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Abstract
Generative machine learning models are capable of generating remarkably
realistic samples. Some models generate images that look entirely natural,
and others generate text that reads as if a human wrote it. However, judging
the quality of these models is a major challenge. Today, the most convincing
method is to use humans to evaluate the quality of generated samples. However,
humans are biased, costly, and inefficient. Therefore, there is a great need for
automatic methods.

MAUVE is a recent advancement in the evaluation of generative text
models. It compares generated data with real data and returns a score that
quantifies their similarity. This is accomplished with the help of a neural
network, which provides the understanding of text required to evaluate its
quality. MAUVE is motivated by its correspondence with human judgment,
and this is shown in multiple experiments.

This thesis contributes in two significant ways: First, we complement
experiments and discussions made in the original paper. Importantly, we
demonstrate that MAUVE sometimes fails to recognize quality differences
between generative models. This failure is due to the choice of neural network.
Later, we demonstrate that MAUVE can be used for more than just text
evaluation. Specifically, we show that it can be applied to images. This is
accomplished by using a neural network specialized in image recognition.
However, the steps can be repeated for any data type, meaning that MAUVE
can potentially become a more generalized measurement than suggested in the
original paper.

Our second contribution is an extension toMAUVE called Sequence-MAUVE
(S-MAUVE). The score MAUVE produces can be seen as an average of the
overall quality of generated text. However, some generative models initially
produce excellent text, but see drops in quality as the sequences grow longer.
Therefore, a single score that represents entire sequences is likely to omit
important details. Instead, S-MAUVE evaluates generated text at the smallest
possible level. The result is a sequence of scores, which give users more
detailed feedback about the behavior of a generative model.

Keywords
Generative Modeling, MAUVE, Deep Learning, GPT-2, evaluation
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Sammanfattning
Generativamaskininlärningsmodeller kan generera data av enastående kvalitet.
Vissa modeller genererar bilder av ansikten som ser helt realistiska ut, och
andra genererar text som verkar varit skriven av en människa. Trots detta så är
det inte klart hur dessa modeller ska evalueras. Idag så är den främsta metoden
mänsklig evaluering: En person får utgöra huruvida generade data verkar
realistisk eller inte. Mänsklig evaluering har flera nackdelar. Människor är
partiska, dyra och långsamma. Därför behövs det automatiska evalueringsverktyg.

MAUVE är ett ny metod för att evaluera generative textmodeller som
jämför hur lik genererad data är med äkta data. Detta åstadkoms med hjälp
av ett neuralt nätverk, som bidrar med den förståelse av text som krävs för
att evaluera den. MAUVE är motiverat av att dess omdömen överensstämmer
med mänsklig evaluering.

Den här uppsatsen bidrar på två sätt. Till att börja med komplementerar
vi experiment och diskussioner gjorda i den ursprungliga rapporten om
MAUVE. Till exempel så visar vi att MAUVE ibland inte lyckas känna av
kvalitetsskillnader mellan olika generativa modeller. Detta på grund av val
av neuralt nätverk. Efteråt så demonstrerar vi att MAUVE kan appliceras
på andra typer av data än text. Mer specifikt så applicerar vi MAUVE på
bilder. Detta åstadkoms genom att använda ett neuralt nätverk specialiserat
på bildigenkänning, istället för text. Stegen vi följer kan upprepas för vilken
typ av data som helst, vilket innebär att MAUVE kan användas som ett mer
generellt mått än vad den ursprungliga artikeln ger sken för.

Vårt andra bidrag är att utveckla MAUVE till det vi kallar för S-MAUVE.
MAUVE använder bara sammanfattningar av hela texter som bas för sina
jämförelser. En konsekvens av det är att den endast gör påståenden om
textdatas genomsnittliga kvalitet. Men, det är välkänt att kvaliteten hos
genererad textdata kan variera beroende på var i texten man befinner sig.
Många generativa textmodeller producerar sekvenser som är verklighetstrogna
i början, men blir sämre och repetitiva senare. Till skillnad från MAUVE så
evaluerar S-MAUVE genererad text på minsta möjliga detaljnivå. Resultaten
är en sekvens av poäng, som ger användare mer information om egenskaperna
hos den studerade generativa modellen.

Nyckelord
Generativ modellering, MAUVE, Djupinlärning, GPT-2, evaluering
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Chapter 1

Introduction

Generativemodeling is one of themost fundamental tasks inmachine learning.
While one of its main applications is the generation of realistic data, like in
Figure 1.1, it is far from the only one. To generate realistic data, the needs
intimate knowledge of it and such knowledge facilitate many other tasks. For
example, a model that generates images of cats or dogs can easily be turned
into a classifier that decides if a given image contains a cat or a dog [3].

As impressive as contemporary generative models are, it is not clear how
to evaluate their performance. This is unfortunate as, without the ability to
evaluate generative models, there is no way to compare them. This makes
research in the field difficult, as there is no way to know if a suggested method
is effective or not.

As an example, the generative image model PixelCNN [5] was released in
2016. Just a year later, PixelCNN++ [6] was announced, claiming to improve
on the older method. However, supporting this claim with hard numbers is

Figure 1.1: A dog generated by the imagen generative model [4].
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today almost impossible.
Currently, the most common method to evaluate generative models is

using humans. For example, a human evaluates a generative image model
by inspecting generated images. If the images look natural, the model is good.
Meanwhile, the model is not good if they are easily recognized as fake.

There are numerous issues with this approach: Humans are slow and
expensive to work with, and each individual has their own set of biases and
preconceptions. Moreover, humans are mainly good at judging the quality of
data types such as images or text. A human judge may be of little use if the task
is to generate sensor data. Even for images and text, humans are not perfect,
as they may fail to recognize subtle but genuine differences in quality.

Because of these issues, this thesis is about automatic methods to evaluate
generative models. Many such methods exist, but all of them are, at best,
complementary to human evaluation.

1.1 Contributions
MAUVE [2] is a recent method for evaluating the quality of generated text. It
takes two sets of text samples as input and produces a single score to indicate
how similar they are. In general, one set consists of text written by humans,
and the other of text from a generative model [2]. The soundness of the method
is motivated by its correlation to human judgment. In multiple experiments,
human evaluators and MAUVE agree on to which extent generated text
samples appear human [2].

Ourwork investigates and extendsMAUVE.We have divided our contributions
into two chapters.

Chapter 4 investigates potential use-cases. We complement experiments
and discussions made in the original paper with our own. The chapter
continues by adapting MAUVE to work with image data. By showing
that MAUVE agrees with humans in situations where human evaluation is
available, we increase confidence that it is a reliable metric that can be applied
when it is not.

Our second major contribution is in Chapter 5. Although made explicitly
for text, MAUVE does not consider its sequential nature. However, the
quality of generated text can vary wildly over the length of a sequence [7].
For example, it may initially be high quality but then become repetitive and
predictable. Therefore, we introduce S-MAUVE. Rather than producing a
single score, S-MAUVE produces a sequence of scores, which indicate the
quality at all positions in generated sequences.
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1.2 Problem
Evaluating the quality of generated data is of massive importance for research
in the field. Without the ability to evaluate generative models, there is no
way to know which methods work and which ones do not. Therefore, the
development of the entire field would stop. This would be unfortunate, as
generative modeling enables important tasks that are otherwise difficult, like
detecting outliers in datasets [8].

The most reliable method today is the use of humans for evaluation.
However, humans are biased, slow, and expensive. Can we produce automated
metrics that reflect, or improve upon, the judgment of humans?

1.3 Purpose
This thesis aims to improve on existing methods for evaluating generative
models. A robust method for evaluating generative models helps compare
different models. There are many competing classes of generative models [9,
10, 11], and for each class, many different improvements have been suggested [12,
13, 14]. A robust way to compare classes of models, as well as improvements
to those models, will guide future research by showing researchers what works
and what does not.

1.4 Ethics and sustainability
Machine learning models inherit the ethical and social bias of their training
data [15]. They are further biased due to their training process. Therefore,
using them to judge the quality of generated data must be made carefully.
However, humans are also biased, and investigating their biases is just as, if
not more, challenging than investigating the bias of a machine learning model.
Because of this, the task of creating goodmeasurements for generativemodels,
and being aware of the biases inherent in the process, remains vital.

The importance of machine learning in research continues to increase:
Better machine learning enables better research in all data-driven areas,
including sustainability. As will be explained in this thesis, generative
modeling is of fundamental importance for all machine learning. Therefore,
despite the prohibitive computational costs of developing and training them,
they are vital to enable further research into environmental matters [16].
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1.5 Delimitations
A fundamental assumption in this paper is that, while flawed, human evaluation
is the best-existing method to evaluate the quality of a generative model.
Therefore, this thesis discusses methods for evaluation in light of how well
they correspond to human judgment. In some cases, the original paper on
MAUVE [2] performed proper human experiments. In other cases, samples
are published in this thesis, and the authors will make their judgments about
the quality of some generated data. Any such judgments on the part of the
authors will be made clear, and readers are free to disagree.

1.6 Structure of the thesis
The background in Chapter 2 begins with an introduction to the field of
generative modeling and why it is important. Later, an introduction to the
GPT-2 family of generative language models, as they are used extensively
in this thesis. The chapter ends by listing several existing methods for
evaluating generative models. By examining these, we both show what
goals and priorities researchers have when they create generative models and
demonstrate why evaluation is so difficult.

Once the introduction to other methods for evaluating generative methods
is complete, MAUVE and its most closely related work are introduced in
Chapter 3.

Chapter 4 is the first chapter with new experiments. Here, we complement
experiments and discussion made in the original paper on MAUVE [2].
Specifically, we perform two new experiments: First, investigate the usage
of MAUVE for comparing different generative models. Second, we apply it to
image data and discuss why doing so is desirable.

In the next Chapter 5 we introduce S-MAUVE, which gives more insight
into generated sequential data than MAUVE.

Finally, the thesis ends with conclusions, discussion, and suggestions for
future work in Chapter 6.
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Chapter 2

Background

This section explains generative modeling and why it is an important field. A
presentation is then given to the GPT-2 family of generative models, as they
are frequently used in this thesis. The chapter ends with an introduction to
existing strategies used to evaluate generative models.

2.1 Generative modeling
Generativemodeling is concernedwith approximating the distribution of some
training data. This approximation enables data generation [13], classification [3],
and out-of-distribution detection [8]. It is one of the most challenging fields
in machine learning, as few other tasks require such intricate knowledge of the
training data.

Formally, this approximation is of P (x), P (x|y) or P (x, y), where x is the
training data and y the labels. For example, when approximating P (x), xmay
be an image. If x is an image, then the y in P (x, y) might be a description
of what is on the image. Meanwhile, generative text models usually model
P (x|y). Here, x is the next word in a sequence, and y all previous words.

Generative models can be adapted to perform many different tasks. For
example, a generative model that has approximated P (x|y) or P (x, y) can
be turned into a classifier, which models P (y|x). This is done using Baye’s
rule or with the law of total probability, as in Eq. 2.1. In many cases the
normalized probabilities are not needed, and P (x) can therefore be considered
constant. Furthermore, P (y) is easy to estimate from training data by counting
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the frequency of labels.

P (y|x) = P (x, y)

P (x)
∝ P (x, y) (2.1)

P (y|x) = P (x|y) ∗ P (y)
P (x)

∝ P (x|y) ∗ P (y) (2.2)

Figure 2.1 visualizes why this conversion from a generative model to a
classifier is possible. In the figure, the approximation P (x, y), represented
by the shaded areas, is used to fit a line for classification. The line classifies
data points above it as circles and below as x’s. The reverse is impossible:
The shaded areas can not be produced given only the classification line. In
this sense, generative modeling is strictly more complex than classification.

Training a generative model and using it for classification has both benefits
and drawbacks over simply creating a classifier from the start. A generative
model can detect out-of-distribution samples, warning that potential classifications
are unreliable. It can also fill in missing features in the input data. However,
generative models require more training data and computational resources to
train.

Figure 2.1: A generative model is turned into a discriminative model.

This thesis mainly discusses generative modeling from the perspective of
data generation.

2.1.1 Precision and recall
Consider the case of using a generative model to generate new samples. On
the one hand, the generated samples should be as varied as the training data;
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P

Q

Loss in recall

Loss in precision

Figure 2.2: Precision and recall between the true distribution P and
approximated distribution Q

simply repeating one sample is unacceptable. A model that generates data that
is as varied as the training data has high recall [2].

On the other hand, the generated samples should look like they came from
the training data; samples should be high quality. A model that generates
samples of high quality has high precision [2].

Formally, if P is a distribution that Q approximates, Q has poor precision
if it gives a high likelihood to data points that are unlikely, or impossible, under
P . Likewise, Q has poor recall if there are likely samples in P that are highly
unlikely, or impossible, under Q. This is demonstrated in Figure 2.1.

The objectives of high precision and high recall are often in opposition,
and the tradeoff between them depends on the application [17]. For example,
if the task is to generate a few data points, precision becomes more important
as the samples should be of high quality. However, if many data points should
be generated, recall is more important to avoid repetition.

2.2 The GPT-2 family of generative models
The GPT-2 family of generative language models are referenced frequently in
this thesis, and therefore an introduction is given in this section.

In recent years, huge attention-based [18] models such as GPT-2 [19] have
entirely taken over the field of text generation. GPT-2 generates answers to
questions, translates from one language to another, and continues human-
written text. The creators of GPT-2 give this example of the model completing
an article, where the beginning is written by a human∗:
∗ https://openai.com/blog/better-language-models/#sample2

https://openai.com/blog/better-language-models/#sample2
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Human: A train carriage containing controlled nuclear materials
was stolen in Cincinnati today. Its whereabouts are unknown.
GPT-2: The incident occurred on the downtown train line, which
runs from Covington and Ashland stations. In an email to Ohio
news outlets, the U.S. Department of Energy said it is working
with the Federal Railroad Administration to find the thief. [. . . ]

Note that there are many valid continuations to the human introduction above.
In text generation, there is usually no single, correct answer.

GPT-2 exists in multiple sizes depending on the computational constraints
of the application. Reference implementations of GPT-2 begin with the GPT-
2 xl model, followed by GPT-2 large, and finally GPT-2 small [19]. Human
evaluation has found that the quality of generated samples increase with model
size [2]. In other words xl > large > small. Even smaller, unofficial versions
such as DistilGPT-2∗ exist [20]. Humans have not thoroughly evaluated
DistilGPT-2. However, since it is smaller than GPT-2 small, the expectation
is that it will generate worse samples.

2.3 Text generation with GPT-2
This section gives a high level description of text generation with GPT-2.

GPT-2 does not work on plain text. Instead, any input is converted to a
sequence of tokens as part of pre-processing. A token represents a word, a
part of a word, or has a special meaning, such as the <end-of-sequence> token.
GPT-2 has a vocabulary, containing all of its known tokens. It takes as input
zero ormore tokens and outputs amapping between all tokens in its vocabulary
and how probable they are to appear next [21]. Thanks to this, it can both
be used to generate new sequences and to evaluate how probable an entire
sequence is.

To generate a new sequence, GPT-2 is applied to a possibly empty sequence
of tokens. If the sequence is empty, GPT-2 will generate text from nothing.
A non-empty sequence may be the start of a story written by a human or a
question that the model should answer. In response to the sequence of tokens,
GPT-2 produces the token-probability mapping. Then, a decoding method
selects the next token based on the mapping [21]. Selecting the most likely
token is called greedy decoding, which is a straightforward but ineffective
method. Section 2.3.1 outlines the decoding methods investigated in this
paper.
∗ https://huggingface.co/distilgpt2

https://huggingface.co/distilgpt2
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The old sequence, together with the newly selected token, is then used
as a new sequence of tokens for GPT-2. This process repeats until GPT-2 has
generated an <end-of-sequence> token or the user-specifiedmaximum number
of tokens has been reached.

2.3.1 Decoding methods
A decoding method selects the next token in a sequence when presented
with the vocabulary-probability mapping given by the generative model. The
choice of decoding method is one of the most important ones when designing
a generative language model [7]. There is a tradeoff between generating bland
and repetitive text and text where words seem to have been chosen at random.
This section outlines the decoding methods mentioned in this paper.

Greedy Decoding

Themost straightforward decoding strategy is greedy decoding, which samples
the most likely next token given all earlier tokens. As noted in [7], methods
like greedy decoding that involves maximizing the likelihood generate text that
is repetitive and bland.

Top-k sampling

When generating text, only a subset of all possible words is a reasonable choice
at any given point. A language model reflects this by giving a high probability
to those words. However, if there are few such words, a significant portion
of the probability mass will still be placed at words that are unreasonable
choices [21].

Top-k sampling addresses this issue [21], and it is one of the methods used
by GPT-2 [19]. Top-k sampling collects the k most probable tokens and only
samples from that collection. [21]. Limiting the algorithm to only sample
from the top-k words ensures that a reasonably likely word is always selected.
Choosing k is not an exact science. A k that is too small will act like greedy
decoding and lead to repetitive text, and top-k decoding with k = 1 is precisely
greedy decoding. Meanwhile, a k that is too large will generate nonsensical
text [7].

Temperature sampling

Temperature sampling is motivated similarly as top-k sampling: In a large
vocabulary, there will be many low-probability words that should not be
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sampled. However, unlike top-k sampling, temperature sampling does not
make a hard cut-off at the k most likely words. Instead, it skews their
distribution towards higher probability words, making low-probability words
even more unlikely [7]. A temperature parameter controls how significant the
skew is. Similar to top-k sampling, choosing the temperature is challenging.
A low skew leads to diverse but possibly nonsensical text, whereas a low
temperature leads to repetitive and bland text [7]. Along with top-k sampling,
temperature sampling was used in GPT-2 [22].

Top-p sampling

The final decoding strategy is top-p, a.k.a nucleus, sampling. Like top-
k sampling, top-p sampling takes a subset of the vocabulary and samples
from that subset [7]. However, rather than taking the top-k samples, top-p
sampling takes the smallest possible subset of the vocabulary such that the
subset makes up p of the total probability mass [7]. In scenarios where only a
few tokens make sense, top-p sampling will only sample from these to avoid
nonsensical text. However, if the scenario is more open-ended and there are
many potential candidates, top-p sampling will collect all of them, which
decreases the chances of high repetition.

2.4 Evaluating generative models
When evaluating images or text, the current gold standard is the human
judgment: A good model generates data that humans can not distinguish from
actual data. However, humans are slow and cumbersome to work with, and
there is a need for more automatic methods. Existing automatic methods
differ in generality: Some work with any data, whereas others only work with
specific data types such as images or text. In addition, some methods require
access to the generativemodel, whereas others only require generated samples.

Methods that workwith generated samples often fail to recognize overfitting [17].
An overfit generative model simply repeats training data or repeats it with
minor modifications.

2.4.1 Evaluation with log-likelihood
The log-likelihood of test data is a common way to evaluate generative
models [17]. Regular likelihood can usually not be used, as it often involves
intractable integrals [9, 23] or otherwise hard to compute terms [17].
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Agenerativemodel is evaluatedwith log-likelihood by using it to determine
how likely unseen test samples are. A good model should award real samples
with a high log-likelihood. However, if the sample dimensionality is high, a
model that produces good samples can have low log-likelihood or vice-versa,
as explained in [17]:

Poor log-likelihood but good samples: A lookup table that stores training
data and simply repeats it during generation will “generate” great samples, but
will have a poor log-likelihood on unseen test data.

Good log-likelihood but poor samples: Assume p is the density of a
good model with respect to likelihood, and q is a model that generates noise.
If you generate samples from the model 0.01p(x) + 0.99q(x), then samples
will be almost complete noise, but the log-likelihood will not change much if
the dimensionality of x is large, Eq. 2.3.

(2.3)
log(a+ b) ≥ log(a)

log [0.01p(x) + 0.99q(x)] ≥ log [0.01p(x)] (2.4)
log
(
a
b

)
= log(a)− log(b)

log [0.01p(x)] = log p(x)− log 100 (2.5)

log p(x) is proportional to the dimensionality of x, while log 100 is constant.
Modern generative models deal with very high-dimensional data [2], and [17]
shows that this issue surfaces even for relatively small 32 × 32 images. In
general, the log-likelihood is a poor measure of the quality of a generative
model.

2.4.2 Evaluation based on distances
Many methods to evaluate generative models rely on the use of distances. The
hope is that one could measure the distance between some generated data and
some test data. If the distance is small enough but not too small, this would
indicate an excellent generative model. If the distance is too small, this may
indicate overfitting. A fundamental challenge for any method that relies on
distance metrics is that basic measures such as euclidean distance are not
immediately meaningful [17]. For example, just negating an image leads to
a very large distance in “pixel space” between the modified version and the
original, even if they remain semantically similar, as seen in Figure 2.3.
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(a) A cat (b) Arguably the same cat

Figure 2.3: These images are far apart in “pixel space”, even if they represent
the same cat.

To remedy this, methods such as Fréchet Inception Distance (FID) [24]
and Inception Distance (IS) [25] forward samples through a neural network
and study their activations rather than the original data. These activations are
called embeddings. The hope is that forwarding images into this “embedding
space” retains semantic information in a way that facilitates measurements and
mathematical manipulation. In this space, the images in Figure 2.3 should be
close to each other.

2.4.3 Inception score
IS is one of the most used measurements in generative modeling, and was
introduced in [25]. It uses the Inception V3 (IV3) network [26] to judge the
quality of generated images. Initially, the IV3 network was created to classify
images and was trained on ImageNet [27].

IS is calculated by forwarding generated samples through the IV3 network
and inspecting the activations in the final layer. The final layer encodes the
confidence that an image belongs to a specific class. For example, the final
layer can show that an animal on an image has a 20% probability of being
a particular breed of cat, 70% probability of a specific dog breed, and 10%

probability shared among the many other classes in ImageNet. The authors
encode their preferences for generative models as follows:

• A generative model should generate images that result in a conditional
label distribution p(y|x)with low entropy: When shown a single image,
IV3 should be sure about what is on the image.

• A generative model should generate images frommany different classes.
Formally, the marginal

∫
p(y|x =M(z)) dz, where z is the input to a
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generative modelM, should have high entropy.

Several flaws with IS are highlighted in [1]: While the classifications
of IV3 are robust to training details, i.e., different implementations tend
to classify images the same, their confidence in the classifications is very
different. The authors demonstrate inception scores that differ 12%, just based
on minor implementation details of IV3.

Another highlighted flaw is that the IS is only reasonably applicable to
generative models trained on ImageNet. Despite that, many papers apply it to
CIFAR-10 [28] or other image datasets. The authors demonstrate some of the
shortcomings of IS by generating low-quality images with an incredibly high
inception score, as seen in Figure 2.4.

Figure 2.4: From [1, Figure 1]. These samples receive an Inception score
of 900.15. Meanwhile, the best-performing networks according to human
evaluation receive scores on the order of 10.

2.4.4 Evaluating text
There exist several methods that only work with text. A typical example is
BLEU [29], often used in translation tasks where a human translator provides
a correct translation. BLEU compares the overlap in n-grams between the
generated text and correct text [29]. N-grams are all slices of a text sequence
of length n. For example, the 2-grams of the sentence “The quick dog jumps.”
are

• The quick

• quick dog

• dog jumps
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However, [30] notes that n-grams only look at surface-level similarity
and instead propose BERTscore, which uses a BERT network [31] to get
embeddings of data samples. Their method compares the meaning of a
generated sample with one proper sample. For example, it quantifies the
semantic similarity between the sentences the weather is cold today and it
is freezing today.

The authors of MAUVE note that n-grams can not be used to evaluate the
quality of text when there is no single correct answer, such as when continuing
a story started by a human [2].
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Chapter 3

Related work

The primary basis for this thesis is MAUVE, created to evaluate the quality
of generated text. MAUVE uses a neural network to get embeddings of
samples, similar to IS as described in Section 2.4.3,. However, how it obtains
embeddings and what it does with them is more similar to FID. Therefore,
this chapter begins with an explanation of FID. After, we finally introduce
MAUVE.

3.1 Fréchet Inception Distance
FID was introduced in response to some of the issues identified with IS [24].
Today, it is one of the most common metrics used to evaluate generative image
models [32]. FID compares how similar a set of generated samples is to a
set of reference samples, where the reference samples are usually real, natural
samples. The sets of samples are used to approximate two distributions, which
are compared using Fréchet distance.

An intuitive explanation of Fréchet distance is to imagine a human walking
their dog [33]: The human walks on one curve and the dog on the other at the
same speed. At the start, the human makes the leash as short as possible while
still being long enough such that they will not have to extend it as the two are
walking. The length of the leash is the Fréchet distance.

The approximations of the distributions are created by forwarding the sets
of samples through the IV3 network. The activations in one of the last layers
are the sample embeddings used to fit two multivariate normal distributions.
The FID is the Fréchet distance between the two distributions [24].

Notably, FID does not account for precision and recall. A good FID might
mean high precision, recall, or a combination thereof. The authors of [34]
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argue that a good score function should consider both. In light of that, they
construct a precision-recall curve, which describes whether a generativemodel
is good at precision, recall, or both. Precision-recall curves are one of the
fundamental building blocks of MAUVE.

3.2 MAUVE
MAUVE was introduced in [2] and primarily dealt with open-ended text
generation. Despite being released recently, it has already seen use in multiple
papers [35, 36].

Similar to FID described in Section 3.1, a model is applied to two sets
of data to create embeddings. Two distributions are approximated with the
embeddings and are then compared in the context of precision and recall. The
final score ranges between 0 and 1, where 1 means perfect similarity.

MAUVE makes no attempts to detect overfitting, and a model that simply
repeats training data during generation will not be penalized for it.

3.2.1 Approximating P and Q
There is no way to access the actual distributions P and Q. Instead, they are
approximated by embedding samples in a language model, like GPT-2.

Each sample consists of a sequence of tokens. As discussed in Section 2.3,
GPT-2 predicts the next token based on all previous tokens. Consequently,
each token is embedded in the context of all previous tokens. Therefore, the
embedding of the last token represents the entire sequence, and this embedding
is used by MAUVE.

The embeddings are clusteredwithK-means [37], and the centroid assignments
are counted. The result is two histograms: One created from the embeddings
of Ptext, representing P , and one from Qtext, representing Q.

3.2.2 Precision-Recall curves
MAUVE compares the approximations of P and Q from the perspective of
precision and recall.

A model may generate realistic but repetitive samples, unrealistic but
varied samples, or anything in between. High-quality samples imply high
precision, while varied samples imply high recall. For more information on
precision and recall, see Section 2.1.1.
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Figure 3.1: MAUVE is the area under the curve. This model leans towards
higher recall than precision

Given the target distribution P and approximating distribution Q, the
authors express precision as KL(P ||Q) and recall as KL(Q||P ). KL is
the Kullback-Leibler divergence, a measure of the difference between two
probability distributions. Note that KL(P ||Q) 6= KL(Q||P ).

In many cases, the support for P and Q are not identical, leading to
KL(P,Q) being infinite. The authors overcome this by creating the mixture
distribution

Rλ = λP + (1− λ)Q, λ ∈ (0, 1) (3.1)

And re-define precision and recall as

recall = KL(Q||Rλ) (3.2)
precision = KL(P ||Rλ) (3.3)

These are then used to create the precision-recall curve

C(P,Q) = {exp (−cKL(Q||Rλ)) , exp (−cKL(P ||Rλ))} (3.4)

where c > 0 is a hyperparameter used for scaling. Changing c does not change
the ordering of different mauve scores, but changes how close they are. To
create interpretable results, the authors suggest using c = 5 [2], which is used
in this thesis.

The final score is the area under C(P,Q), found by integrating over λ, as
seen in Figure 3.1. The score ranges between 0 and 1, where 1 means perfect
similarity and P = Q.
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Chapter 4

Use cases of MAUVE

This chapter investigates potential applications of MAUVE by extending the
experiments done in the original report. The first experiment considers the
use of MAUVE for comparing the quality of different generative models.
Meanwhile, the second section applies MAUVE to images. The purpose is
to demonstrate that MAUVE can be applied sensibly to other data types than
text.

4.1 Comparing generative models
One of the main applications of automatic measurements for generative
models is for comparison, briefly discussed in Chapter 1. Consequently,
MAUVE should recognize quality differences between generative models,
and this should be independent of which embedding network it uses. If it
is not independent of the embedding network, this raises the question of what
embedding network should be used.

If MAUVE is to evaluate data generated from networks A and B, should
A or B be used to create embeddings? If A is used, does that give an unfair
advantage to A? What if both A and B are used in different trials and come to
opposing conclusions?

One could argue that a thirdmodel, C, should be used as an impartial judge.
However, C is biased just as A and B, though it may be less clear to what extent
that affects its qualities as an embedding network.

The original paper briefly investigates how the choice embedding network
impacts the MAUVE score [2]. In particular, RoBERTa [38] is used as an
alternative embedding network to evaluate text generated by GPT-2 models.
RoBERTa specializes in text understanding rather than text generation. Therefore,
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that experiment corresponds to using a third model C, to compare models A
and B. When evaluating data generated by the GPT-2 family of models, they
find that there is a high correlation between rankings when using RoBERTa
and when using GPT-2 [2].

This experiment investigates the former scenario, where A and B are
compared using A and B as embedding networks.

4.1.1 Method
Three pieces forMAUVE are of interest in this section: The embeddingmodel,
the reference text Ptext, and the generated text Qtext. Different variations of
GPT-2 were used both to generate text and as embeddingmodels forMAUVE..

Models

As described in Section 2.2, language understanding and generational capabilities
increase with the size of the model. Therefore, the MAUVE score for text
generated by the largest model should be better than for all other models,
independent of the embedding network used. The standardmodels investigated
here were, ordered by size, GPT-2 large, GPT-2 small, and DistilGPT-2. In
addition, the new model GPT-2 random was created just for this experiment.
GPT-2 random is a version of GPT-2 small initialized with random weights
and never trained. Samples from it are just random words, and it is the worst
of the investigated models.

Text samples

Ptext was always the test split of the published data from theweb-text dataset [19],
written by humans.

While officially generated samples are available for some networks and
settings of those networks, there are not enough to cover all scenarios investigated
in this experiment. Therefore, new samples were generated. This was done
with top-p sampling, with p = 0.92, and temperature sampling, with t = 1.
Five human-written words from the webtext dataset were used as initial input
in both cases. Official samples were generated using temperature sampling
without initial input, also with t = 1. The new samples generated for this
experiment are available at∗

∗ https://github.com/samhedin/evaluation-of-gen-models_data

https://github.com/samhedin/evaluation-of-gen-models_data
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4.1.2 Results
In this section, data generated by a network is denoted as Qtext-type-*, where
type means which type of GPT-2 network was used to generate the data. As
described in the previous section, type is either large, small, distil or random.
The star indicates whether the samples were from official sources or newly
generated and what decoding method was used.

Similarly, MAUVE and the embedding network used is denoted byMAUVEtype,
such as MAUVEsmall to indicate that MAUVE was used with GPT-2 small as
embedding network.

First, GPT-2 large and GPT-2 small were compared with both new and
official samples. As hoped, both GPT-2 large and GPT-2 small recognize that
GPT-2 large is the more powerful model, Table 4.1.

Table 4.1: GPT-2 small compared with GPT-2 large

MAUVEsmall MAUVElarge

Qtext-small-official-temperature 0.799 0.586
Qtext-large-official-temperature 0.891 0.854
Qtext-small-temperature 0.789 0.609
Qtext-large-temperature 0.889 0.851
Qtext-small-top-p 0.850 0.64
Qtext-large-top-p 0.958 0.931

However, the situation is different when comparing DistilGPT-2 and GPT-
2 large. DistilGPT-2 incorrectly rates itself higher than GPT-2 large, as seen
in Table 4.2.

Table 4.2: DistilGPT-2 compared with GPT-2 large.

MAUVEdistil MAUVElarge

Qtext-distil-top-p 0.324 0.903
Qtext-large-top-p 0.252 0.931

The same thing is observed when comparing GPT-2 random with GPT-
2 large. GPT-2 random incorrectly believes that it generates better data than
GPT-2 large, Table 4.3.
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Table 4.3: GPT-2 random compared with GPT-2 large.

MAUVErandom MAUVElarge

Qtext-random-top-p 0.019 0.26
Qtext-large-top-p 0.004 0.931

4.1.3 Discussion
Both DistilGPT-2 and GPT-2 random failed to recognize that their samples are
worse than GPT-2 large.

In opposition to the trend, GPT-2 small correctly finds that its samples are
worse than those generated by GPT-2 large. This happens both when using
official samples and when generating new samples. The reason for this is
unclear. However, the networks used, GPT-2 small and GPT-2 large, are closer
in quality than the networks used in other trials.

In any case, our results show that MAUVE does not always correspond to
human judgment, which favors larger models [2]. Instead, our results show
that models are often biased in favor of their own samples when used as
embedding networks.

This result complements results in the original paper, where usingRoBERTa
as an embedding network was shown to correlate with human judgment. Since
RoBERTa was not used to generate text, this corresponds to using a third
embedding network for evaluation.

It may be argued, then, that a third model, C, should always be used for
evaluation. However, no embedding model is guaranteed to detect qualities or
defects in generated data. While it might be clear that A is biased in favor of
A, C will also be biased, even if in what way might be less obvious. Is it better
to use an embedding model with unknown bias than one with known bias?

Furthermore, RoBERTa and GPT-2 were released the same year and are
both based on algorithms of that time. Therefore, RoBERTa may be limited in
its understanding in the same way that the GPT-2 models are limited. There
is currently no reason to believe that RoBERTa would recognize the quality
difference betweenGPT-2 andmodels that have come after, such asGPT-3 [22]
or PaLM [39].

Luckily for MAUVE, humans are also biased and limited: A human may
not be able to detect errors in generated data. We believe that if an embedding
network has better reading comprehension than whatever human judges are
available, it will be a better judge of quality. Even in cases with comparable
reading comprehension, it is at least more efficient and standardized.
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4.2 MAUVE for images
While the original paper focuses exclusively on text generation, there is
nothing fundamental about MAUVE that prevents it from being used for other
types of data. Here we show that MAUVE can be used to evaluate images.
The only required modification is to use an image model to create embeddings
rather than a language model.

4.2.1 Method
The IV3 [26] image classification network was used as embedding network,
similar to FID as described in Section 3.1 and IS in Section 2.4.3.

MAUVEIV3 was first used to compare the similarity of the train and
validation sets of Tiny ImageNet [40]. These sets are very similar, and this
should be reflected with a high score.

Then, MAUVEIV3 was used to compare Tiny ImageNet with CIFAR-
10 [28]. Since they are different datasets, the distribution of images from them
should also differ. In particular, Tiny ImageNet contains 200 different classes,
whereas CIFAR-10 only contains 10. Since Tiny ImageNet is more varied,
some of its images should be highly unlikely to exist in CIFAR-10. This should
be reflected with a relatively low score.

Since the current standard for evaluating generated images is FID, it is used
for comparison.

4.2.2 Result
In line with expectations, both FID and MAUVEIV3 identify that the two
subsets of Tiny ImageNet are more similar than Tiny ImageNet and CIFAR-10,
see Table 4.4. Note that a lower FID means that the sets are more similar.

Table 4.4: Tiny ImageNet compared with CIFAR-10.

MAUVEIV3 FID
TItrain,TIval 0.927 62
TItrain,CIFAR-10 0.004 309
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4.2.3 Discussion
In this experiment, MAUVE was modified to work with image data, and it
successfully recognized the difference between Tiny ImageNet and CIFAR-
10.

The score between Tiny ImageNet and CIFAR-10 might appear too low.
This may be due to the c hyperperamater as explained in Section 3.2.2. The
c used here was 5, as suggested by the authors of MAUVE. However, this
suggestion is based on the assumption that the application is text evaluation.
For images, a different c may be more demonstrative.

Why adapt MAUVE to work with images when FID already exists?
Unlike MAUVE, FID does not consider precision and recall, as discussed in
Section 3.1. Furthermore, we hope that in the end, there will be only one
metric for all types of generative models. Having MAUVE for text, FID for
images, and some other metric for sensor data creates unnecessary complexity
and confusion.

In particular, researchers that work with data types where no good pre-
existing metrics exist often come up with their own. These metrics are
often an afterthought, and their strengths and weaknesses are usually not well
understood.

MAUVE could become a standardized metric, as we expect its behavior
and properties to carry over between data types.
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Chapter 5

S-MAUVE

As explained in Section 3.2, MAUVE only saves the embedding of the last
token in the sequences that it evaluates. As a result, finding out why a model
receives a particular score is difficult. Is a poor score because the model
generates bad data overall, or are only tiny subsections poor? Consider the
following continuation to user input, generated by GPT-2 small with greedy
decoding:

Human: Clinton talks about her time

GPT-2 small: as a child star in the ’80s, and how she’s been able
to keep her career going. “I was a child star”, she says. “I was a
child star. I was a child star. I was a child star. I was a child star.
[. . . ]”

The first sentence is believable, but the entire text is highly repetitive. Since
MAUVE only looks at a summary of the entire sequence, this information is
lost. Therefore, we introduce S-MAUVE, which evaluates the quality of text
at the token level. The result is a sequence of scores, indicating the quality at
all possible positions.

S-MAUVEworkswith data other than text, as long as the data is sequential.
For example, it can be adapted to work with images, similar to MAUVE in
Section 4.2. This would be accomplishedwith imagemodels like PixelCNN [5],
which see images as a sequence of pixels, starting at the top left and ending at
the bottom right.

Since S-MAUVE is so closely related to MAUVE, we expect that most of
the observable behavior of MAUVE to carry over to S-MAUVE, strengths and
weaknesses alike.
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5.1 Implementation
Only minor modifications to MAUVE are needed to create S-MAUVE.

In MAUVE, each sequence is represented by the embedding of its last
token. As a result, the embedding step of MAUVE returns a matrix of shape
(n, e), where n is the number of sequences and e the dimensionality of the
embedding of the last token.

Meanwhile, S-MAUVE uses the embedding of each token. Therefore,
the embedding step returns a matrix of shape (t, n, e), where t denotes the
token index and ranges from 0 to the length of the longest sequence. For any
sequence s shorter than the longest sequence, s is padded with the embedding
of its final token. Note that as a result of this, S-MAUVE at t = T is different
from MAUVE unless all sequences are of equal length.

Standard MAUVE subroutines are then applied to the embeddings from
each token index, resulting in a sequence of scores. This sequence represents
the similarity between evaluated sets of text on a token-by-token basis.

S-MAUVE requires more computational resources than MAUVE, as k-
means has to be performed for each token index rather than just once. However,
for models such as GPT-2, the computational complexity of embedding a
sequence is over quadratic [41]. Therefore, as the length of sequences
increases, the embedding step begins to dominate the computational time.
Here, S-MAUVE is as fast as MAUVE.

5.2 A sanity check for S-MAUVE
This section demonstrates the basic functionality of S-MAUVE with a toy
experiment, where text samples were corrupted with random noise at a fixed
position.

Ptext and Qtext were non-overlapping subsets of the webtext dataset of size
2000. As corruption, five random words were inserted 100 words into each
of the samples in Qtext to create Q′

text. Since one word can result in multiple
tokens, the corruption’s exact start and end position in the resulting token
sequences vary slightly.

MAUVE correctly registers the corruption

MAUVE(Ptext,Qtext) = 0.958 (5.1)
MAUVE(Ptext,Q

′
text) = 0.949 (5.2)

However, this decrease in the score is less informative than the result of
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S-MAUVE, which is visualized in Figure 5.1.

Figure 5.1: S-MAUVE identifies the location of the corruption. 4-step moving
average.

S-MAUVE, unlikeMAUVE, provides information about where the corruption
is located. Until the start of the corruption, the sequences are identical,
which is recognized by S-MAUVE. During the corruption, the scores drop
significantly. Since corrupted tokens affect the embeddings of subsequent
tokens, the two scores do not return to being identical.

The scores may seem close in later stages. However, note that the
corruption is relatively minor. Only about 5-10 out of 1000 tokens are noise
in each sequence. Therefore, the effects are likely to be averaged out in later
stages. Any increase in score thanks to the corruption may be due to chance,
and we expect that, on average, the corrupted text should perform worse than
the normal text.

The precise information given by S-MAUVEguides developers and researchers.
For example, if a developer of a generative model sees Figure 5.1, they know
that the main issue with the generated text is not that it becomes repetitive at
later stages.

5.3 S-MAUVE for comparing decoding methods
As described in Section 2.3.1, different decoding methods generate sequences
of varying quality. In particular, a decoding method may be more or less liable
to begin repeating itself or generate nonsensical text. This section applies
S-MAUVE to data generated with greedy decoding, top-k sampling and top-p
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sampling. Greedy decoding is universally regarded as the worst of the three [7,
2]. However, the relation between top-k and top-k sampling is more subtle, and
often depends on the application [2].

MAUVE already recognizes the by-humans perceived quality differences
between decoding strategies [2], but S-MAUVE is more informative.

5.3.1 Method
S-MAUVE was applied to samples generated by GPT-2 small with greedy
decoding, top-k sampling and top-p sampling, which were introduced in
Section 2.3.1. top-k sampling was used with k = 50, and top-p sampling
with p = 0.92. The reference text Ptext was the webtext-test split from [19].
All sets were of size 1000. Temperature sampling was not included in this
experiment due to computational constraints.

5.3.2 Result
A visualization of S-MAUVE is available in Figure 5.2. Greedy decoding
produces decent text for a short while, but the quality quickly drops as the
decoding strategy begins to repeat itself. The sharp increase at t = 1000

is expected, as it is always an <end-of-sequence> token. Top-k sampling
maintains an overall high score, with minor drops as the sequences get longer.
Top-p sampling produces high-quality sequences, and no drop in quality can
be seen as the sequences reach 1000 tokens in length.

Figure 5.2: S-MAUVE for different decodingmethods, 5-stepmoving average.
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5.3.3 Discussion
Greedy decoding is by far the worst of the decoding methods. To a minor
extent, the experiment suggests that p-sampling has an advantage over top-
k sampling, especially as the sequences grow longer. However, since the
performance of thesemethods is significantly affected by the choice of p and k,
it is unwise to draw hard conclusions without further experiments.

None of the results are surprising: Greedy decoding is known to generate
bad data, whereas top-k and top-p decoding are closer in quality [2, 7].
S-MAUVE visualizes what was already known in a new way, and we hope
that it will be helpful as an alternative to human evaluation when selecting a
decoding method. Our implementation of S-MAUVE is available at∗.

∗ https://github.com/samhedin/mauve

https://github.com/samhedin/mauve
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Chapter 6

Conclusions and Future work

This chapter begins with a summary of our contributions, along with some
closing thoughts. While we have shown that MAUVE is not perfect, it might
still be preferable to human evaluation. Later, we list the limitations of the
project. Notably, the scale of the experiments was limited. In the very end, we
suggest future work for MAUVE.

6.1 Conclusions
MAUVE has quickly become one of the most discussed metrics in generative
languagemodeling. While the original paper only appliesMAUVE tomeasure
the quality of open-ended text generation, we have shown that MAUVE also
applies to other data types.

As impressive as MAUVE is, we have shown that is limited by the choice
of embedding model. Since embedding models are biased and limited, any
metric that uses them will also be biased and limited. Being aware of the
limitations of the embedding network remains a major challenge in evaluating
neural networks. To make matters worse, by the time the limitations of an
embedding model are understood, it is likely that a new and improved model
will already be available, with its own set of limitations.

However, the current main alternative, human judgment, is also limited.
So the question is, can MAUVE be used as an alternative to flawed human
judgment? As generative models become better and better, with reading
comprehension that matches or exceeds that of humans, the answer either is
or is likely to become yes.

We also introduced S-MAUVE, which uses the sequential nature of text to
give deeper insight into where a model produces similar or dissimilar tokens to
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some reference text. In Section 5.3 we showed that S-MAUVE quantifies the
difference in quality between decoding methods in a way that regular MAUVE
does not. S-MAUVE can be applied to other types of data than text, as long
as they are sequential.

6.2 Limitations
Thorough human experiments, in addition to the ones done in MAUVE [2] to
judge the quality of generated data is not possible due to monetary constraints.

Computational constraints limit several experiments. For example, GPT-2
xl [19] could not be used in any experiments. In other cases, sample sizes were
limited.

Another limitation is the dataset used. The data used in this paper either
comes from the webtext dataset [19] used to train GPT-2, or from data
generated by GPT-2 itself. The generated data should reflect the webtext
dataset. We believe that GPT-2 will react differently to these datasets, which
it knows better than unseen datasets. However, running experiments on more
datasets is outside the scope of this paper.

6.3 Future work
The choice of embedding network in MAUVE is a vital one, and we would
like to see further research into this area. Are there properties of a model that
makes it appropriate or inappropriate as an embedding network?

We would also like to see what happens when MAUVE is used as a loss
function for training a neural network, similar to how FID was used in [32].
As a piece of advice for implementation, it might be preferable to regard the
k-means clustering step as constant.

For S-MAUVE, we would like to see what would happen if it was used as a
sampling function. It is possible that it would lead to repetitive text, similar to
greedy decoding as described in Section 2.3.1. However, it may still be useful
as a way to gain insight into its properties.
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