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Abstract | i

Abstract
Object deformation is an essential factor for the robot to manipulate the
object, as the deformation impacts the grasping of the deformable object
either positively or negatively. One of the most challenging problems with
deformable objects is estimating the stiffness parameters such as Young’s
modulus and Poisson’s ratio. This thesis presents a learning-based approach
to predicting the stiffness parameters of a 3D (volumetric) deformable object
based on vision and haptic feedback.

A deep learning network is designed to predict Young’s modulus of
homogeneous isotropic deformable objects from the forces of squeezing the
object and the depth images of the deformed part of the object. The results
show that the developed method can estimate Young’s modulus of the selected
synthetic objects in the validation samples dataset with 3.017% error upper
bound on the 95% confidence interval.

The conclusion is that this method contributes to predicting Young’s
modulus of the homogeneous isotropic objects in the simulation environments.
In future work, the diversity of the object shape samples can be expanded for
broader application in predicting Young’s modulus. Besides, the method can
also be extended to real-world objects after validating real-world experiments.

Keywords
Robotic grasping, Deformable objects, Deformation modeling, Stiffness estimation,
Deep learning
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Sammanfattning
Objekt är en väsentlig faktor för roboten att manipulera objektet, eftersom
det påverkar greppet om det deformerbara objektets deformation antingen
positivt eller negativt. Ett av de mest utmanande problemen med deformerbara
objekt är att uppskatta styvhetsparametrarna som Youngs modul och Poissons
förhållande . Denna avhandling presenterar en inlärningsbaserad metod för att
förutsäga styvhetsparametrarna för ett 3D (volumetriskt) deformerbart objekt
baserat på syn och haptisk feedback.

Ett nätverk för djupinlärning är utformat för att förutsäga Youngs modul av
homogena isotropa deformerbara objekt från krafterna från att klämma ihop
objektet och djupbilderna av den deformerade delen av objektet Resultaten
visar att den utvecklade metoden kan uppskatta Youngs modul för de utvalda
syntetiska objekten i valideringsexempeldatauppsättningen med 3.017% fel
övre gräns på 95% konfidensintervall.

Slutsatsen är att denna metod bidrar till att förutsäga Youngs modul för de
homogena isotropa objekten i simuleringsmiljöerna. I framtida bredare arbete
kan mångfalden av objektformproverna utökas för tillämpning vid förutsägelse
av Youngs modul. Dessutom kan metoden också utvidgas till verkliga objekt
efter validering av verkliga experiment.

Nyckelord
Robotgrepp, Deformerbara föremål, Deformationsmodellering, Styvhetsuppskattning,
Djup lärning
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Chapter 1

Introduction

1.1 Background
When a robot grasps an deformable object, the deformation of the object
may have positive or negative effect on grasping and manipulation. In some
scenarios, we expect to grasp the object in an approach that minimizes the
deformation of objects, while sometimes we rely on the object’s deformation
to grasp the object successfully. To achieve these goals, it is necessary to model
and predict the object deformation. In some deformation modeling methods
such as Finite Element Methods (FEM), the stiffness parameters of the object
are essential. However, grasping deformable objects is challenging compared
to grasping rigid objects [6]. One of the reasons is that the stiffness parameters
of unknown objects are crucial and difficult to estimate when modeling object
deformations[7].

1.2 Problem
As mentioned in Section 1.1, estimating the stiffness parameters of the
unknown deformable objects is worth exploring in robotic manipulation.
Estimating all stiffness parameters, such as Young’s modulus and Poisson’s
ratio, can be difficult and complex because the stiffness parameters depend on
the object’s material. The material can be homogeneous or inhomogeneous,
isotropic or anisotropic, and elastic or plastic.

Therefore, for the feasibility of the research, the scope of the problem
object needs to be narrowed down. In this thesis, the material of the
deformable object is limited to elastic, linear, homogeneous, and isotropic,
which means the stiffness parameters at any location in the objects on the body
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are always constants. In this condition, the stiffness parameters include two
independent variables: Young’s modulus and Poisson’s ratio. This thesis only
focuses on Young’s modulus for simplicity.

The narrowed problem as a question is: how do we estimate Young’s
modulus of the synthetic isotropic homogeneous deformable objects in robotic
environments?

1.3 Purpose
The purpose of this research is to provide an approach that can estimate the
stiffness parameters of most deformable objects in the real-world environment.

This research helps optimize the robotic grasping of deformable objects in
the robotic industry. On the other hand, it also contributes to the estimation of
Young’s modulus of isotropic materials in terms of the mechanical properties
of materials.

1.4 Sustainability and Ethics
On the sustainable aspects of the project, researchers can generalize this
method from the computer simulation environment to the real-world environment
based on this study. This method can also apply to more object shapes by
extending the sample diversity. Furthermore, this research may also contribute
to the estimation of Poisson’s ratio.

In terms of impact on society, this research contributes to robots more
efficiently manipulating deformable objects because it reduces computational
resources and time consumption when modeling and predicting the deformation
of unknown objects during deformable object manipulation. For example, the
contribution of this research may benefit the robots on a plush toy production
line, the robots to assist stroke patients’ rehabilitation, the robots that perform
surgery on human tissue, and the robots that sort garbage.

Ethically speaking, this research does not involve people and does not
violate anyone’s dignity or privacy. The data for this study was generated by
computer simulations and did not threaten the data security of any organization
or individual. The research results are the original experimental data obtained
from computer simulation experiments, and the authors can ensure the authenticity
of the results without any falsification. There is no deception or exaggeration
in the discussions and conclusions and no conflict of interest with any
organization or individual funding in this research.
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1.5 Goals
This project aims to develop a learning-based approach for estimating the
stiffness parameter(Young’s Modulus) of the selected synthetic objects with
haptic feedback(obtained from exploratory action) and vision prior in a
robotic simulation environment. Besides, the project also provides the results
which analyze the errors between the estimated and the ground-truth stiffness
parameter.

The expected results presented are statistics of the errors between the
estimated and the ground-truth Young’s modulus and the histogram distribution
of the errors. The results also include the estimated upper error limit of the
95% confidence interval.

1.6 Research Methodology
The author chooses the quantitative approach as the research approach. Compared
with qualitative methods, quantitative methods are more suitable for this
research because the data collected are Young’s modulus, so the results and
conclusions drawn by statistical methods are more convincing and reasonable.

The data collection method is primary, quantitative, and experimental. The
data, estimated and ground-truth Young’s modulus, are both collected from the
experiment. Therefore, the research design type is also experimental.

The statistical analysis methods are chosen as the data analysis method to
verify if the hypothesis holds on quantitative data collected. The hypothesis
is that the upper error limit of the 95% confidence interval with the developed
method is lower than 5%.

1.7 Delimitations
This project collects all data in the computer simulation experiments, which
indicates that all sample objects are synthetic. The simulation environment
is chosen instead of real-world experiments because the developed method
is learning-based, which means the training of the neural network requires
a large number of data samples. Collecting a large amount of data in real-
world experiments requires a lot of time and equipment resources, which
is difficult to achieve in this project while collecting data in the computer
simulation environments is relatively acceptable. Consequently, the results
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and conclusion of the project only hold for synthetic objects in the simulation,
but it is still possible to generalize this method to real-world experiments.

On the other hand, the results also temporarily only hold for the selected
object shapes because the simulation of object deformation and the training of
the neural network are time-consuming and computationally expensive.
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Chapter 2

Background

This chapter provides three main aspects of background knowledge involved
in this thesis: the basics of linear elasticity, the deformation modeling for
deformable objects, the existing methods on stiffness estimation, and soft body
simulators.

2.1 Basics of linear elasticity
Elasticity is defined as the ability of an object to deform when a force is applied
and to return to its original shape when the force is withdrawn. When the
deformation is small, it is reasonable to hypothesize that the relationships
between the components of stress σ and strain ε are linear. In the Cartesian
coordinate form, those relationships are described as the Hooke’s law for
continuous media [8]:

σij =
3X

k=1

3X
l=1

cijklεkl (2.1)

where cijkl is the elasticity tensor or stiffness tensor, σij and εkl are the 9
components in the 3 × 3 matrix of stress σ and strain ε respectively.

In the real physical world, the stiffness tensor in Eq. 2.1 varies with the
different positions in an object and is connected with the direction of the
force, so the situation may be difficult for us to analyze the elasticity tensor.
Therefore, we make some assumptions to simplify the problem. On the one
hand, in a homogeneous material, the stiffness tensor is not related to the
position. On the other, if the material is isotropic, the stiffness tensor can
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be simplified as follows [8]:

εij =
1

E
[(1 + ν)σij − νδijσkk] (2.2)

where δij is the Kronecker delta, ν is Poisson’s ratio and E is Young’s modulus.
With the homogeneity and isotropy hypothesis to the object, the Poisson’s
ratio ν and the Young’s modulus E become scalars, so we preserve these two
assumptions in the entire thesis.

Figure 2.1: A 2-D object is compressed by a −y direction force

The Poisson’s ratio ν measures the deformation of an object in the direction
perpendicular to the direction of the external force. For example, in Fig. 2.1,
a 2-D object deforms when compressed by force in the −y direction. The
Poisson’s ratio can be expresses as

ν =
εx

εy

=
∆x

∆y
(2.3)

Young’s modulus E of an isotropic material object can describe the
stiffness or elasticity of an object under a tensile or compressive force. The
unit of the Young’s modulus is Pascal(symbol: Pa or N/m2). For rigid object
the range of Young’s modulus is typically large enough to use gigapascals
(GPa) as the unit, while the range of Young’s modulus for deformable object
is usually less than 1 × 106Pa. For the same example in Fig. 2.1, Young’s
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modulus is calculated by

E =
σy

εy

=
F/x

∆y/y
=

Fy

x∆y
(2.4)

2.2 Modeling of deformation dynamics
This section introduces several popular models for simulating the deformation
dynamics of deformable objects. The following subsections explain two
categories of deformation dynamics models: particle-based models and constitutive
models.

2.2.1 Particle-based dynamics
Particle systems

Particles are the basic elements of the object shape in a particle system. Each
particle is a zero-dimensional dot with time-dependent states or parameters
such as positions, mass, and temperature. The initial position, p0

i , defines the
initial coordinates of the particle i. As the object deforms when a external
force is applied, the position of the particle i at time t changes to pt

i under the
internal force f t

inti and external force f t
exti , which is calculated by Newton’s

second law of motion and numerical integration. For the particle i with the
mass mi, the calculation of position pt

i and velocity vt
i in time step t is [7]:

pt+1
i = pt

i + vt
i∆t

vt+1
i = vt

i +
f t
inti + f t

exti

mi

∆t
(2.5)

The flexibility to split, join and cut topologically complex surfaces is a
significant advantage of the particle systems model. The representative shape
in the particle systems model can be connected or disconnected automatically
in any position instead of manual intervention [9]. However, when the accurate
control or definition of the object surfaces is required, the particle systems
model has limitations.

Mass-spring systems

The mass-spring model discretizes the deformable object as particles interconnected
with a spring network. Those springs have various contributions to the model
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Figure 2.2: The mass-spring model in one cell of the representing mesh

depending on how the springs are connected. For example, in Fig. 2.2,
the solid lines indicate structural strings which contribute to compression or
traction stresses, and the shear stresses are implemented by the shear strings,
which is the dotted line in the figure.

Each particle in mass-spring systems has time-dependent states such as
mass, position, and velocity. Additionally, each particle is subjected to spring
forces from other connected particles because of the introduction of the spring
network. The spring force fs(pi)from particle j to i is [7]

fs(pi) = ks(|pj − pi| − lij)
pj − pi

|pj − pi|
(2.6)

, where pi, pj are the coordinates of particle i and j respectively, ks is the
stiffness of the spring, and lij is the spring length at its rest state. The damping
force from the spring is

fd(pi) = kd(vj − vi) (2.7)

, where vi, vj are the velocity of particle i and j respectively, kd is the damping
coefficient of the spring. According to Newton’s second law, the motion of the
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equation is that,
miai = fext + fs(pi) + fd(pi) (2.8)

The prediction of each particle can be implemented by Eq. 2.8 and a numerical
integration scheme with an initial state of all particles.

The advantage of mass-spring models is the computational efficiency
when predicting the deformation of objects [10, 11]. However, the classic
mass-spring models cannot guarantee volume conservation when the object
is expanded or compressed. Also, it is difficult to adjust the spring stiffness
parameters accurately based on the mechanical properties of physical materials
[12]. Besides, the results of the simulation rely on the spring network
layout[13].

Position-Based Dynamics

The force-based methods, such as particle systems and mass-spring models,
calculate the particles’ positions and velocities by Newton’s second law and
time integration of accelerations and velocities. The Position-Based Dynamics
(PBD) simulate the object deformation as a quasi-static problem by controlling
and modifying only the positions of particles. The PBD methods were
proposed for solid object simulation and were also recently developed to
solve fluid simulations [14]. The PBD methods are widely used in computer
graphics because they provide significant controllability and stability with
even explicit time integration schemes, especially when visual reasonability
is required in interactive environments [13].

The PBD methods simulate the objects by a collection of particles and
constraints. Similar to other particle-based methods, the particles in the PBD
are also zero-dimensional points with mass and other variables to describe
their states. The constraints in the PBD are kinematic restrictions depending
only on positions and time, which regulate the relative motions of the bodies,
such as positions, orientation vectors, velocities, and their derivatives. The
PBD methods predict the position pt

i and velocity vt
i of the particle i with mass

mi at time step t with the explicit Euler time integration scheme, while the
constrains in the PBD are integrated with implicit time scheme as the following
[14].

pt+1
i = pt

i + vt
i∆t

vt+1
i = vt

i +
f t
exti −

P
j kj∆pt+1

i
Cj(p1, p2, . . . , pn)

mi

∆t
(2.9)
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(a) (b)

Figure 2.3: (a) The tetrahedron mesh of a rectangle object, (b) A tetrahedron
finite element in Fig. 2.3a

where kj is the stiffness of the jth constraint Cj . The explicit time integration
without instability issue leads the PBD to be computationally efficient.

One advantage of the PBD is that it is a simple, computationally efficient,
and scalable method [7]. On the other hand, the PBD methods are not as
accurate at physical precision as their visual plausibility.

2.2.2 Constitutive models
There are many constitutive models, including Finite Element Methods (FEM),
Finite Volume Methods (FVM), Finite Differential Methods (FDM), and
Boundary Element Methods (BEM). This subsection introduces FEM, the
most widely used method in solid mechanics simulations, such as solid
deformation prediction and stress-strain analysis.

Finite Element Methods

The Finite Element Methods (FEM) are common methods to solve 3-dimensional
partial differential equation. The FEM subdivide an entire domain of the
problem into smaller and simpler sub-domains which are named as finite
elements. This is achieved by discretizing the objects through the mesh
construction. In each sub-domain, a collection of element equations are built
by physical laws. Then integrate those element equations in all sub-domains
systematically into a equation set for the global domain of the problem. For
static and quasi-static deformation problem, the acceleration a = 0 and the
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velocity v = 0 in every sub-domain, so the displacement vector field u is
sufficient to describe the state of each sub-domain [15]. For example, when
predict the deformation of a rectangle object (Fig. 2.3a) which is discretized as
tetrahedron meshes, the motion of the equation in a tetrahedron finite element
e (Fig. 2.3b) is similar to Eq. 2.8 as

Keue = fe

ue = [u1,x, u1,y, u1,z, u2,x, u2,y, u2,z, u3,x, u3,y, u3,z]T

fe = [f1,x, f1,y, f1,z, f2,x, f2,y, f2,z, f3,x, f3,y, f3,z]T
(2.10)

where ue, fe is the displacement vector and force vector at all nodes in a finite
element, and Ke is the stiffness matrix of the finite element. After combine
equations in all finite element, the equation for entire problem becomes

Ku = f (2.11)

where u, f is the displacement vector and force vector of all N nodes
in entire object mesh. K is the stiffness matrix which depends on the
material properties (e.g., Young’s modulus E, and Poisson’s ratio ν) and the
displacement vector u on every node in mesh. Then the nodal coordinates
and velocities at next time step can be calculated with various numerical
integration schemes. It is noticeable that the stiffness matrix K requires
to be updated at every time step, which leads to high computing resource
consumption.

The advantage of the FEM is that the FEM are based on solid mechanical
theories, so the material stiffness parameters are directly connected with the
model. Another advantage is that the FEM are highly accurate if a fine mesh of
the object is generated [2]. However, if a real-time situation is required when
predicting the deformation of objects, the FEM are not suitable methods due to
computational cost [7]. Under the condition that the deformation is small, the
constant stiffness matrix K in Eq. 2.11 can be used to reduce the computation.

2.3 Estimation to stiffness parameters of the
deformable object

The idea of many popular methods for estimating the stiffness parameters
is to search for the stiffness parameters by minimizing the error between
the deformation of the ground truth and the deformation under a specific
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(a) Experimental setup to poke a teddy
bear

(b) The point clouds of
measurements

Figure 2.4: Selected synthetic object shapes (Frank et al. (2014) [1])

simulation method with different stiffness parameters. Because these methods
simulate the deformation every time before calculating the error, the computational
resources are highly required if the simulation is inefficient computationally.

Frank et al. (2014) [1] present a method to search for the optimized
Young’s modulus E and Poisson’s ratio ν of an uniform isotropic object by
minimize the error function below:

min
(E,ν)

∥Qmeas − Qsim(E,ν)∥2
2 (2.12)

where Qtrue is the ground truth displacement of the object, and Qsim(E,ν) is
the displacement from the FEM simulation. The ground truth displacement is
described by the point clouds(shown in Fig. 2.4a) of the object surface from an
RGB-D camera when the robot subjects an external force to the object(shown
in Fig. 2.4). Then the FEM generates the displacement of the object’s surface.
Frank et al. also develop an approximate FEM to reduce the time consumption
due to the computational inefficiency of the FEM.

In addition to the gradient-based method and the FEM as the optimization
and simulation methods, respectively, a neural network can simultaneously
perform both functions while estimating the stiffness parameters of a uniform
isotropic object. Wang et al. (2018) [2] propose the 3D-PhysNet architecture(shown
in Fig. 2.5), which consists of a variational autoencoder and a discriminator.



Background | 13

Figure 2.5: The 3D-PhysNet architecture (Wang et al. (2018) [2]). Blue
blocks represent the autoencoder network and green blocks represent the
discriminator network.

The variational autoencoder network contributes to encoding the stiffness
parameters and the external forces and generates the simulated displacement
Qsim(E,ν). The discriminator can minimize the error between the simulated
displacement (the output of the autoencoder) and the ground truth displacement
which the FEM of the synthetic object generates.

The stiffness parameters are not only calibrated and encoded in the latent
space in the variational autoencoders, but they can also be the output of
the neural network. Bednarek et al. (2021) [3] proposes a neural-network-
based system that can estimate the stiffness coefficient of a uniform isotropic
object when the gripper interacts with the object(shown in Fig. 2.6). The
input of the neural network is the time series signals (acceleration and
angular acceleration) measured by Inertial Measurement Unit (IMU), which
are installed on the fingers of the Yale OpenHand soft gripper [16]. The neural
network comprises three blocks in series: the feature extractor, the recurrent
block, and the regression block. The neural network’s output is the estimated
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Figure 2.6: The neural network regress the stiffness parameters based on the
signal collected from IMU when the gripper squeezes the deformable object
(Bednarek et al. (2021) [3]).

stiffness coefficient, similar to Young’s modulus. The training data for the
neural network is generated in the MuJoCo simulator in which the object is
squeezed and released by the gripper in a similar situation in the real world.

The neural-network-based methods can be time-efficient after offline training,
but the requirement of a large quantity of training data is possibly expensive to
satisfy. Besides, the objects of these researches are limited to uniform isotropic
objects.

2.4 Introduction to simulators for soft-body
manipulation

Collins et al. (2021)[17] reviews the characteristics of many physics simulators
in different robotic applications, including mobile ground robotics, robotic
manipulation, medical robotics, marine robotics, aerial robotics, soft robotics,
and learning for robotics. This section mainly introduces several simulators
in which the deformable objects can be manipulated in a robotic environment
(e.g., squeezing a sponge by a two-fingers robot).

MuJoCo [18] is a popular simulator applied in robotic manipulation
because the contacts between the robots and objects are remarkably stable [19].
In the latest version, MuJoCo can accomplish deformable object manipulation.
An example is that Bednarek et al. (2021) [3] use MuJoCo to simulate gripper
grasping a ball(shown in Fig. 2.7). However, MuJoCo does not support
modeling the deformation of the objects with the FEM.

PyBullet [20] is another popular simulator for physics simulation, robotics,
and machine learning. It can realize the deformable object manipulation with



Background | 15

Figure 2.7: A ball is grasped in MuJoCo environment (Bednarek et al. (2021)
[3]).

Figure 2.8: The robot assist people in Assistive Gym (Erickson et al. (2020)
[4]).

the FEM and the PBD. For example, Erickson et al. (2020) [4] proposes a
physics simulation framework with PyBullet, called Assistive Gym, which can
simulate assistive robots providing physical assistance such as itch scratching,
bed bathing, dressing, and drinking assistance(shown in Fig. 2.8).

Isaac Gym [21] is a high-performance GPU-based physics simulator for
robotics and reinforcement learning. It can simulate the object’s deformation
with the FEM or PBD since it uses PhysX or FleX as the back-end physical
engine. The significant advantage is that Isaac Gym has a compact GPU
accelerated pipeline that reduces the time consumption, while other simulators,
such as MuJoCo and PyBullet, meet CPU bottlenecks when the physical states
are processed in the CPU.

Huang et al. (2021) [5] uses Isaac Gym to develop the DefGraspSim,
which can simulate some grasping actions to 3D deformable objects such as
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Figure 2.9: Example frames from four different experiments each time a
banana is grasped (Huang et al. (2021) [5]).

picking up, reorienting, linear acceleration, and angular acceleration(shown
in Fig. 2.9). The accuracy of the DefGraspSim has been validated by the
experiments, in which 1.1 million datasets consisting of various objects and
material parameters are evaluated [5].

2.5 Summary
This chapter compares different methods in modeling deformation dynamics,
stiffness parameters estimation, and various simulators for robotic manipulation
of soft objects. The characteristics of these methods are concluded in tables
2.1, 2.2, and 2.3 respectively. The author chooses the FEM due to its physical
accuracy and the easy adjustment of stiffness parameters. We choose Isaac
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Gym as the deformation simulator in which we can manipulate soft objects
because it supports the FEM and it consumes less computational resources
with a fully GPU pipeline.

Deformation dynamics models

Method
Physical

parameters
adjustment

Accuracy Computational
efficiency Flexibility

Particle
systems -

Low in
surface
shape

-
Easy to
change
shape

Mass-spring
systems Difficult

Volume
conservation

not
guaranteed

High

Depends
on spring
network
layout

Position-
Based

Dynamics
Difficult

Visually
high,

physical
low

High

Can
modeling
various
objects

Finite
Element
Methods

Easy High
Low in

nonlinear
model

Can
modeling
various
objects

Table 2.1: The comparison of deformation dynamics models

Estimation to stiffness parameters
Method Type Ground-truth Training data

Frank et al. [1] Gradient-
based

RGB-D cloud
points

FEM
simulation

Wang et al. [2]

Neural
network,

latent space
encoded

FEM
simulation

Generated
from

autoencoders

Bednarek et al.
[3]

Neural
network,

regression

IMU on
gripper

MuJoCo
simulator

Table 2.2: The comparison of estimation to stiffness parameters
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Simulators for robotic manipulation to soft objects

Simulator PBD support FEM support Fully GPU
pipeline

MuJoCo Yes No No
PyBullet Yes Yes No

Isaac Gym Yes Yes Yes

Table 2.3: The comparison of simulators for robotic manipulation to soft
objects
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Chapter 3

Research Methodology

3.1 Research Process

Figure 3.1: Research Process

Figure 3.1 shows the seven steps conducted in order to carry out this
research, which include research problem identification, literature review,
hypotheses building, research project design, data collection, data analysis &
results, and conclusion & decision.

The problem is to investigate how to estimate the stiffness parameters of
the deformable objects in a robotic environment. As discussed in section
2.1, the research focuses on the deformation of the object made by isotropic
homogeneous material, so the stiffness parameters to be estimated are Young’s
modulus E and Poisson’s ratio ν, which are both in scalars. Besides, to
reduce the difficulty of the project, only Young’s modulus E of the deformable
objects is estimated. Secondly, we replace the physical experiment with
the computer simulation environment because collecting data in a real-world
robotic environment is time-consuming. After a series of simplifications, the
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final problem becomes developing a method to estimate Young’s modulus
of the synthetic isotropic homogeneous deformable objects in a simulated
robotic environment and evaluating the accuracy of the developed method.

The thesis reviews the literature, including modeling deformation dynamics,
stiffness parameters estimation, and simulators for robotic manipulation of soft
objects (see 1.1 for detail).

The thesis hypothesizes that the developed method based on deep learning
with visual and haptic inputs can solve the identified problem with the upper
error limit of the 95% confidence interval lower than 5%.

The research project design follows six steps: decide on the research
approach, choose the research design type, identify the population & sampling
method, choose the data collection method, design the data collection plan,
and consider the data analysis strategy (see 3.2 in detail).

Data collection, data analysis & results and conclusion & decision are
introduced in 3.3, 5, and 6 respectively.

3.2 Research Paradigm

Figure 3.2: Research Paradigm

The figure 3.2 shows the six steps including main research paradigms.
The author chooses the quantitative research approach because the research

involves estimating Young’s Modules, a value. Besides, the hypothesis can be
validated by the quantitative analysis of the results.
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(a) banana (b) lemon (c) orange (d) rectangle

Figure 3.3: Selected synthetic object shapes

The types of the collected data are quantitative, primary, and experimental.
The data are a collection of the estimated Young’s modulus and the ground
truth Young’s modulus, which are both generated in the experiment.

The population of the research is the isotropic homogeneous deformable
synthetic objects. Those objects are sampled in a mixed method. On the one
hand, various simple geometric objects are selected with the non-probability
method. On the other hand, the parameters of those objects, such as Young’s
Modules and grasp positions, are chosen in a probability way. Section 3.3
introduces the data sampling details.

Section 3.3 explains the detailed data collection process, including collection
method, operationalization, reliability, validity, data management, and data
analysis.

3.3 Data Collection

3.3.1 Target Population
The population of the research is the isotropic homogeneous deformable
synthetic objects.

3.3.2 Sampling
The objects’ variables include shape, size, density, Poisson’s ratio, and
Young’s modulus within the research population’s scope. A collection of
objects with simple shapes are sampled with the non-probability sampling
method to reduce the difficulty of the experiment. Figure 3.3 shows the
selected object shapes. Besides, for each object with the same shape, the
object’s size is the same, and the densities of all objects are 1000kg/m3.
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The objects with the different stiffness properties of different materials are
sampled in a probability sampling method. The objects’ stiffness parameters,
including Poisson’s ratio and Young’s modulus, are chosen randomly within a
specific range.

3.3.3 Sample Size
The total sample size is 10000, which are generated with different physical
parameters based on four selected synthetic objects in figure 3.3.

3.4 Experimental design
The experiment is designed as a confirmatory experiment to verify the errors
or accuracy between the ground truth Young’s modulus and the predicted
Young’s modulus from the developed method.

Figure 3.4: Experiment process

Figure 3.4 shows the general experiment process, which includes three
main parts: grasp gesture generation, objects grasping simulation, and neural
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network architecture. The first step is generating the grasp gestures on each
synthetic object. Then in the grasping simulation, a robot with two fingers
grasps the object according to the generated grasp gestures. During the
grasping simulation, the depth images of the simulation, the grasping forces
on the gripper, and the location of the gripper tips are collected as the input
and training data for the neural networks. Finally, the neural network outputs
Young’s modulus with the three inputs. Chapter 4 illustrates the details of the
experiment.

3.4.1 Test environment
All experiments are proceeded in a simulation environment, so the test
environment only includes computer hardware and software.

3.4.2 Hardware/Software to be used
Hardware

A personal computer that has a NVIDIA GPU card with CUDA architectures.

Software

Application Software
Grasp gesture generation Julia

Objects grasping generation Isaac Gym
Neural networks TensorFlow

Table 3.1: Software requirement for each part of the experiment

3.5 Assessing reliability and validity of the
data collected

3.5.1 Validity
Within the selected object samples, the validity of the research test and
measure is evaluated by construct validity, content validity, face validity, and
criterion validity. Nevertheless, the validity of the research on all synthetic
objects (except for selected samples) requires further verification.
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3.5.2 Reliability
The internal consistency reliability type estimates the reliability of this research
because there is only one set of the dataset, and we avoid the retest, which
consumes much time and computation resources. The samples are randomly
generated with multiple parameters, so the internal consistency reliability can
be estimated by collecting all samples’ results and analyzing them statistically.
If all results from all samples lead to a similar conclusion, the results are
reliable and vice versa.

Other reliability estimation types do not assess reliability. For example,
interrater reliability is not adopted because the experimental results do not
involve human subjective evaluation. The reason why the parallel forms
reliability is not suitable is that there is only one design version of the
experiment.

3.6 Planned Data Analysis
The collected data are the errors between the ground-truth Young’s modulus
and the estimated Young’s modulus from the neural network.

3.6.1 Data Analysis Technique
The errors are summarized as the frequency distribution in graphs or tables,
which is realized by dividing the errors into different internals according
to their values. The error data are also estimated by central tendency and
variability, so the mean value and the variance are demonstrated in tables or
graphs.

Besides, the error data are also processed separately by different features
of the samples, such as the shape, grasping gestures, and stiffness parameters
of the objects.

3.7 Evaluation framework
The analyzed data are evaluated by the statistical significance of the errors
between the estimation and the ground truth. The significance level can be
concluded from the frequency distribution of the error data.
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Chapter 4

Research Design & Implement

4.1 Research design
Figure 3.4 illustrates the three general steps of the entire experiment: grasp
gesture generation, object grasping simulation, and deep learning on Young’s
modulus. This section explains the details of these three steps.

4.1.1 Grasp gesture generation
The first step is generating the grasping gestures on selected object shapes
shown in Fig.3.3. The author uses an antipodal grasp sampling method when
generating grasp gestures. A 2-dimensional triangle in Fig.4.1a is the grasped
object for illustrating the method more simply and clearly, and Fig.4.1b shows
a 3-dimensional example in which a gripper grasps a synthetic lemon. There
are two contact points P1, P2 between gripper tips and the object when a
gripper with two fingers attempts to grasp an object. The vector from P1 to P2

is called the closing vector, and the direction that the gripper approaches the
object is the approaching vector inside the plane vertical to the closing vector.

The "antipodal" means the closing vector is in the friction cones at both
contact points on the object. Fig.4.2 shows that if a closing vector is in a
friction cone or out of a friction cone. There is no slippage between the gripper
tip and the object only when the force direction vector is inside the friction
cone.

The algorithm of the antipodal grasp sampling is demonstrated in Fig.4.3.
In this algorithm, the first contact point P1, the closing vector, and the
approaching vector of the gripper are all randomly generated in order. For
one selected contact point on the object, the number of attempts of generating
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(a) 2D triangle (b) 3D lemon

Figure 4.1: The antipodal grasp sampling method demonstration.

Figure 4.2: The left is the closing vector in the friction cone and the right is
the vector out the friction cone.

a closing vector n1 and approaching vector n2 should be limited to n1max

and n2max to reduce the computational resources. Besides, the probability of
successfully generating a grasp at each point on the object is not equal because
the contact points, closing vector, and approaching vector are generated
randomly. More samples are generated at the position with a high probability
of successful generation. When the approaching vector cannot be generated,
the algorithm does not return to the beginning to generate a new first contact
point but a new closing vector to make the probability equal in all sample
spaces. Additionally, because two squeezing forces from the gripper tips to
the object are expected as perpendicular to the object surface as possible at the
contact positions, the friction coefficient between the gripper and the object is
set to 0.01.

n grasp samples are generated by iterating the algorithm n times. Fig.4.4
shows an example of generating ten grasp gesture samples on a synthetic
lemon.
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Figure 4.3: The algorithm of the antipodal grasp sampling.

Figure 4.4: 10 grasp samples generation.

The inputs of this step are the object mesh files, and the outputs are
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a collection of the grasping gestures on different objects. The parameters
include the size specifications of the gripper and the friction coefficients
between the gripper and the objects.

4.1.2 Objects grasping simulation
After the grasp sampling, the deformation of an object squeezed by a gripper
is simulation according to the process shown in Fig.4.5. The simulation
generates the training dataset for the neural network with the inputs including
the object mesh and a series of grasp samples. In the simulation, an object
with various Young’s modulus is squeezed by a thin gripper.

Figure 4.5: The simulation process with inputs and outputs.

The author modifies the simulator from DefGraspSim, which is a deformable
object grasping framework developed by Huang[5] based on NVIDIA Isaac
Gym[21]. The original framework provides the process by which the object is
grasped and squeezed by a two-finger robot until sufficient force is achieved,
and then the object is picked up from the plane.

Compared with the original framework, there are two primary modifications.
The first is that the picking up process is removed, and the object is only
squeezed by a certain distance instead of being squeezed by a specific force
because the extent of the squeezing is more feasible to be controlled by
distance. Another reason is that the expected forces are unknown if the objects
with different stiffness are squeezed. The second modification is that a thinner
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(a) The original gripper (b) The modified thin gripper.

Figure 4.6: A synthetic lemon is grasped by the original gripper.

gripper substitutes the original gripper to reduce the occlusion problem from
the gripper when depth images are generated from a camera to the squeezed
object. The other reason is to concentrate the stress in a smaller area where
the camera can capture as much deformation as possible. The Fig.4.6 shows
an example that an synthetic lemon is squeezed by the robot with the original
gripper(Fig.4.6a) and the modified thin gripper(Fig.4.6b).

In this simulation setup, an object is squeezed by a thin gripper until the
gripper tips reach the expected distance, and the gripper holds this position
for seconds to wait for the object’s vibration to decay. For example, Fig.4.7
helps to explain the camera setup in a local spherical coordinate and two depth
images in two states when the thin gripper squeezes a synthetic lemon. A depth
camera is set in a certain position to capture the depth images that present the
objects’ local deformation. The initial state is the state when the gripper tips
are closed to the expected contact positions by a small distance, while the
final state is the end of the time when the gripper holds the expected grasping
positions. Two depth images, two normal forces, and the distance between two
gripper tips at the gripper tips are obtained as the simulation output and the
neural network’s inputs at these two states.

The force in the output is the average force of two normal forces at
the gripper tips. Those two forces are processed by Butterworth filter[22]
and moving average, which can reduce the random white noise in the force
samples. During data collection, the gripper and object is in a static state, so
filtering and averaging do not introduce other errors for data collection.

The inputs of the objects grasping simulation are the mesh files of all
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Figure 4.7: The simulation setup with which a synthetic lemon is grasped by
the thin gripper.

objects and the grasp gestures on each object generated in the first step. The
outputs are a collection of depth images of the local deformation on the objects,
two forces at the two robot gripper tips, and the distance between gripper tips,
obtained at both the initial state and the final state. The parameters include the
density of the object, Young’s modulus and Poisson ratio of the object, gravity
acceleration, and the position and the pixel of the depth camera.

4.1.3 Neural network design
Fig.4.8 shows the neural network architecture, including the inputs and the
outputs, in which the fully-connected layers are used as a regression block.
The two depth images as a part of inputs show the local deformation before
and after the banana is squeezed.

The Residual Neural Network (ResNet) is a popular deep Convolutional
(CNN) for extracting the features of an image, as it has the advantage
of mitigating the vanishing gradient problem when the neural network is
deeper[23]. Among various scales of Resnet architecture, the author chooses
the Resnet50 according to the computational resources. Two Resnet50 architectures
share their weights because the two input images themselves and the features
that need to be extracted are similar. The concatenate layer combines three
factors: the initial state and final state features, which have information on
the object deformation extent, the normal force on the gripper tips, and the
distance between gripper tips. The distance here brings two advantages: more
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accurate deformation at the contact point and the rough deformation value
occluded by the object in another viewing direction.

Figure 4.8: Neural network architecture

4.2 Implementation
This section introduces the details of the implementation of three parts in 4.1
separately.

4.2.1 Grasp gesture generation
The author implements the grasp gesture generation algorithm(Fig.4.3) with a
code written in Julia programming language because of its high computational
efficiency.

In this thesis, four .obj format files as the meshes of four synthetic
objects(Fig.3.3) are the inputs of the code, while the outputs are six .hdf5
files which include 50 grasp gestures. Each grasp gesture consists of the
coordinate of the grasp center(the midpoint of two contact points) and a
quaternion which suggests the closing vector and the approaching vector,
which are explained in Fig.4.1. The grasp gesture generation code also requires
the friction coefficient, which is set to 0.01, to generate the grasp gestures as
perpendicular to the object’s surface as possible.
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The hardware on which the code is executed is a laptop with an Intel Core
i5-5200U CPU. The software requirement is Julia v1.6.6 on Ubuntu 20.04
operation system. The running time is about 2 hours.

4.2.2 Objects grasping simulation
The author realizes this simulation by a Python code modified from the
DefGraspSim framework based on NVIDIA Isaac Gym.

The inputs include four .obj mesh files of the four objects(Fig.3.3). Those
.obj mesh files are required to be pre-processed by fTetWild[24] and then
converted into the IsaacGym-specific .tet format. The other input is the grasp
gestures generated from the last step in 4.2.1. The outputs are two depth images
of the initial and final states, the average normal force between two gripper tips,
the distance of two gripper tips, and Young’s modulus.

The parameters of the simulation are shows in the Tab.4.1.

Parameter Value
Density of the object 1000kg/m3

Gravity acceleration 0m/s2

Young’s modulus
Random samples from a
uniform distribution over
[2 × 104Pa, 5 × 105Pa)

Poisson ratio 0.3
Dynamic friction coefficient 0.7

The local spherical
coordinates of the depth

image at the contact point
(0.05, 10� , 90� )

The pixel of the depth camera 448 × 448
The number of the output

data for each object 2500

Table 4.1: Parameters of the simulation

Fig.4.7 illustrates the local spherical coordinates axis.
The simulation runs on the computer with an AMD Ryzen Threadripper

1920X 12-Core Processor and NVIDIA TITAN Xp graphic card. In terms of
software, Python 3.8 and Nvidia Isaac Gym are required on Ubuntu 18.04.
The time consumed for 10000 sets of data for four synthetic objects is about
four days.
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4.2.3 Deep learning on Young’s modulus

Figure 4.9: Neural network layers and dimensions

Fig.4.9 presents the details of the neural network architecture layers and
dimensions. All data are divided into two datasets in which 80% of them are
training datasets, and 20% of them are validation datasets. The loss function
is the mean square error.

This deep learning part inputs are 10000 sets of data, including depth
images at the initial state and final state, the average normal force between
two gripper tips, the distance between two gripper tips, and the ground-truth
Young’s modulus. The outputs are the predictions of Young’s modulus.

Tab.4.2 lists the parameters of the deep learning process.

Parameter Value
Batch size 32
Optimizer Adam

Learning rate 0.001
Loss function Mean square error

Sampling window in moving
average 30

Table 4.2: Parameters of the deep learning
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The deep learning script runs on the Google Colab Pro, on which the GPU
is Nvidia Tesla P100. The computational time for the entire neural network
training is about 15 hours.
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Chapter 5

Results and Analysis

5.1 Major results
The results are the statistical error analysis between the predicted and the
ground-truth Young’s modulus. The errors are analyzed in four different
approaches separately on the training and validation datasets.

The first evaluation method is the mean square error between the predicted
and the ground-truth Young’s modulus during the neural-network training
process, which is shown in Fig.5.1. After 362 training epoch, the training
loss decreases from 0.879 to 2.7930 × 10� 4, and the validation loss reduces
from 5.1169 to 3.6330 × 10� 4. The validation loss is slightly greater than the
training loss, but both losses are in the same order of magnitude.

Figure 5.1: The mean square error loss along the training epoch

Secondly, Fig.5.2 shows the histogram along with the various error percentage
value on both the training and validation dataset by the histogram with
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Confidential level 68 % 95 % 99.7 %
Error percentage for training dataset (%) 1.056 2.993 6.954

Error percentage for validation dataset (%) 1.035 3.017 8.591

Table 5.1: The error percentage on various probability margin for training and
validation dataset

(a) Training dataset (b) Validation dataset

Figure 5.2: The histogram with densities of the Young’s modulus error
percentage

densities. The Tab.5.1 illustrates error percentages when cumulative distribution
function is 68%, 95%, and 99.7% of training and validation dataset. For
example, the 3.017 in Tab.5.1 indicates that the error percentages of 95% of
the observations in the validation dataset are no more than 3.017.

The third approach validates the error and error percentage for different
young’s modulus values on both the training and validation datasets. Fig.5.3
shows the error and error percentage observations for different young’s modulus
values. It also demonstrates that the error percentage between the estimated
and the ground-truth Young’s modulus decreases, and the absolute error
increase with the increase of Young’s modulus.

The final evaluation is to calculate the statistics for different young’s
modulus values, such as the mean and the standard of the error percentages,
because Fig.5.3 shows that the errors are different for various Young’s modulus.
Tab.5.2 and Tab.5.3show the standard and mean values of the absolute and
relative error on three adjacent intervals of Young’s modulus for both training
and validation data. Besides, the overall statistics of the error are also
collected. The statistics in Tab.5.2 and Tab.5.3 indicate the same relation
between the error and Young’s modulus in the Fig.5.3.
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(a) Training dataset error percentage (b) Validation dataset error percentage

(c) Training dataset error (d) Validation dataset error

Figure 5.3: The error and error percentage of the Young’s modulus along the
different Young’s modulus

Young’s Modulus(Pa) Standard of error(Pa/%)
Training Validation

2×10^4-5×10^4 735(2.399%) 647(1.851%)
5×10^4-2×10^5 1327(1.127%) 1211(1.095%)
2×10^5-5×10^5 2026(0.638%) 2073(0.602%)

Overall 1845(1.123%) 1856(1.011%)

Table 5.2: Standard of the errors and error percentages on different value
ranges

Young’s Modulus(Pa) Mean of errors (Pa/%)
Training Validation

2×10^4-5×10^4 895(2.683%) 839(2.474%)
5×10^4-2×10^5 1512(1.282%) 1474(1.231%)
2×10^5-5×10^5 2380(0.704%) 2456(0.708%)

Overall 2024(1.006%) 2038(0.987%)

Table 5.3: Mean of the errors and error percentages on different value ranges
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5.2 Discussion
The final result, the error percentage in the 95% confidence interval for
the validation dataset, is about 3%, which is acceptable for the problem of
estimating Young’s modulus of a homogeneous and isotropic object.

Tab.5.1 suggests that the method in this thesis can guarantee an error of
8.591% if there is a higher requirement for the confidential level of the error,
e.g., 99.7%.

There is no underfitting and overfitting in the neural network training
process because Fig.5.1 shows that both losses are at a low level, and the
validation loss is slightly higher than the training loss. The validation loss
shows a fluctuation after about 150 epoch may because the learning rate is too
large. Therefore, reducing the learning rate may suppress the fluctuation.

Fig.5.2 and Fig.5.3 show very few samples with more significant errors
compared to others, partly because of the randomness in neural networks.
Another possible reason is that the object deformation simulation introduces
the errors of object deformation, the error of the force to the object, and the
error of the distance between two gripper tips.

At the same time, from Fig.5.3, Tab.5.2, and Tab.5.3, the error becomes
more significant with a larger Young’s modulus, but the relative error reduces
with the increase of Young’s modulus. The reason is difficult to analyze
from the results, but it can be speculated that the error either comes from the
squeezing forces during the deformation simulation of the object or from the
error introduced by the neural network.

5.3 Reliability Analysis
As illustrated in Sec.3.5, the reliability of the result is assessed in the internal
consistency, which aims to estimate the correlation between the samples with
various parameters. If the characteristics of the results collected from all
samples with various parameters have a high similarity, then the experiment
results have high internal consistency.

The internal consistency can be calculated by averaging the correlations of
all results from various samples. Specifically, the errors of Young’s modulus
in the validation dataset are calculated statistically from 1984 samples, and the
upper limit of error percentages of 95% of the validation dataset is (3.017%).
In addition, Fig.5.3 and Tab.5.3 show that all means of errors on the validation
dataset with different Young’s modulus are lower than 3%, which indicates that
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the results have high internal consistency.

5.4 Validity Analysis
The validity of the results is assessed mainly by content validity. Content
validity assesses if the data to be measured covers all aspects of the data. For
this research, the results have full content validity if the experiment samples
include all varieties of the samples. The experiment samples include four
different object shapes, so the research may not have full content validity on
all object shapes.

Construct validity and face validity assess whether the measurement
method represents what we aim to measure. These two validity approaches
are usually used for things that cannot be directly measured or observed.
Criterion validity describes the correlation between the measuring method
and a criterion variable, an established valid measuring approach widely
considered valid. In this research, construct validity, face validity, and
criterion validity are not discussed in detail because the data are a collection of
Young’s modulus, which are well-defined physical quantities, and those data
are the direct outputs of the method. Besides, the internal and external validity
are also not analyzed because these two are defined to assess cause-and-effect
relationships, and the problem of this research does not involve cause-and-
effect relationships.

To conclude, the result is valid for the selected synthetic objects but
requires further verification for more synthetic and real-world objects.
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Chapter 6

Conclusions and Future work

6.1 Conclusions
The conclusion is that the developed method can predict Young’s modulus of
the homogeneous isotropic objects in the simulation environments, especially
for the objects selected in the sample dataset, which meets the research goal
and answers the question asked in Sec. 1.2

The advantage of the method is that Young’s modulus can be quickly and
accurately predicted for the objects in the samples. The disadvantage is that
the neural network requires retraining if new samples are added. Moreover,
the data generation required for neural network training is computationally
expensive.

The results of the project are acceptable according to Bednarek et al.
(2021) [3] and Frank et al. (2014) [1], but both of them present the results
from the real-world experiment. Hence, the validity of the results in the real
world requires further verification in real-world experiments.

Based on this project, the research can be expanded for broader application
in predicting Young’s modulus by increasing the diversity of the object shape
samples. On the other hand, the method can also be generalized to real-world
objects after validating real-world experiments.

6.2 Reflections
In terms of sustainability, this study can be generalized to real-world application
by extending the sample diversity. In addition, this study may also contribute
to the prediction and estimation of Poisson’s ratio under the same experimental
conditions.
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Socially, this research contributes to the robotics industry, including
industrial production line and medical robots. Technically speaking, this
research helps robots to manipulate deformable objects more efficiently, as
it reduces computational resources and time consumption when modeling
and predicting the deformation of unknown objects during deformable object
manipulation.

6.3 Limitations
The samples only involve four object shapes, limiting the results’ generalizability
to other unknown object shapes. More diverse samples can reduce the impact
of this limitation, which is not affordable for this research because of the
computational resources and time.

6.4 Future work
This section will list several remaining issues and unfinished work which can
be done and improved in the future.

6.4.1 What has been left undone?
Increase sample diversity

Selecting the synthetic objects with various shapes is meaningful work to do
in the future because it may generalize this method to objects with the most
shapes. However, this is more challenging as the sample size increases because
the object deformation simulation and the neural network training require
massive computational resources and time.

In real-world environment

Applying this method to the real-world environment is another future work.
Although this method achieves promising results on synthetic objects, there
are still many differences in the real world, such as the difference between the
synthetic object shapes and the real-world object shapes. There are always
errors between the object deformation in simulation and the real world.

One way to adapt this method to the real world is to add a small amount of
data from real-world experiments to the neural network training dataset, which
has been validated to be effective by Bednarek et al. (2021)[3].
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6.4.2 Next obvious things to be done
In particular, the subsequent undone work is that we can add a small amount
of dataset collected in real-world experiments to neural network training. This
approach has been validated by Bednarek et al. (2021)[3] to have significant
benefits in improving the accuracy of the neural-network-based method in real-
world experiments.
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