2) ln

1− max
1≤j≤T

{(
eTΠIj\Se

)
/σ2
}

(
eTΠ⊥

S e
)
/σ2

 ,
(5.66)

where T =
(
p−k0
∆

)
. Now the term, (eTΠIj\Se)/σ

2 ∼ χ2
∆ (see Appendix 5.C). Then

from Lemma 5.2 in Appendix 5.A we have the following upper bound

max
1≤j≤T

{
(eTΠIj\Se)/σ

2
}
≤ ∆+ 2

√
∆ψ lnT + 2ψ lnT, (5.67)

with probability approaching one as N → ∞ if ψ > 1. Now, for sufficiently large
p = Nd we can write lnT = ln

(
p−k0
∆

)
≈ ∆d lnN . This gives

max
1≤j≤T

{
(eTΠIj\Se)/σ

2
}
≤ ∆+ 2∆

√
ψd lnN + 2ψ∆d lnN

= 2ψ∆d lnN

(
1 +

1√
ψd lnN

+
1

2ψd lnN

)
≈ 2ψ∆d lnN, (5.68)

asN grows large. Furthermore, the term in the denominator in (5.66), (eTΠ⊥
S e)/σ

2 ∼
χ2
N−k0 and based on the law of large numbers tends to N − k0 ≈ N . Therefore,

using (5.68) in (5.66) and (N − k − 2) ≈ N under the large-N approximation we
get

min
1≤j≤T

{
N ln

(
σ̂2
Ij

σ̂2
S

)}
≥ N ln

(
1− 2∆ψd lnN

N

)
≈ −2∆ψd lnN, (5.69)



80
CHAPTER 5. EXTENDED BAYESIAN INFORMATION

CRITERION-ROBUST

where the last approximation follows by linearization of the logarithm for small
2∆ψd lnN/N value. Thus, we can write

EkI∗ ≥ −2∆ψd lnN +∆(1 + 2ζd) lnN +∆ ln

(
σ̂2
0

σ̂2
S

)
−∆ ln 2π

= ∆(1 + 2ζd− 2ψd) lnN +∆ ln

(
σ̂2
0

σ̂2
S

)
−∆ ln 2π. (5.70)

Since limN→∞ σ̂2
0 = const. > 0 (see Appendix 5.B) and limN→∞ σ̂2

S = σ2 (see
Appendix 5.C), EkI∗ →∞ as N →∞ for all k = k0 +1, . . . ,K under the condition
1 + 2ζd− 2ψd > 0 for any ψ > 1. Hence, the lower bound on ζ becomes

ζ > 1− 1

2d
. (5.71)

From the above analysis, we can say that

lim
N→∞

Pr
{
EkI∗ < 0

}
= 0, ∀ k = k0 + 1, . . . ,K. (5.72)

Finally, using the union bound and the result in (5.72) we can express the proba-
bility of C1 (5.40) happening as

Pr {C1} =Pr

{
K⋂

k=k0+1

EkI∗ > 0

}

≥ 1−
K∑

k=k0+1

Pr
{
EkI∗ < 0

}
→ 1 (5.73)

as N →∞.
(b) Misfitting case (S ̸⊂ ŜEBICR): Let Ij ∈ Ikm be any misfitted subset of

dimension k. Consider the following inequality

EBICR(Ij) > EBICR(S), Ij ∈ Ikm. (5.74)

Denoting ∆ = k − k0 and rearranging (5.74) we get

(N − k − 2) ln

(
σ̂2
Ij

σ̂2
S

)
+ (1 + 2ζd)∆ lnN +∆ ln

(
σ̂2
0

σ̂2
S

)
+∆ ln

(
1

2π

)
> 0. (5.75)

Let EkIj
denote the entire left hand side of the inequality in (5.75) and I∗ denote

the subset that generates the minimum value of EkIj
among all such subsets of

dimension k. Then we have

EkI∗ = min
Ij∈Ik

m

{
EkIj

}
, j = 1, 2, . . . , T, (5.76)
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where T =
(
p
k

)
if k < k0 otherwise T =

(
p
k

)
−
(
p−k0
∆

)
if k ≥ k0. The condition C2 in

(5.41) is satisfied as N → ∞ under the event EkI∗ > 0, for all k = 1, . . . ,K. Now,

let u = E[y] = ASxS . Using this, the ratio
σ̂2
Ij

σ̂2
S

can be expanded as

σ̂2
Ij

σ̂2
S

=
yTΠ⊥

Ij
y

yTΠ⊥
S y

=
(u+ e)TΠ⊥

Ij
(u+ e)

eTΠ⊥
S e

=
uTΠ⊥

Ij
u+ 2σ

√
uTΠ⊥

Ij
u · Zj + eTΠ⊥

Ij
e

eTΠ⊥
S e

, (5.77)

where

Zj =
uTΠ⊥

Ij
e

σ
√
uTΠ⊥

Ij
u
∼ N (0, 1). (5.78)

Now

min
1≤j≤T

{
σ̂2
Ij
/σ̂2

S
}
= min

1≤j≤T

{
uTΠ⊥

Ij
u+ 2σ

√
uTΠ⊥

Ij
u · Zj + eTΠ⊥

Ij
e

}/
eTΠ⊥

S e

≥
[
min

1≤j≤T

{
uTΠ⊥

Ij
u
}
+ σ2 min

1≤j≤T

{
eTΠ⊥

Ij
e/σ2

}
− 2σ

√
max

1≤j≤T

{
uTΠ⊥

Ij
u
}
· max
1≤j≤T

{
Zj
}]/

eTΠ⊥
S e. (5.79)

In the misfitting scenario we have two cases: (i) k < k0 (ii) k ≥ k0. We consider
the case (i) in our further analysis, which also encapsulates case (ii). For k < k0
we have lnT = ln

(
p
k

)
≈ kd lnN . Therefore, using the result in Lemma 5.2 we have

the following lower bound under large-N approximation

min
1≤j≤T

{
eTΠ⊥

Ij
e/σ2

}
= eTe/σ2 − max

1≤j≤T

{
eTΠIje/σ

2

}
≥ N − 2ψ′kd lnN, (5.80)

where ψ′ > 1 and eTe/σ2 ≈ N for large-N . Furthermore, from the result in Lemma
5.3 we have the following upper bound

max
1≤j≤T

{Zj} ≤
√
2ψ′kd lnN, (5.81)

where ψ′ > 1. Now, let Cmin = min
1≤j≤T

{
uTΠ⊥

Ij
u
}
and Cmax = max

1≤j≤T

{
uTΠ⊥

Ij
u
}
.

Also as N →∞ we can approximate (N − k − 2) ≈ N and eTΠ⊥
S e ≈ σ2N . Using



82
CHAPTER 5. EXTENDED BAYESIAN INFORMATION

CRITERION-ROBUST

this, and the results in (5.80) and (5.81) we get

min
1≤j≤T

{
N ln

(
σ̂2
Ij

σ̂2
S

)}
= N ln

[
min

1≤j≤T

{
σ̂2
Ij

σ̂2
S

}]

≥ N ln

[{
Cmin − 2σ

√
Cmax ·

√
2ψ′kd lnN

+ σ2 (N − 2ψ′kd lnN)

}/
σ2N

]
. (5.82)

Now, observe that Cmin = uTΠ⊥
I∗u = xTSA

T
SΠ

⊥
I∗ASxS . Since, we are in the

misfitting scenario, from Lemma 5.4, in Appendix 5.A, we can express Cmin =
Nbmin where bmin = O(1) > 0. Similarly, Cmax = Nbmax where bmax = O(1) > 0
and 0 < bmin ≤ bmax. Hence, we can rewrite (5.82) as

min
1≤j≤T

{
N ln

(
σ̂2
Ij

σ̂2
S

)}
≥

N ln

(
1 +

bmin

σ2
− 2
√
bmax

σ

√
2ψ′kd lnN

N
− 2ψ′kd lnN

N

)

≈ N ln

(
1 +

bmin

σ2

)
(5.83)

as N grows large. For k < k0, we get ∆ < 0, therefore, in this case we have

EkI∗ ≥ N ln

(
1 +

bmin

σ2

)
− |∆|(1 + 2ζd) lnN − |∆| ln

(
σ̂2
0

2πσ̂2
S

)
→∞ (5.84)

as N →∞ for all k = 1, . . . ,K, since N ln(1+bmin/σ
2) is the dominating term as it

tends to infinity much faster than the lnN term and limN→∞ σ̂2
0 = const. > 0 (see

Appendix 5.B) and limN→∞ σ̂2
S = σ2 (see Appendix 5.C). From the above analysis

we can say that

lim
N→∞

Pr
{
EkI∗ < 0

}
= 0, ∀ k = 1, . . . ,K. (5.85)

Finally, using the union bound and the result in (5.85) we can express the proba-
bility of C2 (5.41) happening as

Pr {C2} = Pr

{
K⋂
k=1

EkI∗ > 0

}

≥ 1−
K∑
k=1

Pr
{
EkI∗ < 0

}
→ 1 as N →∞. (5.86)

From (5.73) and (5.86) we can conclude that EBICR is consistent as N →∞, which
proves Theorem 2.
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5.4.4 Discussion on the Hyperparameter ζ

If ζ is too large, it will lead to underfitting issues. This is evident from (5.84) where a
large value of ζ may force the overall sum to become negative, especially for smaller
N values. On the contrary, if ζ is too small, it will lead to overfitting issues as the
penalty may not be sufficiently large to compensate for the overparameterization
due to large parameter space. Choosing a near-optimal value of ζ is quite crucial
in order to select the true model or at least a model very close to the true one. The
lower bound on ζ given in (5.71), provides some guideline on the range of possible
ζ value to pick from. For example, for a given data, if d ≈ 1.5, then ζ > 0.667.
However, since there is no upper bound on ζ, it can take any value greater than
0.667. Ideally, a rule of thumb is not to set ζ > 1. As a future direction, it will be
interesting to investigate novel ways to choose ζ in a more data-driven fashion.

5.5 Predictor Selection Algorithms

In the high-dimensional scenario, when p is large, it is infeasible to perform model
selection in the conventional manner. For a design matrix with parameter dimension
p, the number of possible candidate models is 2p − 1. Hence, the candidate model
space grows exponentially with p and we cannot afford to calculate model score for
all possible models. Therefore, to perform model selection, we combine a model
selection criterion with a predictor selection (support recovery) algorithm such as
OMP or LASSO (least absolute shrinkage and selection operator) [28]. The goal of
predictor selection is to pick a subset of important predictors from the entire set of
p predictors. In this context, the most important predictors refer to the positions
of the nonzero elements of the input signal x. Thus, predictor selection reduces
the cardinality of the candidate model space to some upper bound K such that
k0 ≤ K ≪ N under the assumption of a sparse parameter vector. This enables
us to apply the model selection criterion on the smaller set of candidate models to
pick the best model. The OMP algorithm is shown in Algorithm 5.1. To perform
model selection, we combine OMP with EBICR as shown in Algorithm 5.2.

Algorithm 5.1 OMP with K iterations

1: Inputs: Design matrix A, measurement vector y.
2: Initialization: ∥aj∥2 = 1 ∀j, r0 = y, S0OMP = ∅
3: for i = 1 to K do
4: Find next column index: di = argmax

j

∣∣aTj ri−1
∣∣

5: Add current index: SiOMP = Si−1
OMP ∪ {di}

6: Update residual: ri =
(
IN −ΠSi

OMP

)
y

7: end for
8: Output: OMP generated index sequence SKOMP
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Algorithm 5.2 Model selection combining EBICR with OMP

1: Run OMP for K iterations to obtain SKOMP

2: for k = 1 to K do
3: I = SkOMP

4: Compute EBICR(I)
5: end for
6: Estimated true support: ŜEBICR = argmin

I
{EBICR(I)}

LASSO is a shrinkage method for variable selection/estimation in linear regres-
sion models developed by Tibshirani [28]. Given the linear model in (5.1), the
LASSO solution for x for a particular choice of the regularization parameter λ ≥ 0
is obtained as

x̂lasso(λ) = min
x∈Rp

{
1

2N
∥y −Ax∥22 + λ∥x∥1

}
, (5.87)

where ∥·∥1 denotes the l1 norm. The parameter λ determines the level of sparsity.
When λ→∞ the objective function in (5.87) attains the minimum with x̂lasso(λ)
being a zero vector. As we gradually lower the λ value, the number of non-zero
components in x̂lasso(λ) starts increasing. Model selection combining LASSO and
EBICR can be performed as shown in Algorithm 5.3. Gradually decrease λ from
a high value so that the number of non-zero components in x̂lasso(λ) gradually
increases. Therefore, for each decreasing unique value of λ say λi, we acquire a
different solution x̂lasso(λi), with increasing support and thus obtaining a sequence
of candidate models with maximum cardinalityK. The value of EBICR is computed
for each of the candidate models and the model corresponding to the smallest
EBICR score is selected as the final model. A most useful method for solving LASSO
in our context is the (modified) least angle regression (LARS) algorithm [30], since
it also provides the required sequence of regularization parameters for which the
support changes.

Algorithm 5.3 Model selection combining EBICR with LASSO

1: Compute LASSO estimates {x̂lasso(λ1), . . . , x̂lasso(λKmax)} where
card(supp (x̂lasso(λKmax

))) = K
2: for i = 1 to Kmax do
3: I = supp (x̂lasso(λi))
4: Compute EBICR(I)
5: end for
6: Estimated true support: ŜEBICR = argmin

I
{EBICR(I)}
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5.6 Simulation Results

In this section, we provide numerical simulation results to illustrate the empirical
performance of EBICR. The performance of EBICR is compared with the ‘oracle’,
EBIC, EFIC and MBT. However, the performance comparison with the RRT [65]
method is dropped since it behaves quite similar to MBT (see [70] for details). The
‘oracle’ criterion assumes a priori knowledge of the true cardinality k0. Thus, the
model selection performance of the ‘oracle’ provides the upper bound on the maxi-
mum model selection performance that can be achieved using a particular predictor
selection algorithm and for a given set of data settings. Additionally, we also pro-
vide simulation results to highlight the drawbacks of classical methods for model
selection in high-dimensional linear regression models with a sparse parameter vec-
tor.

5.6.1 General Simulation Setup

In the simulations, we consider the model y = Ax+ e, where the design matrixA ∈
RN×p is generated with independent entries following normal distribution N (0, 1).
Since x is assumed to be sparse, we choose k0 = 5. Furthermore, without loss of
generality, we assume that the true support is S = [1, 2, 3, 4, 5], therefore, xS =
[x1, x2, x3, x4, x5]

T and AS = [a1,a2,a3,a4,a5]. This implies that the elements of
x follows xk ̸= 0 for k = 1, . . . , k0 and xk = 0 for k > k0. The SNR in dB is
SNR (dB) = 10 log10(σ

2
s/σ

2), where σ2
s and σ2 denote signal and true noise power,

respectively. The signal power is computed as σ2
s = ||ASxS ||22/N . Based on σ2

s and
the chosen SNR (dB), the noise power is set as σ2 = σ2

s/10
SNR (dB)/10. Using this

σ2, the noise vector e is generated following N (0, σ2IN ). The probability of correct
model selection (PCMS) is estimated over 1000 Monte Carlo trials. To maintain
randomness in the data, a new design matrix A is generated at each Monte Carlo
trial. OMP is used for predictor selection for its simplicity and wider range of
applicability.

5.6.2 Tuning Parameter Selection

An important step in model selection is the choice of the tuning parameter. As
mentioned earlier, too small or large values of the tuning parameter can cause
severe performance degradation in certain scenarios. Fig. 5.1 shows a performance
comparison of EBICR for four different values of ζ (0.4, 0.6, 1, and 2). Here, we set
p = Nd where d = 1.1. Hence, from Theorem 5.2 we require ζ > 1 − 1/2d = 0.55
to achieve consistency. From the figure, we see that for ζ = 0.4, the performance
of EBICR degrades after a certain point with increasing N , which justifies the
theory. For all other ζ > 0.55, the performances improve with increasing N . For
ζ = 0.6, which is very close to the lower bound, the convergence to PCMS = 1 is
slow and will require a very large sample size. For, ζ = 2, the performance suffers
(due to underfitting) in the low N regime, but does achieve perfect selection as
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Figure 5.1: PCMS vs N with xS = [1, 1, 1, 1, 1], SNR = 5 dB, p = Nd and d = 1.1.

N increases. In this case, ζ = 1 provides a much better overall performance for a
broader range of N . A similar trend as in EBICR is observed even in EBIC and
EFIC for different choices of γ and c. Hence, to maintain fairness, the following
tuning parameter settings are considered for further analysis: ζ = 1 (EBICR), c = 1
(EFIC) and γ = 1 (EBIC). For MBT [70], lim

N→∞
PCMS → 1 as β → 1. Hence, we

choose β = 0.999.

5.6.3 Model Selection with Classical Methods in
High-Dimensional Setting

This section presents simulation results for model selection using classical methods
in high-dimensional linear regression models and compares their performances with
EBICR. The purpose of these results is to highlight the limitations of the classical
methods in dealing with large-p small-N scenarios. The classical methods used here
are BIC [47], B̃ICN,SNR [16], BICR [79], gMDL [49], and PAL [51]. The classical
methods used in the simulations are described below.

• BIC: The BIC was developed by Schwarz [47]. The BIC score for a model I
is given by (5.18).

• B̃ICN,SNR: This combined high-SNR form of the BIC was proposed by Stoica
and Babu [16] as a means to solve the high-SNR consistency requirement of

BIC. For a model I, the B̃ICN,SNR score is

B̃ICN,SNR(I) = N ln σ̂2
I + k lnN − (k + 2) ln σ̂2

I (5.88)
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• BICR: The BICR score for a model I is given as [79]

BICR(I) = N ln σ̂2
I + k ln

(
N

2π

)
+ (k + 2) ln

(
σ̂2
0

σ̂2
I

)
. (5.89)

• gMDL: The criterion gMDL was developed by Hansen and Yu [49] and is
based on the Bayesian mixture form of MDL. It is called gMDL for its use of
the g-prior and is given by

gMDL(I) =
(
N − k

2

)
ln

(
Nσ̂2

I
N − k

)
+
k

2
ln

(
R̂I

k

)
+ lnN (5.90)

where R̂I = yTy −Nσ̂2
I = yTΠIy is the fitted sum of squares.

• PAL: The PAL criterion was developed by Stoica and Babu [51]. The PAL
score for a model with support I is evaluated as

PAL(I) = N ln σ̂2
I + k ln(p)

ln(rI + 1)

ln(ρI + 1)
. (5.91)

Here rI = N ln
(
σ̂2
0/σ̂

2
I−1

)
and ρI = N ln

(
σ̂2
I−1/σ̂

2
K

)
where σ̂2

I−1 and σ̂2
K

denotes the noise variance estimate for the previous and the last candidate
model, respectively.

In the simulation, we consider the true parameter vector to be xS = [5, 4, 3, 2, 1]T .
Fig. 5.2 illustrates the PCMS versus SNR in dB for fixed N = 100 and p = 500.
This gives d = log(p)/ log(N) ≈ 1.35, hence, ζ > 1 − 1/2d ≈ 0.63. The first ma-
jor observation from the figure is that EBICR (ζ = 1) clearly outperforms all the

Figure 5.2: PCMS versus SNR (dB) for N = 100, p = 500 and xS = [5, 4, 3, 2, 1].
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(a) p = 500

(b) p = Nd where d = 1.1

Figure 5.3: PCMS versus N for SNR = 30 dB with xS = [5, 4, 3, 2, 1].

classical methods by a huge margin. Secondly, for the considered setting, the per-
formances of BICR and gMDL are quite similar followed by B̃ICN,SNR. The criteria

BICR, gMDL and B̃ICN,SNR do achieve convergence to detection probability one
but at the expense of very high values of SNR. The performances of PAL and BIC
are extremely poor in this case, even in the high-SNR regions.

Fig. 5.3 presents the plot for PCMS versus N for two different settings of p. Fig.
5.3a corresponds to a fixed p = 500 and Fig. 5.3b to a varying p = Nd where d =
1.1. The figures show that EBICR (ζ = 1) clearly surpasses the classical methods
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with huge differences in performance. Furthermore, both the figures clearly show
distinctive behaviour of the classical methods that highly differ from each other.
For the fixed p case, the PCMS for all the classical methods approaches one as N
grows large. This is in tune with the fact that the classical methods are consistent
when p is fixed and N → ∞. On the contrary, when p is varying and grows with
N , the consistency attribute does not hold any longer, hence, we see the decreasing
performance trend in Fig. 5.3. However, this is not the case for EBICR and it
achieves consistency in both cases. Another key point that we can deduce from
this analysis is that when p is not much smaller than N , the convergence rate for
the classical methods is much slower than EBICR even when N > p (see Fig. 5.3a
for N > 500). Thus, we can say that methods like EBICR are important and very
necessary in scenarios where N > p but p is not sufficiently smaller than N .

5.6.4 Model Selection with the Latest Methods in
High-Dimensional Setting

In the previous section, we highlighted the drawbacks of classical methods in model
selection under the high-dimensional setting. We observed that the performance of
the classical methods collapses when p grows with N and the consistency property
breaks down. In this section, we present simulation results for model selection
comparing EBICR to the existing state-of-the-art methods, designed to deal with
the large-p small-N scenarios.

Model Selection versus SNR

To emphasize the scale-invariant and consistent behaviour of EBICR, we con-
sider two scenarios. In the first scenario, we assume the true parameter vector
to be xS = [0.05, 0.04, 0.03, 0.02, 0.01]T and in the second scenario, we assume
xS = [50, 40, 30, 20, 10]T . Note that in the simulations we compute the noise
variance σ2 based on the chosen SNR level and the current signal power value
σ2
s = ∥ASxS∥22

/
N . To simulate the PCMS versus SNR in a high-dimensional set-

ting we fixed N = 55 and p = 1000. This gives d = log(p)/ log(N) ≈ 1.724, hence,
ζ > 1− 1/2d ≈ 0.71.

Fig. 5.4 shows the empirical PCMS versus SNR (dB). Fig. 5.4a and Fig.
5.4b correspond to xS = [0.05, 0.04, 0.03, 0.02, 0.01] and xS = [50, 40, 30, 20, 10],
respectively. Both the figures depict fixed N increasing SNR scenario. Comparing
the figures, the first clear observation is that unlike the other criteria, the behaviour
of EFIC is not identical for the two different xS given that the other parameters
viz, N , p and k0 are constant and the performance is evaluated for the same SNR
range. This illustrates the scaling problem present in EFIC that leads to either high
underfitting or overfitting issues. This behavior or EFIC can be explained as follows.
The data dependent penalty term (DDPT) of EFIC is DDPT = −(k+2) ln∥Π⊥

I y∥22,
whose overall value depends on the value ∥Π⊥

I y∥22, which in turn is influenced by the
signal and noise powers σ2

s and σ2, respectively. If ∥Π⊥
I y∥22 ≪ 1, then DDPT≫ 0,
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(a) xS = [0.05, 0.04, 0.03, 0.02, 0.01]T

(b) xS = [50, 40, 30, 20, 10]T

Figure 5.4: PCMS versus SNR (dB) for N = 55 and p = 1000.

which may blow the overall penalty to a large value leading to underfitting issues.
This is most likely the case when xS = [0.05, 0.04, 0.03, 0.02, 0.01]T (Fig. 5.4a). On
the contrary if ∥Π⊥

I y∥22 ≫ 1, then DDPT ≪ 0, thus lowering the overall penalty
leading to overfitting issues (when xS = [50, 40, 30, 20, 10]T , Fig. 5.4b). The second
major observation is that EBIC is inconsistent when SNR is high but N is small
and fixed. This behaviour of EBIC is already reported in [18]. In general, EFIC,
MBT (for β → 1), and EBICR are consistent for increasing SNR scenarios with N
fixed, but while EBICR and MBT are invariant to data-scaling EFIC is not.
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(a) xS = [0.05, 0.04, 0.03, 0.02, 0.01]T

(b) xS = [50, 40, 30, 20, 10]T

Figure 5.5: PCMS versus N for SNR = 6 dB and p = 1000.

Model Selection versus N

In this section, we present the simulation results for model selection as a function
of the sample size N . Similar to the previous section, we consider two different
choices of xS . Fig. 5.5 illustrates the empirical PCMS versus N for SNR = 6
dB, p = 1000 and k0 = 5. It depicts a fairly low-SNR increasing N scenario.
Fig. 5.5a and Fig. 5.5b corresponds to xS = [0.05, 0.04, 0.03, 0.02, 0.01]T and
xS = [50, 40, 30, 20, 10]T , respectively. Comparing Fig. 5.5a and Fig. 5.5b, we



92
CHAPTER 5. EXTENDED BAYESIAN INFORMATION

CRITERION-ROBUST

notice that the performance of EFIC varies a lot compared to the other criteria.
When xS = [0.05, 0.04, 0.03, 0.02, 0.01]T , EFIC slightly suffers from underfitting
for low-SNR region due to high penalty value arising from the −(k + 2) ln∥Π⊥

I y∥22
term of the EFIC. On the contrary, when xS = [50, 40, 30, 20, 10]T it is clearly
seen that compared to the other criteria, EFIC suffers from the scaling issue and
requires a large sample size to achieve PCMS = 1. Among all the criteria, the
performance of EBIC and EBICR are closest to the oracle. Furthermore, observe
that the performance of EBICR and EBIC are more or less alike for the current
setting. This is primarily because the SNR is low (6 dB) hence the (k+2) ln(σ̂2

0/σ̂
2
I)

(a) xS = [0.05, 0.04, 0.03, 0.02, 0.01]T

(b) xS = [50, 40, 30, 20, 10]T

Figure 5.6: PCMS versus N (20 to 103) for SNR = 25 dB, p = Nd where d = 1.3.
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term of EBICR behaves very close to a O(1) quantity for k ≥ k0. Thus, for low SNR
scenarios, the penalties of EBIC and EBICR are similar, and as such the behaviour
of these two criteria overlaps in this case. However, note that this is not true in the
high-SNR cases, which will be evident from the discussion following Fig. 5.6.

The plots shown in Fig. 5.4 and Fig. 5.5 represent fixed-N increasing-SNR and
low-SNR increasing-N scenarios, respectively. In Fig. 5.6, we present a high-SNR
increasing-N case where SNR = 25 dB. Here, we consider a varying parameter space
such that p = Nd where d = 1.3. It is clearly observed that for high-SNR scenarios,
EBICR and MBT provide much faster convergence to oracle behaviour as compared
to EBIC which requires a larger sample size to achieve detection probability one.
Furthermore, we also notice that EFIC suffers from a higher false selection error
and performs worse than EBIC in a certain region of the sample size. This clearly
shows the effects of scaling on the behaviour of EFIC.

5.6.5 Remarks from the Simulation Results

Key points from the simulation results are as follows:

• Classical methods struggle to handle large-p small-N cases. Convergence to
true selection probability one requires more measurement samples when p is
large but fixed and they fail miserably when p grows with N .

• Even for N > p case but p sufficiently close to N , the extended versions offer
faster convergence to oracle property compared to the classical methods.

• EBIC can handle large-p small-N cases. It is a consistent estimator of the
true model as N → ∞ even if p grows with N . However, the consistency
property does not hold when N is fixed (and small) and SNR→∞.

• EFIC is a consistent criterion in the high-dimensional regime for both cases
when N →∞ and/or SNR→∞. However, it is not invariant to data-scaling
and its performance is unstable under changing signal and noise statistics.

• EBICR solves the data-scaling problem in EFIC. In addition, EBICR is a
consistent criterion for both large-N and high-SNR cases and offers stable
performance in changing noise and signal statistics.

5.7 Summary

In this chapter, we provided a new criterion, which is an extension of BICR, to
handle model selection in sparse high-dimensional linear regression models employ-
ing greedy methods for predictor selection. The extended version is named EBICR,
where the subscript ‘R’ stands for robust and it is a scale-invariant and consistent
model selection criterion. Additionally, we analytically examined the behaviour of
EBICR as σ2 → 0 and as N →∞. In both cases, it is shown that the probability of
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detecting the true model approaches one. We further highlighted the data-scaling
issue present in EFIC, which is a consistent criterion for both large sample sizes
and high-SNR scenarios. Extensive simulation results show that the performance
of EBICR is either similar to or superior to that of EBIC, EFIC, and MBT.



5.A. LEMMAS 95

Appendix

5.A Lemmas

Lemma 5.1 Let y be a N × 1 dimensional vector following y ∼ N (µ, σ2IN ) and
Π be a N × N symmetric, idempotent matrix with rank(Π) = r. Then the ratio
yTΠy/σ2 has a non-central chi-square distribution χ2

r(λ) with r degrees of freedom
and non-centrality parameter λ = µTΠµ/σ2 (see, e.g., Chapter 5 of [74]).

Lemma 5.2 Let Zmax = max
i

{
Zi
}m
i=1

where Z1, Z2, . . . , Zm is a sequence of identi-

cally distributed random variables (not necessarily independent) having a Chi-square
distribution with k degrees of freedom where k < m. Then Zmax ≤ k+2

√
kψ lnm+

2ψ lnm for some constant ψ > 1 with probability approaching one as m→∞.

Proof: From the union bound we have

Pr (Zmax ≤ η) ≥ 1−mPr (Zi ≥ η) . (5.92)

Since Zi ∼ χ2
k, then from the Chi-square tail bound (Lemma 1 of [80]) we have the

following result

Pr
(
Zi ≥ k + 2

√
kt+ 2t

)
≤ e−t. (5.93)

Setting t = ψ lnm in (5.93) where ψ > 1 we get

Pr
(
Zi ≥ k + 2

√
kψ lnm+ 2ψ lnm

)
≤ e−ψ lnm = m−ψ. (5.94)

Using (5.94) in (5.92) we get

Pr
(
Zmax ≤ k + 2

√
kψ lnm+ 2ψ lnm

)
≥ 1− 1

mψ−1
. (5.95)

Therefore, Zmax ≤ k + 2
√
kψ lnm + 2ψ lnm with probability approaching one as

m→∞ if ψ > 1.

Lemma 5.3 Let Xmax = max
i

{
Xi

}m
i=1

where X1, X2, . . . , Xm is a sequence of iden-

tically distributed random variables (not necessarily independent) having a Gaus-
sian distribution with zero mean and variance one. Then Xmax ≤

√
2 lnm with

probability approaching one as m→∞.

Proof: From the union bound we have

Pr (Xmax ≤ η) ≥ 1−mPr (Xi ≥ η) . (5.96)

Since Xi ∼ N (0, 1), from the Gaussian tail bound we have

Pr (Xi ≥ η) ≤
1

η

e−η
2/2

√
2π

, (5.97)
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for all η > 0. Setting η =
√
2 lnm in (5.97) we get

Pr
(
Xi ≥

√
2 lnm

)
≤ m−1

2
√
π lnm

. (5.98)

Using (5.98) in (5.96) we get

Pr
(
Xmax ≤

√
2 lnm

)
≥ 1− 1

2
√
π lnm

. (5.99)

Therefore, Xmax ≤
√
2 lnm with probability approaching one as m→∞.

Lemma 5.4 For any arbitrary support I ∈ Ikm ∈ M, under the asymptotic identi-
fiability condition in (5.42) the following inequality holds∥∥Π⊥

I ASxS
∥∥2
2
> 0.

Proof: Let S ′ = {S \ I}. The true support S can be split into two disjoint
subsets as S = {S ∩ I} ∪ {S \ I}. Since span(AS∩I) ⊂ span(AI) we have

∥Π⊥
I ASxS∥22 =∥Π⊥

I AS′xS′∥22
=NxTS′

(
N−1AT

S′Π⊥
I AS′

)
xS′ .

Now, consider the matrix M =
[
AS′ AI

]
where card(S ′) ≤ K and card(I) ≤ K,

such that card(S ′ ∪ I) ≤ 2K. Under the assumption (5.42)

N−1MTM = N−1

[
AT

S′AS′ AT
S′AI

AT
IAS′ AT

IAI

]
(5.100)

is a bounded positive definite matrix. Then the Schur complement of the block
matrix AT

IAI is

N−1
[
AT

S′AS′ −AT
S′AI(A

T
IAI)

−1AT
IAS′

]
=N−1AT

S′Π⊥
I AS′

is also positive definite and bounded as N → ∞. Let M̃ = N−1AT
S′Π⊥

I AS′ ,

then, xTS′M̃xS′ = b (say) = O(1) > 0. Hence, ∥Π⊥
I ASxS∥22 = Nb > 0 for all

I ∈ Ikm ∈M.

5.B Statistical Analysis of σ̂2
0

From the generating model (5.1), the true data vector follows y ∼ N
(
ASxS , σ

2IN
)
.

Consider the factor σ̂2
0 , which is defined as

σ̂2
0 =
∥y∥22
N

=

(
σ2

N

)
yT INy

σ2
. (5.101)
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From Lemma 5.1 we have

yT INy

σ2
∼ χ2

N (λ) where λ =
∥ASxS∥22

σ2
. (5.102)

This implies that
(
N
σ2

)
σ̂2
0 ∼ χ2

N (λ). Therefore, the mean and variance of σ̂2
0 are:

E[σ̂2
0 ] =

σ2

N
(N + λ) = σ2 +

∥ASxS∥22
N

Var[σ̂2
0 ] = 2

σ4

N2
(N + 2λ) = 2

σ4

N
+ 4

σ2

N2
∥ASxS∥22.

(5.103)

Hence, for a fixed N ,

lim
σ2→0

E[σ̂2
0 ] =

∥ASxS∥22
N

& lim
σ2→0

Var[σ̂2
0 ] = 0. (5.104)

Further, when SNR or σ2 is fixed, using the assumption limN→∞

{
AT

SAS
N

}
= MS

we get

lim
N→∞

E[σ̂2
0 ] = σ2 + xTSMSxS & lim

N→∞
Var[σ̂2

0 ] = 0, (5.105)

where MS is a bounded positive definite matrix and as such xTSMSxS = O(1) as
N grows large.

5.C Statistical Analysis of σ̂2
I when S ⊆ I

The noise variance estimate under hypothesis HI can be rewritten as

σ̂2
I =

(
σ2

N

)
yTΠ⊥

I y

σ2
. (5.106)

The true model u = ASxS lies in a linear subspace spanned by the columns of AS .
Consequently, for I ⊇ S we have Π⊥

I u = 0. This implies that yTΠ⊥
I y = eTΠ⊥

I e.
Thus we have,

yTΠ⊥
I y

σ2
=

eTΠ⊥
I e

σ2
∼ χ2

N−k (Using Lemma 5.1), (5.107)

where k = card(I) ≥ k0. This implies that
(
N
σ2

)
σ̂2
I ∼ χ2

N−k. Therefore, the mean
and variance of σ̂2

I for I ⊇ S are:

E[σ̂2
I ] =

σ2

N
(N − k) & Var[σ̂2

I ] = 2
σ4

N2
(N − k). (5.108)

Hence, when σ2 is a constant,

lim
N→∞

E[σ̂2
I ] = σ2 & lim

N→∞
Var[σ̂2

I ] = 0. (5.109)





Chapter 6

Model Selection in Block-Sparse
Linear Regression

“What we know is a drop, what we don’t know is an ocean.”
—Sir Issac Newton (1643–1729)

In this chapter, we tackle the problem of model selection in a general linear
regression model where the parameter matrix possesses a block-sparse structure,

i.e, the non-zeros entries occur in clusters or blocks and the number of such non-
zero blocks is very small compared to the parameter dimension. Furthermore, a
high-dimensional setting is considered where the parameter dimension is quite large
compared to the available measurements. To perform model selection in this setting,
we present an information criterion that is motivated by the Extended Bayesian
Information Criterion-Robust (EBICR) described in Chapter 5, and it takes into
account both the block structure and the high-dimensional scenario. The analytical
steps for deriving the generalized version of the EBICR for this setting are provided.
Simulation results show that the proposed method performs considerably better
than the existing state-of-the-art methods. It is also an empirically consistent
criterion.

Block-sparsity naturally occurs in a variety of situations, such as in multi-band
signals [81–83] or in measurements of the gene expression levels [84]. The multiple
measurement vector (MMV) issue, which involves the measurement of a group of
vectors that share a common sparsity pattern, is another intriguing specific example
of the block-sparse model [85–89]. Furthermore, it was shown in [90] and [85] that
the block-sparsity model can be used to treat the problem of sampling signals that
lie in a union of subspaces [82,91–95]. However, the literature on model selection in
block-sparse linear regression is very scarce. The latest method for model selection
in block-sparse high-dimensional linear regression is the generalized residual ratio
thresholding (GRRT) [96]. This method is an extension of RRT [65] developed to
handle the block-sparse structure. The authors also present a new approach that

99
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allows GRRT to perform model selection in non-monotonic predictor sequences
generated by LASSO. To the best of our knowledge, to date, no known method
based on information criterion is available in the open literature to perform model
selection in block-sparse linear regression. Therefore, the main goal herein is to
develop an information theoretic based model selection method for the general
linear regression model assuming a block-sparse structure and high-dimensional
setting.

6.1 Problem Statement

Technically there can be four different linear regression models depending on the
structure of the parameter matrix/vector. They are: (a) single measurement vector
(SMV), (b) block single measurement vector (BSMV), (c) multiple measurement
vector (MMV), and (d) block multiple measurement vector (BMMV). For example,
as mentioned in [96], SMV models are used in wireless signal detection [97] , MMV
models are used in Electroencephalogram (EEG) [98], BSMV models are used in
multi-pitch estimation [99] and BMMV models are used in face recognition [100].
In this work, we consider the BMMV model, since it is the general setting and
the rest of the models are special cases of BMMV. The BMMV model is given as
follows

Y = AX+W. (6.1)

Here, Y ∈ RN×L is the observed response matrix, A ∈ RN×p is the design matrix,
where N ≪ p. X ∈ Rp×L is the unknown parameter matrix and W ∈ RN×L is
the noise/error matrix, whose elements are assumed to be i.i.d following W[i, j] ∼
N (0, σ2) where σ2 is the true noise variance. The p rows of X are divided into

Figure 6.1: BMMV model scenario.
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Type Specifications dim(Y), dim(X)
SMV L = 1, LB = 1, pB = p N × 1, p× 1
MMV L > 1, LB = 1, pB = p N × L, p× L
BSMV L = 1, LB > 1, pB = p/LB N × 1, p× 1
BMMV L > 1, LB > 1, pB = p/LB N × L, p× L

Table 6.1: Type of linear regression models

pB = p/LB non-overlapping blocks of equal size LB . Each of these pB blocks of
size LB × L are either completely zero or non-zero. The block size LB is assumed
to be known a priori. The jth block consists of the rows of X indexed by Ij =
{(j − 1)LB + 1, (j − 1)LB + 2, . . . , jLB}. We denote the true block support of X
as SB = {j ∈ [pB ] : X[Ij , :] ̸= 0LBL}. The parameter matrix X is assumed to be
sparse such that KB = card(SB)≪ pB . Fig. 6.1 shows the BMMV scenario. The
non-zero blocks in the parameter matrix X are shown in colour, while the blocks
with zero entries are in gray. For the model in Fig. 6.1, it is clear that the true
block sparsity is KB = 4. BMMV is the general scenario, and all other scenarios
are special cases of BMMV. Table 6.1 shows the configurations for the different
types of the linear regression system.

The goal of model selection in the block linear regression model is estimating
the true block support SB given Y and A. Here we categorize the model selection
process into two major steps: (i) Subset selection, where a competent set of candi-
date models out of all the (2pB − 1) possible models is obtained. In our work, we
consider the set of competing models as the collection of all plausible combinatorial
models up to a maximum cardinality K, under the assumption that KB ≤ K ≪ N ;
(ii) estimating the true model among the candidate models using a suitable model
selection criterion.

Consider a candidate model with block support IB having block cardinality
card(IB) = kB , where kB ∈ {1, 2, . . . , pB}. In this case, the linear model in (6.1)
can be reformulated as follows

HIB
: Y = AIB

XIB
+WIB

, (6.2)

where HIB
denotes the hypothesis that the data Y is truly generated according to

(6.2), AIB
∈ RN×(kBLB) is the sub-design matrix consisting of columns from the

known design matrix A with block support IB ⊆ {1, 2, . . . , pB}, XIB
∈ R(kBLB)×L

is the corresponding unknown regression coefficient matrix and WIB
∈ RN×L is

the associated noise matrix

6.2 Proposed Method

In this section, we provide the necessary steps to derive EBICR to perform model
selection for block-sparse linear regression models. The further analysis assumes
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the following property of the design matrix A [16, 71,79]

lim
N→∞

{
N−1(AT

IB
AIB

)
}
= MIB

= O(1), (6.3)

where MIB
is a (kBLB × kBLB) positive definite matrix and bounded as N →∞.

The assumption in (6.3) is true in many applications but not all (see [72] for more
details).

To arrive at EBICR for the block-sparse linear model, the first step is reformu-
lating the linear model in (6.2) into a vector form as shown below:

vec(Y) = IL ⊗AIB
vec(XIB

) + vec(WIB
). (6.4)

This allows us to utilize the same derivation steps as shown in Chapter 5 without
the necessity to facilitate the analysis from scratch. Also, (6.4) is technically equiv-
alent to (6.2), hence we do not alter the underlying original linear model but just

restructure it for our convenience. Now let y = vec(Y) ∈ RNL×1, ĂI = IL⊗AIB
∈

RNL×kBLBL, xI = vec(X) ∈ RkBLBL×1 and e = vec(W) ∈ RNL×1. The elements
of eI are i.i.d. and eI ∼ N (0, σ2

IINL). Then, we can rewrite (6.4) as

HI : y = ĂIxI + eI , (6.5)

where I ⊆ {1, 2, . . . , pL}. Then the pdf of y under hypothesis HI is

p(y|θI ,HI) =
exp{−∥y − ĂIxI∥22/2σ2

I}
(2πσ2

I)
NL/2

, (6.6)

where θI = [xTI , σ
2
I ]
T comprises of all the parameters of the model. Under HI , the

maximum likelihood estimates (MLEs) of θ̂I = [x̂TI , σ̂
2
I ]
T are obtained as [63]

x̂I =
(
ĂT

I ĂI

)−1

ĂT
Iy & σ̂2

I =
yT Π̆⊥

I y

NL
, (6.7)

where Π̆⊥
I is the orthogonal projection matrix on the null space of ĂT

I . EBICR is
derived under the Bayesian framework of model selection, which starts with deriving
the maximum a-posteriori (MAP) criterion and ending with the final EBICR after
suitable modifications and reasonable assumptions. We follow similar steps as given
in Chapter 5, but incorporate the multiple-measurement and block structure into it.
Let us denote the prior pdf of the parameter vector θI as p(θI |HI), the marginal
of y as p(y|HI) and the prior probability of the model with support I as Pr(HI).
Then the MAP estimate of the true support S ⊆ {1, 2, . . . pL} is equivalently given
by [16,79,101]

ŜMAP = argmax
I

{
ln p(y|HI) + lnPr (HI)

}
. (6.8)
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Applying a second order Taylor series expansion, an approximation of ln p(y|HI)
is obtained under the presumption that N is large or/and SNR is high (see [16,79]
for details)

ln p(y|HI) ≈ ln p(y|θ̂I ,HI) + ln p(θ̂I |HI) +
kBLBL+ 1

2
ln(2π)− 1

2
ln
∣∣F̂I

∣∣.
(6.9)

Here, F̂I is the sample Fisher information matrix under HI given as [63]

F̂I = −∂
2 ln p(y|θI ,HI)

∂θI∂θTI

∣∣∣∣
θI=θ̂I

. (6.10)

Evaluating (6.10) using (6.6) and (6.7) we get [16]

F̂I =

[
1
σ̂2
I
ĂT

I ĂI 0

0 NL
2σ̂4

I

]
. (6.11)

From the linear model in (6.5) we have

−2 ln p(y|θ̂I ,HI) = NL ln σ̂2
I + const. (6.12)

Therefore, using (6.12), we can rewrite (6.9) as

−2 ln p(y|HI) ≈ NL ln σ̂2
I + ln

∣∣F̂I
∣∣− 2 ln p(θ̂I |HI)− kBLBL ln 2π + const.

(6.13)

Furthermore, it is assumed that the prior term in (6.9), i.e., ln p(θ̂I |HI) is flat and
uninformative, and hence ignored from the analysis. Thus, dropping the constants
and the terms independent of the block model dimension kB , we can equivalently
reformulate the MAP based model estimate as

ŜMAP = argmin
I

{
NL ln σ̂2

I + ln
∣∣F̂I

∣∣− kBLBL ln 2π − 2 lnPr (HI)
}
. (6.14)

EBICR is derived from (6.14) with some further modifications and approximations.

The two key terms that require further analysis are ln|F̂I | and the prior term

Pr(HI). First, we perform normalization of F̂I under both large-N and high-SNR

assumption [16, 102]. For this we factorize the ln
∣∣F̂I

∣∣term in a similar manner as
performed in Chapter 4 and 5

ln
∣∣F̂I

∣∣ = ln
[∣∣Q∣∣ ∣∣∣Q−1/2F̂IQ

−1/2
∣∣∣]

= ln |Q|+ ln
∣∣∣Q−1/2F̂IQ

−1/2
∣∣∣. (6.15)

The goal here is to choose a suitable Q matrix that normalizes the sample FIM F̂I
such that the second term in (6.15) is O(1), i.e., in this case it should be bounded
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as N →∞ and/or σ2 → 0. To accomplish this objective, and motivated from [101],
we choose the following Q−1/2 matrix for this scenario

Q−1/2 =

√LB

N

√
σ̂2
I
σ̂2
0
IkBLBL 0

0
√

LB

N
σ̂2
I
σ̂2
0

 , (6.16)

where σ̂2
0 = ∥y∥22/NL. Also for the considered generating model (6.5), σ̂2

0 → const.
as N → ∞ and/or σ2 → 0 [71, 79]. Two important points to note here regarding

the choice of the Q−1/2 matrix are: (i) The ratio
(
σ̂2
I
σ̂2
0

)
is introduced to normalize

the F̂I w.r.t. σ2 where the factor σ̂2
0 is especially utilized to counteract the data-

scaling problem (as discussed elaborately in Chapter 4 and 5). (ii) The 1
N portion

of the factor LB

N is used to normalize the FIM w.r.t. N . However, LB is also
included as part of the normalizing term because for the mean-squared-error of σ̂2

to approach the Cramér-Rao bound, we require that the number of measurements
is much larger than the number of parameters, i.e., NL ≫ KBLBL or in other
words N/LB ≫ KB . Hence, we use the normalization factor LB/N instead of just
1/N in (6.16). In this way, the penalty will be a function of N/LB instead of N
alone (as will be seen in the subsequent steps). This novel modification helps to
counteract the effects of changing LB on the performance of EBICR.

Now, using (6.3), (6.11), and (6.16) we can show that∣∣∣Q−1/2F̂IQ
−1/2

∣∣∣ = ∣∣∣∣∣LB

σ̂2
0

ĂT
I ĂI
N 0

0 LBL
2σ̂4

0

∣∣∣∣∣
=

LkBLBL+1
B L

2 (σ̂2
0)
kBLBL+2

∣∣∣∣∣IL ⊗ AT
IB

AIB

N

∣∣∣∣∣
= const.× |IL|kB×LB

∣∣∣∣∣AT
IB

AIB

N

∣∣∣∣∣
L

= O(1) (6.17)

as N grows large and/or σ2 → 0. Hence, this term can be removed without signif-
icantly affecting the criterion. Next observe that the ln

∣∣Q∣∣ term can be expanded
as follows

ln |Q| = ln

∣∣∣∣∣∣
N
LB

(
σ̂2
0

σ̂2
I

)
IkBLBL 0

0 N
LB

(
σ̂2
0

σ̂2
I

)2
∣∣∣∣∣∣

= (kBLBL+ 1) ln

(
N

LB

)
+ (kBLBL+ 2) ln

(
σ̂2
0

σ̂2
I

)
. (6.18)

Therefore, using (6.17) and (6.18) we can rewrite (6.15) as

ln
∣∣F̂I

∣∣ = kBLBL ln

(
N

LB

)
+ (kBLBL+ 2) ln

(
σ̂2
0

σ̂2
I

)
+O(1) + ln(N/LB). (6.19)
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Next, for the model prior probability term −2 lnPr(HI) in (6.14), a similar propo-

sition is taken as in EBIC such that Pr(HI) ∝
(
pB
kB

)−ζ
, where ζ ≥ 0 is a tuning

parameter. If pB is sufficiently large, the following approximation can be assumed
ln
(
pB
kB

)
≈ kB ln pB [18]. This gives

−2 lnPr(HI) = 2ζkB ln pB + const. (6.20)

Now, substituting (6.19), (6.20) in (6.14) and dropping the O(1), the ln(N/LB)

term (independent of kB), the constant and the p(θ̂I |HI) term we arrive at the
generalized EBICR for the BMMV model:

EBICR(I) = NL ln σ̂2
I + kBLBL ln

(
N

2πLB

)
+ (kBLBL+ 2) ln

(
σ̂2
0

σ̂2
I

)
+

2kBζ ln pB .

(6.21)

In practice, we compute the EBICR score block-wise, i.e., EBICR(IB) where IB ⊆
{1, . . . , pB}. Then the σ̂2

I can be replaced by σ̂2
IB

= ∥Π⊥
IB

Y∥2F
/
NL, where Π⊥

IB
is

the orthogonal projection matrix on the null space of AT
IB

. Finally, the true block
support is estimated as

ŜB = argmin
IB

{
EBICR(IB)

}
. (6.22)

The EBICR form given by 6.21 can be considered as the general form which is
applicable for model selection in SVM, BSMV, MMV, and BMMV systems. Clearly,
for L = LB = 1 (SMV), 6.21 boils down to the original EBICR form already derived
and discussed in Chapter 5.

6.3 Predictor Selection Algorithms for Block-Sparse models

In Chapter 3 and 5, we employed OMP for predictor selection in the SMV linear
regression scenario and mentioned that LASSO can also be used for this purpose.
In the case of OMP, it has been further extended to handle predictor selection
in different scenarios. For example, simultaneous OMP (SOMP) [103, 104], block
OMP (BOMP) [105] and BMMV-OMP in [106] are extensions of OMP in MMV,
BSMV and BMMV scenarios. Similarly, group LASSO and MMV-LASSO are the
BSMV and MMV versions of LASSO [107,108]. The Algorithm in 6.1 presents the
generic-OMP (G-OMP) steps for different scenarios, i.e., OMP for SMV, SOMP
for MMV, BOMP for BSMV, and BMMV-OMP for BMMV. If we denote K as the
iteration when the algorithm stops, then the output of G-OMP is the (block) index
sequence SKG-OMP.

6.4 Simulation Results

In this section, we provide numerical simulations to highlight the performance of
EBICR for block-sparse linear regression models. We consider the BMMV model
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Algorithm 6.1 Generic-OMP (G-OMP) framework

1: Inputs: Design matrix A, measurement Y.
2: Initialization: ∥aj∥2 = 1 ∀j, R0 = Y, S0G-OMP = ∅ and counter i = 0
3: repeat
4: Step 1: Identify the block that has the highest correlation with Ri−1

5: (OMP) Next predictor index di = argmax
j=1,...,p

∣∣A[:, Ij ]TRi−1
∣∣

6: (BOMP) Next block index di = argmax
j=1,...,pB

∥∥A[:, Ij ]TRi−1
∥∥
2

7: (SOMP) Next predictor index di = argmax
j=1,...,p

∥∥A[:, Ij ]TRi−1
∥∥
2

8: (BMMV-OMP) Next block index di = argmax
j=1,...,pB

∥∥A[:, Ij ]TRi−1
∥∥
F

9: Step 2: Add current index SiG-OMP = Si−1
G-OMP ∪ {di}

10: Step 3: Update residual: Ri =
(
IN −ΠSi

G-OMP

)
Y

11: Step 4: increment counter i← i+ 1
12: until Stopping rule is satisfied
13: Output: OMP generated block index sequence SKG-OMP (K is the iteration

when the algorithm stopped)

Y = AX +W, where the design matrix A is generated with independent entries
following normal distribution N (0, 1). The cardinality of the true block-support
SB is chosen to be card(SB) = KB = 4. Also, without loss of generality, we assume
SB = [1, 2, 3, 4]. Other parameters are chosen as L = 5, LB = 10. The SNR in dB =
10 log10(σ

2
s/σ

2), where σ2
s and σ2 denote signal and true noise power, respectively.

The signal power is computed as σ2
s = ∥AX∥2F /NL. Based on σ2

s and the chosen
SNR (dB), the noise power is set as σ2 = σ2

s/10
SNR (dB)/10. Using this σ2, the

elements of the noise matrix W are generated following W[i, j]
i.i.d∼ N (0, σ2). The

probability of correct model selection (PCMS) is estimated over 1000 Monte Carlo
trials. To maintain randomness in the data, a new design matrix A is generated
at each Monte Carlo trial. BMMV-OMP (shown in Algorithm 6.1) is used for
predictor selection for its simplicity and wider range of applicability. Performing
model selection combining BMMV-OMP and EBICR is shown in Algorithm 6.2.
Since, both EBIC and EFIC in their current forms are not designed for model
selection in BMMV system, as such, we exclude them from the comparison. Hence,
EBICR is compared with GRRT and the oracle, i.e, BMMV-OMP with a priori
knowledge of KB . Next, we provide the working principle of GRRT in detail for
better clarity. GRRT is a method based on hypothesis testing that uses a test
statistic that is a ratio of residuals calculated as follows:

RR(kB) =
∥RkB∥F
∥RkB−1∥F

(6.23)
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Algorithm 6.2 Model selection combining EBICR with BMMV-OMP

1: Run BMMV-OMP for K iterations to obtain SKBMMV-OMP

2: for kB = 1 to K do
3: IB = SkBBMMV-OMP

4: Compute EBICR(IB)
5: end for
6: Estimated true block support: ŜEBICR = argmin

IB

{EBICR(IB)}

where
∥∥RkB

∥∥
F
=

∥∥∥∥Π⊥
SkB
B-OMP

Y

∥∥∥∥
F

. The complete steps to perform model selection

using GRRT combined with BMMV-OMP are shown in the Algorithm 6.3. Here,
the quantity ΓαGRRT (kB) is evaluated as follows

ΓαGRRT (kB) =

√
B−1

(
ρ;

(N − LBk)L
2

,
LBL

2

)
, (6.24)

where ρ = α
pos(k)K and pos(k) = pB − kB + 1. For the simulations, we choose

α = 0.01 as motivated by the original paper.
Fig. 6.2 shows the PCMS vs SNR (dB) with N = 150 and p = 1000. Since LB =

10, hence, pB = p/LB = 100. The first clear observation is that for the considered
tuning parameter setting, both EBICR and GRRT are empirically consistent in
high-SNR, i.e., PCMS → 1 as SNR increases (or inversely σ2 → 0). Second,
compared to GRRT, the performance curve of EBICR is much closer to the oracle
performance.

Fig. 6.3 presents the PCMS versus number of measurements N plot. Here, a
fixed value of p = 2000 is chosen, hence pB = 200. Also, a low value of SNR = -4
dB is chosen to make the detection more challenging. A similar trend is observed
here as well. Both methods achieve empirical consistency (PCMS→ 1) as N grows
large. However, EBICR provides slightly better performance compared to GRRT
for smaller N values and is much closer to the oracle performance.

Next, we provide further simulation results with respect to changing variables
L and LB . Fig. 6.4 shows the PCMS versus SNR (dB) but for two different values
of LB , i.e., LB = 5 and LB = 20. It is clearly visible that with the increase in LB

Algorithm 6.3 GRRT with BMMV-OMP

1: Inputs: Design matrix A, observation vector Y.
2: Step 1 Run K iterations of BMMV-OMP
3: Step 2 Compute RR(kB) for kB = 1, . . . ,K
4: Step 3 Compute kGRRT = max {kB : RR(kB) ≤ ΓαGRRT (kB)}
5: Outputs: True support estimate ŜB = SkGRRT

OMP .
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Figure 6.2: PCMS vs SNR (dB) for N = 150, p = 1000, L = 5, LB = 10 and
KB = 4.

Figure 6.3: PCMS vs N for SNR = -4 dB, p = 2000, L = 5, LB = 10 and KB = 4.

value the performances of all the methods decline. Thus, an increase in the block
length causes a decrease in the performance and vice-versa given that N and L are
constants. The reason for this can be attributed to the fact that as LB increases,
the number of true parameters to be estimated also grows large. However, since
the total number of available measurements is constant, this produces a higher
estimation error. Furthermore, a higher value of LB lowers the sparse nature of the
parameter matrix causing enhanced error in the recovery process. This is reflected
in the behaviour of the oracle, which also suffers at higher LB values and has a
slower convergence to PCMS=1.
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L
B
 = 5

L
B
 = 20

Figure 6.4: PCMS vs SNR for N = 150, p = 1000, L = 5, and KB = 4.

L = 5

L = 15

Figure 6.5: PCMS vs SNR for N = 150, p = 1000, LB = 10, and KB = 4.

Fig. 6.5 shows the PCMS vs SNR for two different values of L, i.e., L = 5
and L = 15. In this case, the behaviour is contrary to that of changing LB , and
the performances of all the methods improve as L grows large. This is precisely
because, with each increase in L, the net measurement sample size grows as N ×L.

6.5 Summary

In this chapter, we have extended the EBICR to handle model selection in the block-
sparse linear regression. A generalized method is developed that is applicable to all
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forms of the linear regression structure such as SMV, BSMV, MMV, and BMMV.
The steps to arrive at the criterion are shown in detail. Simulation results show
that EBICR is an empirically consistent criterion as N → ∞ and/or SNR → ∞.
Furthermore, we also underline the manner in which the parameters L and the
block length LB affect the model selection performance.



Chapter 7

Conclusion and Future Work

“Nothing in life is to be feared, it is only to be understood.”
—Marie Curie (1867–1934)

Robust methods are desired in every field of science and technology. In this PhD
thesis, we reviewed the classical model selection (MS) problem in linear regres-

sion focusing more on the high-dimensional (HD) setting. The primary motivation
was to develop robust methods of MS that are consistent in large sample sizes and
high-SNR scenarios, and are also invariant to any data-scaling. These properties
are desired in any MS method.

We started the journey by developing a MS method based on the hypothesis
testing framework called Multi-Beta-Test (MBT). MBT was proposed as a response
to deal with the drawback of classical hypothesis testing to handle model selection
in a high-dimensional setting employing greedy methods for predictor selection.
MBT is specially tailored for this purpose. To perform MS it is combined with a
predictor selection algorithm such as OMP that generates a monotonic sequence of
the predictor indices in the order of decreasing significance. Using relative least-
square cost between successive models as the test statistic, MBT keeps picking
models step by step with increasing dimension and stops when the test fails. The
order at which the test stops is the estimated true sparsity of the linear regression
model. However, MBT has some drawbacks. In its current form, MBT cannot
be applied to predictor or subset selection algorithms that generate non-monotonic
indices such as LASSO. Hence, it is limited by its choice of predictor selection
algorithms. Secondly, MBT is quite sensitive to the tuning parameter β that needs
to be chosen beforehand to evaluate the threshold. For β < 1, MBT will not achieve
consistency as N →∞ or σ2 → 0.

In the next phase of the thesis, the focus is diverted to the information criterion
(IC) based approaches for MS. We re-investigate the popular Bayesian IC (BIC),
particularly the high-SNR forms of the BIC. These high-SNR forms were proposed
to make BIC consistent as σ2 → 0. However, it was discovered that the high-

111
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SNR forms were not invariant to data-scaling and their behavior fluctuates under
different scaling conditions. This is not a desirable property of any MS criterion.
To eliminate the data-scaling problem, we proposed BIC-Robust or BICR. BICR

completely alleviates the data-scaling problem. Also, it is a consistent estimator of
the true model order as N → ∞ or SNR→ ∞. This is further verified from the
analytical proofs that guarantee the consistency of BICR.

A natural extension of BICR to deal with the HD situation led to the develop-
ment of extended BICR (EBICR). EBICR can be seen as a successor to EBIC and
EFIC. EBIC is inconsistent in the high-SNR scenarios when N is small. EFIC on
the other hand is not invariant to data-scaling. EBICR alleviates both these issues
which makes it a more robust MS method. We investigate the behaviour of EBICR

as N →∞ and σ2 → 0 under the assumption that p grows with N as p = Nd where
d > 1 is some constant. In both cases, it was shown that EBICR can precisely pick
the true model with the correct detection probability approaching one.

In the final phase of the thesis, the newly developed EBICR was generalized to
perform MS in the general linear regression framework that may possess a block
structure where the non-zero entries of the parameter matrix occur in blocks or
groups. A block-sparse nature of the linear model is assumed under the HD setting.
The fundamental derivation procedure of the EBICR for the block-sparse model is
very similar to the original EBICR but it takes the block nature of the linear model
into account. The generalized EBICR can be employed for MS in all the different
forms of the linear regression scenarios, viz., SMV, MMV, BSMV, and BMMV.
Thus making it a versatile MS criterion that is also consistent and scale-invariant.

7.1 Future Work

1. In the thesis, the proposed methods BICR and EBICR relies on the assump-
tion that the design matrix obeys N−1(AT

IAI) → O(1) as N → ∞. This is
indeed quite generally true in many situations but does not hold valid in all
cases. The fundamental issue is how to handle MS in that situation and if it
is possible to generalize the proposed method such that it caters to all forms
of the design matrix.

2. The entire thesis deals with only linear models which are widely used but
also limiting to some extent. Most real-world data nowadays may require
non-linear modeling. However, model selection in the non-linear setting is a
much more challenging and difficult problem. As such, developing robust MS
approaches for non-linear systems is a very interesting direction to look at.

3. Today machine learning methods are at the forefront of all important applica-
tions. Can we employ machine learning approaches to perform MS. What are
the challenges and drawbacks in this regard? This can be a very intriguing
topic of investigation.
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[77] N. Meinshausen and P. Bühlmann, “High-dimensional graphs and variable
selection with the lasso,” The annals of statistics, vol. 34, no. 3, pp. 1436–
1462, 2006.

[78] R. R. Picard and R. D. Cook, “Cross-validation of regression models,” Journal
of the American Statistical Association, vol. 79, no. 387, pp. 575–583, 1984.

[79] P. B. Gohain and M. Jansson, “Scale-invariant and consistent Bayesian in-
formation criterion for order selection in linear regression models,” Signal
Processing, p. 108499, 2022.

[80] B. Laurent and P. Massart, “Adaptive estimation of a quadratic functional
by model selection,” Annals of Statistics, pp. 1302–1338, 2000.



REFERENCES 119

[81] H. Landau, “Necessary density conditions for sampling and interpolation of
certain entire functions,” Acta Mathematica, vol. 117, pp. 37–52, 1967.

[82] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: Com-
pressed sensing for analog signals,” IEEE Transactions on signal processing,
vol. 57, no. 3, pp. 993–1009, 2009.

[83] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-nyquist sampling
of sparse wideband analog signals,” IEEE Journal of selected topics in signal
processing, vol. 4, no. 2, pp. 375–391, 2010.

[84] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, “Recovering sparse signals
using sparse measurement matrices in compressed dna microarrays,” IEEE
Journal of Selected Topics in Signal Processing, vol. 2, no. 3, pp. 275–285,
2008.

[85] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a structured
union of subspaces,” IEEE Transactions on Information Theory, vol. 55,
no. 11, pp. 5302–5316, 2009.

[86] Y. C. Eldar and H. Rauhut, “Average case analysis of multichannel sparse re-
covery using convex relaxation,” IEEE Transactions on Information Theory,
vol. 56, no. 1, pp. 505–519, 2009.

[87] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Uncer-
tainty relations and efficient recovery,” IEEE Transactions on Signal Pro-
cessing, vol. 58, no. 6, pp. 3042–3054, 2010.

[88] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solu-
tions to linear inverse problems with multiple measurement vectors,” IEEE
Transactions on Signal Processing, vol. 53, no. 7, pp. 2477–2488, 2005.

[89] J. Chen and X. Huo, “Theoretical results on sparse representations of
multiple-measurement vectors,” IEEE Transactions on Signal processing,
vol. 54, no. 12, pp. 4634–4643, 2006.

[90] Y. C. Eldar and M. Mishali, “Block sparsity and sampling over a union of sub-
spaces,” in 2009 16th International Conference on Digital Signal Processing,
pp. 1–8, IEEE, 2009.

[91] P. G. Casazza and G. Kutyniok, “Frames of subspaces,” Contemporary Math-
ematics, vol. 345, pp. 87–114, 2004.

[92] Y. M. Lu and M. N. Do, “Sampling signals from a union of subspaces,” IEEE
Signal Processing Magazine, vol. 25, no. 2, pp. 41–47, 2008.

[93] T. Blumensath and M. E. Davies, “Sampling theorems for signals from the
union of finite-dimensional linear subspaces,” IEEE Transactions on Infor-
mation Theory, vol. 55, no. 4, pp. 1872–1882, 2009.



120 REFERENCES

[94] Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant spaces,”
IEEE Transactions on Signal Processing, vol. 57, no. 8, pp. 2986–2997, 2009.

[95] K. Gedalyahu and Y. C. Eldar, “Time-delay estimation from low-rate sam-
ples: A union of subspaces approach,” IEEE Transactions on Signal Process-
ing, vol. 58, no. 6, pp. 3017–3031, 2010.

[96] S. Kallummil and S. Kalyani, “Generalized residual ratio thresholding,” Sig-
nal Processing, vol. 197, p. 108531, 2022.

[97] J. W. Choi and B. Shim, “Detection of large-scale wireless systems via sparse
error recovery,” IEEE Transactions on Signal Processing, vol. 65, no. 22,
pp. 6038–6052, 2017.

[98] S. Aviyente, “Compressed sensing framework for eeg compression,” in 2007
IEEE/SP 14th workshop on statistical signal processing, pp. 181–184, IEEE,
2007.

[99] T. Kronvall, S. I. Adalbjörnsson, S. Nadig, and A. Jakobsson, “Group-sparse
regression using the covariance fitting criterion,” Signal Processing, vol. 139,
pp. 116–130, 2017.

[100] I. Fedorov, R. Giri, B. D. Rao, and T. Q. Nguyen, “Robust bayesian method
for simultaneous block sparse signal recovery with applications to face recog-
nition,” in 2016 IEEE International Conference on Image Processing (ICIP),
pp. 3872–3876, IEEE, 2016.

[101] P. B. Gohain and M. Jansson, “Robust information criterion for model se-
lection in sparse high-dimensional linear regression models,” arXiv preprint
arXiv:2206.08731, 2022.

[102] P. B. Gohain and M. Jansson, “New improved criterion for model selection
in sparse high-dimensional linear regression models,” in ICASSP IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5692–5696, 2022.

[103] J.-F. Determe, J. Louveaux, L. Jacques, and F. Horlin, “On the exact re-
covery condition of simultaneous orthogonal matching pursuit,” IEEE Signal
Processing Letters, vol. 23, no. 1, pp. 164–168, 2015.

[104] H. Li, L. Wang, X. Zhan, and D. K. Jain, “On the fundamental limit of
orthogonal matching pursuit for multiple measurement vector,” IEEE Access,
vol. 7, pp. 48860–48866, 2019.

[105] J. Wen, H. Chen, and Z. Zhou, “An optimal condition for the block orthogonal
matching pursuit algorithm,” IEEE Access, vol. 6, pp. 38179–38185, 2018.



REFERENCES 121

[106] Y. Shi, L. Wang, and R. Luo, “Sparse recovery with block multiple measure-
ment vectors algorithm,” IEEE Access, vol. 7, pp. 9470–9475, 2019.

[107] P. Pal and P. Vaidyanathan, “Pushing the limits of sparse support recov-
ery using correlation information,” IEEE Transactions on Signal Processing,
vol. 63, no. 3, pp. 711–726, 2014.

[108] X. Lv, G. Bi, and C. Wan, “The group lasso for stable recovery of block-sparse
signal representations,” IEEE Transactions on Signal Processing, vol. 59,
no. 4, pp. 1371–1382, 2011.




