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Time-adaptive Expectation Maximization
Learning Framework for HMM based
Data-driven Gas Sensor Calibration

Yang You, Student Member, IEEE, and Tobias J. Oechtering, Senior Member, IEEE

Abstract— In this paper, data-driven self-calibration al-
gorithms for the low-cost gas sensors are designed. The
sensor measurement errors happen due to the imperfect
compensation for the variation of sensor component be-
havior that is caused by changing of environmental fac-
tors. To calibrate the sensors, the hidden Markov model is
utilized to characterize the statistical dependency between
the environmental factors and the variation of sensor com-
ponent behavior. Considering the time-varying property of
this dependency, a time-adaptive learning framework is
further designed to update the hidden Markov model so that
the time-varying drift process can be better tracked over
a long term. More specifically, a time-adaptive expectation
maximization learning approach is proposed to efficiently
update the hidden Markov model parameters. A closed
form of the convergence rate of this time-adaptive learning
approach is derived, which provides a theoretical guaran-
tee on the time efficiency as well as the computational
efficiency. The performance of the scheme is illustrated in
numerical experiments utilizing real data, which shows that
long-term stable calibration performance can be achieved.

Index Terms— Data-driven calibration, hidden Markov
model, expectation maximization, NDIR gas sensor.

I. INTRODUCTION

IN recent years, there has been a growing interest in
deploying Internet of Things (IoT) systems for gas con-

centration monitoring [1]–[4]. In particular, carbon dioxide
(CO2) sensors are essential for monitoring the greenhouse
effect. Monitoring of gas concentrations requires measurement
of the gas sensors to be sufficiently accurate over long term.
To keep the costs low, one often includes components that
have unknown dependencies on external factors. This leads to
a deduction in accuracy of the sensor measurement, which is
also known as drift. In this paper, we focus on the optical
non-dispersive infrared (NDIR) gas sensor, which is one of
the most common optical gas sensors. Compared to other
sensor technologies, NDIR sensors provide high specificity,
low life-cycle cost, minimal drift, stable long-term operation
[5]. However, previous works such as [6], [7] have recognized
that NDIR sensors are sensitive to variations of temperature,
pressure, humidity and some other environmental factors,
which cannot be compensated for. Due to this, regular cali-
bration is needed for long-term accuracy of the sensors.

Y. You and T. J. Oechtering are with the School of Electrical Engineer-
ing and Computer Science, KTH Royal Institute of Technology, 100 44
Stockholm, Sweden (e-mail: youy@kth.se; oech@kth.se)

Today, the state of the art of NDIR gas sensor self-
calibration is the well-established ABC approach (Automatic
Baseline Correction), where the sensor is calibrated to a fixed
value that is assumed to be the fresh air gas concentration
[8]. However, this method does not work well in mega-cities
where the sensors never get exposed to fresh air. Furthermore,
the method cannot be used in the rapidly growing market
of environmental sensors where the baseline, or fresh air gas
concentration, is the measurement of primary interest. Thus,
designing smart and more robust calibration algorithms which
can be widely applied in different environments becomes more
and more important.

Data-driven modeling methods aim to find relationships
between system state variables without explicit knowledge
of the physical behavior of the system [9]. Research works
such as [10]–[12] have applied data-driven modeling methods
for calibration of different sensors or even sensor networks.
Meanwhile, machine learning approaches provide increasing
levels of automation and improved accuracy by discovering
and exploiting dependencies in the (training) data. Recent
research works have combined machine learning approaches to
build data-driven models [3], [13], [14]. For example, the au-
thors in [14] proposed to use the multi-layer perceptron neural
network and the extreme learning machine as two alternative
data-driven modeling approaches for the wind speed time
series prediction. In this paper, we also exploit the concept
of data-driven modeling and approaches of machine learning
to enhance the NDIR gas sensor calibration mechanism.

First, we provide a general sensing model and discussion
on the drift.The concept drift here is defined as the loss of
measurement accuracy caused by the imperfect compensations
for the environment-dependent variations of sensor compo-
nents. Note that the concepts provided in this paper are not
restricted to NDIR gas sensors only, our results can also be
applied to other sensors that fit this more general sensing and
drift model. Consider a general sensor measurement model
f that includes a normalizing factor r and the compensation
for certain environmental factors F , and further converts the
electrical signal E to a desired output O, i.e.,

O = f(r, E, F ), (1)

The behavior of the sensor components varies according to
the environmental factors, which will cause an accuracy loss
of the converted electrical signal E. Since the model f usually
cannot fully capture the dependency between the behavior
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of the sensor components and the environmental factors, one
possible idea for calibration is to adjust the normalizing factor
r according to the changes of the environmental factors F so
that the remaining imperfections of the model f for capturing
F are compensated. In the following, we call the normalizing
factor r as calibration parameter, and we call the calibration
parameter that perfectly compensates the imperfect model f
as true calibration parameter.1

To calibrate NDIR sensors with the above sensing model,
previous work [15] proposes to build a hidden Markov model
(HMM) between observed sensor measurements sequence,
observed environmental factor sequences, and the sequence of
the true calibration parameter. The true calibration parameter
is later estimated by using statistical inference tools from the
standard HMM framework. Since a reference measurement is
usually not available, expectation maximization (EM) based
unsupervised learning approach is further proposed to deal
with the unlabelled dataset, where only the sensor measure-
ments and the environmental factors can be observed while
the values of true calibration parameter are missing. However,
the HMM proposed in [15] is a deterministic model that is
trained by using a dataset collected from a short term. This
model can only guarantee its prediction accuracy within a short
period instead of a long term, since the dependency between
the behavior of the sensor components and the environmental
factors varies as time evolves. To tackle this issue, previous
work [16] implemented the regular re-calibrations mostly
using remote reference stations data during operating phase.
In our work, also utilizing the re-calibration idea, we propose
a time-adaptive learning framework that can better track and
update the HMM in the absence of the reference sensors.

The problem of time-varying model tracking has been re-
cently widely studied in different areas, e.g.,wireless commu-
nication channel [17], or an alarm system [18]. When tracking
the time-varying model, one usually aims to learn (estimate)
the time-varying model parameters. Bayesian filtering, such
as the Kalman filtering and the particle filtering, is one of
the most effective techniques for parameter estimation of
time-varying processes, and has been widely applied [19]–
[21]. This kind of approach usually requires the underlying
system dynamical model to be built on some deterministic
functional relationships (either linear or non-linear) perturbed
by Gaussion noise. However, for the above sensing model, we
only have the deterministic mapping f regarding the measure-
ment model, while the transition model of the true calibration
parameter is unknown. In this case, we use the HMM as
general probabilistic model to characterize the transition of
the true calibration parameter. In this work, we extend this
HMM based approach to a time-adaptive calibration scheme
to guarantee its performance over the whole lifetime of the

1Please note that the model f can also be seen as calibration model since
it also includes a calibration parameter r and the compensation for the certain
environmental factors F . However, the calibration step proposed in this work
is to adjust the calibration parameter r to compensate for the remaining
imperfection of f when taking care of the environmental response drivers. To
this end, we propose to learn a stochastic model that characterizes the missing
environment-dependency of calibration parameter r. As a differentiation, this
stochastic model is called calibration model and the original model f is called
sensing model.

sensor.
When designing such a time-adaptive calibration scheme,

two main challenges need to be addressed. The first challenge
is about the data storage. As time evolves, the size of the
dataset also grows. It however would be inefficient to store
all data samples and re-train the HMM each time using all
historical data samples. The other challenge is about the
computational load. As the dataset grows, re-training the
HMM using large amount of data would be computationally
complex and time-consuming. Additionally, as the EM algo-
rithm already takes time to converge, it would be even more
critical when the underlying stochastic process of the target
model is varying rapidly and the re-training procedure needs
to be done with high frequency. Fortunately, the concept of
transfer learning [22] can help to address those challenges by
storing knowledge gained from previous learning and applying
it to a different but related target. Recent works such [23]
and [24] have applied the transfer learning based approaches
to track the time-varying drift of different sensors. Inspired
by this transfer learning concept, we design a time-adaptive
EM algorithm to learn (estimate) the time-varying HMM
parameters. In more details, since the statistical properties
of the current drift process of the NDIR sensor are mainly
characterized by the recently collected data samples, we only
store the recently collected data samples and perform the
EM algorithm based on this relatively small dataset. The
’old’ data samples are discarded, while the HMM parameters
that are learned during the last training phase (knowledge
about the previous target model) are recorded and act as the
initilization of the EM algorithm in the current training phase.
moreover, a closed form expression of the convergence rate of
such modified EM algorithm is further derived given certain
assumptions, which guarantees a faster convergence speed on
average compared to running the EM algorithm with a random
initialization. Accordingly, the contributions of this paper can
be summarized as follows.

• We propose a time-adaptive EM framework to update
the HMM calibration model for the type of sensors with
a sensing model as described in (1), where the time-
varying drift process of the sensors can be well tracked
by updating the calibration model over time.

• By training the model with recently collected data only,
the designed approach significantly improves the storage
efficiency and thereby avoids a big data problem.

• We extend the convergence rate of general EM algorithm
[25] to the case where the EM is applied to learn HMM
parameters. In particular, the closed form expression of
the convergence rate of our proposed time-adaptive EM
algorithm is derived, which provides a theoretical guar-
antee on the time efficiency as well as the computational
efficiency of our proposed algorithm.

II. PRELIMINARIES

A. Expectation maximization

In this section as well as the rest of the paper, for reason of
simplicity, we restrict all the relevant variables in our proposed
model to lie in finite discrete spaces. Given the observed
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data sequence ȳ, the main idea of EM algorithm is to find
parameters λ ∈ Λ to maximize the log-likelihood lnP (ȳ|λ).
Equivalently, we can find parameters λ ∈ Λ to maximize the
following log-likelihood written in terms of the missing data
(or latent variable) X

λ̂ = argmax
λ∈Λ

ln
∑
x∈X

P (ȳ, x|λ), (2)

where x denotes the missing data sequence and X denotes the
missing data set. Let λn be the estimate of the parameters at
the n-th iteration and define the following Q-function

Q(λ|λn) =
∑
x∈X

lnP (ȳ, x|λ)P (x|ȳ, λn). (3)

According to the Jensen’s inequality [26], we can get the
following lower bound on lnP (ȳ|λ).

ln
∑
x∈X

P (ȳ, x|λ) ≥ Q(λ|λn) +H(X|ȳ, λn), (4)

where H(X|ȳ, λn) denotes the conditional entropy of missing
data (or latent variable) X given observed data sequence ȳ and
the current parameter estimate λn. With the above definitions,
the parameter is updated according to the following in an
iteration of EM algorithm.

λn+1 = argmax
λ∈Λ

Q(λ|λn). (5)

Assuming that the sequential parameter estimates are
{λ1, λ2, ..., λn, λn+1, . . . }, the parameter estimates are up-
dated until

logP (ȳ|λn+1)− logP (ȳ|λn)

logP (ȳ|λn)
< γ, (6)

where the threshold γ is a small positive number.

B. HMM basics
Let {Xt}Tt=1 denote the stochastic process that describes

the hidden states, where Xt ∈ X = {xi}i=K
i=1 . Also denote

{Yt}Tt=1 as the stochastic process of the observations of the
HMM, where Yt ∈ Y = {yj}j=M

j=1 . An HMM can be fully
characterized by (i) transition probability Xt+1 ∼ PXt+1|Xt

;
(ii) emission probability Yt ∼ PYt|Xt

; (iii) prior distribution
X0 ∼ PX0

. For compactness, we denote the transition prob-
ability PXt+1|Xt

(xi′ |xi) as Aii′ . The corresponding transition
probability set is defined as A = {Aii′}i,i′ . Likewise, the
emission probabilities are denoted by Bi(j) = PYt|Xt

(yj |xi),
where the corresponding emission probability set is defined as
B = {Bi(j)}i,j . Lastly, we define πi = PX0(xi), π = {πi}i,
as the initial prior distribution of the hidden state. In this
case, the parameter λ = {π,A,B} can fully characterize the
statistics of our HMM. And the learning of HMM is equivalent
to learning the above parameters.

C. Expectation Maximization on HMM
Given the current estimate of HMM parameters λ′ =
{π′, A′, B′} and the observation sequence ȳ, define the fol-
lowing factorization for P (ȳ, x|λ)

P (ȳ, x|λ) = πx0

T∏
t=1

Axt−1xtBxt(ȳt). (7)

Gas in Gas out

Optical filter DetectorIR lamp

Fig. 1: Generic working mechanism of NDIR sensor. There are
three essential components for NDIR sensing: IR light source,
optical filter, and IR light detector. Light from the infrared
lamp is absorbed by gas particles in the tube. The intensity of
remaining light is measured which provides information about
the gas concentration.

Plugging (7) into (3) and solving the optimization problem
(5) will lead to the well-known Baum-Welch algorithm, more
details can be found in [27].

III. DATA-DRIVEN CALIBRATION FOR NDIR SENSORS

A. NDIR Sensor Drift Model
The general operation principle of an NDIR sensor is illus-

trated Fig. 1, more details can be found in previous works [15]
and [28]. In this work, we focus on the CO2 NDIR sensors
for which the temperature dependency is the most dominant
effect on the sensor components behavior [7]. Accordingly,
the sensor model that is built on the Beer-Lambert law [29]
can be described as

l = g(r, i, c), (8)

where c denotes the temperature, i is the current received
by the detector, and r stands for the calibration parameter
of the NDIR CO2 sensor. The function g(·) describes the
NDIR CO2 sensor physical model that maps (r, i, c) onto
the CO2 concentration level l. However, the mapping g does
not perfectly capture the dependency between the behavior
variation of infrared light and the temperature. As previously
proposed, we want to adjust the calibration parameter r to
its true value q so that imperfections of the mapping g are
compensated. To model the remaining uncertainties of the
above quantities during the operating period of the sensor,
we define random variables for these corresponding quantities.
Specifically, we use C, L, and Q to denote the corresponding
random variables of the environmental temperature, the CO2

measurement, and the true calibration parameter.

B. HMM based Stochastic Modeling of NDIR Sensor
Drift Process

We use the same HMM framework as proposed in [15]
and [28] to jointly model the statistical relationship between
observed sensor measurements sequence, observed environ-
mental temperature sequences, and the sequence of true cali-
bration parameter. This stochastic model is designed to capture
the aforementioned dependency between the behavior of the
sensor components and the temperature. The calibration of
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a single sensor is achieved by inferring the true underlying
calibration parameter using Viterbi decoding [27].

In more details, let ∆t = Ct − Ct−1 denote the change
of temperature between two consecutive sampling instances,
we define the two-dimensional hidden state as the pair of
true calibration parameter and temperature change, i.e., Xt =
(Qt,∆t).2 On the other hand, we define the noisy sensor
measurement as the observation of our proposed HMM, i.e.,
Yt = Lt.

Remark 1: To make sure that the hidden states proposed
above fit into the basic HMM framework as defined in Section
II-B, we need to quantize the true calibration parameter and
the temperature change to different finite sets. More details
regarding the quantization scheme can be found in papers
[15] and [28]. The quantization of the continuous hidden state
space will lead to a decrease in the model accuracy. On the
other hand, it is also not a desirable to introduce more hidden
state levels, i.e., a higher quantization resolution for the true
calibration parameter, since the more hidden states we have
the more complex will be the training process. The study of
the trade-off between model accuracy and training complexity
is beyond the scope of this paper.

After fitting the NDIR sensor drift process into such an
HMM model, the next step is to learn the corresponding
HMM parameters as defined in Section II-B. In this paper, we
focus on the EM based unsupervised approach. However, the
underlying dependency between the NDIR sensor components
behavior and the temperature varies over time. Thus, to
maintain a good model performance, the HMM should always
be improved by re-training combing recently incorporated
data samples. But this will further raise the issue regarding
the computational efficiency and storage efficiency that when
mentioned before. To address this, we next propose a time-
adaptive EM learning framework that can efficiently update
the HMM according to the variation of the target model.

IV. PROPOSED METHOD

A. Time Adaptive HMM: Motivation and Justification

In this section, we consider the time-adaptive EM-based
HMM parameters updating problem. In particular, we consider
the scenario where the underlying stochastic process of the
target model is non-stationary. Thus, the model parameters
need to be always updated to avoid the model becoming
out-of-date after a certain period, i.e., given a growing time
series that contains data samples generated by a non-stationary
stochastic process, we wish to learn the parameters that can
accurately characterize the statistical properties of the current
target model. In the following, we first provide a condition
that can be used to justify if the model is out-of-date.

Definition 1: Let λold be the parameter which is most
recently trained by a data sample sequence of length L. At
time step t, assume λt∗ is the optimal parameter of the
current underlying model, i.e., the parameter that can the

2Previous experimental studies [7] with the actual NDIR CO2 sensor
data showed that it is sufficient to include only the temperature change
to characterize the temperature dependency of the transition of the true
calibration parameter.

accurately characterize the statistical properties of the current
target model. λold is then considered to be out-of-date at time
step t if the following condition is satisfied

lnP (ȳt|λt∗)− lnP (ȳt|λold) ≥ ω, (9)

where ȳt = [yt−L+1, yt−L+2, . . . , yt].
Once condition (9) is satisfied, the model parameter should

be updated with the re-training process using the new dataset
that incorporates recently collected data samples. Due to
the issue of computational efficiency and time efficiency, a
time-adaptive scheme should be designed to guarantee a fast
convergence for the EM algorithm when re-train the model
over time. According to [27], an appropriate initialization that
fits the underlying model would result in a fast convergence of
the EM algorithm. Thus, we next propose a time-adaptive EM
algorithm, where the first iterate of each model updating phase
is initialized as the learned HMM parameters from last model
updating phase. In the following, we first provide details on
our designed time-adaptive EM algorithm, and we will further
provide the corresponding convergence rate for the proposed
algorithm under certain assumptions.

B. Time-adaptive EM Algorithm Design
Let p = [1, 2, 3, ...,∞) be the index of of model training

phases. At phase p = 1, we train the HMM model for the
first time according to the standard procedure of Baum-Welch
algorithm with a randomly selected initial HMM parameter
estimate λ1

0 ∈ Λ. For phase p ≥ 2, let λp be the HMM
parameters learned from phase p, the HMM model is also
trained by using Baum-Welch algorithm but with the initial
parameter estimate selected as λp

0 = λp−1, i.e., we use the
HMM parameters learned from the previous training phase as
initialization for the current training phase. The corresponding
algorithm design is summarized into the following.

Algorithm 1: Time-adaptive EM algorithm for unsu-
pervised HMM model updating

1: Initialization:
The initial model updating phase index p = 1, the
threshold value γ, and a randomly selected initial
parameter estimate λ̂1

0 ∈ Λ for phase p = 1. Learn the
HMM parameters λ1 by following the standard
procedures of Baum-Welch algorithm.

2: for p ≥ 2 do
3: Initialize the parameter estimate as λ̂p

0 = λ̂p−1. And
the HMM parameters λ̂p for phase p are learned
according to the procedures of Baum-Welch algorithm

4: p← p+ 1
5: end for

We next provide the convergence results of the above
algorithm in each model training phase. For p ≥ 2, denote
yp−1 and yp as the observation sequences in two consecutive
training phases. Also, let Xp−1 and Xp be the stochastic
vectors that describe the hidden state sequences during phase
p − 1 and p, and denote their corresponding realizations as
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xp−1 and xp. In phase p, we wish to find the HMM parameters
λ ∈ Λ that maximizes the likelihood in (2), i.e.,

λ̂ = argmax
λ∈Λ

ln
∑

xp∈Xp

P (yp, xp|λ), (10)

where X p denotes the feasible set for the hidden state se-
quences during phase p. Correspondingly, given any parameter
estimate λ′, the Q-function then becomes

Q(λ|λ′) =
∑

xp∈Xp

lnP (yp, xp|λ)P (xp|yp, λ′). (11)

The EM algorithm then requires to optimize the above Q-
function in each iteration. With the pre-defined HMM param-
eters, we have

P (yp, xp|λ) = πxp
0

T∏
t=1

Axp
t−1x

p
t
Bxp

t
(ypt ). (12)

Plugging the above equation into (11), we have the following
lemma.

Lemma 1: With the factorization defined in (12), the Q-
function defined in (11) can be re-written as

Q(λ|λ′) = ⟨lnλ, P⃗ ⟩, (13)

where ∀i, k ∈ [1 : K], j ∈ [1 : M ], there is

λ = [{πi}i, {Aii′}i,i′ , {Bi(j)}i,j ], (14)

and

P⃗ =

 {P (yp, Xp
0 = i|λ′)}i

{
∑T−1

t=1 P (yp, Xp
t−1 = i,XP

t = i′|λ′)}i,i′
{
∑T

t=1 Iyp
t
(j)P (yp, Xp

t = i|λ′)}i,i′ ,

 (15)

where I is the indicator function, i.e., Iyp
t
(j) = 1, if ypt = j,

Iyp
t
(j) = 0, otherwise.

Proof: By plugging (12) into (11), the Q-function can
be decomposed as

Q(λ|λ′) =

K∑
i=1

lnπiP (yp, Xp
0 = i|λ

′
)

+

K∑
i=1

K∑
k=1

T−1∑
t=1

lnAikP (yp, Xp
t−1 = i,Xp

t = k|λ
′
)

+

K∑
i=1

M∑
j=1

T∑
t=1

lnBi(j)Iyp
t
(j)P (yp, Xp

t = i|λ
′
).

(16)
The above equation can be easily verified to be the inner
product between the vector lnλ and the vector P⃗ .

Before we present the convergence results, we first make
state on the following assumptions.
Assumption 1: There exists some statistical similarities or
correlations between the complete dataset during phase p− 1
and p, i.e.,

lnP (yp|λp∗
)− lnP (yp|λp−1) ≤ ϵ, (17)

where ϵ is a relatively small positive constant and λp∗
denotes

the optimal HMM parameters for phase p.

Remark 2: Equations (9) and (17) imply that the model
should neither be updated when the underlying stochastic
process has varied too much nor be updated when there is
no obvious variation for the underlying stochastic process.

Remark 3: To make sure the statement in Remark 1 holds
for any training phase p, one should frequently check if the
following condition holds given any time step t

ω ≤ lnP (ȳt|λt∗)− lnP (ȳt|λold) ≤ ϵ. (18)

Notice that the optimal parameter λt∗ at time t is unknown. In
this case, we need to get the estimated optimal parameter λ̂t∗

by re-training the model using a new dataset that incorporates
recently collected data points around time t, and evaluate the
value of lnP (ȳt|λ̂t∗)− lnP (ȳt|λold) instead.

However, repeating this process to check if the model is out-
of-data is not only time-consuming but also computationally
inefficient, i.e., time and computational resources would be
wasted if (18) turns out to be not true thus model updating is
not necessary. As an alternative, we propose a time-adaptive
scheme that can regularly update the model parameters. Under
such a scheme, the model parameters are updated with fixed-
length intervals, where the above inequality can be used to
determine the appropriate time interval length.3

Assumption 2: Given any HMM parameters λ′ ∈ Λ, all
elements in vector P⃗ are lower bounded by a positive number
η.

With the above definitions and assumptions, we summarize
the convergence results for our proposed algorithm into the
following theorem.

Theorem 1: If the HMM parameters for each single sensor
are updated according to Algorithm 1, then in any model up-
dating phase p the HMM parameter estimate λp

n will converge
according to the following rate.

min
n∈{1,2,...,k}

∥∥λp
n − λp

n−1

∥∥2 ≤ 2ϵ

ηk
, (19)

where k denotes the number of iterations that has been ran in
phase p.

Proof: The proof is presented in Appendix A.
Corollary 1: Even if Assumption 2 cannot be satisfied, by

adding a strongly convex regularizer µ
2 ∥λ∥

2
2 , µ > 0 to the

Q-function, one could still achieve the following convergence
rate

min
n∈{1,2,...,k}

∥∥∥λ̂p
n − λ̂p

n−1

∥∥∥2 ≤ 2ϵ

µk
, (20)

where α is a positive number.
Proof: The proof is presented in Appendix B.

Remark 4: Generally, the smallest element in P⃗ could be
0. For such cases, we could still achieve the convergence rate
in (20) by maximizing the regularized Q-function Q(λ|λ′

)−
µ
2 ∥λ∥

2
2 in each EM iteration.
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Predicted CO2 concentration levels using the initial HMM compared with the true CO2 concentration levels for 6
different 20-days periods within 2018.09-2019.03.

Fig. 2: Accurate prediction for 20 days immediately after the
initial training phase.

V. NUMERICAL RESULTS

In this section, we present numerical results of our proposed
calibration framework. The experiments are carried out based
on the data collected from the sensors integrated at the air
quality monitoring station in Düebendorf in Switzerland.4 The
dataset contains data collected from 18 low-cost Senseair
LP8 NDIR CO2 sensors, and a high-accuracy CO2 reference
sensor over a period from 2017 to 2019.

3This fixed length can also be decided by visualizing the real problem
performance, e.g., use the recently trained HMM parameter to perform the
Viterbi decoding on different parts of the time-series, and decide on an
appropriate interval length based on the decoding accuracy. More details on
this method will be illustrated later in the numerical results section.

4The data is provided by EMPA and Decentlab.

TABLE I: Quantization of ∆t.

Interval Level Interval Level
(−∞,−0.2) 1 (0.2,+∞) 2
[−0.2, 0.2] 3

A. Prediction Using the Fixed HMM
We first use the data collected from January 2018 to August

2018 to initially train the HMM.5 In more details, the training
data sequence is generated by sampling the original data
sequence with 1 hour interval so that the length of training
data sequence is 6000. We restrict that the possible CO2 con-
centration levels and the true calibration parameter can only
take integer values and lie in the range [300ppm, 600ppm],
and [12400, 13000] respectively. We further round the true
calibration parameter to values 12400 : 5 : 13000, which is
121 different integer levels in total. Besides, we quantize the
temperature change ∆t into three different levels as shown
in Table I. The initial HMM is trained by applying the EM
algorithm with a random initialization using the above training
dataset. By utilizing the Viterbi decoding, the predicted CO2

concentration levels (derived by calculation based on (8) using
the predicted true calibration parameter) in the next 6 months
are compared with the reference values.

The immediate prediction result is shown in Fig. 2. As
we can seen from the figure, the accuracy of the immediate
prediction is quite high since the model is up-to-date and

5Due to the shut down of devices or some other unpredictable reasons, the
whole dataset contains large parts of missing data samples. Thus, we select the
data sequence within this range to avoid having long missing data sequence
included.
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Predicted CO2 concentration levels using the updated HMM compared with the true CO2 concentration levels for 3
different 20-days periods within 2018.11-2019.03. The scatter plots are provided based on 20 consecutive samples randomly
selected from different periods.
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Fig. 4: Evaluation of log-likelihood differences at different
time steps.

the HMM parameters can accurately characterize the current
drift process. However, as the time evolves, the calibration
performance degrades. As we can see from Fig. 3(a), the
prediction accuracy starts to decrease at the end of that phase,
which is around one month after the initial HMM has been
trained. Meanwhile, as we can see from the other plots in
Fig. 3, the calibration performance keeps degrading as time
evolves, which means the initial HMM becomes more and
more inaccurate and is not able to characterize the later drift
processes. As it can be also seen from the plots as well as the
MSE values in Fig. 3, even though the prediction accuracy of
the initial model starts to decrease, it can still be maintained at
a certain level for around one month and not going to decrease

too much. In this case, the length of the intervals between
model updates should be chose as any duration between 1-2
months depending on the desired prediction accuracy, i.e., the
shorter the length the higher the prediction accuracy. To verify
this, we further provide a figure that shows the differences of
log-likelihood as defined in (9). Fig. 4 illustrates the variation
of the differences lnP (ȳt|λ̂t∗)−lnP (ȳt|λold) at different time
steps after the initial training phase, where the estimate of
the current optimal parameter λ̂t∗ is learned by utilizing the
training dataset that builds on 3000 consecutive data samples
before the current time step. As we can see from the figure,
the difference of the log-likelihood has an obvious increase
between 20-40 days and keeps increasing afterwards. This
coincides with the conclusion we draw by visualizing the
prediction accuracy in Fig. 3 and shows that the initial HMM
becomes more and more inaccurate. Combining Fig.3 and
Fig. 4, we can also determine possible values of ω and ϵ
for our time-adaptive algorithm, e.g., update the model when
2000 ≤ lnP (ȳt|λt∗)− lnP (ȳt|λ) ≤ 4000.

B. Prediction Using the Time-adaptive HMM
Next, we provide results to demonstrate our proposed al-

gorithm. After the initial HMM has been trained, we re-train
the model after every 30 days using 3000 consecutive data
samples before that re-training time step. And the initialization
of the EM algorithm in each re-training phase is set as the
HMM parameter that has been learned during last training
phase. The calibration performance of our proposed algorithm
is illustrated in Fig. 5. As we can see from the figure, even
though there are still few tolerable predictions errors caused
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Fig. 6: Comparison of the average convergence speed of our
proposed scheme and the benchmark scheme.

by the rough quantization as well as the imperfect training, the
prediction accuracy of our proposed time-adaptive HMM still
improves significantly compared to the prediction accuracy of
using a fixed HMM that is shown in Fig. 3.

C. Convergence Analysis

Lastly, we provide simulations results illustrating the con-
vergence of our designed algorithm. The experiment is carried
out 1000 rounds, where in each round the initial HMM
is trained with a different random initialization. We further
re-train the HMM 7 times after every 30 days using our
proposed scheme and the standard EM algorithm (with a
random initialization). The convergence threshold γ in (6) is
set to be 0.0001, and the algorithm runs until (6) is satisfied
during each training phase. The average number of iterations
that is needed for convergence in each training phase for both
schemes is illustrated in Fig. 6. As it is shown in the figure,
the convergence speed of our proposed scheme significantly
improves compared to the standard EM.

VI. CONCLUSION

In this paper, we developed a time-adaptive framework to
learn parameters of a hidden Markov model used for data-
driven calibration of low costs NDIR gas sensors which drift.
The data-driven calibration routine is described by a statistical
inference problems on the hidden state that describes the
true calibration parameter. It is shown how a time-adaptive
expectation maximization learning framework that can be used
to efficiently update the hidden Markov model to track the
time-varying drift process of the sensor. Compared to the
previous works that use a fixed HMM to predict the true
calibration parameter, our proposed framework significantly
improves the prediction accuracy over the whole lifetime of
the sensors. Moreover, the designed time-adaptive learning
framework can (i) always achieve a fast convergence rate with
a relatively small training data set and (ii) allow to discard
previous measurements and thereby systematically prevents
a big data storage problem due to growing stored data for
training. This shows the great value of our designed framework

regarding data efficiency, computational efficiency, and time
efficiency.

As a future extension, one might exploit the ciclostationarity
property of the temperature variation in the re-calibration
procedure. The accuracy of the current model might benefit
from re-training utilizing the knowledge obtained from the
most recent previous model as well as the model in the same
season of the previous year. The design of a corresponding
learning algorithm that efficiently builds on two previous
models would be an interesting future research problem.
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APPENDIX

A. Proof of Theorem 1

According to [25], the EM algorithm will have the following
convergence rate in case −Q(λ|λ′) is ρ-strongly-convex.

min
n∈{1,2,...,k}

∥∥λp
n − λp

n−1

∥∥2 ≤
2(logP (yp|λp∗

)− logP (yp|λp
0))

ρk
.

(21)
Let α be any number in the set [0, 1], and λ†, λ‡ ∈ Λ. By
substituting λ with αλ† + (1 − α)λ‡ in function −⟨lnλ, P⃗ ⟩,
we have the following equation

−⟨lnλ, P⃗ ⟩ = −
L∑

l=1

P⃗l ln(αλ
†
l + (1− α)λ‡

l ), (22)

where L = N +N2 +NM is the length of vector λ and P⃗ .
Note that the HMM parameter set Λ is composed of different
permutations of different probability simplex, which is thus
a convex set. In this case, the vector αλ† + (1 − α)λ‡ also
belongs to the set Λ with each element to be within the range
[0, 1]. Given the fact that function − lnx is 1-strongly-convex
in x ∈ [0, 1], the following inequality holds

−
L∑

l=1

P⃗l ln(αλ
†
l + (1− α)λ‡

l ) ≤

− α

L∑
l=1

P⃗l lnλ
†
l − (1− α)

L∑
l=1

P⃗l lnλ
‡
l

− α(1− α)

2

L∑
l=1]

P⃗l(λ
†
l − λ‡

l )
2.

(23)
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According to Assumption 2, all elements in P⃗ are lower
bounded by η. In this case, we have

−⟨ln
(
αλ†

l + (1− α)λ‡
l

)
, P⃗ ⟩ ≤ −α⟨lnλ†, P⃗ ⟩

− (1− α)⟨lnλ‡, P⃗ ⟩ − α(1− α)η

2

∥∥∥λ† − λ‡
∥∥∥2
2
.

(24)
The above inequality shows that function −⟨lnλ, P⃗ ⟩ is η-
strongly-convex with respect to vector λ.

Plugging the above results and Assumption 1 into (21)
finishes the proof.

B. Proof of Corollary 1

In case Assumption 2 is not satisfied, all elements in P⃗
are then lower bounded by 0 instead of a positive number η,
inequality (24) then becomes

−⟨ln
(
αλ†

l + (1− α)λ‡
l

)
, P⃗ ⟩ ≤ −α⟨ lnλ†, P⃗ ⟩

− (1− α)⟨lnλ‡, P⃗ ⟩,
(25)

which indicates −⟨lnλ, P⃗ ⟩ is a convex functions. In this case,
by adding the strongly convex regularizer µ

2 ∥λ∥
2
2, function

−⟨lnλ, P⃗ ⟩ + µ
2 ∥λ∥

2
2 is then a µ-strongly-convex function

with respect to λ. the corollary holds by again plugging in
Assumption 1 and substituting ρ with µ into (21).
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