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For some 30 years, fuzzing has been a favored methodology for vulnerability discovery and robustness testing by researchers and
developers alike. Following the popularity of American Fuzzy Lop and the rise of coverage-guided fuzzing, many state-of-the-art fuzzers
employ heavy instrumentation, work best on small components and often require source code access. For networking equipment
such as switches and routers, this may not be feasible. If the software needs to run on or interact with specialized hardware, fuzzing
the equipment on a component level becomes very difficult. Heavy instrumentation may also degrade the performance of the SUT
too much, thus invalidating the testing. Furthermore, the customers who buy the networking equipment often want to do their own
security or robustness testing, but lack access to the source code.

This paper details the design and usage of a grammar-based fuzzing framework and applies it to the Link Layer Discovery Protocol
(LLDP), which is commonly used by industrial networking equipment. By modeling the fuzzing campaign as a multi-armed bandit
problem, the grammar used to generate frames is able to adapt to observations made by lightweight probes, a novel concept according
to the author’s knowledge.
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1 INTRODUCTION

Fuzz testing, or fuzzing, is a technique that is commonly employed during the security testing phase of the software
development process. The term fuzz testing was originally coined by Miller et al. [16] in a study of the reliability of
commonly used UNIX programs. The technique Miller used was simple: feed random character sequences into the
program under test (PUT) and monitor for unexpected behavior. Miller and his team found and fixed many bugs
this way in applications such as emacs, make and telnet. Since its inception roughly thirty years ago, fuzzing has
evolved into a popular field of research with many practical applications and has spawned several tools that are seeing
widespread industrial use. Notable examples of fuzzers include Google’s AFL[22] in the open-source space and Synopsys’
Defensics[4] (previously known as Codenomicon Defensics) in the proprietary space. A recent survey paper by Manès
et al. [15] gives a comprehensive overview of the current state of the field of fuzzing.

Although the basic concept of fuzzing is simple, the techniques for generating randomized data and feeding it to the
PUT or system under test (SUT) can be very sophisticated. For many test targets, intelligent generation might even be
necessary. Take, for instance, a routing stack that consumes IPv4 packets. It is not possible to achieve any significant
test coverage in a feasible amount of time by just sending random chunks of bytes as the vast majority of these ”packets”
will have an invalid IPv4 header checksum and will most likely be dropped early in the protocol processing. Some
intelligence or awareness of what the SUT expects as its input is needed in order to properly exercise the SUT. In short,
the generated data should be valid enough, but not too valid.

Various approaches for generating ”mostly valid” data exist and are in use. This paper investigates the up- and
downsides of using a context-free grammar (CFG) in Backus-Naur Form (BNF) as a base for generating ”mostly valid”
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DST SRC 0x88CC FCSTLV 1 TLV 2

Type

7 bits

Length

9 bits

Value

0-512 bytes

Fig. 1. The basic structure of an LLDP frame. TLV fields of the LLDP payload are shown in solid red. Ethernet frame fields are shown
in dashed gray.

Table 1. An overview of the available TLV types for LLDP.

Type Description Usage

0 End Of LLDPDU Optional
1 Chassi ID Mandatory
2 Port ID Mandatory
3 Time To Live Mandatory
4 Port Description Optional
5 System Name Optional
6 System Description Optional
7 System Capabilities Optional
8 Management Address Optional
9-126 Reserved Unused
127 Org. Specific Optional

frames for binary protocols. It does so by focusing on the IEEE 802.1AB link layer discovery protocol (LLDP)[2]. The
choice of LLDP was motivated by several factors: its simplicity, its statelessness, its ubiquity in large-scale Ethernet
networks and the lack of open-source fuzzers that target LLDP implementations specifically.

The rest of this paper is structured as follows. Section 2 contains some background on important core concepts in
fuzz testing as well as a brief overview of the LLDP protocol. Section 3 discusses related work. The details and rationale
behind the fuzzer’s design is presented in Section 4. Section 5 describes the experimental setup used for evaluation and
examplifies the workflow for using the fuzzer. Results from the experiments are presented in Section 6 and discussed in
Section 7. Finally, concluding remarks and suggestions for future work are made in Section 8.

2 BACKGROUND

2.1 Link Layer Discovery Protocol

The IEEE 802.1AB link layer discovery protocol (LLDP)[2] is used by nodes in a network for topology and capability
discovery. It is a binary protocol with a payload that is made up of a number of type-length-value (TLV) fields. Since
only the bit width of the ”type” and ”length” subfields of a TLV structure need to be agreed upon beforehand, TLVs are
a common way of representing variable-length data in binary protocols. The basic structure of an LLDP frame can be
seen in Figure 1. Table 1 lists the supported types in the latest version of the standard.
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2.2 Mutational and Generational Fuzzing

In order to generate input that is not completely random, yet random enough to trigger unexpected or otherwise
interesting behavior, one needs a strategy. A fuzzer’s ability to find bugs is greatly affected by the choice of strategy.
However, test targets and their expected input can vary greatly and there is no universal way of generating ”fuzzy
input”. The choice of strategy has to be done almost on a case-by-case basis.

An intuitive way of generating fuzzy input may be to simply modify valid input, assuming it has been captured
or recorded somehow. This approach, dubbed mutational fuzzing[9], is indeed reasonable and even widely popular.
AFL[22] and its various derivatives [19][12] use this strategy. A typical mutational fuzzer maintains a pool of seeds,
initially the valid input. The fuzzer then performs mutations on these seeds to generate fuzzy input. Typical mutational
primitives include flipping a random bit, incrementing a random byte, changing the endianness of a random byte or
somehow combining two or more seeds. Many other primitives are common as well, all depending on the application
area. This way, the fuzzy input data will have at least some of the properties of the valid data and is therefore more
likely to reach deeper parts of the SUT, where it can potentially cause trouble. Fuzzers may also update the seed pool
with mutated seeds or discard old seeds while it is running.

Another strategy for generating fuzzy input for a test target is to somehow describe it in a general way. Many
times, the SUT expects its input data to follow some kind of structure: a specific file format, a network packet or a
set of command-line arguments. The idea is to programatically generate input data from a model that captures the
general input structure that the SUT expects. This is often called generational fuzzing or model-based fuzzing[9]. The
model used to describe the structure of the input is often some sort of grammar. As an example, funfuzz[5] uses a
grammar specification for JavaScript to generate snippets of code that are subsequently used to test various JavaScript
interpreters.

Hybrid fuzzers that borrow concepts from both generational and mutational fuzzers are common as well. For example,
some fuzzers might check the mutated seeds against a grammar or model before feeding it to the SUT. One example
of this is LangFuzz[13]. In this paper, hybrid fuzzing is defined broadly; if the fuzzer depends on pre-recorded input,
for example, to create or modify a model, it is a hybrid fuzzer. Otherwise it is either a pure mutational fuzzer (uses no
model at all) or a pure generational fuzzer (does not require pre-recorded input at all).

2.3 Fuzzing Network Protocols

Network protocol fuzzers have historically taken a generational approach, starting with PROTOS[14] and SPIKE[8].
PROTOS, later known as Codenomicon Defensics and now known as Synopsys Defensics, uses a BNF grammar to
describe the input structure as well as possible anomalies that can be introduced in the elements of the input. Confusingly,
[14] calls these anomalies mutations but since PROTOS does not mutate pre-recorded data to produce fuzzy input, it is
not a mutational fuzzer. SPIKE, on the other hand, does not use grammars for describing the input structure. Instead, it
uses what the author called a block-based description to model a network packet. With the block-based description the
packet is built field-by-field from MSB to LSB, with each field being represented by a block. Depending on what type of
block is used to represent a field, SPIKE alters the data in the block differently to introduce anomalies. For instance, a
string-type block may be altered by removing the null-termination and a short integer-type block (2 bytes) may be
altered by changing its endianness. Algorithm 1 contains a snippet of code that highlights the concept, although it is
not real SPIKE code. Block-based descriptions have become something of an idiom in the network protocol fuzzing
domain and was adopted by the fuzzer frameworks Sulley[9], which later forked into Boofuzz[3].
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Algorithm 1: Snippet highlighting the concept behind block-based descriptions.
// Block description of a generic TLV starts here

s_start("generic_TLV");
// A single-byte type field that is static and will not be altered

s_byte(7, static=True);
// Placeholder for two-byte length field based on data block

s_size("generic_TLV_data", 2);
// Block description for the data block starts here

s_start("generic_TLV_data");
// First few bytes in data block is a string

s_string("Hello, world!");
// Then follows 0 to 100 bytes of random data

s_random(0, 100);
// End the inner data block

s_end("generic_TLV_data");
// End the outer TLV block

s_end("generic_TLV");

2.4 Probabilistic Grammars for Generation and for Parsing

BNF grammars that model the input structure can be used to generate fuzzy input. To further shape the generated
input the grammar can be annotated with probabilitic weights to make certain elements in the input more likely to
appear. These probabilistic weights have traditionally served two purposes: generation and parsing. Generation is fairly
self-explanatory: to shape the characteristics of the generated fuzzy input. When used solely for generation, the weights
are often set manually. However, the weights can also be used for parsing. Then the weights are set automatically based
on the characteristics of whatever input is fed to it at the parsing stage. TreeFuzz[17] and Inputs from Hell[20] use this
approach to train probabilistic grammars for JavaScript and HTML that are then used to fuzz test web browsers.

The focus of this paper is the generational use of probabilistic grammars, albeit with a twist.

2.5 Feedback Fuzzing

For a fuzzer to be successful it must not only find bugs, it must also find them quickly. Having a good strategy for
generating input is perhaps the most important step for doing so. To further boost the fuzzers performance, it can
utilize observations of the SUT to adapt its generation strategy in a feedback loop. Part of AFL’s success is due to
this mechanism. It instruments the source code of the SUT in order to be able to extract code coverage information
for every input it feeds it to the SUT. Being a mutational fuzzer, AFL then uses this information to schedule its seeds
depending on which ones have proven to give a large code coverage. By focusing on certain seeds for mutation, AFL is
able to find bugs more quickly since it doesn’t waste as much time on mutating ”boring” seeds that don’t exercise the
code enough. Depending on the level of SUT instrumentation that is used to guide the generation of input, fuzzers
are often categorized as being blackbox, greybox or whitebox. Many network protocol fuzzers have traditionally been
blackbox fuzzers, indicating the lowest level of instrumentation, often none. With the most commonly used feedback
mechanisms being either source code inspection or source code instrumentation, it is easy to see why network protocol
fuzzers, whose targets are often complex and large-scale systems, struggle with the feedback mechanism. There are
some exceptions to this, however. Rather than relying on source code-related instrumentation, SlowFuzz[18] looks at
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Pure Mutational

Pure
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No Feedback Feedback

SPIKE†[8]

Boofuzz†[3]
Sully†[9]
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This Paper

LangFuzz[13]

TreeFuzz[17]

Inputs from Hell[20]

funfuzz[5]
AFL[22]

AFL++[12]

AFLNET†[19]
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†Main purpose is network protocol fuzzing.

Fig. 2. A simplified classification of various fuzzers.

the CPU usage of the SUT and favors seeds that yield an increased usage. This way, SlowFuzz is able to detect potential
DoS attack vulnerabilities.

The idea to prioritize certain seeds for mutation based on observations of the SUT is fairly straightforward, and for
that reason most feedback fuzzers are mutational fuzzers. For generational fuzzers, it is not as clear how the observations
should be used to update the model or grammar that drives the generation of fuzzy input. Nautilus[10] manages to
achieve this via a two-stage approach where a grammar is used to generate a seed for a mutational fuzzing stage.
Depending on the feedback, Nautilus can choose to either generate new seeds, or go on mutating existing seeds. Note
that, by the definition of hybrid in Section 2.2, Nautilus is not a hybrid fuzzer since it does not require pre-recorded
input for its mutation stage.

Figure 2 gives an overview of the somewhat simplified fuzzer classification that this paper makes. For more detailed
insight in the taxonomy of fuzzers, the reader is referred to the survey by Manès et al.[15].
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3 RELATEDWORK

The work in this paper is largely inspired by the fuzzer design presented by Zeller et al. in The Fuzzing Book[23]. One
of the goals of this paper is to provide a case study on some of the techniques used in the book by applying them on the
LLDP protocol.

Feedback fuzzing that is not based on source code inspection or instrumentation has been investigated for other
applications. SlowFuzz[18] aims to find algorithmic complexity attack vulnerabilities by monitoring CPU usage in a
feedback loop.

Defensics[4], PROTOS[14], Boofuzz[3], Sulley[9] and SPIKE[8] are the canonical network protocol fuzzers. The
fuzzer in this paper has a similar use case, i.e. fuzzing complex networking equipment in a blackbox fashion, but differs
by its feedback mechanism.

Lastly, Nautilus[10] is a related fuzzer in the sense that it is also a purely generational feedback fuzzer. However, it
takes a different approach to achieve the feedback. An approach that depends on a second mutation stage where typical
mutation operations are performed. Many such operations are not suitable for mutating binary protocol data units; if
they are applied randomly they are too likely to completely break the protocol, which is undesireable. Therefore, the
fuzzer in this paper introduces a novel way of achieving feedback in a purely generational fuzzer.

4 DESIGN

The design takes a blackbox approach to fuzzing with a light instrumentation that does not require access to the source
code of the SUT. The novelty lies in the fact that it is a purely generational, feedback-enabled fuzzer for network
protocol implementations. To the author’s knowledge, no such tools are available today in the open-source domain. As
mentioned briefly in Section 1, this paper chooses to focus on fuzzing the LLDP protocol, but many of the concepts can
be easily generalized to other network protocols. However, as a limitation, this paper contains little to no discussion on
fuzzing stateful protocols. That is, protocols that may require sequences of messages, some fuzzed and some not, in
order to test certain aspects of an implementation. For the rest of this section, one test case equals one generated input.
Emphasis is instead put on constructing single messages, frames in the case of LLDP, as well as SUT instrumentation
and the feedback mechanism.

4.1 Overview

Figure 3 shows an overview of the fuzzer in a sample test configuration. A host (1) is running the fuzzer program (2).
One component in the fuzzer is the model (3): a BNF grammar that describes the input structure. The generated input is
fed to the SUT (4) using an appropriate networking technology. In the SUT there is one process running (5) that is of
interest in this sample configuration. The SUT is also running a small probe software (6) that monitors the health of
the relevant process. The probe feeds back its observations to the fuzzer’s host where they act as the input for two
components in the fuzzer. The first being the arbiter (7), whose role is to determine the outcome of a testcase based on
the probes’ observations as well as to store relevant information in a database (8). The second component is the fitness
function (9) and it makes up the feedback mechanism in the fuzzer; it modifies the model based on the observations
from the probes.

A major feature of the fuzzer is its modular design. It provides a plug-in architecture for the model (3), the arbiter (7)
and the fitness function (9). These components are easily replaced if needed. For instance, depending on how much
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Fig. 3. An overview of the fuzzer design and how it can be deployed in a test setup.

instrumentation (i.e. how many probes) is used in a certain setup, the tester might want to use a different arbiter to
decide the outcome of the test cases.

The following subsections describe the most important aspects of the fuzzer in more detail.

4.2 The Model

The model consists of a BNF grammar that describes the general structure of an LLDP frame. Much like PROTOS,
anomalies are included in the description to make sure the generated data contains some fuzziness. It is possible to view
an LLDP frame as having two levels of fuzziness: macro-level and micro-level. The former concerns the frame structure
as a whole. For example, what TLV types are present and in what order they appear. The latter deals with individual
TLVs and is more concerned with the semantics of the diffent TLV types and their respective subtypes. Micro-level
fuzziness encompasses anomalies such as incorrect length fields, unexpected length fields (some TLV types or subtypes
imply a fixed length) or invalid characters where a certain string format might be expected.

Table 2 attempts to summarize the anomalies that can be present in an LLDP frame.
Figure 4 shows a sample grammar for an LLDP frame along with its encapsulating Ethernet frame. Frames are

generated by starting at the top-level symbol, ⟨start⟩, and then expanding the symbols according to the grammar
rules. Intermediate results from the expansion process is stored in a syntax tree, an example of which can be seen in
Figure 5. Where there are several possibilities for the expansion, denoted by the pipe character, the default behavior for
generation is to choose an expansion randomly, but there are some exceptions to this, as will be discussed.

4.3 BNF Grammar Shortcomings and Workarounds

Context-free grammars and the syntax-tree representation are powerful tools for expressing and controlling the
generated frames. Nonetheless, there are some inherent flaws to this approach, as pointed out by Zeller et al.[23]. One
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Table 2. An overview of some anomalies that can be present in an LLDP frame and whether they are currently supported in the
model.

Anomaly Level Supported

TLV duplication Macro Yes
Scrambled TLV order Macro Yes
Missing mandatory TLVs Macro Yes
Use of reserved TLV types Macro Yes
Use of org. specific TLVs (Type 127) Macro Yes
Very deep VLAN stack Macro Yes
LLDP multicast addresses Macro Yes
Zero-length TLV Micro Yes
Length underflow Micro No
Length overflow Micro No
Ignore MAC address string format Micro Yes
Ignore IP address string format Micro Yes

⟨start⟩ ::= ⟨frame⟩
⟨frame⟩ ::= ⟨dst⟩⟨src⟩⟨ethertype⟩⟨payload⟩⟨fcs⟩

⟨dst⟩ ::= ⟨random-mac⟩ | ⟨lldp-multicast⟩
⟨src⟩ ::= ⟨random-mac⟩

⟨ethertype⟩ ::= ⟨0x88CC⟩
⟨payload⟩ ::= ⟨tlv⟩ | ⟨tlv⟩⟨payload⟩

⟨tlv⟩ ::= ⟨type⟩⟨length⟩⟨value⟩
⟨type⟩ ::= ⟨bit⟩⟨bit⟩⟨bit⟩⟨nibble⟩

⟨length⟩ ::= ⟨bit⟩⟨byte⟩
⟨value⟩ ::= ⟨byte⟩ | ⟨byte⟩⟨value⟩

⟨fcs⟩ ::= ⟨byte⟩⟨byte⟩⟨byte⟩⟨byte⟩
⟨nibble⟩ ::= ⟨bit⟩⟨bit⟩⟨bit⟩⟨bit⟩

Fig. 4. A sample grammar for describing a fuzzy LLDP frame. Note that the definition for symbols that are self-explanatory have
been left out for brevity.

such flaw, as the reader may have noticed in Figure 4, is the fact that the ⟨fcs⟩ symbol can not be expanded into four
arbitrary bytes, as the grammar indicates. Similarly, the ⟨length⟩ field is also incorrectly specified if the desire is to
avoid trivial errors in the majority of the generated frames. However, expressing the relationship between the ⟨fcs⟩ or
⟨length⟩ symbols and the symbols they depend on as a context-free grammar is not a viable solution (it may not even
be possible at all, as indicated by the designation ”context-free”). Zeller instead introduces the idea of annotating the
grammar so that the fuzzer can correct errors like these before the frame is sent out. In other words, the annotation is
a reference to a callback function that takes as its input the subtree that is to be corrected and returns the corrected
subtree, which then gets inserted in the correct place in the syntax tree.
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⟨start⟩

⟨frame⟩

⟨fcs⟩⟨payload⟩

⟨payload⟩

⟨tlv⟩

⟨value⟩⟨length⟩⟨type⟩

⟨tlv⟩

⟨value⟩⟨length⟩⟨type⟩

⟨ethertype⟩

⟨0x88CC⟩

⟨src⟩⟨dst⟩

Fig. 5. An partially expanded instance of a frame in its tree representation.

To give additional control of the generation, the fuzzer also supports annotating the expansions with probabilities.
This will simply control the probability distribution when choosing an expansion randomly. For instance, the average
number of TLVs in frames generated by the grammar in Figure 4 could be controlled by weighing the choices for
expanding the ⟨payload⟩ symbol.

Figure 6 shows an annotated grammar for producing a TLV. The annotation postprocess invokes a function that
is called after the subtree has been fully expanded to correct the length field so that it matches the generated length
of the ⟨value⟩ symbol. The annotation ”prob” is simply a probabilistic weight. It makes sure that TLVs with the
”Organizationally Specific” type is only generated 10 percent of the time. The other types will be equidistributed



10 Leon Fernandez, Gunnar Karlsson, and Daniel Hübinette

⟨tlv⟩ ::= ⟨type⟩⟨length⟩⟨value⟩ postprocess=fix_length

⟨type⟩ ::= ⟨chassiid-type⟩ mab_switch=1
| ⟨portid-type⟩ mab_switch=1
| ⟨ttl-type⟩ mab_switch=0
| ⟨org-specific-type⟩ mab_switch=1, prob=0.1

⟨length⟩ ::= ⟨bit⟩⟨byte⟩
⟨value⟩ ::= ⟨byte⟩ | ⟨byte⟩⟨value⟩

Fig. 6. An annotated grammar showing the expansions for a TLV where some of the standardized types make up the possibilities.

amongst the remaining 90 percent. Lastly, to support the feedback mechanism the fuzzer makes use of a special type of
annotation that this paper calls a MAB switch, detailed in Section 4.5.

4.4 Probing the SUT

Many fuzzers run the SUT in some controlled environment, for example as a child process, which gives the fuzzer great
control and introspection of how the SUT is reacting to the tests. However, fuzzing network equipment cannot be done
this way. Oftentimes, the system needs to run on specialized hardware and is made up of many different processes.
Given these circumstances, even something as simple as detecting a crash (the most fundamental fail condition during
fuzz testing), may be non-trivial. The fuzzer proposed in this paper aims to solve this by supporting a dedicated probe
interface where it can communicate with external software (called probes) that does what the name implies, probe the
SUT. Figure 3 visualizes how the probes interact with the fuzzer.

Of course, this means that the testers would have to write these probe microservices themselves to support fuzzing a
specific target, but this is not an uncommon practice in modern network protocol fuzzing. For example, both Boofuzz
and Defensics have similar features. Furthermore, the dedicated interface, specified using Google’s remote procedure
call technology, called gRPC[6], makes writing such a microservice a relatively easy task with a lot of flexibility in
terms of language choices.

Many probes can be used in a test setup and for different purposes. Probe data could either be used in the arbiter for
deciding on outcomes, in the fitness function or simply as metadata to help in the debugging process. Typical probe
usages would include checking if the SUT responds to a ping or an SNMP request or measuring memory or CPU usage.

4.5 The Fitness Function and the Feedback Loop

For the model to be able to adapt during the fuzzing campaign, a special type of annotation is used in the grammar.
These annotations essentially act as switches that can turn certain parts of the grammar on or off depending on what
expansions have yielded interesting observations earlier in the campaign. Figure 6 shows the state of an annotated
grammar for expanding a TLV. The annotations, dubbed mab_switch in the figure, illustrate how a certain type have
been disabled.

The feedback loop is modeled as a combinatorial multi-armed bandit (CMAB)[11] problem where the MAB switch
annotations act as arms that are played in a strategy that aims to maximize the score given by a fitness function.
Essentially, what the fitness function does is to calculate a score from zero to one based on the probe observations. Since
there is no universal way of mapping the probe observations (whose contents may vary depending on the setup) to a
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number between zero and one, a plugin architecture is provided so that the tester can easily specify what characteristics
of the observation data the fuzzer should focus on. As an example, if the tester wishes to track memory leaks, an
observation stating an increased memory usage should result in a high score from the fitness function. This will make
the grammar adapt in such a way that more packets of the kind that resulted an increased memory usage gets generated.

Regardless of how the score is calculated in the fitness function, the fuzzer always aims to maximize the score by
toggling the values of the MAB switches. Since the behavior of the SUT can not be known beforehand, neither can the
probe observations and subsequently not the score. Hence, some exploration is required to find suitable switch states so
as to narrow down what the grammar can express, thereby generating more of the problematic frames. Once enough
explorations have been carried out, the fuzzer should exploit the problematic grammar elements as much as possible.
Balancing the ratio of exploration versus exploitation is not trivial for CMAB problems, however. The fuzzer in this
paper takes a somewhat simplified approach to solve the problem by using a so-called 𝜖-greedy algorithm[21]. The main
idea behind 𝜖-greedy is to use a random configuration (explore) with a probability of 𝜖 and to use the configuration that
has yielded the highest score so far (exploit) with a probability of 1 − 𝜖 . If 𝜖 is chosen to be rather small, on the order of
0.1, this algorithm can perform decently, given its simplicity.

4.6 Arbitration and Storing Test Runs

As mentioned in Section 4.4, deciding whether the SUT has passed or failed a given test case is not so straightforward
when fuzzing a large software system. The fact that it might also be running on a different device than the fuzzer makes
it even more difficult. Since there is no ”one-size-fits-all” fuzzer for specialized networking equipment, the fuzzer in
this paper provides a framework that allow testers to write their own plugins for the arbiter component. Depending
on the probing setup, the tester’s knowledge of the SUT and what types of bugs are being chased, the arbiter can be
completely customized.

Since the arbiter’s responsibility is deciding on the test outcome, it is also responsible for storing the test results.
Every result is stored in a SQLite database along with the test case number, the generated input, the probe reports,
a timestamp and the model state that was used in the generation. This serves as a starting point for the debugging
process that follows a completed fuzzing campaign.

5 EXPERIMENTAL SETUP

A fuzzer’s performance is best measured by its ability to find bugs. To evaluate the fuzzer described in this paper, it
was tested against a version of the most prominent open-source LLDP implementation, lldpd[7], with a known bug,
CVE-2020-27827[1]. This section details the setup used for evaluation along with the intented workflow for the fuzzer.
The main software components used are listed in Table 3 for a brief overview.

The setup used for evaluation is very similar to the example setup in Figure 3. The process of interest (5) is lldpd,
which is running on the SUT. A probe (6) has been deployed on the SUT and is monitoring the lldpd process health.
The observations are fed back to the host (1) and the fuzzer (2) which is running therein.

5.1 The Workflow

The intended flow for working with the fuzzer starts by defining a grammar for the protocol that is to be tested. The
SUT is then probed so that the desired metrics can be extracted after each generated test case. Based on the available
probe data, an arbiter and a fitness function plugin is then written. Lastly, the tester runs the campaign for a specified
number of test cases.
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Table 3. Main software components of the SUT used for the experimental evaluation.

Component Version Note

Host OS 64-bit Arch Linux
Host Kernel 5.17.1
Hypervisor Virtualbox 6.1
SUT OS 64-bit Debian 10
SUT Kernel 4.19.0
lldpd 1.0.3 Main test target
Python 3.10.4 Fuzzer implementation
Fuzzer 0.3.1.dev20

Table 4. Key MAB switches used in the experimental setup.

MAB Switch Name Description

Neat Every type except Custom and Reserved is present. TLV order is always
the same.

Ordered Same as Neat, but TLVs may be missing.
Scrambled Same as Neat, but scrambled order.
Duplicates Same as Neat, but TLVs may be duplicated.
Randomized Types are set to random 7-bit numbers. The number of TLVs in the

payload is also random.

After the campaign has ended, the results database should ideally contain some pointers to what type of input may
cause the SUT to behave incorrectly. The obvious thing to look for first is failed test cases and the corresponding input.
Additionally, the state history of the MAB switches should also give some insight where there might be bugs. The idea
is that the fuzzer should, by using the feedback signal from the fitness function, learn what are the problematic parts
of the grammar and excercise those more often. For this purpose we define a key metric, the mean MAB switch state
(MMSS). The MMSS is calculated for each MAB switch annotation in the grammar and is obtained through taking the
arithmetic mean of the MAB switch states across all test cases. As an example, a MMSS of 0.5 for a certain MAB switch
means that it has been active in half of all the test cases in a campaign. The closer the MMSS is to 1.0 for a specific MAB
switch, the more likely it is that the corresponding part of the grammar is causing problems. This assumes, of course,
that the fitness function is sound and that the campaign runs for a long enough time. The tester could to some extent
find clues by looking at the raw probe data itself. For this case, this would be the changes in the virtual memory size of
the lldpd process.

5.2 The Grammar Plugin

As described in Section 4.2, a grammar for creating fuzzed LLDP frames has been devised. Although the problematic
frame structure was known beforehand [1], an effort was made to avoid hard-coding it as a grammar rule. The grammar
implicitly allows the structure, however, since it is an instance of the duplication anomaly listed in Table 2. Table 4 lists
the key MAB switches that are present in the grammar.
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5.3 Probing

After that, the SUT was probed by writing a small gRPC microservice that is able to track the virtual memory size of
a process (equivalent to the VIRT column from the ”top” CLI available in most Linuxes). The microservice was then
installed and enabled on the SUT.

5.4 The Arbiter Plugin

Deciding on the test outcome was kept simple for this particular test case: if the probe microservice did not find any of
the processes listed in the request and therefore returns an empty response, the test case will have failed.

5.5 The Fitness Function Plugin

The fitness function was also kept fairly simple. The first time the score is calculated from the probe data, the value
is stored and a score of zero is output. All subsequent output scores are then calculated as the precentual change in
memory size from the base value stored from the first time.

There is no synchronization mechanism that ensures that the probe observations are actually the result of the last
frame. For example, due to the inherent delays in a commodity operating system, such as Linux, an increase in memory
size of a certain process may actually be the result of a frame received in the past and not the most recent frame. To
work around this, the score is only updated after every 𝑁 th frame, which this paper chooses to call the campaigan’s
updating cadence. Likewise, the grammar is only updated when the score is updated. The assumption is that it will
not always be an individual frame that triggers a bug, but rather a ”class” of frames as described by the current state
of the MAB switches that triggers the bug. Based on this assumption, it is reasonable to not update the score and the
grammar after every test case in order to make the feedback loop less sensitive to delays and wildly fluctuating probe
measurements.

6 RESULTS

6.1 Basic Results

Table 5 shows the basic info about the executed campaigns.

Table 5. Basic results from the campaigns that were run.

Description Value

Number of campaigns 100
Test cases per campaign 200000
Updating cadence 2000
Mean campaign time (10 700 ± 339) s
Mean test case time (0.053 ± 0.010) s
Total failed test cases 0
Memory increases seen 95

The boxplot in Figure 7 show how the MMSSs are distributed across the campaigns.
Figures 8, 9, 10, 11 and 12 plot the campaign-mean for each switch for every test case. All plots start at 1.0 because

initially, all MAB switches are active.
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Fig. 7. The MMSS distributions across the campaigns.

7 DISCUSSION

The results show no clear indiciation that the fuzzer favors the Duplicates MAB switch, which was the expectation,
given the nature of CVE-2020-27827 where memory was not properly freed if a frame contained duplicate instances
of the Port Description, System Description or System Capabilities TLVs. It was expected that the campaign-mean
of the Duplicates MAB switch would be higher for the later test cases. That would have been an indication that the
campaigns were converging on favoring the Duplicates switch after a certain time. Figures 8, 9, 10, 11 and 12 do not
show any such trends, however. They all seem to converge around 0.5 for all the MAB switches, meaning that there is
no agreement amongst the campaigns on which MAB switches to favor. Neither Figure 7 shows any signs that any of
the MAB switches have been favored by a convincing number of campaigns. For example, the median of the of the
Duplicates MMSS, indicated by a black line in the corresponding box in Figure 7, is not significantly higher than that of
the other switches.

The reason for this could lie in the implementation details of the C standard library, which lldpd uses for dynamic
memory allocation. Calls to malloc are not immediately visible as an increase in virtual memory size. In many common
malloc implementations, actual virtual memory only gets assigned after a certain amount of memory has been allocated
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Fig. 8. Progress of the campaign-mean of the Neat payload structure expansion.

by malloc. This causes a very unpredictable delay in the probe observation, making it an unsuitable metric to process
in the fitness function. As generic metadata, the virtual memory size was usable, however, since it did show the memory
leak in the first place. Probably it would have been more suitable to provide it as input to the arbiter plugin, which
could then report failures after seeing a prolonged memory increase.

8 CONCLUSION AND FUTUREWORK

This paper has introduced a fuzzer framework for network protocol fuzzing. The fuzzer design was novel in the sense
that the fuzzer continuously attempts to update the grammar it uses to generate frames based on observations from very
lightweight instrumentation. The results did not show with any statistical significance that this mechanism worked as
expected. Despite this, the fuzzer was still able to trigger a known bug in a commonly used open-source application.

Several research directions exists for deepening the understanding of fuzzers of the kind suggested in this paper. The
most crucial and valuable improvement would probably be to investigate alternative metrics to probe as the virtual
memory size metric proved to be too unreliable. For instance, processing application logs from the SUT could yield rich
information about the SUT that could help both in the post mortem (debugging process) as well as in guiding the model
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Fig. 9. Progress of the campaign-mean of the Scrambled payload structure expansion.

while the campaign is ongoing. For most SUTs, it would not require a lot of instrumentation, which makes it even more
attractive as a probed metric.

In the context of LLDP fuzzing, although a bit narrow, there are still some aspects left uninvestigated. It is not
uncommon that the topology discovered by an LLDP stack is stored in a database that can be queried by other protocols,
most notably SNMP. By probing additional software components in an experimental setup, the proposed fuzzer could
be made to fuzz SNMP daemons or network management systems indirectly via the LLDP process and its database.
This is where the fuzzer could really shine since it is designed to be able to fuzz large and complex systems without
degrading their performance with heavy instrumentation.

Lastly, with the study of multi-armed bandit problems and their solutions being a research field of its own, studying
the performance of more advanced solvers than 𝜖-greedy is also a direction future research could take.
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Fig. 12. Progress of the campaign-mean of the Randomized payload structure expansion.
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