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Abstract

Diagnostic Captioning is described as “the automatic generation of a diagnostic text

from a set of medical images of a patient collected during an examination” [59] and

it can assist inexperienced doctors and radiologists to reduce clinical errors or help

experienced professionals increase their productivity. In this context, tools that would

help medical doctors produce higher quality reports in less time could be of high

interest formedical imaging departments, as well as significantly impact deep learning

research within the biomedical domain, which makes it particularly interesting for

people involved in industry and researchers all along.

In this work, we attempted to develop Diagnostic Captioning systems, based on novel

Deep Learning approaches, to investigate to what extent Neural Networks are capable

of performing medical image tagging, as well as automatically generating a diagnostic

text from a set of medical images. Towards this objective, the first step is concept

detection, which boils down to predicting the relevant tags for X-RAY images, whereas

the ultimate goal is caption generation.

To this end, we further participated in ImageCLEFmedical 2022 evaluation campaign,

addressing both the concept detection and the caption prediction tasks by developing

baselines based on Deep Neural Networks; including image encoders, classifiers and

text generators; in order to get a quantitative measure of my proposed architectures’

performance [28]. My contribution to the evaluation campaign, as part of this work

and on behalf of NeuralDynamicsLab1 group at KTH Royal Institute of Technology,

within the school of Electrical Engineering and Computer Science, ranked 4th in the

former and 5th in the latter task [55, 68] among 12 groups included within the top-10

best performing submissions in both tasks.
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Abstrakt

Diagnostisk textning avser automatisk generering från en diagnostisk text från en

uppsättningmedicinska bilder av enpatient somsamlats in under enundersökning och

den kan hjälpa oerfarna läkare och radiologer, minska kliniska fel eller hjälpa erfarna

yrkesmän att producera diagnostiska rapporter snabbare [59]. Därför kan verktyg

som skulle hjälpa läkare och radiologer att producera rapporter av högre kvalitet

på kortare tid vara av stort intresse för medicinska bildbehandlingsavdelningar,

såväl som leda till inverkan på forskning om djupinlärning, vilket gör den domänen

särskilt intressant för personer som är involverade i den biomedicinska industrin och

djupinlärningsforskare.

I detta arbete var mitt huvudmål att utveckla system för diagnostisk textning, med

hjälp av nya tillvägagångssätt som används inom djupinlärning, för att undersöka i

vilken utsträckning automatisk generering av en diagnostisk text från en uppsättning

medi-cinska bilder är möjlig. Mot detta mål är det första steget konceptdetektering

som går ut på att förutsäga relevanta taggar för röntgenbilder, medan slutmålet är

bildtextgenerering.

Jag deltog i ImageCLEFMedical 2022-utvärderingskampanjen, där jag deltog med att

ta itu med både konceptdetektering och bildtextförutsägelse för att få ett kvantitativt

mått på prestandan för mina föreslagna arkitekturer [28]. Mitt bidrag, där jag

representerade forskargruppen NeuralDynamicsLab2, där jag arbetade som ledande

forskningsingenjör, placerade sig på 4:e plats i den förra och 5:e i den senare

uppgiften [55, 68] bland 12 grupper som ingår bland de 10 bästa bidragen i båda

uppgifterna.

Nyckelord

Neurala nätverk, Djup inlärning, Tal-och språkteknologi, naturlig språkbehandling,

djup neurala nätverk, generativa djupa nätverk, konvolutionella neurala nätverk, Text-

generering, Informationssökning, Diagnostisk textning, Bildtextning, konceptförutsä-

gelse, klassificering, bildkodare, transformatorer, kodaravkodararkitektur, abstrakt

sammanfattning.

2https://www.csc.kth.se/∼erikf/
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Chapter 1

Introduction

1.1 Background

One of the most exciting technological aspects nowadays is the impressive potential of

Machine Learning in transforming theworldwe live in, primarily because of its exciting

resurgence through Deep Learning (DL). The increasing size of biomedical data has

allowed researchers demonstrate its evolving capabilities in biomedical applications,

through the development of advanced computing and imaging systems in biomedical

engineering, machine learning-based biomedical data mining algorithms [41] but also

baselines for Diagnostic Captioning. The latter task has recently attracted researchers’

attention towards the goal of reducing the time required by a doctor or radiologist in

order to produce medical texts and the amount of clinical errors, but also increasing

the throughput of medical imaging departments [59].

1.2 Problem

Medical doctors are prone to error due to their increased workload and high pressure,

because of increasing demands on doctors to do documentation and continuous cost-

saving pressure in health care sectors. These factors consequently affect the quality of

their produced medical reports. The core idea addressed in this work is to develop a

Diagnostic Captioning model, based on novel Deep Learning architectures, in order to

help doctors and radiologists producemore accurate medical diagnoses and gain some

improvements in terms of both accuracy and speed, by providing them tools that are

1



CHAPTER 1. INTRODUCTION

capable of automatically generating a draft diagnostic text froma set ofmedical images.

While these tools are being further trained and acquire knowledge, by incorporating

the concept of active learning [65], the aforementioned improvements should become

even more significant.

Accuracy is extremely crucial when filling medical reports; not omitting any important

findings and not referring to wrong findings; due to lack of concentration, time, spur

or experience. Accuracy may also be addressed to as lack of medical errors. Speed is

another important factor to take into consideration when producing a medical report;

a draft version of the diagnosis, automatically written by a sufficiently trained system,

would significantly reduce the time required by a doctor or radiologist but also increase

the throughput of medical imaging departments. In this context, follows a high-level

illustration of the process in order to complete a medical report, involving the medical

doctor and the expert system.

Figure 1.2.1: Visualization of the Diagnostic Captioning pipeline involving both the
medical doctor and the Deep Learning system, which we train using Neural Networks.
A draft version of the report is provided to the medical doctor to complete, who also
considers the patient’s history.

1.3 Purpose

In this work, the core aim was to develop Diagnostic Captioning (DC) systems, based

on novel Deep Learning approaches, to investigate to what extent Neural Networks are

capable of automatically generating a diagnostic text from a set of medical images and

howmuch their interpretation of medical images can assist doctors and radiologists to

increase the quality and speed of producing medical diagnoses and meanwhile reduce

the time needed. This is also associated to an increased throughput of medical imaging

departments [59]. Towards this objective, the first step is concept prediction that boils

down to predicting the illnesses associated to X-RAY images, while the ultimate goal

is caption generation.

2



CHAPTER 1. INTRODUCTION

Towards the concept prediction subtask, we employed Convolutional Neural Network

(CNN) image encoders to codify the images into dense representations, precisely either

pre-trained on ImageNet [70] then finetuned in the X-RAY images or directly trained

in the respective dataset, according to the pipelines described in chapter 4. These CNN

models are also extensively referred to as “backbone networks”, which is explained in

section 1.5 as well. Ensembles of CNN encoders shall also be tested to seek for diversity

and in order to exploit the “Wisdom of the crowd” [76] for the fine-tuned models that

we propose for this subtask.

For the caption generation subtask,myproposed baselinemodels are both based on the

transformer architecture [81] and rely on either abstractive summarization, through a

model called Pegasus [91] or the pipeline proposed asRetrieval AugmentedGeneration

(RAG) [45]. Precisely, in the latter approach, the idea was to combine the massive

success of sequence-to-sequence models in NLP with the strengths of Dense Passage

Retriever (DPR) [34], which characterizes modern Information Retrieval by using a

FAISS index [32] for further efficiency.

1.4 Benefits, Ethics and Sustainability

Development of Diagnostic Captioning systems based on novel DL architectures could

have both positive and negative societal impacts. My proposed work, for example, may

be used for analyzing medical image data in undeveloped regions or countries under

development. This is closely related to the 3rd goal of United Nations Sustainability

Goals about ensuring good health and well-being and the 10th goal about reduced

inequalities. On the other hand, privacy issuesmight arise from the use ofmedical data

and “concerns over the sensitive information security and privacy” [1]. Those may also

be related to the General Data Protection Regulation (GDPR) and the EU legislation

on data privacy and protection (679/2016, 680/2016, 2018/1725).

Furthermore, we attempted to develop Diagnostic Captioning baselines based on deep

architectures in order to question how much their interpretation of medical images

can assist doctors and radiologists to produce better quality diagnoses but also at an

increased throughput [59]. A system that can assist in saving doctor time, possibly also

by incorporating the concept of active learning [65], would eventually contribute to a

more sustainable society despite the fact that training a deep network indeed leads to

an energy cost until incorporating parametric knowledge.

3



CHAPTER 1. INTRODUCTION

1.5 Methodology

One of the principal components in the proposed architectures that is shared for both

subtasks includes the image encoders. They constitute state-of-the-art architectures,

pretrained on ImageNet classification dataset [70], which have been obtained through

torchvision models library to perform inference. Then, any additional components

such as amulti-label classification head or a caption generation architecture have been

appended to the output of the image encoder; in this content these models are referred

to as “backbone networks”.

SomeConvolutional Neural Network encoders that have been attempted to use include

variants of AlexNet [40], ResNet [27], DenseNet [25], VGG [73] and EfficientNet [78],

which have been obtained from torchvision models library as mentioned above. We

also experimented with Vision Transformers (ViT) [17], thus another architectural

choice, the performance obtained was poor however compared to CNN encoders. That

outcome is in line with the observation in [4] that Vision Transformers and “Hybrid-

ViT architectures are inferior to the CNN-based ones”. The above summarize the first

step in the design of image encoders that ismodel selection based on their performance

on a separate development set.

AlexNet ResNet

DenseNet VGG

EfficientNet

50 101

121 161 13 16

B3 B5

Figure 1.5.1: Detailed visualization of the Diagnostic Captioning pipeline.

Moreover, model selection shall be followed by amodel collaboration design principle,

based on ensemble learning. In this case, we have therefore used the aforementioned

models as members of the ensemble or weak learners in a pool of encoders trained

with different parameter values (such as learning rates, decision thresholds for the

positive class, number of epochs), aswell as based on different architectures, to seek for

diversity and exploit the “Wisdom of the crowd” [76] for the fine-tunedmodels. In this

context, we take into consideration the “votes” of all the different CNNs by averaging

their outputs to make guesses on the assigned tags or make decisions on the generated

captions’ tokens.

4



Chapter 2

Theoretical Background

2.1 Neural Network Generative Architectures

2.1.1 Recurrent Neural Networks

The neural networks that deal with sequences are Recurrent Neural Networks (RNNs).

They are distinguished from Feed-Forward Networks by that feedback loop connected

to their past decisions. RNNs take as their input, not just the current input sample,

but also the information they have perceived previously and have two sources of input,

the present and the recent past, which are combined to determine the output. Hence,

it is often claimed that Recurrent Neural Networks have memory [11] as they are able

to store information.

However, although RNNs are capable to learn how to use past information if the gap

between the relevant information and the place that it is needed is small; there might

be cases we need more content. It is entirely possible for the gap between the relevant

information and the point where it is needed to become also very large. Unfortunately,

as the gap grows, RNNs become unable to learn to connect all the information [11].

Adding LSTM or GRU cells yields models that are typically better than the so-called

”vanilla” RNNs at remembering long-term information [26] but there is an upper limit

in their performance as well.

The technique to train RNNs is called “backpropagation through time” or BPTT, and

it consists of a generalization of back-propagation for feed-forward networks that is

based on their history. This process however is prone to vanishing gradients problem.

5



CHAPTER 2. THEORETICAL BACKGROUND

In a nutshell, the problem comes from the fact that at each time step during training

we are using the same weights to calculate the output of the RNN, thus it experiences

difficulty inmemorizing elements from far away in the sequence andmakes predictions

based on the most recent ones.

Both long short-termmemory (LSTM) [26] andGatedRecurrentUnit (GRU) [10] cells,

constitute complex RNN cells that tackle the vanishing gradients problem. Each cell

consists of a Forget Gate, an Input Gate and an Output Gate. The input gate controls

the extent to which a new value flows into the cell. The forget gate controls the extent

to which a value remains in the cell. Finally, the output gate controls the extent to

which the value in the cell is used to compute the output activation of the LSTMorGRU

unit. LSTM cells are similar to GRU cells but they containmore complex computations

inside their gates.

2.1.2 Transformer Networks

To improve performance of modern NLP systems, the transformer architecture that

revolutionized the field was proposed in 2017 [81] and is based solely on attention

mechanisms, dispensing with recurrence and convolutions entirely and weighing the

influence of different parts of the input data. Attention is a concept that improved

the performance of all downstreamNLP tasks –an ubiquitous method in modern deep

learning models [2] that matches a query and a set of key-value pairs to an output; all

of them vectorized. If we denote the queries as row vectors of a matrix Q, as well as

the keys as part of a matrixK and the values contained in a matrix V , then attention is

computed according to the following formulas:

A(Q,K) = softmax
(
QKT

√
dk

)
Attention(Q,K, V ) = A(Q,K)V = softmax

(
QKT

√
dk

)
V

Asmost competitive neural sequence transductionmodels, transformer networks have

an encoder-decoder structure [5]. Thus, that means given an input sequence of words

such as W = {w1, w2, ..., wN}, the encoder maps it to a sequence of continuous

representations Z = {z1, z2, ..., zN} for the decoder to produce an output sequence
Ŵ = {ŵ1, ŵ2, ..., ŵN} in an auto-regressive manner [23], consuming the previously
generated words that we denote by ŵ ∈ Ŵ [69]. They address the problem of previous

6



CHAPTER 2. THEORETICAL BACKGROUND

network architectures poorly retaining contextual relationships across long texts and

can be highly parallelized, train models with billions of parameters at a higher rate,

and use contextual clues to reduce ambiguity issues.

Transformers for abstractive summarization

One of themost important steps in neural or automatic text summarization is sentence

extraction, which boils down to generating a summary by identifying and subsequently

concatenating themost salient text units in a documentwhilemaintaining key concepts

and information [9]. Precisely, abstractive summarization relates to text generation

that summarizes the original content while it captures “key ideas and elements of the

source text, usually involving significant changes and paraphrases of text from the

original source sentences” without changing their meaning [62]. Due to the difficulty

of information extraction and automatic text generation, abstractive summarization

has been considered a rather complex problem [33] but transformer networks [81]

have achieved inspiring results. In our work, we use a model called Pegasus [91] that

is based on the transformer architecture, reporting surprising performance especially

on low-resource summarization.

2.2 Related Work

During the last decades, extensive research has been conducted regarding Diagnostic

Captioning. Back in 2004, structured support vector machines have been attempted

to use for generating semantic tags for regions in an organ or tissue that have suffered

damage through injury or disease [79], while in 2012 an ontology-based approach was

followed towards language generation from cardiological findings detected in X-RAY

images [80]. It was not until 2015, when a CNN backbone network was first used to

classify 3-dimensional pixels into different categories given as input diagnostic tags

extracted from medical reports [71]. One year later, another CNN architecture was

proposed for detecting suspicious pixels regions in the X-RAY images, followed by a

classification head consisting of fully-connected layers to assign abnormality labels to

those regions [38].

Ever since, CNN backbone networks have been impressively preferred in Diagnostic

Captioning research, which is in line with their performance in classification [51] and

generic image captioning [77], as well as in digital holography [12], possibly combined

7



CHAPTER 2. THEORETICAL BACKGROUND

with Recurrent Neural Network (RNN) architectures; trained end-to-end. The latter

approachwas first used for keyword generation, featuring LeNet [42] as image encoder

and attempts with both Long-Short Term Memory (LSTM) [26] and Gated Recurrent

Unit (GRU) cells [10] for the text generation. Precisely, the LeNet image encoder was

used for the prediction of relevant concepts among 17 tags during pre-training, which

were extended to 57 subcategories according to clusters created by k-means [53] during

fine-tuning. For text generation, Recurrent Neural Networks with LSTM or GRU cells

were used to address the vanishing gradients problem described in section 2.1.1 for the

vanilla RNNs, however the proposed architecture only managed to produce keywords

for the X-RAY images’ contents [72].

The aforementioned architecture has been attempted to use for caption generation as

well, however a ResNet-based encoder [27] was employed to codify the X-RAY images

into dense representations and only LSTM cells were used in the generator to produce

the corresponding captions. Although feature extraction was proved possible from the

LSTM cells’ history, this setting performed poorly in CHEST X-RAY 14 dataset [86] in

terms of evaluation with BLEU scores [57] when attempting to produce well reasoned

medical reports instead of just keywords [87].

Furthermore, to overcome the issues attributed to RNN training, stacked LSTMs were

replaced by a hierarchical LSTM [19] accompanied by aVGG-19 backbone network [73]

with a Feed-Forward Network in the image encoder output, to predict probabilities for

the different tokens. Those with the highest probabilities were fed to the hierarchical

LSTM decoder, where the lower level cells produced dense vector representations of

the encoded topics and attention was also used in their states to contextualize visual

features and perform selection of areas within the X-RAY image and visual features,

resulting in sentence embeddings. When the lower level cells received END signals, the

higher level cells started generating themedical report per token until their END signals

were produced [30]. This work has borrowed ideas from relevant models addressing

bothdiagnostic captioning [94, 95] and generic image captioning [16, 84, 89, 90], while

it outperforms similar architectures targeting the latter, even after they are fine-tuned

in X-RAY images for caption generation.

Other works have attempted to make use of attention for both concept detection and

caption generation tasks. Considering the former, TandemNet [94] was proposed that

was later generalized toMDNet [95] that is capable of addressing the latter task as well.

8



CHAPTER 2. THEORETICAL BACKGROUND

These models include ResNet-based encoders [27] and LSTM decoders with attention

for concept detection and text generation for a few different symptoms. More recently,

modern CNNs such as DenseNet121 [25] and ResNet-152 [27] have been preferred to

use as backbone networks to output concepts for chest X-RAY images [64] or predict

pathological abnormalities and detect their locations [85] over other networks such as

LeNet [42] or shift-invariant CNNs [92].

Moreover, someworks take advantage of the class-imbalance issues that occur in some

datasets for DC, such as the Indiana University chest X-RAY Collection [14] (IU chest

X-RAY dataset) that is further described in section 3.1.2 and classify the captions as

positive and negative findings. Using the Frontal Pelvic X-RAYs, including 50,363

images with simplified medical reports, one approach using a DenseNet encoder [25]

and a stacked two-layered LSTM with attention, produced always the same caption

for negative findings and only five keywords for positive findings, while it performed

extremely well in terms of BLEU scores [57]. The employed approach was Template-

based generation, which requires the model to fill-in a document template, precisely

predict five tags in the case of positive findings [20].

In addition, there have been several attempts to combine Deep Networks training with

other learning approaches, such as Reinforcement Learning (RL). The REINFORCE

algorithm [88] used for optimal control, which is based on Robbins-Monro Stochastic

Approximation method [67], has been attempted to use both in the context of generic

image captioning [66] and Diagnostic Captioning. In the latter case, RL is involved

to decide whether a frequent caption will be provided or the diagnostic text will be

generated by an Encoder-Decoder architecture that consists of a DenseNet121 image

encoder [25] and a hierarchical LSTM [19] text generator, according to either a reward

function based onCiDER score [46, 82] or extracted by comparing systemwith human-

authored tags, for instance using CheXpert [29, 50].

Last but not least, Information Retrieval basedmethods have demonstrated promising

potential in Diagnostic Captioning and Language Modelling in general [35, 36]. The

most simplified example is the 1-NN baseline [50], which has also been included in our

work and is extensively described in sections 4.1.1 and 4.1.2. In summary, this simple

model assigns the tags of the visually most similar image from the training set as the

output for concept prediction and produces the diagnostic text of the visually most

similar image from the training set as the output for caption generation [59]. A more

9
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novel approach, based on retrieval that uses transformer networks [81], “decomposes

medical report generation into explicit medical abnormality graph learning and

subsequent natural language modeling” and by doing so outperforms other captioning

approaches [47]. Our proposed model, employing Retrieval Augmented Generation

(RAG) [45] has attempted to combine the success of parametric sequence-to-sequence

models with the strengths of Dense Passage Retriever [34], which designates modern

Information Retrieval [45].

2.2.1 Datasets

One of themain reasons why Diagnostic Captioning has recently attracted researchers’

attention is the increasing amount of biomedical datasets, includingPEIRGROSS [30],

the data used in ImageCLEF Medical evaluation campaign of previous years [18, 21],

the extendedRadiologyObjects in COntext (ROCO) dataset, a subset of whichwas used

for ImageCLEF Medical 2022 evaluation campaign [28, 60], Indiana University chest

X-ray (IU X-RAY) Collection [14] and MIMIC-CXR [31], while additionally there are

other datasets, i.e. provided in Bio-ASQ challenge on large-scale biomedical semantic

indexing and question answering, as well as those used in related work and therefore

mentioned in section 2.2.

The next chapter provides all the details about the datasets used for our experiments.

In section 3.1.1, we describe the data provided in ImageCLEFMedical 2022 evaluation

campaign used for our training. Precisely, we give further details about the ImageCLEF

Medical 2022 concept detection and caption prediction dataset, that was provided as

input to our generic image encoders or backbone networks that rely on Convolutional

Neural Networks (CNN) architectures. These are popular for vision tasks on generic

images, such as classification and semantic segmentation, while they are shared within

all baselines, in both tasks. In section 3.1.2 we also refer to a publicly available dataset,

the Indiana University chest X-RAY Collection [14] (IU X-RAY), which was used to

perform additional experiments.

10



Chapter 3

Research Methodology

3.1 Data Processing

In this section, we describe the data provided in ImageCLEFmedical 2022. In section

3.1.1, we describe the data provided in ImageCLEFMedical 2022 evaluation campaign

used for our training. Precisely, we provide details about the ImageCLEFmedical 2022

concept detection and caption prediction datasets that include images from different

radiological image modalities but without including imaging modality information.

What is more, in section 3.1.2 we explain our pipelines for IU X-RAY dataset [14] that

was used to perform additional experiments.

3.1.1 ImageCLEFmedical 2022 data split and statistics

The data provided for both subtasks of ImageCLEFMedical 2022 evaluation campaign

this year [28] consist of 90920 images that constitute a subset of the extendedRadiology

Objects in COntext (ROCO) dataset [60], without imaging modality information. As

in previous years [18, 21], the dataset originates from biomedical articles of the PMC

OpenAccess subset. After merging the initially provided train and validation data, we

shuffle them after manually setting the seeds to eliminate randomness in consecutive

runs while tuning our hyperparameters and then keep 80% as our training set, 10% as

our validation set to perform hyperparameter tuning and the remaining 10% as our

development set to perform model selection.

Since the dataset is large we perform neither cross-validation nor data-augmentation.

We experimented with adding noise to the images, in the form of random rotations

11
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and translations, which however did not provide any additional benefit in our models’

quantitative evaluation. Other types of noise, such as Gaussian or salt-and-pepper

noise were not attempted to use as although they could have improved quantitative

performance in terms of F1 or BLEU scores [57], they could also reduce visibility of the

regions of interest in the X-RAY image, e.g. locations depicting an organ or tissue that

suffered damage through injury or disease, limiting our proposed approaches’ practical

usefulness and interpretability [54].

Regarding the concept detection subtask, we detected 8374 tags of concepts that are

assigned to theX-RAY images, while eachX-RAY imagedrawn fromanyof the training,

validation or development set is assigned 5 tags on average. The concepts distribution

is skewed however since 4716 concepts have extremely few occurrences. Regarding the

caption prediction subtask, the total number of captions in the resulting training set is

72736, the total number of unique captions is 70879 and the average caption length 108

words, including 28 unique words. In the validation set the total number of captions

is 9092, the total number of unique captions is 8984, the average caption length is 107

words, including 26 unique words. In the development set the total number of captions

is 9092, the total number of unique captions is 8977 and the average caption length is

108 words, including 28 unique words.

“The concepts were generated using a reduced subset of the UnifiedMedical Language

System (UMLS) 2020 AB release, which includes the sections (restriction levels) 0, 1,

2, and 9” [28]. The UMLS is a set of files and software that collects multiple health and

biomedical vocabularies and standards to enable interoperability between computer

systems. To improve the feasibility of recognizing concepts from the images, concepts

were filtered based on their semantic type and concepts with very low frequency

were removed. In each caption, tokens containing numbers and all punctuation were

removed, captions were converted to lower-case and lemmatization was applied using

spaCy toolkit [68].

3.1.2 Other publicly available datasets

Apart from ImageCLEF data, IU X-RAY [14] and MIMIC-CXR [31] constitute known

biomedical Datasets that are publicly available and both contain medical images and

diagnostic reports. Moreover, it is important to mention that they contain fields that

are almost identical, therefore using them both is facilitated in this sense. The most
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important fields are described in section 4.2 and among those we took advantage of

both IMPRESSION and FINDINGS fields where they exist; to generate the images’

captions. Then, the professional shall consider the remaining fields that mostly refer

to previous illnesses of the patient, to complete the draft report. Furthermore, MIMIC-

CXR was not used for performing experiments in this work, however using them both

should be trivial since they contain fields that are almost identical, provided that access

may be granted to the latter beforehand.

One problem identified, is that very often the diagnostic reports are very similar across

patients, as well the class imbalance between reports with no findings compared to

other reports referring to abnormalities, but alsomissing information in sectionswhich

require access to unavailable previous examinations for a particular patient. A large

class imbalance “may lead to misleadingly high Accuracy, which is why Precision,

Recall, andFα scores” –mostly F1 score– are used instead in such cases, beingmodelled

by the metrics described in section 3.4, based on traditional retrieval schemes used to

model word overlap in the targets [59].

3.2 Training Regimes

3.2.1 Adaptive Moments optimizer

When performing stochastic or minibatch Gradient Descent, and the loss changes

quickly at one direction and slowly at another, Gradient Descent will progress slowly

along the shallow dimension and jitter along the steep one. To overcome this issue, we

used AdaptiveMoments (Adam) optimizer [37], so that progress along steep directions

is damped and meanwhile progress along flat directions is accelerated. Adam uses

exponentially decaying average to discard history but also momentum as an estimate

of the first-order gradient. It includes bias corrections for first-order and second-order

moments and converges rapidly after finding a local convex bowl. If t represents the

current time step, Adam updates are equal to:

w(t+1) = w(t) − ϵ
v(t)

δ +
√
r(t)

, δ, ϵ ∈ R+

v(t+1) = ρ1v(t) + (1− ρ1)g(t), ρ1 ∈ R+

r(t+1) = ρ2r(t) + (1− ρ2)
(
g(t)
)2

, ρ2 ∈ R+
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3.2.2 Adaptive Moments with weight decay optimizer

Adaptive Moments with weight decay optimizer (AdamW), constitutes an improved

version of Adamoptimizer [52], whereweight decay is performed only after controlling

the parameter-wise step size and thus yields models that are capable of generalizing

better. Compared to Adam optimizer, as well as other adaptive gradient algorithms,

where the potential benefit of weight decay regularization is limited because “the

weights do not decay multiplicatively but by an additive constant factor” [52], AdamW

optimizer may overcome this issue while also training much faster than stochastic or

minibatch Gradient Descent.

3.2.3 Glorot initialization

SinceDeep Learning became popular andwhat is called theDeep Learning Community

was given birth, different initialization strategies for the weights and the biases were

proposed. We have usedGlorot initialization shown below [22] to initialize the weights

of the classification heads and experimented with non-pretrained image encoders that

we initialized using the same strategy and fully-finetuned them. Their performance

however was inferior in concept prediction.

Glorot: Wi,j ∼ U

(
−
 

6

fin + fout
,

 
6

fin + fout

)

3.3 Retrieval Augmented Generation

It has been impressive to Deep Learning researchers how nowadays general-purpose

sequence-to-sequence models are getting really powerful, they manage to capture the

world knowledge in parameters, they achieve strong results on loads of tasks and are

applicable for almost everything. However, they still often hallucinate, may usually

struggle to access, and apply knowledge and are difficult to update. On the other hand,

modern Information Retrieval (IR) is great as well, as externally reviewed knowledge

may become useful for a huge variety of NLP tasks. Modern IR provides a precise and

accurate knowledge access mechanism, it is trivial to update, whereas by “modern” IR

we refer to dense retrieval that starts to outperform traditional IR. On the negative

side though, it still needs retrieval supervision or heuristics such as BM25, as well as

some –usually task specific– way to integrate into downstream tasks. The main idea
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behind Retrieval Augmented Generation [45] was to combine the massive success of 

parametric sequence-to-sequence models in NLP with the strengths of Dense Passage 

Retriever (DPR) [34], which dominates modern IR and uses a FAISS index [32] that is 

referred to as non-parametric memory.

In the RAG approach [45], dual memory components are pre-trained and pre-loaded 

with extensive knowledge to encapsulate information via the representations without 

further training. The generator pθ acts as a parametric memory, with the retriever pη 

embodying a non-parametric memory in the document encoder d(.), while including 

a Dense Passage Retriever (DPR) [34]. To train both the retriever pη and generator pθ

end-to-end, we treat the retrieved document as a latent variable z, and meanwhile the 

embedding of the closest document representation is represented as d(z). The 

Maximum Inner Product Search (MIPS) algorithm [56] is used to compute the top k

retrieved documents with respect to pη(z|x) = exp
(
d(z)Tq(x)

)
. This type of networks

that compute probabilities using the inner product of the query and document encoder

embeddings are referred to in bibliography as Siamese or bi-encoder or two towers

networks. It is also important that the document encoder is trained once, during pre-

training, whereas the query encoder is trained continuously end-to-end by applying

back-propagation with either Adam or AdamW optimizer that are described in section

3.2. This way, the query encoder learns how to adjust its weights to retrieve better for

the downstream task it is trained for.

To conclude the generated caption y is produced bymarginalizing over the predictions.

The generator pθ is a sequence-to-sequence model, a BART [44] instance precisely,

which conditions on the latent documents z togetherwith each inputx to generate each

output y. As an overall component, it produces pθ (yi|x, z,y1:i−1) to create a Language

Model (LM) over the tokens vocabulary V given as input the latent documents z and

queries x. During training, we treat questions-answers as input-output pairs (x,y)

and train RAG-token by directly minimizing the negative marginal log-likelihood of

generating output sequences y on input sequences x. If D = {xj,yj}j is the complete
dataset, our training objective is:

lcross(x,y; θ, η) = − log p(y|x; θ, η)∑
j

lcross(xj,yj; θ, η) =
∑
j

− log p(yj|xj; θ, η)
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3.3.1 Dense Passage Retriever

Dense Passage Retriever (DPR) [34] is a dense retrieval algorithm, which dominates

modern IR. Assume that our collection D contains D documents, which are split into

passages of equal lengths that correspond to basic retrieval units. The corpus takes the

form C = {pi}ki=1, where each passage pi ∈ C can be interpreted as a sequence of tokens
pi =

¶
w

(j)
i

©|pi|
j=1
. The goal is to find a span from one of the passages that answers the

question. The idea intuitively associates each of the questions to a filtered subset of

the training corpus with passages that ideally answer the question. The corresponding

function isR : (q, C) −→ Cf and the amount of the retrieved passages is typically smaller
than the corpus size |Cf | << |C|.

TheDense PassageRetriever implementation incorporates the use of Fast AI Similarity

Search (FAISS) index [32] and provides several advantages, such as GPU optimization

due to improved parallelism, improved preprocessing of the document collection, use

of Inverted File Index to also cope with clustering and a trainable architecture that

captures better semantic similarities. Of course there are several disadvantages aswell,

lower performancewith out of vocabularywords, higher time complexity, whichmeans

that the model is slower compared to simple heuristics as TF-IDF since it is comprised

of two phases; indexing and retrieval and computational complexity, since training is

facilitated by a GPU to name a few.

3.3.2 Generative Transformers and Denoising Autoencoders

BART [44] is a denoising autoencoder [83], which maps a corrupted document to the

original one it was derived from and is used as a generator in our RAG-token pipeline

that we further elaborate on in section 3.3.3. It has been implemented as a sequence-

to-sequence model with a bidirectional encoder over corrupted text and a left-to-right

autoregressive decoder.

Autoencoders is yet another example of unsupervised learning algorithm that maps

its inputs x to some hidden space and then the hidden representations z back to the

original inputs to learn a low-dimensional manifold. The key difference of denoising

autoencoders compared to vanilla autoencoders is that instead of trying to reproduce

the original data, we try to corrupt it with noise. Denoising autoencoders are typically

overcomplete, meaning that the dimensionality of the hidden representations ought to

be larger than the input dimension. The goal is to recreate from the corrupted data the
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original ones; sowe start with an imperfect input in order to avoid the identitymapping

problem, while additional regularization is not needed –corrupting the original image

acts as a regularizer itself.

Precisely, to address the risk of overfitting when there are more network parameters

than the number of data points and improve robustness, the input is partially corrupted

by adding noises to or masking some values of the input vector in a stochastic manner,

which is represented by a noise model x̃ ∼ MD (x̃|x). Then the network is trained to
reconstruct the original input x, where the noise modelMD constitutes a composition

of multiple corruption processes C. It is thus not specific to a particular type of such
process and defines the mapping from the true data samples to the noisy or corrupted

ones; thereforeMD : D → D̃ such that x̃ ∈ D̃.

x̃(i) ∼ MD (x̃|x)

L(θ, ϕ) =
1

n

n∑
i=1

(
x(i) − fθ

(
gϕ
(
x̃(i)
)))2

Learning the vector field in a denoising autoencodermeans attracting the data fromout

of the manifold to the manifold. By setting the noise model, we are trying to memorize

the error, thus find the closest possible place to the manifold because of imposing an

implicit constraint to the data points due to the corruption processes. We aim to find

the center of mass in the manifold to attract the data. The mapping of the noisy data

to the original image in the manifold basically follows the closest possible projection

on it. We are learning the shape of the manifold in order to capture local similarities

and that is also represented by the loss function. Far from the manifold generalization

capabilities are lost. The overall ambition is to find a low-dimensional manifold of the

data x ∈ D in a high-dimensional space.

Last but not least, because of the implicit regularization imposed by the noise model,

we take into account the reconstruction force to approximately recover the input data

and the regularization force to further avoid the identity mapping problem. However,

there are two underlying opposing forces also in the reconstruction process itself. One

is the noising process that pushes us outside the manifold, what we think is important.

The other is the learning process pushing us back to the manifold and these opposing

forces actually shape themanifold through the reconstruction loss, which incorporates

implicit regularization.
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3.3.3 RAG token

RAG-Token is an implementation of RAG that draws a different document z to predict

each target token andmarginalize accordingly. In this context, the generator is allowed

to combine content from several documents to produce the output caption y, namely

the top k retrieved documents are obtained according to the scores computed by

Maximum Inner Product Search algorithm [56]. To reveal the whole output sequence

y, we use the retriever pη to obtain the top k documents, which we pass to the generator

pθ, an encoder-decoder transformer network that is a BART instance in our case as it

is described in section 3.3.2 and we marginalize per token we generate; conditioned

on the previously generated ones. The corruption processes involved in BART include

tokenmasking, sentence permutation, document rotation, token deletion, text infilling

and are applied to all documents considered.

p(y|x) =
N∏
i=1

∑
z

pη(z|x)pθ (yi|x,y1:i−1)

=
N∏
i=1

∑
z

exp
(
d(z)Tq(x)

)
pθ (yi|x,y1:i−1)

The decoding part follows the typical, autoregressive sequence-to-sequence generation

pipeline, with transition probabilities p′θ (yi|x,y1:i−1) given by summing over the top k

representations. We plug them into a standard beam decoder that will move towards

states with the highest values of these probabilities, to get an output sequence y, which

constitutes our model’s prediction.

p′θ (yi|x,y1:i−1) =
∑
zj

pη(zj|x)pθ (yi|x,y1:i−1)

=
∑
zj

exp
(
d(zj)

Tq(x)
)
pθ (yi|x,y1:i−1)

To summarize the training process, within the retriever pη that acts as a non parametric

memory, we encode each document x into a dense representation, apply Maximum

Inner Product Search and pass the documents with the maximum dot product to the

sequence-to-sequence generator. Afterwards, within the generator pθ that acts as a

parametric memory, we get a prediction of the generation per document and then we

marginalize to fill-in the output.
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Arithmetic stability and the logsumexp trick

In order to increase arithmetic stability of our algorithm, we use the logsumexp trick

in our implementation of RAG token, which helps us avoid NaN values by preventing

divisions with very small or very large numbers. These are considered zero or Inf in

computers’ floating-point arithmetic respectively. Given this purpose, when we aim to

compute some small number x ∈ R, we shall rewrite it as x = log ex = log ex+M−M =

log(eMex−M) = log eM + log(eMex−M) = M + log(eMex−M), whereM ∈ R takes a large

value that we pick arbitarily.

Similarly, if we consider log
∑K

k=1 fk, where f1, f2, ..., fK ∈ R are either extremely small

or very large numbers, wemay find themaximum among themM = max(f1, f2, ..., fK)

and then similarly apply the logsumexp trick. By computing similar steps, we derive a

more stable equivalent numerical expression, therefore taking again into account that

x = log ex we may recompute it as below:

log
K∑
k=1

efk = log
K∑
k=1

efk+M−M = log eM
K∑
k=1

efk−M = M + log
K∑
k=1

efk−M

In our implementation of RAG token, when computing the probability of the output

sequence conditioned in the input p(y|x), in order to reveal the whole output sequence
y, as wemarginalize per token we generate, consuming the previously generated ones;

applying the logsumexp trick is based on:

p(y|x) =
N∏
i=1

∑
z

pη(z|x)pθ (yi|x,y1:i−1)

∝
N∏
i=1

∑
z

Lη (z|x) + Lθ (yi|x,y1:i−1)︸ ︷︷ ︸
sum of log probabilities

∝
N∑
i=1

log

(∑
z

pη(z|x) + pθ (yi|x,y1:i−1)

)

according to:
∑

z,w∈{η,θ}

Lw(.) = log
∑

z,w∈{η,θ}

exp (Lw(.)) = log
∑

z,w∈{η,θ}

Pw(.)︸ ︷︷ ︸
log of summed probabilities
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3.4 Evaluation goals and delimitations

Evaluation includesmainly themetrics which constitute part of pycocoevalcap library

for Interactive Python in Unix systems, including BLEU [57], ROUGE [49], METEOR

[6], CiDER [82] and SPICE [3]. They are typically used for the evaluation of captioning

systems and thus allow us to quantitatively compare our approach to existing baselines

and more novel algorithms.

A selection among thesemetrics is used to evaluate submissions in ImageCLEFmedical

2022 [68] as well that precisely include BLEU 1-4 scores for caption generation and

F1 score for concepts’ prediction. The default implementation1 of F1 score from scikit-

learn is computed for each image and then all scores are summed and averaged over all

images. When using F1 score, evaluation is conducted in terms of set coverage metrics

such as precision, recall, and combinations thereof. Moreover, all the scores for caption

evaluation, such as NIST, METEOR, ROUGE, andWord Error Rate (WER), have been

designed to be robust to variability in style andwording of the generated captions. This

robustness does not imply perfection though.

Interestingly, the aforementioned evaluation measures employed by DC research

mainly assess lexical overlap between machine-generated and human-authored gold

captions, without directly assessing clinical correctness. As it is indicated in the study

in [59] this can lead to cases where a clinically wrong generated report can be scored

higher than a clinically correct one, for instance “pneumothorax would be considered

a positive find in no pneumothorax is observed” [93], which apart from being clinically

incorrect, it also does not make sense. In addition, ROUGE metrics mainly consider

the content bymeasuring n-gramoverlapswithin the text and not its readability, which

may lead to poor grammar evaluation [33].

Furthermore, although higher quantitative accuracy is most often better, there are

categorical differences of theDCmethods aswell, which relate to qualitative evaluation

of our approach andmay refer to its practical usefulness. However, it is not yet obvious

what metrics can be used in order to obtain practical information about the quality of

the generated captions, which is left for future work. Our ambition from developing

and training Deep Networks based on the transformer architecture [81] is to improve

performance of Encoder-Decoder models with complex cells [48, 84], traditionally

achieving state of the art results.

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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3.5 Significance tests for experiments outcomes

In addition, we focus on pairwise variance analysis for the models. The F-distribution

is primarily used to compare the variances of two populations, which is particularly

relevant in analysis of variance testing and regression analysis. The F-distributionwith

n1, n2 degrees of freedom is defined by:

F (n1, n2) =

X2(n1)
n1

X2(n2)
n2

Using this definition, we can test whether the variances of two populations are equal,

which has been performed and illustrated below. In order to deal exclusively with the

right tail of the distribution, when taking ratios of sample variances from the theorem

we should put the largest variance in the numerator of s21/s
2
2 ∼ F (n1 − 1.n2 − 1).

In particular, we perform two-tailed F-tests comparing the variances of the samples

in ranges of the different models results to show the two-tailed probability that the

variance of the data in the respective ranges are significantly different. However, this

is not though always the case.

What is more, we perform the Wilcoxon Rank-Sum test, as well as the Mann-Whitney

U–test that is essentially an alternative form of the former for independent samples.

We perform both a Wilcoxon Rank-Sum test and a Mann-Whitney U–test for Paired

Samples again using a predefined significance level 5 × 10−2 to test the following null

hypothesisH0: any differences between the two models is due to chance (based on the

median of the differences). Two refers to the fact that we perform pairwise tests.

Moreover, the intuition behind using the Kolmogorov-Smirnov test apart from one-

tailed and two-tailed statistical significance T-tests shown above has been that there

might be measurements where the population means of the score distributions are

similar but either there is a remarkable difference in variances or one distribution is

bimodal that only the Kolmogorov-Smirnov test would detect. Additionally, although

the results might verify the statistical significance, the opposite could happen as well.

In that case, we additionally want to assess the effect size [75] to measure how large a

difference is after getting a failed hypothesis test. For this purpose, we used Cohen’s

d and consider the effect size to be small when d < 0.2, medium when 0.2 ≤ d ≤ 0.5,

large when d > 0.5 as vastly in literature.
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Chapter 4

Model selection and hyperparameter
tuning

4.1 ImageCLEFmedical 2022 contributions

In this part, we describe the core components of the methods utilized to encode the

X-RAYs with dense embeddings and explain in detail the baseline networks that we

proposed in ImageCLEFmedical 2022 evaluation campaign, in order of performance,

for both subtasks that are based on the aforementioned core components that rely

on pre-trained architectures, which are extremely popular in computer vision. Our

group, NeuralDynamicsLab at KTH Royal Institute of Technology, within the school

of Electrical Engineering and Computer Science, ranked 4th in the former and 5th in the

latter task [55] among 12 best research groups.

Precisely, we provide details about the ImageCLEFmedical 2022 concept detection and

caption prediction datasets and on how we designed backbone networks as generic

image encoders that rely onConvolutionalNeuralNetworks (CNN) architectures. They

are popular for vision tasks on generic images, such as classification and semantic

segmentation, while they are shared within all baselines, in both ImageCLEFmedical

Caption tasks. Furthermore, we analyze all the components of each submission as well

as give details regarding hyper-parameter tuning.

For all ourmodels, we have set in advance all the random seeds equal to 0, the CUDNNs

backends as deterministic and disabled the CUDNNs backends benchmark to ensure

consistency of the aforementioned splits in consecutive runs for hyper-parameter
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selection. This procedure has been applied during pre-processing for both subtasks

of the evaluation campaign.

4.1.1 Concept prediction subtask

As we mentioned in section 1.5 “backbone networks” refer to image encoders, which

are state-of-the-art architectures, pretrained on ImageNet classification dataset [70],

shared for both subtasks. In the case of concept prediction, an additional classification

head that is either a Perceptron or a Multi-layered Perceptron was added on top of

these “backbone networks” and its weights were initialized using Glorot initialization

strategy [22] as we previously described.

a. Pre-trained DenseNet161 with fine-tuned classification head, learning rate
10−3, Adam optimizer and gradient clipping

The first two models correspond to a DenseNet161 convolutional network, which is

pretrained on ImageNet classification dataset, while its head is a Perceptron that is

further fine-tuned on the ImageCLEFmedical 2022 dataset using sigmoid activation

function in the output units that equal the number of concepts -therefore 8374 nodes,

a constant learning rate equal to 10−3 and the negative F1 score as a minimization

criterion. For each image, we assign it the concepts that have predicted probabilities

above 50%, while the tags obtain their numerical IDs in their order of appearance

before shuffling them. Furthermore, we clip the gradients computed during training

to be in [−1, 1], to increase numerical stability.

We have used the Adam optimizer [37], which is described in section 3.2.1, so that

progress along steepdirections is damped andmeanwhile progress along flat directions

is accelerated. Our best performing baseline is an instance of the aforementioned

architecture trained in all the provided data, thus after merging again the training,

validation and development sets that are described in section 3.1.1 and achieves F1 =

0.436011. The next model corresponds to the same network architecture but is trained

only in training set and achieves a score F1 = 0.43567. For the latter case, where we

have measured performance in all sets, we present plots with the evolution of F1 score

and accuracy during training in Figure 4.1.1(a).

1All performance scores reported in this chapter correspond to the test set. For a detailed analysis of
the model results in the training, validation, development and test sets; please refer to chapter 6 where
statistical significance tests are also included.
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b. Pre-trained DenseNet161 with fine-tuned classification head, learning rate
5× 10−4, AdamW optimizer and gradient clipping

The next model corresponds to another DenseNet161 convolutional network that is

pretrained on ImageNet classification dataset and its head is again a Perceptron that

is further fine-tuned on the ImageCLEFmedical 2022 data using sigmoid activation

function in the output units that equal the number of concepts -thus 8374 nodes, a

constant learning rate equal to 5 × 10−4 and the negative F1 score as a minimization

criterion. For each image, we assign it the concepts that have predicted probabilities

above 50%, while the tags obtain their numerical IDs in their order of appearance

before shuffling them. Furthermore, we clip the gradients computed during training

to be in [−1, 1], to ensure numerical stability.

In this occasion we have used an improved version of Adam optimizer, called AdamW,

which is described in section 3.2.2. Our model is an instance of the aforementioned

network architecture, it is trained only in training set and achieves a scoreF1 = 0.43558,

although we would expect training with AdamW to perform better. Since the gain of

re-training the model after merging all the splits is almost negligible, as we already

noticed in section 4.1.1, the remaining models are not re-trained in the entire dataset.

Once again, we present plots with the evolution of F1 score and accuracy in Figure

4.1.1(b) in order to compare the different configurations.

c. Pre-trained DenseNet161 with fine-tuned classification head, learning rate
5× 10−4 and Adam optimizer

The subsequent model is yet another DenseNet161 convolutional network, which is

pretrained on ImageNet classification dataset and its head is another Perceptron that

is further fine-tuned on the ImageCLEFmedical 2022 data using sigmoid activation

function in the output units that equal the number of concepts -thus 8374 nodes, a

constant learning rate equal to 5 × 10−4 and the negative F1 score as a minimization

criterion. For each image, we assign it the concepts that have predicted probabilities

above 50%, while the tags obtain their numerical IDs in their order of appearance

before shuffling them and train the network using the Adam optimizer; as we have

excessively described in section 3.2.1.

Our model is an instance of the aforementioned network architecture and achieves a

scoreF1 = 0.43539, however, in this baselinewe omit clipping the gradients, in contrast
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with the models described above in sections 4.1.1(a) and 4.1.1(b). Furthermore, as for

both previous best-performing models we present plots with the evolution of F1 score

and accuracy below in Figure 4.1.1(c).

Figure 4.1.1: F1 and accuracy train, val., dev. scores plots per epoch for the models (a) 
of section 4.1.1(a), (b) of section 4.1.1(b), as well as (c) of section 4.1.1(c). We observe 
that the classifications heads, which we finetuned on ImageCLEFmedical 2022 data, 
appear to be sufficiently regularized (thus there is no overfitting) and to have used their 
maximum capacity.

d. Ensemble of pre-trained DenseNet CNNs with fine-tuned classification 

heads

The proceeding model and the best performing mixture of individual weak learners 

corresponds to the 10 best performing DenseNet CNNs, including instances of both 

DenseNet161 and DenseNet121 architectures, and indicates our quest for diversity and 

to consequently exploit the “Wisdom of the crowd” [76]; although their performance 

was lower compared to previous models.

In this context, we have taken into account the “votes” of all the different CNNs to 

make decisions on the assigned tags. The voting scheme consists of averaging the 

probabilities computed by the different weak learners before assigning to each image 

the concepts that have average predicted probabilities above 50%, while the tags as 

usual obtain their numerical IDs in their order of appearance before shuffling them. 

We also experimented with using alternative voting policies, such as computing the 

union or intersection of the assigned tags by each weak learner, where assignments 

are defined by the predicted probabilities being above 50%, in the pool of finetuned 

networks, but they performed poorly.

Table 4.1.1 summarizes the architecture of all individual networks in the pool of 

encoders. This precisely includes the type of Backbone Network, the optimizer, the 

value of learning rate and whether it is decaying per epoch, as well as their batch size.
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Note that for all weak learners in this pool of encoders, the classification head is always

a Perceptron, which is further fine-tuned in the ImageCLEFmedical 2022 data using

sigmoid activation function in the output units that equal the number of concepts.

Moreover, when linear decay is applied, the learning rate is updated by: ηt+1 = η0× 1−t
T

where t represents the current time step, T the total number of epochs and η0 is the

learning rate at the beginning of training procedure. The performance of this mixture

of experts equals F1 = 0.43496 on the test set.

Table 4.1.1: Summary of weak learners’ architecture and training regime in ensemble

Backbone Net. Optimizer Learning Rate Batch size Epochs Other Remarks
1. DenseNet121 AdamW 5× 10−4 60 20 -
2. DenseNet121 AdamW 10−3 60 20 -
3. DenseNet121 AdamW 10−4 60 20 -
4. DenseNet161 Adam 10−3 120 20 -
5. DenseNet161 AdamW 10−3 120 20 Linear Decay
6. DenseNet161 Adam 5× 10−4 120 20 -
7. DenseNet161 Adam 5× 10−4 120 20 No Grad. Clipping
8. DenseNet161 AdamW 5× 10−4 120 20 -
9. DenseNet161 AdamW 10−4 120 50 -
10. DenseNet161 AdamW 10−4 120 20 -

e. Ensemble of various pre-trained CNNs with fine-tuned classification
heads

Although Dense Convolutional Networks (DenseNet CNNs) appear to outperform

other network architectures, which is in line with their extensive use in biomedical

applications that include X-RAYs processing [64], we experimented with a plethora

of CNNs backbone networks as we have mentioned in section 1.5. Consequently, the

ensuing three models constitute ensembles that include different architectures within

their members, with varying hyperparameter values to encourage diversity of training

regimes. During the voting process we average the probabilities computed by the

softmax layer of all different week learners before assigning to each image the tags

that have average predicted probabilities above 50%.

Our three following mixtures of experts achieve a score F1,1 = 0.43404, F1,2 = 0.43130,

F1,3 = 0.42957 respectively. Tables 4.1.2, 4.1.3, 4.1.4 summarize the architecture of all

individual networks in each pool of encoders. Their format is identical to that used

in section 4.1.1(d) and consequently they also refer to the hyper-parameter values for

each of the weak learners.
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Note that the classification head is always a Perceptron which is further fine-tuned

in the ImageCLEFmedical 2022 data using sigmoid activation function in the output

units that equal the number of concepts. Moreover, when linear decay is applied, the

learning rate is updated by: ηt+1 = η0 × 1−t
T
where t represents the current time step, T

the total number of epochs and η0 is the initial learning rate.

Table 4.1.2: Summary of weak learners’ architecture and training regime in ensemble

Backbone Net. Optimizer Learning Rate Batch size Epochs Other Remarks
1. AlexNet AdamW 10−4 60 20 -
2. AlexNet AdamW 5× 10−5 60 20 -

3. DenseNet121 AdamW 5× 10−4 60 20 -
4. DenseNet121 AdamW 10−3 60 20 -
5. DenseNet121 AdamW 10−4 60 20 -
6. DenseNet161 Adam 10−3 120 20 -
7. DenseNet161 AdamW 10−3 120 20 Linear Decay
8. DenseNet161 Adam 5× 10−4 120 20 -
9. DenseNet161 Adam 5× 10−4 120 20 No Grad. Clipping
10. DenseNet161 AdamW 5× 10−4 120 20 -
11. ResNet50 AdamW 10−4 60 20 -
12. ResNet101 AdamW 10−4 60 20 -
13. VGG-13 AdamW 10−4 60 20 -
14. VGG-16 AdamW 10−4 60 20 -

Table 4.1.3: Summary of weak learners’ architecture and training regime in ensemble

Backbone Net. Optimizer Learning Rate Batch size Epochs Other Remarks
1. AlexNet AdamW 10−4 60 20 -
2. AlexNet AdamW 5× 10−5 60 20 -

3. DenseNet121 AdamW 5× 10−4 60 20 -
4. DenseNet121 AdamW 10−3 60 20 -
5. DenseNet161 Adam 10−3 120 20 -
6. DenseNet161 AdamW 10−3 120 20 Linear Decay
7. ResNet50 AdamW 10−4 60 20 -
8. ResNet50 AdamW 5× 10−5 60 20 -
9. ResNet101 AdamW 10−4 60 20 -
10. ResNet101 AdamW 5× 10−4 60 20 -
11. VGG-13 AdamW 10−4 60 20 -
12. VGG-13 AdamW 5× 10−5 60 20 -
13. VGG-16 AdamW 10−4 60 20 -
14. VGG-16 AdamW 5× 10−5 60 20 -
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Table 4.1.4: Summary of weak learners’ architecture and training regime in ensemble

Backbone Net. Optimizer Learning Rate Batch size Epochs Other Remarks
1. AlexNet AdamW 10−4 60 20 -
2. AlexNet AdamW 5× 10−5 60 20 -

3. DenseNet121 AdamW 5× 10−4 60 20 -
4. DenseNet121 AdamW 10−3 60 20 -
5. DenseNet121 AdamW 10−4 60 20 -
6. DenseNet161 Adam 10−3 120 20 -
7. DenseNet161 AdamW 10−3 120 20 Linear Decay
8. DenseNet161 Adam 5× 10−4 120 20 -
9. ResNet50 AdamW 10−4 60 20 -
10. ResNet101 AdamW 10−4 60 20 -
11. VGG-13 AdamW 10−4 60 20 -
12. VGG-16 AdamW 10−4 60 20 -

f. Fully fine-tuned DenseNet161 with cyclical learning rate and AdamW
optimizer

The succeeding model corresponds to a DenseNet161 convolutional network that is

now fully-finetuned on the ImageCLEFmedical 2022 data using sigmoid activation

function in the output units that equal the number of concepts -thus 8374 nodes,

scheduled learning rate [39] and the negative F1 score as a minimization criterion.

For each image, we assign it the concepts that have predicted probabilities above 50%,

while the tags obtain their numerical IDs in their order of appearance before shuffling

them as in all previous pipelines.

One important aspect of minibatch or stochastic gradient descent relates to the choice

of the learning rate η that controls the size of the update, which will occur to the

gradients in every iteration. Constant learning rates have been traditionally used to

train Deep Neural Networks based on back-propagation algorithm, although do not

guarantee optimal convergence rate according to the Stochastic Approximation Theory

[67], precisely the networkparameters hover around aminimumat an average distance

proportional to the learning rate and to a variance that is dependent on the objective

function and the exemplar set [13]. To this end, cyclical learning rates have been

proposed as a new method for setting the learning rate by cyclically varying its value

between reasonable boundary values, which increases classification accuracy when

training CNNs with generic images [74].

A high value of η will make the network make large steps above the minimum of the
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Figure 4.1.2: (a) Schematic illustration of the error landscape with a high learning rate,
(b) example plot of a cyclical learning rate with ηmin = 0.01, ηmax = 0.30, ns = 2 and (c) F1 

and accuracy train, val., dev. scores plots per epoch for the model of section 4.1.1.

error function but never converge to it, as illustrated in Figure 4.1.2(a). A small value 

of η will delay convergence, preventing the network to find a minimum of the error 

function if the number of epochs is limited. A cyclical learning rate linearly ranges 

between two values ηmin and ηmax. One maximization of the learning rate followed by 

a minimization is called a cycle. In Figure 4.1.2(b) we present an indicative example 

of cyclical learning rate, where ηmin = 0.01, ηmax = 0.30, ns = 2 and we denote as 2ns 

the time required for a cycle of our learning rate to complete. In our model we set 

ηmin = 10−5, ηmax = 0.1, ns = 4 for the first 80 epochs and then set it to a constant value 

η = 10−3 for 30 additional epochs.

This network achieves a score F1 = 0.31687, which is a rather lower score compared to 

the pre-trained models on ImageNet classification dataset [70], achieving more than 

10% higher F1 results on the test set. Moreover, we present plots with the evolution of 

F1 score and accuracy per training epoch of the model in Figure 4.1.2(c) that is quite 

unstable while varying the learning rate.

g. Nearest Neighbours Baseline

The ensuing model is a generalization of the 1-NN baseline proposed in [50]. We 

further either remind or inform the reader that for every image in the test set, the 1-

NN baseline assigns the tags of the visually most similar image from the training set 

as the output and consequently for every image, x̂, in the test set, the 1-NN baseline 

will output the set of concepts, say y∗, of the most similar image, say x∗, from the 

training set as output [59]. Therefore, if we denote by e(.) the output of the employed 

image encoder among those mentioned in section 1.5, 1-NN predicts (x̂, ŷ) = (x̂, y∗) 

that satisfies (x∗, y∗) = arg minx̂ cos (e(x̂), e(x∗)). Our generalized Nearest Neighbours 

baseline takes into account k ∈ Z+ neighbours instead and not necessarily only the
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one with closest representation. Our best performing k-NN model though uses k = 1

with a VGG-16 encoder pre-trained on ImageNet classification dataset and achieves

only F1 = 0.25061 that indicates the importance of fine-tuning, which is impossible to

conduct in this baseline.

4.1.2 Caption generation subtask

In ImageCLEFmedical 2022 evaluation campaign, “the first step to automatic image

captioning and scene understanding boils down to identifying the presence and

location of relevant concepts within a large corpus of medical images” that is followed

by caption generation in captioning. Based on medical images content, the concept

prediction task provides the building blocks for scene understanding by identifying the

individual components, referred to as image tags, from which captions are composed.

The assigned concepts can be further applied for context-based image and information

retrieval purposes” [68].

“On the basis of the vocabulary V identified during concept prediction task, as well as

the visual information of their interaction in the image, caption generation task refers

to composing coherent captions for each entire image. For themedical captioning task,

rather than the mere coverage of visual concepts, detecting the interplay of visible

elements can be crucial for strong performance” [68]. In the following, we describe

our proposed models for Diagnostic Captioning, in which the generalized Nearest

Neighbours baseline that we introduced in section 4.1.1(g) has a crucial role despite

it performing poorly as is.

a. (1 + k)-NN image retriever with Pegasus summarizer

Our best performing captioning models extend the Nearest Neighbours baseline for

caption generation. Precisely, the 1-NN [50] constitutes one of themodel components,

where for every image in the test set, it will produce the diagnostic text of the visually

most similar image from the training set as the output and consequently it will assign

the corresponding caption, say y∗, of the most similar image, say x∗, from the training

set as output [59]. Thus, if we denote by e(.) the output of the employed image encoder

among those mentioned in section 1.5, 1-NN predicts (x̂, ŷ) = (x̂, y∗) that satisfies

(x∗, y∗) = argminx̂ cos (e(x̂),e(x∗)). This prediction constitutes the first part of the

models’ generated caption.
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In our proposed generalized baseline however, apart from the neighbour with the

closest representation, we retrieve the top-(k + 1) nearest neighbours, concatenate

their outputs, excluding that of the most similar image and feed them as input to an

abstractive summarizer; Pegasus [91] that is based on the transformer architecture,

one idea that revolutionized Natural Language Processing [81] and it is trained with

a Masked Language Modelling objective, which became popular within the research

community though BERT [15].

For our models we employed a pre-trained AlexNet CNN on ImageNet classification

dataset as our image encoder and merged our training, validation and development

sets that are described in section 3.1.1, in order to benefit from an extensive set of

training data to compute similarities with the test data. For each of them we keep

the caption of the visually most similar image, concatenate the captions of the k

proceeding ones and give them as input to Pegasus summarizer, which we allow to

produce a summary of maximum length n tokens to eliminate repetitions. We exclude

phrases as “All images are copyrighted.” and “Images courtesy of AFP, EPA, Getty”

that were probably included in Pegasus’ training set from our generated summaries.

The predicted captions constitute the concatenation of 1-NN baseline and Pegasus

summarizer outputs. Table 4.1.5 below presents all configurations’ hyper-parameter

values, namely the neighbours amount k and summary length n, as well as their BLEU

scores in decreasing order in the test set [57].

Table 4.1.5: Summary of our configurations’ hyper-parameters and statistics

Backbone Network Captions k Tokens n
AlexNet k = 9 n = 15
AlexNet k = 4 n = 15
AlexNet k = 3 n = 15
AlexNet k = 2 n = 15
AlexNet k = 4 n = 5
AlexNet k = 3 n = 5

BLEU scores 
0.29166
0.28343
0.27855
0.27007
0.25521
0.25334

b. k-NN image retriever with Retrieval Augmented Generation

The goal of Retrieval Augmented Generation (RAG) [45], which has been excessively

described in section 3.3 and used as model component, pretrained on Wikipedia with

a FAISS index [32] built on 42% of PubMed 2022 including recent publications related

to the fields of neuroscience and computational biology; is to combine the strengths

of sequence-to-sequence models and explicit knowledge retrieval. Obviously, RAG
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is also blended with the 1-NN baseline; namely its outputs are concatenated with

the caption of the visually most similar image from the training set to produce

caption predictions. This model uses either a pre-trained AlexNet or VGG-16 CNN on

ImageNet classification dataset as backbone network and, despite it containing a non-

parametricmemory, additional to storing information in the parameters of a sequence-

to-sequence generative model that is a Bidirectional Auto-Regressive Transformers

(BART) generator [44], after merging our training, validation and development sets

that are described in section 3.1.1 to take advantage of more input-output pairs (x,y),

achieves a lower BLEU score than its predecessors described in 4.1.2(a) and according

to Table 4.1.6 below. These results could possibly improve if we store extracts from

patients’ previous diagnoses instead of the biomedical articles or use a domain-related

generative model, which is left for future work.

Table 4.1.6: Summary of our configurations’ image encoders and statistics

Backbone Network Captions k   BLEU scores
AlexNet k = 1 0.25127
VGG-16 k = 1 0.23958

c. 1-NN image retrieval baseline

Last but not least, we attempted using the 1-NN baseline [59] as is to generate the

diagnostic text within the captions, which however achieved a lower score than all the

aforementioned approaches. Although at first, one could interpret this as RAGmodels

examined in section 3.3, perform better than solely the 1-NN baseline; when the latter

is combined with abstractive summarization techniques for the diagnostic texts of k

additional visually similar images from the training set, where k ∈ Z+, it may perform

better as it is indicated in section 4.1.2. Our models use a pre-trained AlexNet or VGG-

16 CNN on ImageNet classification dataset as image encoder, our training, validation

and development sets that are described in section 3.1.1 merged together and achieve

a BLEU score according to Table 4.1.7.

Table 4.1.7: Summary of our configurations’ image encoders and statistics

Backbone Network Captions k   BLEU scores
AlexNet k = 1 0.24064
VGG-16 k = 1 0.22757
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4.1.3 Concept Detection Performance summary

Table 4.1.8 below summarizes several characteristics of the proposed baselines for

the concept detection task, in order of performance with respect to F1 scores. We

observe that DenseNet161 encoders with finetuned classification heads are our top

performing configurations and outperform other CNNs. Additional details and F1

scores are provided in chapters 6 and 7 (Appendices).

Table 4.1.8: Summary of our configurations’ training targets and F1 scores

Section Table Training target Dev. F1 Val. F1 Test F1

Section 4.1.1(a) - DenseNet161 Head 0.44460 0.44614 0.43601
Section 4.1.1(a) - DenseNet161 Head 0.44460 0.44614 0.43567
Section 4.1.1(b) - DenseNet161 Head 0.44429 0.44516 0.43558
Section 4.1.1(c) - DenseNet161 Head 0.44430 0.44524 0.43539
Section 4.1.1(d) Table 4.1.1 Ensemble of DenseNets 0.44544 0.44553 0.43496
Section 4.1.1(e) Table 4.1.2 Ensemble of Networks 0.44170 0.44167 0.43404
Section 4.1.1(e) Table 4.1.3 Ensemble of Networks 0.44305 0.44379 0.43130
Section 4.1.1(e) Table 4.1.4 Ensemble of Networks 0.44543 0.44623 0.42957
Section 4.1.1(f) - DenseNet161 (finetuned) 0.32418 0.32654 0.31687
Section 4.1.1(g) - VGG-16 NN search 0.25202 0.25276 0.25061

4.1.4 Caption Generation Performance summary

Table 4.1.9 below illustrates several characteristics and geometric mean of BLEU 1-4 

scores for our caption generation baselines, in order of performance with respect to 

test scores. Although RAG models perform better than solely the 1-NN baseline, if 

the latter is combined with abstractive summarization techniques for the diagnostic 

texts, it is capable of performing better. 

Table 4.1.9: Summary of our configurations’ parameters and IDs

Table Encoder Generator Captions k Tokens n Val. score Test score
Table 4.1.5 AlexNet Pegasus k = 9 n = 15 0.14800 0.29166
Table 4.1.5 AlexNet Pegasus k = 4 n = 15 0.15500 0.28343
Table 4.1.5 AlexNet Pegasus k = 3 n = 15 0.15700 0.27855
Table 4.1.5 AlexNet Pegasus k = 2 n = 15 0.15600 0.27007
Table 4.1.5 AlexNet Pegasus k = 4 n = 5 0.15800 0.25521
Table 4.1.5 AlexNet Pegasus k = 3 n = 5 0.15600 0.25334
Table 4.1.6 AlexNet RAG k = 1 - 0.17000 0.25127
Table 4.1.6 VGG-16 RAG k = 1 - 0.19300 0.23958
Table 4.1.7 AlexNet 1-NN k = 1 - 0.15600 0.24064
Table 4.1.7 VGG-16 1-NN k = 1 - 0.14400 0.22757
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Research 
Question

Proposed 
Method

Image encoders: State-of-the-art CNN architectures, pretrained on ImageNet for 

classification, which have been obtained through torchvision models’ library to 

perform inference; in order to encode the medical images into descriptive dense 

numerical representations. They are shared for both subtasks.

AlexNet ResNet

DenseNet VGG

EfficientNet

Concept 
Prediction

Caption 
Generation

Training set: 72736 captions, 70879 unique captions, average length 108 words, 

Validation set: 9092 captions, 8984 unique captions, average length 107 words, and 

Development set: 9092 captions, 8977 unique captions, average length 108 words

8374 tags of concepts assigned to the medical images. Each image in the training, 

validation, or development set is assigned 5 tags on average based on a reduced 

subset of the Unified Medical Language System 2020 AB release.

Backbone Network Training Regime Learning Rate Test F1

DenseNet161 Adam optimizer and gradient clipping constant 10−3 0.43601

DenseNet161 Adam optimizer and gradient clipping[1] constant 10−3 0.43567

DenseNet161 AdamW optimizer and gradient clipping constant 5 ∙10−4 0.43558

DenseNet161 Adam optimizer without gradient clipping constant 5 ∙10−4 0.43539

DenseNet variants Ensemble of best-performing DenseNets per weak learner 0.43496

Various networks Ensemble of diverse configurations[2] per weak learner 0.43404

Various networks Ensemble of diverse configurations[2] per weak learner 0.43130

Various networks Ensemble of diverse configurations[2] per weak learner 0.42957

DenseNet161 Full fine-tuning with AdamW optimizer cyclical 0.31687

VGG-16 Nearest Neighbor baseline (1-NN) – 0.25061

[2] Configuration search involves optimizers, learning rates, number of epochs, batch sizes, weight decay.

[1] Model training occurred in 80% of the data; apart from the best performing DenseNet161 where we merge 
the training, validation, development sets and train in all the provided data (all 90920 medical images).

90920 medical images; 80% training set, 10% validation set, 10% development setData

Backbone Network Training Regime Neighbors Length BLEU

AlexNet (1+𝑘)-NN retriever with Pegasus 𝑘 = 9 15 tokens 0.29166

AlexNet (1+𝑘)-NN retriever with Pegasus 𝑘 = 4 15 tokens 0.28343

AlexNet (1+𝑘)-NN retriever with Pegasus 𝑘 = 3 15 tokens 0.27855

AlexNet (1+𝑘)-NN retriever with Pegasus 𝑘 = 2 15 tokens 0.27007

AlexNet (1+𝑘)-NN retriever with Pegasus 𝑘 = 4 5 tokens 0.25521

AlexNet (1+𝑘)-NN retriever with Pegasus 𝑘 = 3 5 tokens 0.25334

AlexNet 𝑘-NN retriever with RAG-token 𝑘 = 1 – 0.25127

VGG-16 𝑘-NN retriever with RAG-token 𝑘 = 1 – 0.23958

AlexNet Nearest Neighbor baseline 𝑘 = 1 – 0.24064

VGG-16 Nearest Neighbor baseline 𝑘 = 1 – 0.22757

In (1+𝑘)-NN we keep the caption of the visually most similar image as is and pass 

the remaining 𝑘 ones to Pegasus summarizer; then concatenate. In 𝑘-NN with RAG 

we pass the captions of all 𝑘 most similar images to RAG-token; then concatenate 

all of them with RAG-token’s generation.

50 101

121 161 13 16

B3 B5

To what extent Deep Neural Networks are capable of automatically generating a 

diagnostic text from a set of medical images but also how much their interpretation 

of these medical images can assist medical professionals reduce their amount of 

clinical errors, as well as help them increase their productivity by ameliorating 

the quality and speed in producing medical diagnoses, which is associated to an 

increased throughput of medical imaging departments.

In all baselines we use pre-trained encoders and train Perceptron heads initialized 

using Glorot, apart from the latter two, where we fully fine-tune a DenseNet161 and 

use the tags of the visually most similar image respectively.

Figure 4.1.3: Summary view of my proposed architectures as presented in CLEF 2022.
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4.2 Additional experiments on IU X-RAY

In this section, we elaborate on several additional expeρiments that we performed

on IU X-RAY dataset [14] that constitutes one of the most popular publicly available

biomedical datasets, containing both medical images and diagnostic reports, in order

to investigate the consistency of our proposed architectures’ performance in different

settings including noticeable class imbalance. As mentioned in section 3.1.2, we took

advantage of both IMPRESSION and FINDINGS fields where they exist, to generate

the images’ captions and the professional shall consider the remaining fields that are

precisely described hereunder:

• FINDINGS: The visual characteristics of a body structure of function that may

potentially have a clinical impact.

• IMPRESSION: The most remarkable findings as well as their clinical value. Might

include a conclusion not followed by other sections and the images of the exam

but we may ignore this issue for our current work.

• COMPARISON: Includes given information about the patient’s previous illnesses.

Might contain some information about the patient but not a complete report

(e.g. extracts from previous exams).

• INDICATION: Contains given information regarding the medical reason subjected

to examination (e.g. symptoms).

We found 104 reports with no associated image, 25 reports with empty Impression

and Findings sections, 6 reports with no Impression section and 489 reports with no

Findings section after collecting 7430 image-caption pairs to perform our training.

Regarding concept detection, we took advantage of our backbone networks described

in section 1.5 and added again a classification head, which we similarly fine-tuned on

IU X-RAY. For caption generation, we reproduced the 1-NN Network as a baseline

model. Recall that, if we denote by e(.) the output of the employed image encoder

among those mentioned in section 1.5, 1-NN predicts (x̂, ŷ) = (x̂, y∗) that satisfies

(x∗, y∗) = argminx̂ cos (e(x̂),e(x∗)).

Although this heuristic is very simple, it produced rather high scores on IU-XRAY,

which is further confirmed in the study [59], where it is also shown that it is capable of

outperforming somemuchmore elaborate approaches in clinical recall. This indicates

already severe class imbalance.
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Once again in that case, we have set in advance all the random seeds equal to 0, the

CUDNNs backends as deterministic and disabled the CUDNNs backends benchmark

to ensure consistency of the aforementioned splits in consecutive runs for hyper-

parameter selection. This procedure has been applied during pre-processing for both

subtasks re-ran using IU X-RAY.

4.2.1 Class imbalance on IU X-RAY: detection and handling

In this section, we are dealing with class imbalance issues using statistical significance

tests, in order to identify to what extent this phenomenon occurs but also how the

simple baselines are affected in terms of performance when up-sampling or down-

sampling the majority class. As it has also been indicated in the above subsections,

consecutive runs of the same algorithm as part of 5 × 2–fold cross validation scheme

yield similar results and that can also be verified after we run statistical significance

tests. The results are analyzed using T–tests butmoreover, statistical significance tools

are also being used to identify increase in performance of 1-NN in comparison to the

more simplistic WinnerTakesAll (WTA) baseline.

Consequently, apart from the 1-NN network, an additional WinnerTakesAll baseline

is involved and was also implemented for Diagnostic Captioning experiments, which

uses the words frequency in the training captions and takes them in descending order,

s.t. fi ≥ fi+1, in order to generate the same caption for all instances of the test set. This

was first introduced as the Frequency baseline [58] and thus commonly known as such

within image captioning research community.

One maybe premature thought on investigating performance of the aforementioned

fundamental algorithms or baselines is to perform several iterations to collect scores

while up–sampling or down–sampling themajority class that in our case is the reports

including no findings. The initial experiments aim to shed light exactly on investigating

this issue, vaguely determined as whether the system is better at being a bad or a good

doctor, taking advantage of the IMPRESSION and FINDINGS fields that are anyway

those taken advantage of in this work but also by other researchers as well to perform

Diagnostic Captioning on the X-RAYs.

In order to implement the up–sampling or down–sampling of the majority class, we

adopted a naïve modelling of the class instances as reports containing the tokens no

findings, clear, normal or some combination of them in either the IMPRESSION or
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the FINDINGS section, as well as in both, if they exist in the respective datapoints.

We label as class c1 the datapoints containing any image data (practically useless),

as class c2 the datapoints containing any textual information, class c3 the datapoints

containing non-null FINDINGS section, class c4 the datapoints containing non-null

IMPRESSION section, class c5 the datapoints containing non-null both FINDINGS

and IMPRESSION sections. Following this notation, the caption (target) generation

procedure is explained hereunder:

Procedure 𝑷𝟏: Preprocessing and caption generation

Input: an image 𝑥⃗ ∈ 𝒟 

Output:  a pair 𝑥⃗, 𝑦⃗ of the image 𝑥⃗ ∈ 𝒟 and its associated caption 𝑦⃗ ∈ 𝒞 

if class(𝑥⃗) = 𝑐3 set the caption 𝑦⃗ = fields.FINDINGS(𝑥⃗) 

if class(𝑥⃗) = 𝑐4 set the caption 𝑦⃗ = fields.IMPRESSION(𝑥⃗) 

if class(𝑥⃗) = 𝑐5 set the caption 𝑦⃗ = fields.IMPRESSION(𝑥⃗) + “ ” + 

fields.FINDINGS(𝑥⃗) 

return 𝑥⃗, 𝑦⃗ 

After generating the corresponding captions for the data in IU X-RAY, we divide the

experiment process in four phases following each other, among which the positive

phases relate to including only specific tokens T̂ , either at least one or a combination
of them as indicated in T whereas the negative phases relate to not including them,

T = ∪i{ti} ∈ T̂ such that T̂ = {no findings, clear, normal}. These tokens arementioned

earlier to characterize themajority class. In section 4.2.2, we are further expanding the

experiment demonstrated in the previous subsection, using a larger set T (freq) with the

most frequent tokens across all captions based on an extensive preprocessing pipeline

concluding to a frequency analysis.

The outcome of this experiment is that the baselines perform better when expected

to diagnose specific cases belonging to the majority class, by producing the respective

targets, mostly including tokens in T rather than when omitting all examples including
either some or all tokens in T that indicate an X-RAY without clinical remarks or any

medical reason subjected to examination. In other words, if we reduce the number of

data belonging to the majority class (i.e. reports without clinical problems) the system

performance deteriorates.
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Algorithm 𝑬𝟏: Up–sampling/Down–sampling the negative class 

 

Input:   the image set 𝒟 with their associated captions 𝒞. 

 a set of tokens 𝒯 = {𝑡1, 𝑡2, … , 𝑡𝑇} to be removed from the captions among   

     the train set, s.t. ∀𝑡 ∈ 𝒯 ⇒ 𝑡 ∉ 𝒞 

Output:  Precision, Recall, F1 scores 

 

define 𝒯 = {“no findings”, “clean”, “normal”} 

for every image 𝑥⃗ ∈ 𝒟 {                 Phase A-: any label included 

if class(𝑥⃗) = 𝑐1 or class(𝑥⃗) = 𝑐2 { skip 𝑥⃗; } 

retrieve the corresponding caption 𝑦⃗ ∈ 𝒞 from the above procedure 

if ∃𝑡 ∈ 𝒯 s.t. 𝑡 ∈ 𝑦⃗ { skip 𝑥⃗; } 

} 

train on the remaining pairs and generate Precision, Recall, F1 scores 

 

for every token 𝑡 ∈ 𝒯 {             Phase E-: every label included 

for every image 𝑥⃗ ∈ 𝒟 { 

 if class(𝑥⃗) = 𝑐1 or class(𝑥⃗) = 𝑐2 { skip 𝑥⃗; } 

retrieve the corresponding caption 𝑦⃗ ∈ 𝒞 from the above procedure (𝑃1) 

if 𝑡 ∈ 𝑦⃗ { skip 𝑥⃗; } 

} 

train on the remaining pairs and generate Precision, Recall, F1 scores 

} 

for every image 𝑥⃗ ∈ 𝒟 {           Phase A+: any label not included 

if class(𝑥⃗) = 𝑐1 or class(𝑥⃗) = 𝑐2 { skip 𝑥⃗; } 

retrieve the corresponding caption 𝑦⃗ ∈ 𝒞 from the above procedure (𝑃1) 

if ∃𝑡 ∈ 𝒯 s.t. 𝑡 ∉ 𝑦⃗ { skip 𝑥⃗; } 

} 

train on the remaining pairs and generate Precision, Recall, F1 scores 

 

for every token 𝑡 ∈ 𝒯 {         Phase E+: every label not included 

for every image 𝑥⃗ ∈ 𝒟 { 

if class(𝑥⃗) = 𝑐1 or class(𝑥⃗) = 𝑐2 { skip 𝑥⃗; } 

retrieve the corresponding caption 𝑦⃗ ∈ 𝒞 from the above procedure (𝑃1) 

if 𝑡 ∉ 𝑦⃗ { skip 𝑥⃗; } 

} 

train on the remaining pairs and generate Precision, Recall, F1 scores 

} 

 

4.2.2 Extended frequency analysis of IU X-RAY captions

When introducing the problem of class imbalance, we split the IU X-RAY data into

five distinct classes, according to their contained fields in the sense of them being

non-null. One step further, among all the 3851 reports, 599 (15.6%) do not include

a COMPARISON section, 86 (2.2%) do not include the INDICATION section, 31 (0.1%)

do not include IMPRESSION, while 514 (13.3%) do not include FINDINGS. Among

the reports that comprise both a FINDINGS section and at least one image (3337),

only 2553 (76.5%) have a unique FINDINGS section, which means that the text of

38



CHAPTER 4. MODEL SELECTION AND HYPERPARAMETER TUNING

their FINDINGS is not the same in any other report. The FINDINGS section of the

remaining 23.5% reports is exactly the same in two or more other reports, and in these

cases the reports describe mainly normal findings. In this setting reports related to

illnesses, e.g. locations depicting an organ or tissue that suffered damage through

injury or disease, are extremely limited.

For example, the most frequent FINDINGS text (found in 51 reports) is “The heart

is normal in size. The mediastinum is unremarkable. The lungs are clear.”. The 10

most frequent FINDINGS sections, all describing normal findings, occur in 344 reports

in total, which is 10.3% of all the reports and 43.9% of the non-unique FINDINGS

leading to the aforementioned class imbalance issue, but also serving as an alarming

indicator of vocabulary shortage in the captions. In this context, we are expanding the

experiment demonstrated in the previous subsection, using a larger set T (freq) with the

most frequent tokens across all captions identified by the procedure explained below

concluding to a standard frequency analysis.

 Procedure 𝑷𝟐: Preprocessing and further statistical analysis

Input: the image set 𝒟 with their associated captions 𝒞. 

the vocabulary of all tokens 𝒱 = {𝑡1, 𝑡2, … , 𝑡𝑉} included in the captions 𝒞. 

Output:  tokens occurrences across the captions 

initialize O = [] 

for every token 𝑡 ∈ 𝒱 { 

for every image 𝑥⃗ ∈ 𝒟 { 

if class(𝑥⃗) = 𝑐1 or class(𝑥⃗) = 𝑐2 { skip 𝑥⃗; } 

retrieve the corresponding caption 𝑦⃗ ∈ 𝒞 from procedure 𝑃1 

} 

count 𝑡’s occurrences across the captions; denote it as 𝑜𝑡 = count(𝑡) 

O.append(𝑜𝑡)

} 

return O 

The questions we aim to answer through this process include whether the system is

better (in terms of retrieval evaluation considering its generating captions) in specific

subgroups of input data, and how does isolating those most frequent terms (i.e. such

that ot > ϵ, where ϵ ∈ R+ is a chosen frequency threshold) affect the WinnerTakesAll

and 1-NN baselines performance. Evaluation includes the usual metrics and statistical

significance tests mentioned in section 4.4.
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 Algorithm 𝑬𝟐: Identifying groups of relevant captions and comparing

Input:   the image set 𝒟 with their associated captions 𝒞. 

the vocabulary of all terms 𝒱 = {𝑡1, 𝑡2, … , 𝑡𝑉} included in the captions 𝒞. 

Output: Precision, Recall, F1 scores 

for every token 𝑡 ∈ 𝒱 { 

retrieve 𝑡’s occurrences across the captions 𝑜𝑡 from procedure 𝑃1 

if 𝑜𝑡 is not sufficiently large number { skip 𝑡; } 

for every image 𝑥⃗ ∈ 𝒟 { 

if class(𝑥⃗) = 𝑐1 or class(𝑥⃗) = 𝑐2 { skip 𝑥⃗; } 

retrieve the corresponding caption 𝑦⃗ ∈ 𝒞 from procedure 𝑃2 

if 𝑡 ∉ 𝑦⃗ { skip 𝑥⃗; } 

} 

train on the remaining pairs and generate Precision, Recall, F1 scores 

} 

The tokens satisfying the criterion that ot is a sufficiently large number are T (freq)=

{no findings, clear, normal, acute, pleural, pneumothorax, effusion, heart, lungs,

size, focal, pulmonary, cardiopulmonary, disease, limits, consolidation, abnormality,

abnormalities, silhouette, mediastinal, cardiomediastinal, lung, airspace, stable,

changes, chest, evidence, mild, spine, unremarkable, contour(s), thoracic, effusions,

degenerative, atelectasis, calcified, upper, lobe, cardiac, opacity, opacities, vascularity,

edema, intact, vasculature, vascularity, infiltrate, noted, bilateral, bilaterally, small,

prior, pneumonia, interstitial}.

4.3 Statistical Significance Analysis outcomes for our

ImageCLEFmedical 2022 contributions

In the following part, we present the outcomes from performing a variety of statistical

significance tests to compare baselines to one another based on the assumption that

they perform similarly; T–tests, F–tests, Wilcoxon sign-rank tests, Mann-Whitney U–

tests, Cohen’s effect size tests and Kolmogorov Smirnov tests, motivated in section 3.5,

to many combinations of our implementations.

Our core aim from developing and training Deep Networks based on the convolutional

image encoders andGenerative Transformers [81] is to improve performance of simple

baselines by an extent that is statistically significant on a predefined level 5 × 10−2.

This goal is satisfied according to all our comparisons for caption generation, apart
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from the case where we compare the 1-NN baseline with the hybrid model including

summarization, whereas we observe that although RAG-token based systems perform

better in the validation and held-out development sets, they fail to generalize well in

the unknown test set, while abstractive summarization performs surprisingly better

although it lacks a non-parametric memory. In contrast, the results are controversial

for concept detection, in which case we elaborate on our observations.

We start by performing both one-tailed and two-tailed statistical significance T-tests to

evaluate similarity of the F1 scores among our experiments demonstrated in Table 7.1

and the submitted results presented in section 6.1.1 to compare classification baselines

to one another and follow the same steps for the caption generationmethods proposed

in section 6.1.2. The tests’ results are presented in chapter 7 (Appendix A), marked in

red in cases where we reject the null hypothesis H0 and green when we fail to do so,

while regarding the effect size, we use orange when it is small, blue when it is medium

and purple when it is large in order to navigate the reader.

4.3.1 Significance tests for all experiments outcomes

To begin with, we compare the different backbone network architectures. We observe

that DenseNet is the best performing image encoder for concept detection, as it is also

indicated by the validation F1 scores, while the performance difference is statistically

significant compared to AlexNet and ResNet image encoders but we cannot reject the

null hypothesis when comparing to VGG.We also observe a high variance in the results

related to DenseNet compared to AlexNet and ResNet image encoders; other than that

Wilcoxon signed-rank tests and Mann-Whitney U tests agree that the performance

difference is statistically significant as we illustrate below.

 

Table 4.3.1: P-Values and Cohen's d for different types of statistical tests between different backbone architectures. 

Statistical test AlexNet / 
DenseNet 

AlexNet / 
ResNet 

AlexNet / 
VGG 

DenseNet / 
ResNet 

DenseNet / 
VGG 

ResNet / 
VGG 

One tailed T-test (default) 0,03026 0,16456 0,05327 0,00103 0,09123 0,00425 
One tailed T-test, equal variance 0,02469 0,10878 0,03269 0,0006 0,38864 0,00082 

One tailed T-test, unequal variance 0,02111 0,10734 0,0048 0,00025 0,20551 4,13E-05 
Two tailed T-test (default) 0,06053 0,32911 0,10655 0,00206 0,18246 0,0085 

Two tailed T-test, equal variance 0,04938 0,21757 0,06537 0,0012 0,77727 0,00164 
Two tailed T-test, unequal variance 0,04221 0,21469 0,0096 0,0005 0,41102 8,25E-05 
F-test (for stat. variance analysis) 0,62866 0,56602 5,71E-08 0,25496 1,47E-08 1,97E-07 

One tailed Mann-Whitney U-test 2,95E-06 0,00142 0,00107 7,84E-09 0,03793 5,90E-06 
Two tailed Mann-Whitney U-test 5,90E-06 0,00284 0,00214 1,57E-08 0,07585 1,18E-05 

Cohen's d - Baseline Effect Size test -0,4726 0,38705 -0,7295 0,82278 -0,0946 -1,3492 
One tailed Wilcoxon signed-rank test 2,90E-06 0,00136 0,001 7,68E-09 0,03746 5,43E-06 
Two tailed Wilcoxon signed-rank test 5,81E-06 0,00273 0,002 1,54E-08 0,07493 1,09E-05 

Kolmogorov-Smirnov test 5,08E-07 0,00018 0,01701 6,83E-12 0,00332 5,73E-07 
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In addition, we compare architectures where we use pre-trained backbone networks

on ImageNet classification dataset with baselines, while we include the same image

encoders combined with a heuristic approach based on 1-NN. In that case, we again

observe a high variance in the results related to DenseNet and ResNet image encoders,

as well as that the fine-tuned classification heads’ performance, which are initialized

using Glorot formula as explained in previous parts, is better and the F1 difference is

statistically significant for any network architecture.

Moreover, we vary the training extent and comparemodels where we fully finetune the

CNNs end-to endusing the sameobjective and cyclical learning rateswith architectures

where we load pre-trained backbones on ImageNet classification dataset and systems

where we include the same image encoders combined with a heuristic approach based

on 1-NN. Again, we notice a high variance and observe that the finetuned classification

heads’ performance, which are initialized usingGlorot formula as explainedpreviously,

yields higher scores than the fully finetuned vision encoders and both are better than

the 1-NN baseline The F1 score differences in both cases are statistically significant for

any network architecture (either DenseNet121 or DenseNet161).

Last but not least, we also compare architectures where we use pre-trained backbone

networks on ImageNet classification dataset with their ensembles, attempting to take

advantage of the “Wisdom of the crowd” [76]. In that scenario we observe that the fine-

tuned classification heads’ performance, which are initialized using Glorot formula as

explained in previous parts, perform better when we include the same image encoders

and the F1 difference is statistically significant but we cannot reject the null hypothesis

when comparing to the top-10 best performingDenseNets ensemble. In the latter case,

the effect size is small, while we take into consideration only DenseNet weak learners

for a fair performance comparison; yet we fail to reject our null hypothesis H0. All the

respective results are provided in chapters 6 and 7 (Appendices).

4.3.2 Significance tests for submitted baselines

Furthermore, we perform the same range of statistical significance tests to compare

submissions to ImageCLEF to one another; namely T–tests, F–tests, Wilcoxon sign-

rank tests, Mann-Whitney U–tests, Cohen’s effect size tests and Kolmogorov Smirnov

tests as we describe in section 3.5. Although limited data is available for this purpose,

this gives us the opportunity to take account of the Manual F1 score in the statistical
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significance analysis, which was provided by human annotators for concept detection,

as well as SPICE andBERTscore in the case of caption generation, as it is demonstrated

again in chapter 7 (Appendix B).

To begin with, we start by comparing submissions where we use pre-trained backbone

networks on ImageNet classification dataset with their ensembles, attempting to take

advantage of the “Wisdom of the crowd” [76]. In that scenario we observe that the fine-

tuned classification heads’ performance, which are initialized using Glorot formula as

explained in previous parts, perform better when we include the same image encoders

and the F1 difference is statistically significant according to most tests. There variance

is high in themanual F1 score, howeverWilcoxon signed-rank tests andMann-Whitney

U tests agree the performance difference is statistically significant, therefore the fine-

tuned classification heads perform better than other baselines and the F1 difference is

statistically significant.

What is more, we compare submissions where we use pre-trained backbone networks

on ImageNet classification dataset with fully finetuned CNNs end-to-end using the

same objective and cyclical learning rates with other architectures where we use pre-

trained backbone networks on ImageNet classification dataset and baselines where we

include the same image encoders combined with a heuristic approach based on 1-NN.

According to the T-tests, we need to make the assumption of equal variance in order

to reject the null hypothesis and although the F-test indicates a low variance in the F1

scores we fail to reject the null hypothesis according to the Wilcoxon signed-rank tests

and Mann-Whitney U tests additionally performed.

In addition, we try different training regimes and compare our submissions where we

use fully finetuned CNNs end-to-end using the same objective and cyclical learning

rates with architectures where we use pre-trained backbone networks on ImageNet

classificationdataset andbaselineswherewe include the same encoders combinedwith

a heuristic approach based on 1-NN to ensemble networks. Again we need to make the

prior assumption of equal variance in order to reject the null hypothesis and yet we fail

to do so considering the Wilcoxon signed-rank and Mann-Whitney U tests.

This section provides an overview of indicative outcomes; consequently, if you aim to

obtain a thorough understanding of our proposed methods and get additional details

on their performance statistics, we strongly recommend that you also read the text in

chapter 6 and study the tables in chapter 7.
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4.4 Statistical Significance Analysis outcomes for our

additional experiments on IU X-RAY

Furthermore, weperforma subset of the aforementioned statistical significance tests to

compare WinnerTakesAll and 1-NN baselines in IU X-RAY to one another; namely T–

tests, F–tests, Mann-Whitney U–tests. We additionally apply the same range of tests

in the context of the experiment described in section 4.2.2 related to class imbalance

detection and investigation of its extent.

4.4.1 Baselines comparison and performance ordering

In this section we take advantage of themultiple runs performed in the context of 5×2-

fold cross validation in section 6.2.1 to iterate over the same procedure and perform

both one-tailed and two-tailed statistical significance T-tests to evaluate similarity of

the respective results again and based on the assumption (the null hypothesisH0) that

they perform similarly, compare their performance using the usual metrics described

in section 3.4 with their aforementioned limitations. Although the requirements for

the T–test for two paired samples are here satisfied, the Wilcoxon Signed-Rank Test

for Paired Samples non-parametric test will also be used or in particular some variation

calledMann-WhitneyU–test. Performing a Signed-RankTest, aswell as a variance test

are both proved to support the T–test conclusions that there is a statistically significant

difference in the networks in performance.

 

Table 4.4.1:  P-Values for different types of statistical tests between WinnerTakesAll and 1-NN baselines for 90% train-
10% validation split when performing 5 × 2–fold cross validation. 

Statistical test BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE CIDER 
One tailed T-test (default) 2.45753e-08 1.19898e-07 3.3071e-08 9.64336e-09 6.23903e-09 2.37431e-05 0.00 

One tailed T-test, equal variance 4.12503e-14 2.83594e-12 4.81584e-14 1.2627e-14 3.9743e-12 3.33685e-07 7.91361e-06 

One tailed T-test, unequal variance 7.91481e-13 1.03159e-09 8.56087e-12 9.64336e-09 4.02936e-12 4.94759e-06 1.90541e-05 

Two tailed T-test (default) 4.91506e-08 2.39797e-07 6.61421e-08 1.92867e-08 1.24781e-08 4.74862e-05 0.00 

Two tailed T-test, equal variance 8.25007e-14 5.67188e-12 9.63169e-14 2.52541e-14 7.94861e-12 6.6737e-07 1.58272e-05 

Two tailed T-test, unequal variance 1.58296e-12 2.06318e-09 1.71217e-11 1.92867e-08 8.05872e-12 9.89517e-06 3.81081e-05 

F-test (variance analysis) 0.41 0.13 0.24 0.00 0.96 0.13 0.36 

Mann Whitney U-test 4.92e-03 5.00e-03 4.55e-03 2.78e-03 5.07e-03 4.92e-03 5.05e-03 

Of course, what is concluded after performing the statistical significance tests, while

making the hypothesis H0 is that we get the expected order of performance for the

majority of our evaluationmetrics, which isP(1-NN) >P(WinnerTakesAll), supposing

that P is a function considering all the metrics to measure overall performance based

on the employed metrics.

44



CHAPTER 4. MODEL SELECTION AND HYPERPARAMETER TUNING

4.4.2 Statistical significance tests to verify class imbalance

In this section, we iterate experiments withWinnerTakesAll and 1-NN baselines on IU

X-RAY using different ratios of train and test data (i.e. 90-10, 80-20, 95-5), perform

both one-tailed and two-tailed statistical significance T-tests to evaluate similarity of

the respective results and based on the assumption (i.e. our usual null hypothesis H0)

that they perform similarly. However, both baselines perform better when applied to

the majority class, which indicates the class imbalance characterizing the dataset and

highlights its extent. The experimental setting and the definition of the majority class

tokens T (freq) is according to the methodology described in section 4.2.2 for detecting

class imbalance in IU X-RAY.

Table 4.4.2: P-Values for different types of T-test between WinnerTakesAll and 1-NN baselines for 90-10 
split when necessitating certain tokens belonging to data of the majority class; 𝒯(freq). 

T-test type BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE CIDER 
One tailed T-test 2.5036e-42 9.20886e-29 7.74274e-30 4.36437e-21 3.53333e-32 5.24133e-23 0.48 

Same, equal var. 8.69483e-25 5.2273e-25 2.83401e-28 2.3178e-21 2.13204e-11 3.92138e-15 0.48 

Same, unequal var. 1.27279e-24 8.13582e-24 1.92232e-24 1.43544e-17 2.67555e-11 3.25331e-14 0.48 

Two tailed T-test 5.0072e-42 1.84177e-28 1.54855e-29 8.72874e-21 7.06666e-32 1.04827e-22 0.95 

Same, equal var. 1.73897e-24 1.04546e-24 5.66802e-28 4.63561e-21 4.26407e-11 7.84277e-15 0.96 

Same, unequal var. 2.54559e-24 1.62716e-23 3.84465e-24 2.87088e-17 5.3511e-11 6.50662e-14 0.96 
 

 

Table 4.4.3: P-Values for different types of T-test between WinnerTakesAll and 1-NN baselines for 80-20 
split when necessitating certain tokens belonging to data of the majority class; 𝒯(freq). 

T-test type BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE CIDER 
One tailed T-test 3.60922e-29 6.16074e-22 4.23632e-22 1.94061e-16 5.56464e-15 3.85457e-16 0.11 

Same, equal var. 1.33675e-24 6.24051e-28 3.90119e-29 1.56676e-20 4.76593e-12 5.57635e-15 0.11 

Same, unequal var. 7.91575e-24 2.47966e-24 6.67909e-23 1.92467e-16 1.947e-11 1.62897e-13 0.11 

Two tailed T-test 7.21844e-29 1.23215e-21 8.47264e-22 3.88122e-16 1.11293e-14 7.70913e-16 0.23 

Same, equal var. 2.6735e-24 1.2481e-27 7.80237e-29 3.13351e-20 9.53186e-12 1.11527e-14 0.23 

Same, unequal var. 1.58315e-23 4.95932e-24 1.33582e-22 3.84933e-16 3.894e-11 3.25794e-13 0.23 
 

 

Table 4.4.4: P-Values for different types of T-test between WinnerTakesAll and 1-NN baselines for 95-5 
split when necessitating certain tokens belonging to data of the majority class; 𝒯(freq). 

T-test type BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE CIDER 
One tailed T-test 9.90699e-40 3.55036e-27 6.23996e-30 1.07275e-26 1.35728e-31 1.93063e-21 0.05 

Same, equal var. 1.14003e-25 2.98285e-34 4.75008e-44 1.61474e-37 3.59908e-16 3.70078e-17 0.04 

Same, unequal var. 1.14414e-25 5.10128e-31 2.88486e-33 9.35262e-27 5.02566e-16 5.88941e-16 0.04 

Two tailed T-test 1.9814e-39 7.10073e-27 1.24799e-29 2.14549e-26 2.71457e-31 3.86126e-21 0.10 

Same, equal var. 2.28006e-25 5.96571e-34 9.50016e-44 3.22948e-37 7.19817e-16 7.40155e-17 0.08 

Same, unequal var. 2.28827e-25 1.02026e-30 5.76972e-33 1.87052e-26 1.00513e-15 1.17788e-15 0.08 

 

Table 4.4.5: P-Values for different types of tests between WinnerTakesAll and 1-NN baselines for 
various splits when necessitating certain tokens belonging to data of the majority class; 𝒯(freq). 

Statistical test BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE CIDER 
Variance F-test (90-10) 0.28 2.27099e-03 8.29678e-09 8.03804e-22 6.67432e-02 2.97278e-06 6.71613e-06 

Variance F-test (80-20) 0.02 2.55703e-08 2.10604e-20 1.12296e-48 1.29187e-06 1.36244e-11 1.74146e-45 

Variance F-test (95-5) 0.92 5.60704e-05 5.8265e-16 8.55346e-49 0.14 2.03518e-06 8.03894e-04 

Mann-Whitney U-test (90-10) 0.00 0.00 0.00 0.00 1.25344e-12 5.79536e-14 2.47732e-03 

Mann-Whitney U-test (80-20) 0.00 0.00 0.00 0.00 3.04201e-13 1.08802e-14 0.63 

Mann-Whitney U-test (95-5) 0.00 0.00 0.00 0.00 1.27764e-12 1.22125e-14 7.098501e-03 
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Chapter 5

Discussion and conclusions

In this work, we developed CNN-based vision encoders and trained them for concepts

assignment or combined themwith heuristic-basedmethods such as the 1-NNbaseline

for either tags prediction or caption generation [50], while in summary we principally

employed three training regimes; finetuning the CNNs’ classification heads in the

case of concept detection and keeping the rest of each backbone network pretrained

on ImageNet classification dataset [70], fully fine-tuning the image encoders or just

using pretrained architectures combined with heuristic approaches such as the 1-NN

baseline as structural units.

In the case of concept detection, the first approach is the best performing and results

in higher F1 scores, where we set as training objective of the classification heads the

negative F1 scores and even outperforms network ensembles, where we attempted to

take advantage of the “Wisdom of the crowd” [76] for the fully fine-tunedmodels using

a majority voting policy, since other approaches such as the concepts’ union or their

intersection performed poorly. Also neither the 1-NN baseline nor its generalization to

k-NN did result in competitive scores, although using weights depending on the cosine

similarities of the retrieved images for the concept assignments seems a probable

promising direction for bringing retrieval-based approaches at the forefront ofmedical

tagging together with Deep Networks [7].

Regarding caption generation baselines, we took a lot advantage of our aforementioned

generalization of 1-NN baseline, where we take into account multiple visually similar

images instead of just the closest one, which although is really simple performs rather

well if combined with abstractive summarization algorithms, as highlighted in section
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4.1.2 as well as the study in [59], where it performs surprisingly well for the Indiana

University chest X-ray Collection [14] (IU X-RAY) only by itself. We also attempted to

combine the 1-NN baseline with Retrieval Augmented Generation (RAG) [45], in order

to combine the success of parametric sequence-to-sequence models with the strengths

of Dense Passage Retriever (DPR) [34] that designates modern Information Retrieval

[45]. Essentially, apart from the parametric memory in the weights of the generative

transformer, we tried adding an additional non-parametric memory in the form of a

FAISS index built on 40% of PubMed 2022, the performance obtained by this model

however was lower at test time.

Last but not least, the surprising performance of the 1-NN baseline in IU X-RAY was

verified by our own experiments and in our opinion is due to the severe class imbalance,

which we detected by performing a frequency analysis. Furthermore, we apply a wide

range of statistical tests to quantify the statistical significance of the performance gap

observed between different baselines based on the assumption (null hypothesis H0)

that they perform similarly; namely T–tests, F–tests, Wilcoxon sign-rank tests, Mann-

Whitney U–tests, Cohen’s effect size tests and Kolmogorov Smirnov tests to various

combinations of our implementations. Our baselines based on the convolutional image

encoders and Generative Transformers [81] performed competitively in ImageCLEF

Medical 2022 and the performance gap is statistically significant on a predefined level

5× 10−2 when comparing to simple baselines.

5.1 Future Work

Future work could focus more on the use of task-specific models for summarization,

such as Bio-BERT [43] or BlueBERT [61], additional fine-tuning for the amount of

neighbours k and the summarymaximum length n in section 4.1.2 and consideration of

potential associations between the two subtasks during 1-NN baseline [50] extension.

Moreover, although higher quantitative accuracy is most often better, there are also

categorical differences of the DC methods, which relate to their qualitative evaluation

and indicate their practical usefulness. It is an open question whether and howwemay

obtain practical information about the quality of the generated captions. In section 5.3,

we provide indicative generations of our best-performing baselines based on Pegasus

abstractive summarizer [91], however qualitative evaluation by experts such asmedical

doctors and radiologists remains as future work.
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5.2 Best submissions in ImageCLEF medical 2022

In order to qualitatively compare our submissions to the best of labs in ImageCLEF

medical 2022, we present the best performing systems architectures, as well as the key

differences between them and our proposed baselines. Furthermore, it is crucial thus

important to apprehend that the key underlying architectures are similar in the case of

concept detection, with several differences in the choice of loss function and backbone

architecture being responsible for the performance difference, while a simple LMbased

on a classification framework achieved the highest scores in caption generation, similar

to our tagging systems but based on the captions vocabulary V .

Starting with the concept prediction subtask, the best performing group also employed

ensembles of CNN image encoders, pre-trained on ImageNet [70] and then finetuned

in the X-RAY images, as one of their principal components to codify the images into

dense representations; to seek for diversity and in order to exploit the “Wisdom of the

crowd” [76] for the fine-tunedmodels. However, their checkpoints were obtained from

keras library rather than torchvision and their best performing backbone network is

EfficientNetB0, which was not included among the architectures that we tried in our

experiments illustrated in Figure 1.5.1 and it is followed by Generalized-Mean global

pooling [63], as well as controlled by tunable thresholds in the sigmoid activations of

the different classes, boosting their models’ performance [8].

Furthermore, they successfully developed more complex voting schemes based on the

union and the intersection of the weak learners’ predicted concept sets, rather than a

simple majority voting [8] and multiplied the negative F1 score —that we also used—

by the Binary Cross Entropy in the loss function further improving their performance

[7]. What is more, they also experimented with other loss functions such as the Focal

Loss, Assymetric Loss, soft F1 and Sharphness Aware Minimization, which however

did not bring them any additional benefits with respect to the F1 score. Last but not

least, similarly to our heuristic approaches extending the 1-NN baseline [50], they

proposed an interesting weighting mechanism depending on the cosine similarities of

the retrieved images for the concept assignments [7].

Regarding the caption generation subtask, the best performing approach was a binary

classifier similar to our concept detection baselines based on the captions’ tokens t ∈ V ,
which however does not generate consistent outputs but rather extracts keywords that

are relevant to the respective medical images [24].
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5.3 Indicative generations of our systems

Last but not least, in order to provide the possibility of minimal qualitative evaluation

of our proposed baselines a posteriori to their submission in ImageCLEFMedical 2022,

aswell as to the publication of this thesis, we provide indicative captions as predicted by

our best performing system, together with the ground truth captions and the respective

radiological images. Although there are cases in which the system predicts exactly the

expected captions, as in the examples shown below, there also are many cases where it

may provide additional information that is not necessarily accurate, either by adding

additional sentences to the caption of the visually most similar image due of the k-NN

summarization or by incorporating it in the caption. In addition, the predicted captions

may also differ a lot to the ground truth.

Exactly or nearly identical reports 

 

ImageCLEFmedCaption_2022_train_003212.jpg  
Ground truth: balloon dilatation of left subclavian proximal stenosis  

Prediction: balloon dilatation of left subclavian proximal stenosis   

 

 

 ImageCLEFmedCaption_2022_train_081401.jpg  

Ground truth: computerized tomographic image show drainage of leave inferior 
pulmonary vein into confluence large atrial septal defect and confluence behind leave 
atrium  
Prediction: computerized tomographic image show drainage of leave inferior 
pulmonary vein into confluence large atrial septal defect and confluence behind leave 
atrium   

 

 

 ImageCLEFmedCaption_2022_train_068453.jpg  
Ground truth: case  a  electrocardiogram with inferolateral early repolarization 
pattern with jpoint elevation and qrs slur after hypothermia treatment red arrow  
Prediction: case  a  electrocardiogram with inferolateral early repolarization pattern 
with jpoint elevation and qrs slur after hypothermia treatment red arrow   

 

 

 ImageCLEFmedCaption_2022_train_043443.jpg   

Ground truth: mri axial view  dbs blue right mfb green leave mfb  
Prediction: mri axial view  dbs blue right mfb green leave mfb   

 

 

 ImageCLEFmedCaption_2022_train_026749.jpg  
Ground truth: transesophageal echocardiography in mid esophageal two chamber 
view  degree demonstrate a linear dissection flap originate from posterior side of leave 
atrial wall la leave atrium lv leave ventricle mv mitral valve  
Prediction: transesophageal echocardiography in mid esophageal two chamber view  

degree demonstrate a linear dissection flap originate from posterior side of leave atrial 
wall la leave atrium lv leave ventricle mv mitral valve   

 

 

ImageCLEFmedCaption_2022_train_065779.jpg  
Ground truth: male with acsinferior wall mi post thrombolysis and post mi angina 
coronary angiographyleave anterior oblique angiographic view of rca show end result 
post stenting arrow  
Prediction: male with acsinferior wall mi post thrombolysis and post mi angina 
coronary angiograph show leave anterior oblique fluoroscopic view of rca during stent 
deployment arrow   
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Includes additional information 

 

 ImageCLEFmedCaption_2022_train_021072.jpg  
Ground truth: radiographic osseous defect fill after  month  
Prediction: radiographic osseous defect fill after  month We report a case of 
periapical radiograph defect in a  

 

 

 ImageCLEFmedCaption_2022_train_047779.jpg  
Ground truth: ct of thorax with iv contrast post surgery  

ct of thorax with iv contrast post surgery Compute tomography scan of the abdomen 
show extensive pneumoperitone  

 

 

 ImageCLEFmedCaption_2022_train_046418.jpg  
Ground truth: the angioct axial view of the maxillary lesion  

Prediction: the angioct axial view of the maxillary lesion Computed tomography 
(CT) and computed tomography (CT) images  

 

 

 ImageCLEFmedCaption_2022_train_036103.jpg  
Ground truth: mri  mri show a low signal lesion identify as an air bubble white 
arrow adjacent to the right  root black arrow  
Prediction: mri  mri show a low signal lesion identify as an air bubble white arrow 

adjacent to the right  root black arrow Magnetic resonance imaging mri scan of the left 
ovary show a large  

 

 

 ImageCLEFmedCaption_2022_train_052391.jpg  
Ground truth: computed tomography scan of the recurrent lesion with a size of  as 
indicate by the arrow perivesical invasion be not see   
Prediction: computed tomography scan of the recurrent lesion with a size of  as 

indicate by the arrow perivesical invasion be not see Computed tomography scan of 
the primary lesion with a size of as  

 

 

 ImageCLEFmedCaption_2022_train_061846.jpg  
Ground truth: chest ct scan  
Prediction: case  chest compute tomography show  sized mediastinal cystic mass 
which be locate on the posterior to the low esophagus it be suspect to be an esophageal 

duplication cyst or a bronchogenic cyst Computed tomography (CT) scan of the 
abdomen and chest show  

 

 

 ImageCLEFmedCaption_2022_train_040539.jpg  
Ground truth:  mri brain gre  show multiple hypointense lesion diagnose as cerebral 
cavernoma  

Prediction: mri brain gre  show multiple hypointense lesion diagnose as cerebral 
cavernoma Compute tomography scan with intravenous contrast show a large 
heterogeneous mass arise from  

 

 

 ImageCLEFmedCaption_2022_train_030886.jpg  
Ground truth: longitudinal sonography of foetal scrotum show concave surface 
arrow  
Prediction: longitudinal sonography of foetal scrotum show an alter contour of the 
scrotum and movement of intrascrotal echo the surface of the scrotum be less convex 
arrow and concave arrow in figure  compare with figure  where the surface be almost 

flat Here are some of the findings from a series of abdominal ultrasounds  
 

 

 ImageCLEFmedCaption_2022_train_067460.jpg  
Ground truth: ap xray of ankle show cystic lesion in distal tibia  
Prediction: lateral view xray of the ankle show well define cystic lesion in distal tibia 
radiographs of the ankle, knee, and tibia have been used to  

 

  

ImageCLEFmedCaption_2022_train_043601.jpg  
Ground truth: enhanced magnetic resonance image mri of the sagittal section of 
patient  show the narrowing of the nodular lesion below the hypothalamus region 
follow treatment  

Prediction: enhanced magnetic resonance image mri of the sagittal section of patient  
show the narrowing of the pituitary stalk follow treatment the posterior pituitary 
continue to lack the characteristic high signal Magnetic resonance imaging scan of the 
brain of a man with acl  
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Token repetition 

 

 ImageCLEFmedCaption_2022_train_054277.jpg  
Ground truth: rounded lucencie see within medastinal pleura surround the 
medastinal structure indicate by arrow  
Prediction: rounded lucencie see within medastinal pleura surround the medastinal 

structure indicate by arrow Computed tomography scan Computed tomography scan 
Computed tomography scan Compute  

Small errors 

 

 ImageCLEFmedCaption_2022_train_009712.jpg  
Ground truth: preoperative xray of the first fracture event the xray show the 
fracture of the fifth metacarpal bone shaft of the left hand red circle  
Prediction: preoperative xray of the second fracture event the xray show refracture 

and holedefect of the fifth metacarpal bone shaft of the left hand red circle Radiograph 
of the right hand show multiple expansile osteolytic  

 

 

 ImageCLEFmedCaption_2022_train_022459.jpg  
Ground truth: chest radiograph anteriorposterior view of a  female patient note the 
left paramedian location of the central venous catheter beside the aortic knuckle  
chest radiograph anteriorposterior view of a  male patient note the left paramedian 
Prediction: location of the central venous catheter beside the aortic knuckle   

 

 

ImageCLEFmedCaption_2022_train_075657.jpg  
Ground truth: the initial followup petct scan  month after hospital discharge show 
fdg avid area in the subcarinal suv  tissue represent pericardial involvement of kaposi 
sarcoma  
Prediction: the initial followup petct scan  month after hospital discharge show fdg 
avid area in the right paratracheal suv of  tissue represent pericardial involvement of 
kaposi sarcoma Computed tomography ct scan image of the thorax shows a   

 

 

ImageCLEFmedCaption_2022_train_072225.jpg  
Ground truth: parasternal short axis view show baffle drain into the leave atrium 
arrow bbaffle raright atrium rvright ventricle laleave atrium lvotleave ventricular 
outflow tract  
Prediction: parasternal short axis view show baffle just below the level where it 
drain into the leave atrium bbaffle raright atrium rvright ventricle laleave atrium 

lvotleave ventricular outflow tract   
 

 

ImageCLEFmedCaption_2022_train_021758.jpg  
Ground truth: radiograph of anteroposterior right fibular malleolus  
Prediction: radiograph of anteroposterior medial right malleolus   

 

 

ImageCLEFmedCaption_2022_train_044723.jpg  
Ground truth: computed tomographic scan show the mesiodistal width of the 
available bone at the edentulous site  

Prediction: computed tomographic scan show the labiopalatal width of the available 
bone at the edentulous site Here is a report of a successful total omentectomy for a  

 

 

ImageCLEFmedCaption_2022_train_003898.jpg  
Ground truth: angiogram of right subclavian artery  occlusion of brachiocephalic 
artery  
Prediction: angiogram of left subclavian artery  occlusion of left subclavian artery 

above aortal outlet   

 

 

ImageCLEFmedCaption_2022_train_030117.jpg  
Ground truth: the uterine fundus be push up with a balloon contain  of 
physiological saline the shape of the uterine fundus be irregular and indistinct and 
complete reduction be not achieve  

Prediction: the uterine fundus be again push up with a balloon contain  of 
physiological saline the uterus be completely reduce and the hemorrhage be stop 
Ultrasonography of the abdomen using a detailed transthoracic  
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Other cases of errors 

 

ImageCLEFmedCaption_2022_valid_087667.jpg  
Ground truth: coronary angiogram of the right coronary system in left anterior 
oblique position show a patent right coronary artery  
Prediction: coronary angiography show the anomalous origin of the right coronary 

artery from the left sinus of valsalva A coronary angiogram shows a stenosis of the 
proximal anterior leave  

 

 

ImageCLEFmedCaption_2022_train_045328.jpg  
Ground truth: computed tomography scan at the level of the orbit punctiform 

contusion involve the leave temporal and frontal lobe with effacement of the leave 
occipital horn be demonstrate arrow a  anterior p  posterior l  leave r  right  
Prediction: computed tomography scan at the level of the midbrain multiple 
contusion involve the leave temporal lobe be evident arrow a  anterior p  posterior l  
leave r  right The following is a description of some of the brain scans performed on  

 

 

ImageCLEFmedCaption_2022_train_074981.jpg  
Ground truth: se  sequence trtethick    mm on oblique coronal plane after 
adminbetration of dimeglumine salt of gadopentetate acid dilute in saline solution at  
moll concentration artefact be detectable characterize by contrast signal absence black 
arrow with no evidence of contrast agent in periarticular soft tbesues  
Prediction: se  sequence trtethick    mm on oblique coronal plane after 
adminbetration of dimeglumine salt of gadopentetate acid dilute in saline solution at  

mmoll concentration the expect contrast signal hyperintensity be detectable black 
arrow capsular wall fibrous thickening at axillary pouch white arrow and 
supraspinatus tendon partial tear on articular side point white arrow be evident 
Magnetic resonance imaging mri scan of the patients right ankle show rupture  

 

 

ImageCLEFmedCaption_2022_train_077325.jpg  
Ground truth: an axial computed tomographic image show an osseous lesion in the 

right middle ear space arrow  
Prediction: axial image of the right temporal bone show soft tissue mass lesion in 
the jugular fossa with irregular destruction of the jugular fossa white arrow jugular 
spine adjacent bone and extension of the mass into the middle ear cavity black arrow  
glomus jugulotympanicum Computed tomography scan of the head coronal view 
coronal view coronal view  

 

 

ImageCLEFmedCaption_2022_train_046254.jpg  
Ground truth: enhance computed tomography ct of the abdomen the tumor be 
detect in the spiegel of the liver on enhance ct of the abdomen arrow  
Prediction: contrast enhanced axial ct of the abdomen in a  male with an inguinal 
trauma bowel wall thickening and enhancement Computed tomography ct scan take 
after admbesion the  

 

 

ImageCLEFmedCaption_2022_train_053378.jpg  
Ground truth: ct scan of the pelvis heterogeneous mass of the right ovary enhance 
after contrast material injection  
Prediction: ct scan with oral and rectal contrast r show a pelvic mass with multiple 
heterogeneously enhance soft tissue masse with central necrotic area within pelvis not 
separately see from the ovary est A contrastenhanced computed tomography (ct) scan 

of a patient with  
 

 

ImageCLEFmedCaption_2022_train_079339.jpg  
Ground truth: ct chest on presentation  
Prediction: chest ctscan at  disappearance of lung lesion chest computed 
tomography scan pneumomediastinum with no evidence  

 

 

ImageCLEFmedCaption_2022_train_083141.jpg  
Ground truth: mri brain  image show lt thalamic hyperintensity  
transverse  weight  mri section show hyperin tensity and mark heterogeneity of signal 
in a left frontal lobe oligodendroglioma note extension of the lesion through the 
corpus callosum to the right frontal lobe arrow create a butterfly glioma appearance 
Prediction: Here we present a series of brain scan images of a patient with 
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Chapter 6

Experimental results and details

6.1 ImageCLEFmedical 2022 contributions

In this part, we present the results of our algorithms proposed in ImageCLEFmedical

2022 evaluation campaign, in order of performance, for both its concept detection and

caption generation subtasks that rely on pre-trained convolutional encoders, which

are extremely popular in computer vision. In this part we include the F1 scores in all of

training, validation, test sets in which each proposed baseline has been evaluated. My

proposed systems, on behalf of NeuralDynamicsLab, ranked 4th in the former and 5th

in the latter subtask [55].

As mentioned in section 3.1.1 after merging the initially provided train and validation

data, we shuffle them after manually setting the seeds to eliminate randomness in

consecutive runs while tuning our hyperparameters and then keep 80% as our training

set, 10% as our validation set to perform hyperparameter tuning and the remaining

10% as our development set to perform model selection. Since the dataset is large we

perform neither cross-validation nor data-augmentation but set all the random seeds

equal to 0, the CUDNNs backends as deterministic and disable the CUDNNs backends

benchmark in all runs.

6.1.1 Concept Detection Performance summary

Table 6.1.1 below summarizes several characteristics of the proposed baselines for the

concept detection task, in order of performance with respect to F1 scores, together with

their descriptions’ locations in chapter 4. We observe that DenseNet161 encoders with
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finetuned classification heads are our top performing configurations and outperform

other CNN architectures, which is in accordance with their extensive use for X-RAYs

processing [64]. In contrast, fully finetuning the backbone networks and then using

retrieval based heuristics that capture their representations’ embeddings similarities,

such as the 1-NN baseline [50], achieve lower scores. Additional details and F1 scores

for all our configurations are provided in chapter 7 (Appendix).

Table 6.1.1: Summary of our configurations’ training targets and F1 scores

Section Table Training target Dev. F1 Val. F1 Test F1

Section 4.1.1(a) - DenseNet161 Head 0.44460 0.44614 0.43601
Section 4.1.1(a) - DenseNet161 Head 0.44460 0.44614 0.43567
Section 4.1.1(b) - DenseNet161 Head 0.44429 0.44516 0.43558
Section 4.1.1(c) - DenseNet161 Head 0.44430 0.44524 0.43539
Section 4.1.1(d) Table 4.1.1 Ensemble of DenseNets 0.44544 0.44553 0.43496
Section 4.1.1(e) Table 4.1.2 Ensemble of Networks 0.44170 0.44167 0.43404
Section 4.1.1(e) Table 4.1.3 Ensemble of Networks 0.44305 0.44379 0.43130
Section 4.1.1(e) Table 4.1.4 Ensemble of Networks 0.44543 0.44623 0.42957
Section 4.1.1(f) - DenseNet161 (finetuned) 0.32418 0.32654 0.31687
Section 4.1.1(g) - VGG-16 NN search 0.25202 0.25276 0.25061

6.1.2 Caption Generation Performance summary

Tables 6.1.2, 6.1.2, 6.1.4 below present some characteristics of the employed baselines 

for the caption generation task, in order of performance with respect to BLEU scores, 

together with their descriptions’ locations in chapter 4. We observe that although RAG 

models perform better than solely the 1-NN baseline, when the latter is combined with 

abstractive summarization techniques for the diagnostic texts, it performs better with 

a carefully selected image encoder.

Table 6.1.2: Summary of our configurations’ parameters and IDs

ID Section Table Encoder Generator Captions k Tokens n
DC01 Section 4.1.2(a) Table 4.1.5 AlexNet Pegasus k = 9 n = 15
DC02 Section 4.1.2(a) Table 4.1.5 AlexNet Pegasus k = 4 n = 15
DC03 Section 4.1.2(a) Table 4.1.5 AlexNet Pegasus k = 3 n = 15
DC04 Section 4.1.2(a) Table 4.1.5 AlexNet Pegasus k = 2 n = 15
DC05 Section 4.1.2(a) Table 4.1.5 AlexNet Pegasus k = 4 n = 5
DC06 Section 4.1.2(a) Table 4.1.5 AlexNet Pegasus k = 3 n = 5
DC07 Section 4.1.2(b) Table 4.1.6 AlexNet RAG k = 1 -
DC08 Section 4.1.2(b) Table 4.1.6 VGG-16 RAG k = 1 -
DC09 Section 4.1.2(c) Table 4.1.7 AlexNet 1-NN k = 1 -
DC10 Section 4.1.2(c) Table 4.1.7 VGG-16 1-NN k = 1 -
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Table 6.1.3: Summary of our configurations’ test scores in all ImageCLEF metrics

ID   BLEU ROUGE-L METEOR CIDER SPICE BERTscore
DC01 0.29166 0.11566 0.06240 0.13169 0.02182 0.57282
DC02 0.28343 0.11128 0.05946 0.13409 0.02072 0.57338
DC03 0.27855 0.11101 0.05828 0.13963 0.02193 0.57427
DC04 0.27007 0.11031 0.05675 0.14999 0.02270 0.57579
DC05 0.25521 0.11373 0.05485 0.17865 0.02556 0.57648
DC06 0.25334 0.11246 0.05407 0.17907 0.025401 0.57669
DC07 0.25127 0.10528 0.05200 0.15899 0.02295 0.57337
DC08 0.23958 0.08808 0.04373 0.09766 0.01607 0.56664
DC09 0.24064 0.11101 0.05190 0.018900 0.02808 0.57889
DC10 0.22757 0.09221 0.04353 0.11408 0.01854 0.57059

Table 6.1.4: Summary of our configurations’ validation scores in various metrics

ID BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
DC01 0.148 0.071 0.039 0.250 0.140 0.074 0.090
DC02 0.155 0.074 0.041 0.270 0.139 0.069 0.123
DC03 0.157 0.077 0.045 0.310 0.138 0.069 0.129
DC04 0.156 0.073 0.041 0.270 0.136 0.064 0.137
DC05 0.158 0.076 0.043 0.280 0.136 0.065 0.149
DC06 0.156 0.074 0.041 0.280 0.136 0.064 0.140
DC07 0.170 0.087 0.052 0.350 0.152 0.072 0.193
DC08 0.193 0.063 0.032 0.210 0.119 0.052 0.095
DC09 0.156 0.076 0.043 0.300 0.135 0.061 0.166
DC10 0.144 0.065 0.033 0.200 0.120 0.054 0.104

Ablation study on abstractive summarization baseline

As mentioned above our best performing captioning models have extended the simple 

1-NN baseline [50] for caption generation. Precisely, 1-NN generation constitutes the

first part of our models’ generated caption, however apart from the neighbour with 

the closest representation, we retrieve the top-(k + 1) nearest neighbours, concatenate 

their outputs, excluding that of the most similar image and feed them as input to an 

abstractive summarizer; Pegasus [91]. When 1-NN is combined with Pegasus outputs 

for the diagnostic texts of k additional visually similar images from the training set, 
where k ∈ Z+, it achieves better results on the test set.

To highlight the importance of the concatenation and thus of the 1-NN baseline, we 

performed an ablation study for several of the respective baselines, where we only use 

Pegasus summaries on the top-(k + 1) nearest neighbours, including the most similar 

one. The BLEU validation scores are lower as expecte therefore the 1-NN plays a 

crucial role in the evaluation outcomes.
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Table 6.1.5: Summary of our modifications’ validation scores in various metrics

Captions BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
k = 9 0.069 0.031 0.015 0.100 0.087 0.52 0.020
k = 4 0.090 0.040 0.018 0.100 0.092 0.047 0.026
k = 3 0.100 0.041 0.018 0.100 0.089 0.042 0.026
k = 2 0.110 0.046 0.022 0.120 0.088 0.039 0.025
k = 1 0.097 0.038 0.017 0.100 0.080 0.030 0.023

Model selection: Image encoders performance on the 1-NN baseline

As it may be realized by the results above, the best performing backbone network

for the caption generation subtask is AlexNet, followed by VGG-16. This derivation

can be further confirmed by the performance obtained in the validation set, that is

taken advantage of for model selection. These are the backbone network architectures

used in our proposed baselines using Pegasus, RAG-token, 1-NN, as we have described

them in sections 4.1.2(a), 4.1.2(b), 4.1.2(c) or tables 4.1.5, 4.1.6, 4.1.7 respectively. In

addition, we observe that although RAG generator performs better in the validation

set, Pegasus summarizer scores better on the test set.

Table 6.1.6: Summary of our 1-NN backbones validation scores in various metrics

Encoder BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
AlexNet 0.156 0.076 0.043 0.300 0.135 0.061 0.166
VGG-16 0.144 0.065 0.033 0.200 0.120 0.054 0.104
VGG-13 0.111 0.043 0.015 0.060 0.093 0.037 0.027
EffNetB3 0.072 0.018 0.005 0.020 0.071 0.034 0.015
EffNetB5 0.055 0.010 0.003 0.010 0.056 0.018 0.010
ResNet50 0.085 0.029 0.001 0.060 0.079 0.026 0.027
ResNet101 0.120 0.035 0.016 0.100 0.103 0.037 0.042
DenseNet121 0.066 0.024 0.007 0.020 0.010 0.024 0.012
DenseNet161 0.088 0.032 0.010 0.030 0.078 0.031 0.016

Table 6.1.7: Summary of our 1-NN backbones development scores in various metrics

Encoder BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
AlexNet 0.157 0.080 0.048 0.350 0.134 0.062 0.168
VGG-16 0.139 0.063 0.032 0.210 0.119 0.052 0.095
VGG-13 0.111 0.043 0.015 0.060 0.092 0.037 0.027
EffNetB3 0.071 0.017 0.005 0.020 0.071 0.034 0.014
EffNetB5 0.055 0.010 0.003 0.000 0.054 0.018 0.011
ResNet50 0.084 0.029 0.001 0.050 0.078 0.026 0.021
ResNet101 0.119 0.033 0.014 0.080 0.101 0.037 0.032
DenseNet121 0.065 0.024 0.007 0.020 0.026 0.024 0.011
DenseNet161 0.087 0.032 0.009 0.030 0.078 0.031 0.016
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Other baselines: WinnerTakesAll and Dense Passage Retriever

Apart from the 1-NN baseline, we also compute the validation scores of the simplistic

WinnerTakesAll baseline and the Dense Passage Retriever based solely on the images’

captions, in order to obtain a lower and an upper bound of the performance scores

for the remaining Diagnostic Captioning approaches. The WinnerTakesAll baseline,

as it is described in section 4.2.1, uses the words frequency in the training captions and

takes them in descending order, s.t. fi ≥ fi+1, in order to generate the same caption for

all instances of the test set. The Dense Passage Retriever, as it is described in section

3.3.1, performs text retrieval based only on the captions; y and totally omitting the

visual features of the X-RAYs; e(x).

Table 6.1.8: Summary of our extra baselines validation scores in various metrics

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
WTA 0.073 0.06 0.000 0.000 0.064 0.089 0.000
DPR 0.242 0.141 0.093 0.068 0.253 0.123 0.607

6.2 Additional experiments on IU X-RAY

In this section, we present results on the additional expeρiments that we performed

on IU X-RAY dataset [14], which we also mention in section 4.2, a known and publicly

available biomedical Dataset that contains medical images and diagnostic reports, to

investigate the consistency of our proposed architectures’ performance in different

settings including noticeable class imbalance. As also explained in section 3.1.2we took

advantage of both IMPRESSION and FINDINGS fields where they exist; to generate

the images’ captions and the professional shall consider the remaining fields according

to the pipeline in figure 1.5.1.

6.2.1 Diagnostic Captioning experiments

Following the exact same recipe as in ImageCLEF Medical, we perform an extensive

parameter search for caption detection with the same image encoders minimizing the

negative F1 score again, whereas for caption generation we focus on the 1-ΝΝ baseline

and experiment with different backbone networks, the generalized k-NN baseline, as

well as ensembles of different encoders. For the concept detection task we consider the

human authored tags.
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Image encoders performance on the 1-NN baseline

In the case of IU X-RAY, the best performing backbone network with respect again to 

BLEU 1-4 that was used to compare baselines for the caption generation subtask is 

EfficientNetB5, followed by AlexNet that was the top-scoring image encoder for the 

same task and using the same baseline when measuring performance on the data of 

ImageCLEF Medical 2022.

Table 6.2.1: Summary of our 1-NN backbones validation scores in various metrics

Encoder BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
AlexNet 0.307 0.173 0.105 0.068 0.228 0.131 0.143
VGG-16 0.307 0.172 0.105 0.067 0.230 0.130 0.158
VGG-13 0.303 0.170 0.102 0.064 0.233 0.129 0.102
EffNetB5 0.304 0.182 0.117 0.078 0.246 0.151 0.103
EffNetB7 0.265 0.130 0.067 0.033 0.187 0.130 0.062

DenseNet121 0.256 0.138 0.083 0.053 0.213 0.110 0.169
Ensemble 0.306 0.173 0.106 0.069 0.227 0.130 0.147

Tuning the value of k for a fixed image encoder

In addition, we further experiment with different values for the number of neighbours

k ∈ N+ in the generalized k-NN baseline, while we use a fixed ResNet50 backbone

network to embed the images. We observe that METEOR and SPICE are proportional

to k, whereas BLUE, ROUGE_L and CIDEr are inversely proportional to k. Moreover,

some metrics might be dependent on the predicted passage’s length, therefore for the

respective experiments in the WinnerTakesAll baseline we trim the frequent words to

the average gold caption length that is around 33-37 tokens (depending on the split

when performing 5 × 2-fold cross validation) for IU X-RAY. An indicative example of

using 1-NN and WinnerTakesAll baselines is presented hereunder together with their

validation performance.

Table 6.2.2: Summary of our 1-NN backbones validation scores in various metrics

Neighbours k BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
k = 1 0.288 0.155 0.092 0.056 0.214 0.118 0.102
k = 2 0.222 0.127 0.078 0.050 0.212 0.160 0.030
k = 3 0.179 0.108 0.069 0.045 0.196 0.175 0.005
k = 4 0.151 0.094 0.062 0.041 0.181 0.178 0.000
k = 5 0.130 0.083 0.056 0.038 0.167 0.175 0.000
k = 10 0.077 0.053 0.038 0.027 0.120 0.145 0.000
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Indicative example of 5× 2-fold cross validation

For caption generation, we have reproduced the 1-NN Network and WinnerTakesAll

(WTA) baselines for the IU X-RAY dataset. Recall that, if we denote by e(.) the output

of the employed image encoder among those mentioned in section 1.5, 1-NN predicts

(x̂, ŷ) = (x̂, y∗) that satisfies (x∗, y∗) = argminx̂ cos (e(x̂),e(x∗)). Meanwhile, the WTA

baseline outputs the words in the training captions in decreasing frequency order and

always generates the same caption. The process is based on a 90% train-10% validation

split and, since we do not performmodel selection, there is no need for a separate hold-

out development set.

In Split 1 there are 6674 captions in total among which 2745 are unique, while in

WTA output, we have 251613 tokens. In Split 2 there are 6658 captions in total (2738

unique), while in WTA output, we have 250910 tokens. In Split 3 there are 6694

captions in total (2753 unique), while in WTA output, we have 251135 tokens. In Split

4 there are 6700 captions in total (2751 unique), while inWTA output, we have 253229

tokens. In Split 5 there are 6683 captions in total (2738 unique), while inWTA output,

we have 252631 tokens.

Table 6.2.3: Average validation scores for the WinnerTakesAll and the 1-NN baseline

Network BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
WTA 0.4336 0.0704 0.0028 0.0000 0.1864 0.1738 0.1580
1-NN 0.2852 0.1550 0.0912 0.0548 0.2108 0.1178 0.1000

Table 6.2.4: Validation scores per split for the WinnerTakesAll baseline

Fold ID BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
Fold 1 0.4420 0.0780 0.0000 0.0000 0.1870 0.1760 0.1660
Fold 2 0.4350 0.0700 0.0000 0.0000 0.1870 0.1730 0.1730
Fold 3 0.4260 0.0660 0.0070 0.0000 0.1850 0.1690 0.1530
Fold 4 0.4300 0.0740 0.0000 0.0000 0.1830 0.1740 0.1560
Fold 5 0.4350 0.0640 0.0070 0.0000 0.1900 0.1770 0.1440

Table 6.2.5: Validation scores per split for the 1-NN baseline

Fold ID BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER
Fold 1 0.2810 0.1530 0.0890 0.0530 0.2050 0.1160 0.1080
Fold 2 0.2880 0.1550 0.0920 0.0560 0.2140 0.1180 0.1020
Fold 3 0.2810 0.1520 0.0890 0.0520 0.2050 0.1140 0.0720
Fold 4 0.2900 0.1590 0.0940 0.0580 0.2130 0.1190 0.1190
Fold 5 0.2860 0.1560 0.0920 0.0550 0.2170 0.1220 0.0970
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Chapter 7

Additional results and statistics

Last but not least, in this partwepresent details onperforminghyper-parameter tuning

for the Concept Detection encoders, as well as the complete outcomes of Statistical

Significance Tests for all our proposed systems. The F1 scores of our tagging baselines

and the statistical significance tests’ results are presented hereunder, marked in red in

cases where we reject the null hypothesis H0 and green when we fail to do so, while

regarding the effect size, we use orange when it is small, blue when it is medium and

purple when it is large in order to navigate the reader.
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CHAPTER 7. ADDITIONAL RESULTS AND STATISTICS

 

 Table 7.1:  Summary of all ImageCLEF Concept Prediction experiments configurations’ training targets and F1 scores   

TRAINING REGIME 
DEEP LEARNING MODEL VALIDATION 

F1 LOSS 
DEVELOPMENT 

F1 LOSS (Default configuration setting: Adam optimizer, Batch size: 120, neg. F1 loss, grad. clipping, 1-layered head) 

Back-propagation AlexNet with batch size 60, cyclic lr from 10−5 to 10−1 with ns=4, AdamW optimizer 0,40479 0,40368 

Back-propagation AlexNet with learning rate 10−4 and batch size 60, AdamW optimizer 0,43604 0,43535 

Back-propagation AlexNet with learning rate 10−5 and batch size 60, AdamW optimizer 0,42783 0,42683 

Back-propagation AlexNet with learning rate 10−5 and batch size 60, BCE loss, AdamW optimizer 0,36920 0,37162 

Back-propagation AlexNet with learning rate 10−5 with linear decay and batch size 60, AdamW optimizer 0,42314 0,42156 

Back-propagation AlexNet with learning rate 5 × 10−4 and batch size 60, AdamW optimizer 0,43429 0,43374 

Back-propagation AlexNet with learning rate 5 × 10−5 and batch size 60, AdamW optimizer 0,43539 0,43432 

Back-propagation AlexNet with learning rate 5 × 10−5 with linear decay and batch size 60, AdamW optimizer 0,43272 0,43163 

Back-propagation AlexNet with learning rate 5 × 10−5 and batch size 60, 2-layered head with 4187 hidden nodes, AdamW optimizer 0,43022 0,42897 

Back-propagation AlexNet with learning rate 5 × 10−5 and batch size 60, noise with probability 25 × 10−2, AdamW optimizer 0,43523 0,43351 

Back-propagation AlexNet with learning rate 5 × 10−5 and batch size 60, noise with probability 5 × 10−1, AdamW optimizer 0,43376 0,43246 

Back-propagation DenseNet121 with learning rate 10−3 and batch size 60, AdamW optimizer 0,43824 0,43989 

Back-propagation DenseNet121 with learning rate 10−3 and batch size 60, RMSProp optimizer 0,43531 0,43592 

Back-propagation DenseNet121 with learning rate 10−3 and batch size 60, SGD optimizer 0,01091 0,01105 

Back-propagation DenseNet121 with learning rate 10−4 and batch size 60, AdamW optimizer 0,43808 0,43807 

Back-propagation DenseNet121 with learning rate 10−4 with linear decay and batch size 60, AdamW optimizer 0,43549 0,43615 

Back-propagation DenseNet121 with learning rate 10−4 with linear decay and batch size 60, noise with probability 5 × 10−1, AdamW optimizer 0,43437 0,43484 

Back-propagation DenseNet121 with learning rate 10−5 and batch size 60, 2-layered head with 4187 hidden nodes, AdamW optimizer 0,43247 0,43293 

Back-propagation DenseNet121 with learning rate 5 × 10−3 and batch size 60, AdamW optimizer 0,43690 0,43715 

Back-propagation DenseNet121 with learning rate 5 × 10−3 and batch size 60, BCE loss, AdamW optimizer 0,40232 0,40286 

Back-propagation DenseNet121 with learning rate 5 × 10−3 and batch size 60, cyclic lr from 10−5 to 10−1 with annealing ns=4-16, AdamW optimizer 0,41965 0,41725 

Back-propagation DenseNet121 with learning rate 5 × 10−3 and batch size 60, cyclic lr from 10−5 to 10−1 with annealing ns=4-24, AdamW optimizer 0,42813 0,42777 

Back-propagation DenseNet121 with learning rate 5 × 10−3  with linear decay and batch size 60, AdamW optimizer 0,43727 0,43903 

Back-propagation DenseNet121 with learning rate 5 × 10−4 and batch size 60, AdamW optimizer 0,43891 0,43932 

Back-propagation DenseNet121 with learning rate 5 × 10−5 and batch size 60, AdamW optimizer 0,43463 0,43526 

Back-propagation DenseNet121 with learning rate 5 × 10−5 with linear decay and batch size 60, AdamW optimizer 0,43149 0,43231 

Back-propagation DenseNet121 with learning rate 5 × 10−3 with linear decay and batch size 60, AdamW optimizer 0,43727 0,43903 

Back-propagation DenseNet121 with learning rate 5 × 10−3 and batch size 60, 2-layered head with 4187 hidden nodes, AdamW optimizer 0,20572 0,20604 

Back-propagation DenseNet121 with learning rate 5 × 10−4 and batch size 60, AdamW optimizer 0,43891 0,43932 

Back-propagation DenseNet121 with learning rate 5 × 10−5 and batch size 60, AdamW optimizer 0,43463 0,43526 

Back-propagation DenseNet121 with learning rate 5 × 10−5 with linear decay and batch size 60, AdamW optimizer 0,43149 0,43231 

Back-propagation DenseNet121 with learning rate 5 × 10−5 and batch size 60, 2-layered head with 16748 hidden nodes, AdamW optimizer 0,43630 0,43786 

Back-propagation DenseNet121 with learning rate 5 × 10−5 and batch size 60, 2-layered head with 4187 hidden nodes, AdamW optimizer 0,43478 0,43563 

Back-propagation DenseNet161 with learning rate 10−4  and batch size 60, 2-layered head with 4187 hidden nodes, AdamW optimizer 0,43839 0,43858 

Back-propagation DenseNet161 with learning rate 10−4 and batch size 60, dropout with probability 10−1, AdamW optimizer 0,07096 0,07154 

Back-propagation DenseNet161 with learning rate 10−4 and batch size 60, dropout with probability 2 × 10−1, AdamW optimizer 0,04754 0,04780 

Back-propagation DenseNet161 with learning rate 10−5 and batch size 60, AdamW optimizer 0,43214 0,43309 

Back-propagation DenseNet161 with learning rate 5 × 10−4 0,44441 0,44494 

Back-propagation DenseNet161 with learning rate 5 × 10−4, AdamW optimizer 0,44429 0,44517 

Back-propagation DenseNet161 with learning rate 5 × 10−4, softmax activation, AdamW optimizer 0,31181 0,31187 

Back-propagation DenseNet161 with learning rate 5 × 10−4 and BCE loss 0,39090 0,39252 

Back-propagation DenseNet161 with learning rate 5 × 10−4, cyclic lr from 10−5 to 10−1 with ns=4, AdamW optimizer 0,41467 0,41618 

Back-propagation DenseNet161 with learning rate 5 × 10−4 without gradient clipping.pth 0,44430 0,44524 

Back-propagation DenseNet161 with learning rate 5 × 10−4, noise with probabiliy 5 × 10−2, AdamW optimizer 0,44070 0,44114 

Back-propagation DenseNet161 with learning rate 5 × 10−5 and batch size 60, AdamW optimizer 0,44181 0,44230 

Back-propagation DenseNet161 with learning rate 10−2 with linear decay, AdamW optimizer 0,43979 0,44167 

Back-propagation DenseNet161 with learning rate 10−3 0,44461 0,44614 

Back-propagation DenseNet161 with learning rate 10−3 with linear decay, AdamW optimizer 0,44446 0,44505 

Back-propagation DenseNet161 with learning rate 10−4 0,44216 0,44287 

Back-propagation DenseNet161 with learning rate 10−4, 50 epochs, AdamW optimizer 0,44328 0,44434 

Back-propagation DenseNet161 with learning rate 10−4 and batch size 60, AdamW optimizer 0,44311 0,44373 

Back-propagation DenseNet161 with learning rate 5 × 10−3 and batch size 60, cyclic lr from 10−5 to 10−1 with annealing ns=4-24, AdamW optimizer 0,42813 0,42777 

Back-propagation DenseNet161 with learning rate 10−4 and batch size 60, 2-layered head with 16748 hidden nodes, AdamW optimizer 0,43968 0,44126 

Back-propagation DenseNet161 with learning rate 10−2 with linear decay, AdamW optimizer 0,43979 0,44167 

Back-propagation DenseNet161 with learning rate 10−3 0,44461 0,44614 

Back-propagation DenseNet161 with learning rate 10−3 with linear decay, AdamW optimizer 0,44446 0,44505 

Back-propagation DenseNet161 with learning rate 10−4 0,44216 0,44287 

Back-propagation DenseNet161 with learning rate 10−4, 50 epochs, AdamW optimizer 0,44328 0,44434 

Back-propagation DenseNet161 with learning rate 10−4 and batch size 60, AdamW optimizer 0,44311 0,44373 

Back-propagation DenseNet161 trained for 80 and finetuned for 30 epochs, cyclic lr from 10−5 to 10−1 with ns=4, AdamW optimizer 0,30641 0,30654 

Back-propagation DenseNet161 trained for 80 and finetuned for 30 epochs, cyclic lr from 10−5 to 10−1 with ns=4, AdamW optimizer 0,32418 0,32654 

Back-propagation ResNet50 with learning rate 10−4 and batch size 60, AdamW optimizer 0,42419 0,42421 

Back-propagation ResNet50 with learning rate 10−5 and batch size 60, AdamW optimizer 0,41061 0,41103 

Back-propagation ResNet50 with learning rate 5 × 10−5 and batch size 60, AdamW optimizer 0,42258 0,42249 

Back-propagation ResNet50 with learning rate 10−4 and batch size 60, AdamW optimizer 0,42419 0,42421 

Back-propagation ResNet50 with learning rate 10−5 and batch size 60, AdamW optimizer 0,41061 0,41103 

Back-propagation ResNet50 with learning rate 5 × 10−5 and batch size 60, AdamW optimizer 0,42258 0,42249 

Back-propagation ResNet101 with learning rate 10−5 and batch size 60, AdamW optimizer 0,37006 0,36971 

Back-propagation ResNet101 with learning rate 5 × 10−5 and batch size 60, AdamW optimizer 0,42586 0,42539 

Back-propagation ResNet101 with learning rate 10−4 and batch size 60, AdamW optimizer 0,42787 0,42715 

Back-propagation ResNet101 with learning rate 5 × 10−4 and batch size 60, AdamW optimizer 0,42588 0,42609 

Back-propagation VGG-13 with learning rate 10−4 and batch size 60, AdamW optimizer 0,43584 0,43658 

Back-propagation VGG-13 with learning rate 10−4 and batch size 60, AdamW optimizer 0,43584 0,43658 

Back-propagation VGG-13 with learning rate 5 × 10−5 and batch size 60, AdamW optimizer 0,43360 0,43492 

Back-propagation VGG-16 with learning rate 10−4 and batch size 60, AdamW optimizer 0,43760 0,43712 

Back-propagation VGG-16 with learning rate 5 × 10−5 and batch size 60, AdamW optimizer 0,43297 0,43182 

Heuristic-based 1-NN baseline with ResNet101 encoder 0,11075 0,10860 

Heuristic-based 10-NN baseline with ResNet101 encoder 0,06254 0,06291 

Heuristic-based 15-NN baseline with ResNet101 encoder 0,05251 0,05282 

Heuristic-based 1-NN baseline with ResNet50 encoder 0,08117 0,07846 

Heuristic-based 5-NN baseline with ResNet50 encoder 0,05868 0,05722 

Heuristic-based 10-NN baseline with ResNet50 encoder 0,04283 0,04246 

Heuristic-based 1-NN baseline with VGG-11 encoder 0,11893 0,11988 

Heuristic-based 10-NN baseline with VGG-11 encoder 0,06252 0,06378 

Heuristic-based 15-NN baseline with VGG-11 encoder 0,04994 0,05044 

Heuristic-based 1-NN baseline with VGG-16 encoder 0,25203 0,25277 

Heuristic-based 10-NN baseline with VGG-16 encoder 0,09261 0,09315 

Heuristic-based 15-NN baseline with VGG-16 encoder 0,07128 0,07202 

Heuristic-based 1-NN baseline with DenseNet121 encoder 0,08607 0,09207 

Heuristic-based 10-NN baseline with DenseNet121 encoder 0,05488 0,05610 

Heuristic-based 15-NN baseline with DenseNet121 encoder 0,04449 0,04511 

Heuristic-based 1-NN baseline with DenseNet161 encoder 0,07145 0,07246 

Heuristic-based 10-NN baseline with DenseNet161 encoder 0,05361 0,05483 

Heuristic-based 15-NN baseline with DenseNet161 encoder 0,04357 0,04459 

Heuristic-based 1-NN baseline with fully finetuned DenseNet161 encoder 0,05062 0,05084 

Ensemble/Majority voting Top-10 performing DenseNets ensemble from section 4.1.1(d), table 4.1.1 0,44545 0,44553 

Ensemble/Majority voting CNNs ensemble from section 4.1.1(e), table 4.1.2 0,44170 0,44167 

Ensemble/Majority voting CNNs ensemble from section 4.1.1(e), table 4.1.3 0,44305 0,44380 

Ensemble/Majority voting CNNs ensemble from section 4.1.1(e), table 4.1.4 0,44543 0,44624 
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BACKBONE TRAINING REGIME DEEP LEARNING MODEL 
VALIDATION F1 LOSS 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

ResNet50 Back-propagation ResNet 50 with learning rate 0.0005 and batch size 300, Adam optimizer 0,377853 0,332436 0,395627 0,329744 0,362569 0,359646 

ResNet50 Back-propagation ResNet 50 with learning rate 0.001 and batch size 300, Adam optimizer 0,280360 0,255886 0,268447 0,329744 0,277444 0,282376 

ResNet50 Back-propagation ResNet 50 with learning rate 0.001 and batch size 400, Adam optimizer 0,276979 0,257445 0,270429 0,329744 0,278048 0,282529 

ResNet50 Back-propagation ResNet 50 with learning rate 0.0005 and batch size 400, Adam optimizer 0,203687 0,332436 0,396106 0,329744 0,366897 0,325774 

ResNet101 Back-propagation ResNet 101 with learning rate 0.0005 and batch size 300, Adam optimizer 0,386209 0,342066 0,397021 0,329744 0,363312 0,363671 

ResNet101 Back-propagation ResNet 101 with learning rate 0.0005 and batch size 400, Adam optimizer 0,295151 0,340869 0,292163 0,329744 0,364465 0,324478 

ResNet101 Back-propagation ResNet 101 with learning rate 0.001 and batch size 400, Adam optimizer 0,297303 0,270049 0,267873 0,329744 0,279759 0,288946 

ResNet101 Back-propagation ResNet 101 with learning rate 0.0001 and batch size 300, Adam optimizer 0,373379 0,332436 0,394392 0,329744 0,358008 0,357592 

ResNet101 Back-propagation ResNet 101 with learning rate 0.0001 and batch size 400, Adam optimizer 0,373379 0,332436 0,394347 0,329744 0,358008 0,357583 

DenseNet121 Back-propagation DenseNet121 with learning rate 0.0005 and batch size 300, Adam optimizer 0,412437 0,370498 0,423721 0,338978 0,398268 0,388780 

DenseNet161 Back-propagation DenseNet161 with learning rate 0.0005 and batch size 300, Adam optimizer 0,414259 0,377403 0,423390 0,337359 0,391498 0,388782 

VGG-13 Back-propagation VGG-13 with learning rate 0.0005 and batch size 300, Adam optimizer 0,393630 0,344903 0,409759 0,329296 0,377688 0,371055 

VGG-16 Back-propagation VGG-16 with learning rate 0.0005 and batch size 300, Adam optimizer 0,381985 0,351673 0,416327 0,330945 0,385988 0,373384 
 

 

 Table 7.3:  Summary of all IU-XRAY Concept Prediction experiments configurations’ training targets and F1 scores using 80% for 
training and the remaining 20% as a hold-out validation set  

  

BACKBONE TRAINING REGIME DEEP LEARNING MODEL 
VALIDATION F1 LOSS 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

ResNet50 Back-propagation ResNet 50 with learning rate 0.0005 and batch size 300, Adam optimizer 0,363401 0,349356 0,305460 0,348587 0,358154 0,344992 

ResNet50 Back-propagation ResNet 50 with learning rate 0.002 and batch size 300, Adam optimizer 0,270173 0,263681 0,261192 0,348587 0,269580 0,282643 

ResNet50 Back-propagation ResNet 50 with learning rate 0.001 and batch size 400, Adam optimizer 0,269161 0,260835 0,267645 0,348587 0,265743 0,282394 

ResNet101 Back-propagation ResNet 101 with learning rate 0.0005 and batch size 300, Adam optimizer 0,361373 0,345222 0,379884 0,348587 0,360839 0,359181 

DenseNet Back-propagation DenseNet121 with learning rate 0.0005 and batch size 300, Adam optimizer 0,396165 0,370709 0,400684 0,355657 0,386378 0,381919 

DenseNet Back-propagation DenseNet161 with learning rate 0.0005 and batch size 300, Adam optimizer 0,401418 0,380476 0,402166 0,354166 0,383900 0,384425 

VGG-13 Back-propagation VGG-13 with learning rate 0.0005 and batch size 300, Adam optimizer 0,385224 0,367254 0,394278 0,348218 0,373469 0,373689 

VGG-16 Back-propagation VGG-16 with learning rate 0.0005 and batch size 300, Adam optimizer 0,377928 0,358715 0,397625 0,349395 0,377372 0,372207 
 

 Table 5.3.1:  Summary of all ImageCLEF Concept Prediction experiments configurations’ training targets and F1 scores    Table 5.3.1:  Summary of all ImageCLEF Concept Prediction experiments configurations’ training targets and F1 scores   
 

Table 7.2:  Summary of all IU-XRAY Concept Prediction experiments configurations’ training targets and F1 scores using 90% for 
training and the remaining 10% as a hold-out validation set 
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Metrics 

Table 7.4: P-Values for different types of T-test between different backbone network architectures. We observe that DenseNet is the best performing 
image encoder for concept detection, as it is also indicated by the validation F1 scores, while the performance difference is statistically significant 
compared to AlexNet and ResNet image encoders but we cannot reject the null hypothesis when comparing to VGG. Within each model architecture 
we incorporate instances of the backbones mentioned in chapter 4 and are illustrated in the summary view in Figure 4.1.3 (p. 33).  

 

Metrics 

Table 7.8: P-Values and Cohen's d for different types of statistical tests between different backbone network architectures. We observe a high variance in the results related to 
DenseNet compared to AlexNet and ResNet image encoders, where DenseNet is the best performing image encoder,  other than that Wilcoxon signed-rank tests and Mann-
Whitney U tests agree the performance difference is statistically significant. Within each model architecture we incorporate instances of the backbones mentioned in chapter 4  
and are illustrated in the summary view in Figure 4.1.3 (p. 33). 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 P-Value P-Value P-Value P-Value P-Value P-Value  
 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value 

AlexNet vs 
DenseNet 

F1 score 0,030264494 0,024690244 0,021105685 0,060528988 0,049380487 0,042211371 
 

AlexNet vs 
DenseNet 

F1 score 0,62865797 2,95E-06 5,90E-06 -0,472637742 2,90E-06 5,81E-06 5,08E-07 

AlexNet vs 
ResNet 

F1 score 0,164555888 0,108784503 0,107343013 0,329111776 0,217569006 0,214686026 
 

AlexNet vs 
ResNet 

F1 score 0,566022261 0,001417584 0,002835167 0,387048017 0,001363554 0,002727107 0,000180779 

AlexNet vs 
VGG 

F1 score 0,053273041 0,032687292 0,004797858 0,106546083 0,065374585 0,009595715 
 

AlexNet vs 
VGG 

F1 score 5,71E-08 0,001070028 0,002140056 -0,729477003 0,001001324 0,002002648 0,017013643 

DenseNet vs 
ResNet 

F1 score 0,001030623 0,000597724 0,000248738 0,002061246 0,001195448 0,000497475 
 

DenseNet vs 
ResNet 

F1 score 0,254962329 7,84E-09 1,57E-08 0,82278301 7,68E-09 1,54E-08 6,83E-12 

DenseNet vs 
VGG 

F1 score 0,091228429 0,388635052 0,205509876 0,182456857 0,777270104 0,411019753 
 

DenseNet vs 
VGG 

F1 score 1,47E-08 0,0379253 0,075850601 -0,094553007 0,037464111 0,074928222 0,003324937 

ResNet vs VGG F1 score 0,004251937 0,000822348 4,13E-05 0,008503874 0,001644697 8,25E-05  ResNet vs VGG F1 score 1,97E-07 5,90E-06 1,18E-05 -1,349230466 5,43E-06 1,09E-05 5,73E-07 

                               

 

Metrics 

Table 7.5:  P-Values for different types of T-test between different training regimes. We compare architectures where we use pre-trained backbone 
networks on ImageNet classification dataset with baselines where we include the same image encoders combined with a heuristic approach based 
on 1-NN. In that case we observe that the fine-tuned classification heads' performance, which are initialized using Glorot formula as explained in 
previous parts, is better and the F1 difference is statistically significant for any network architecture.  

 

Metrics 

Table 7.9: P-Values and Cohen's d for different types of statistical tests between different training regimes. We again observe a high variance in the results related to DenseNet 
and ResNet image encoders when comparing architectures where we use pre-trained backbone networks on ImageNet classification dataset with baselines where we include 
the same image encoders combined with a heuristic approach based on 1-NN. Yet Wilcoxon signed-rank tests and Mann-Whitney U tests agree that the fine-tuned classification 
heads' perform better and the F1 difference is statistically significant for any network architecture. 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 P-Value P-Value P-Value P-Value P-Value P-Value  
 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value 

DenseNet F1 score 1,27E-21 5,08E-88 3,97E-35 2,54E-21 1,02E-87 7,93E-35  DenseNet F1 score 0,118516543 1,08E-10 2,15E-10 18,32153013 1,05E-10 2,10E-10 3,33E-13 
ResNet F1 score 1,33E-07 9,29E-24 9,33E-09 2,65E-07 1,86E-23 1,87E-08  ResNet F1 score 0,22368679 0,000144607 0,000289214 18,57681715 0,000130365 0,00026073 4,24E-05 

VGG F1 score 5,65E-05 5,26E-10 6,04E-05 0,000113079 1,05E-09 0,000120898  VGG F1 score 1,40E-12 0,000676627 0,001353254 7,331440282 0,000569048 0,001138096 0,000264178 
All Networks F1 score 4,76E-22 1,00E-123 8,20E-41 9,52E-22 2,00E-123 1,64E-40  All Networks F1 score 8,18E-06 0,00E+00 0,00E+00 10,80255796 1,85E-22 3,69E-22 0 

                               

 

Metrics 

Table 7.6:  P-Values for different types of T-test between varying training extent. We compare baselines where we fully finetune the CNNs end-to-
end using the same objective and cyclical learning rates with architectures where we use pre-trained backbone networks on ImageNet classification 
dataset andbaselines where we include the same image encoders combined with a heuristic approach based on 1-NN. Again we observe that the fine-
tuned classification heads' performance, which are initialized using Glorot formula as explained previously, yields higher scores than the fully 
finetuned visuin encoders and both are better than the 1-NN baseline The F1 score differences in both cases is statistically significant for any network 
architecture (either DenseNet121 or DenseNet161).  

 

Metrics 

Table 7.10: P-Values and Cohen's d for different types of statistical tests between varying training extent. We again observe a high variance in the results when we compare 
baselines where we fully finetune the CNNs end-to-end using the same objective and cyclical learning rates with architectures where we use pre-trained backbone networks on 
ImageNet classification dataset and baselines where we include the same image encoders combined with a heuristic approach based on the 1-NN but Wilcoxon signed-rank 
tests and Mann-Whitney U tests agree that the fine-tuned classification heads' performanceyields higher scores than the fully finetuned visuin encoders and both are better 
than the 1-NN baseline The F1 score differences in both cases is statistically significant for any network architecture (either DenseNet121 or DenseNet161). 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 P-Value P-Value P-Value P-Value P-Value P-Value  
 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value 

FFT vs CLS 
Head 

F1 score 0,000151978 1,37E-18 1,59E-05 0,000303956 2,74E-18 3,19E-05 
 

FFT vs CLS 
Head 

F1 score 0,297403364 0,000505087 0,001010175 5,579063629 0,000488997 0,000977994 0,000332829 

FFT vs NN 
Baselines 

F1 score 8,76E-05 1,09E-17 6,56E-09 0,000175297 2,19E-17 1,31E-08 
 

FFT vs NN 
Baselines 

F1 score 0,675752856 0,00144732 0,002894639 18,04803036 0,001248454 0,002496909 0,000849059 

                               

 

Metrics 

Table 7.7:  P-Values for different types of T-test when incorporating mixtures of experts to take advantage of the wizdom of the crowd. We compare 
architectures where we use pre-trained backbone networks on ImageNet classification dataset with their ensembles. In that case we observe that the 
fine-tuned classification heads' performance, which are initialized using Glorot formula as explained in previous parts, perform better when we 
include the same image encoders and the F1 difference is statistically significant but we cannot reject the null hypothesis when comparing to the 
top-10 best performing DenseNets ensemble. In the latter case we take into consideration only DenseNet weak learners for a fair performance 
comparison; yet we still fail to reject the null hypothesis.  

 

Metrics 

Table 7.11: P-Values and Cohen's d for different types of statistical tests when incorporating mixtures of experts to take advantage of the wizdom of the crowd. In the case we 
compare architectures where we use pre-trained backbone networks on ImageNet classification dataset with their ensembles the variance is small and  Wilcoxon signed-rank 
tests and Mann-Whitney U tests agree that the fine-tuned classification heads' performance perform better when we use the same image encoders and the F1 difference is 
statistically significant but we cannot reject the null hypothesis when comparing to the top-10 best performing DenseNets ensemble. In the latter case, the effect size is small, 
while we consider only DenseNet weak learners for a fair performance comparison; yet we still fail to reject the null hypothesis. 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 P-Value P-Value P-Value P-Value P-Value P-Value  
 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value 

DenseNet F1 score 0,05453075 0,212824857 2,78E-07 0,109061499 0,425649714 5,56E-07  DenseNet F1 score 0,004683719 0,011028956 0,022057912 -0,027967009 0,010651747 0,021303495 0,015208194 
All Networks F1 score 0,008963781 0,036620236 3,62E-12 0,017927562 0,073240473 7,24E-12  All Networks F1 score 7,72E-08 4,73E-05 9,46E-05 -0,041289257 4,65E-05 9,31E-05 0,000489134 

             Table 7.15: P-Values and Cohen's d for different types of statistical tests when incorporating mixtures of experts to take advantage of the wisdom of the crowd. We compare our submissions 
where we use pre-trained backbone networks on ImageNet classification dataset with their ensembles. In that case we observe a high variance in the manual F1 score, however Wilcoxon 
signed-rank tests and Mann-Whitney U tests agree the performance difference is statistically significant, thus the fine-tuned classification heads perform better than other baselines and 
the F1 difference is statistically significant according to most tests. 

 

Table 7.12:  P-Values for different types of T-test when incorporating mixtures of experts to take advantage of the wizdom of the crowd. We compare our 
submissions where we use pre-trained backbone networks on ImageNet classification dataset with their ensembles. In that case we observe that the fine-tuned 
classification heads' performance, which are initialized using Glorot formula as explained in previous parts, perform better when we include the same image 
encoders and the F1 difference is statistically significant according to most tests.  

 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance  

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 
Cohen's d - Baseline 

Effect Size test 
One tailed Wilcoxon 

signed-rank test 
Two tailed Wilcoxon 

signed-rank test 
Kolmogorov-Smirnov 

test 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value 
F1 score 0,032647976 0,021363965 0,040604872 0,065295952 0,04272793 0,081209744  F1 score 0,003812565 0,015191411 0,030382822 1,812410457 0,010460668 0,020921335 0,011065637 
Manual F1 
score 

0,014124286 0,000836787 0,000850966 0,028248572 0,001673573 0,001701933 
 

Manual F1 
score 

0,907534797 0,015191411 0,030382822 -3,814032034 0,010460668 0,020921335 0,011065637 

                          

 

Table 7.13:  P-Values for different types of T-test between different training regimes. We compare our submissions where we use pre-trained backbone networks 
on ImageNet classification dataset with fully finetuned CNNs end-to-end using the same objective and cyclical learning rates with architectures where we use 
pre-trained backbone networks on ImageNet classification dataset andbaselines where we include the same image encoders combined with a heuristic approach 
based on 1-NN. In order to reject the null hypothesis we need to make the assumption of equal variance, which is possible though according to the F-test in 
table 5.3.13, which indicates a low variance in the F1 scores. Without making this assumption a priori we fail to reject the null hypothesis according to most T-
tests among those performed.  

 

Table 7.16: P-Values and Cohen's d for different types of statistical tests between different training regimes. We compare our submissions where we use pre-trained backbone networks on 
ImageNet classification dataset with fully finetuned CNNs end-to-end using the same objective and cyclical learning rates with architectures where we use pre-trained backbone networks 
on ImageNet classification dataset and baselines where we include the same image encoders combined with a heuristic approach based on 1-NN. In that case, we fail to reject the null 
hypothesis according to the Wilcoxon signed-rank tests and Mann-Whitney U tests, despite the low variance indicated by the F-test. 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance  

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 
Cohen's d - Baseline 

Effect Size test 
One tailed Wilcoxon 

signed-rank test 
Two tailed Wilcoxon 

signed-rank test 
Kolmogorov-Smirnov 

test 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value 
F1 score 0,067927343 0,000850571 0,068342062 0,135854686 0,001701142 0,136684125  F1 score 7,48E-07 0,052596253 0,105192505 6,484786644 0,032038753 0,064077506 0,046865909 
Manual F1 
score 

0,101665515 0,00413529 0,103117507 0,203331029 0,008270581 0,206235015 
 

Manual F1 
score 

8,96E-06 0,052596253 0,105192505 4,210144559 0,032038753 0,064077506 0,046865909 

                          

 

Table 7.14:  P-Values for different types of T-test between different training regimes. We compare our submissions where we use fully finetuned CNNs end-to-
end using the same objective and cyclical learning rates with architectures where we use pre-trained backbone networks on ImageNet classification dataset 
and baselines where we include the same image encoders combined with a heuristic approach based on 1-NN to ensemble networks taking advantage of the 
wizdom of the crowd. In order to reject the null hypothesis we need to make the assumption of equal variance, which is possible though according to the F-
test in table 5.3.14, which indicates a low variance in the F1 scores. Without making this assumption a priori we fail to reject the null hypothesis according to 
most tests shown.  

 

Table 7.17: P-Values and Cohen's d for different types of statistical tests between different training regimes. We compare our submissions where we use fully finetuned CNNs end-to-end 
using the same objective and cyclical learning rates with architectures where we use pre-trained backbone networks on ImageNet classification dataset and baselines where we include the 
same image encoders combined with a heuristic approach based on 1-NN to ensemble networks taking advantage of the wizdom of the crowd. In that case, we fail to reject the null hypothesis 
according to the Wilcoxon signed-rank tests and Mann-Whitney U tests, despite the low variance indicated by the F-test. 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance  

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 
Cohen's d - Baseline 

Effect Size test 
One tailed Wilcoxon 

signed-rank test 
Two tailed Wilcoxon 

signed-rank test 
Kolmogorov-Smirnov 

test 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value 
F1 score 0,067928104 0,000936068 0,069551811 0,135856208 0,001872136 0,139103622  F1 score 0,000647182 0,052596253 0,105192505 6,322196713 0,032038753 0,064077506 0,046865909 
Manual F1 
score 

0,102984509 0,003806526 0,10087491 0,205969017 0,007613052 0,201749819 
 

Manual F1 
score 

1,11E-05 0,052596253 0,105192505 4,310285807 0,032038753 0,064077506 0,046865909 

76
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Metrics 

Table 7.18: P-Values for different types of T-test between WinnerTakesAll and 1-NN baselines  
 

Metrics 

Table 7.25: P-Values and Cohen's d for different types of statistical tests between WinnerTakesAll and 1-NN baselines  
 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

0,002438605 0,001358262 0,002438605 0,004877209 0,002716524 0,004877209  BLUE1 

Precision 

8,99E-258 0,035196866 0,070393731 -0,784358805 0,04377325 0,0875465 0,000284657  
BLUE2 4,58E-06 2,17E-07 4,58E-06 9,16E-06 4,35E-07 9,16E-06  BLUE2 1,48E-269 2,33E-08 4,67E-08 -1,510839411 1,48E-07 2,97E-07 4,43E-09  
BLUE3 6,48E-05 1,09E-05 6,48E-05 0,000129673 2,18E-05 0,000129673  BLUE3 0,00E+00 2,33E-08 4,67E-08 -1,193199833 1,48E-07 2,97E-07 4,43E-09  
BLUE4 0,000948265 0,000411969 0,000948265 0,001896529 0,000823938 0,001896529  BLUE4 0,00E+00 5,92E-07 1,18E-06 -0,89016265 2,61E-06 5,21E-06 3,81E-08  
ROUGE_L Recall 0,000505046 0,000181297 0,000505046 0,001010091 0,000362594 0,001010091  ROUGE_L Recall 1,44E-250 0,001231793 0,002463585 -0,960561058 0,002203385 0,00440677 1,16E-05  
METEOR   2,53E-12 2,46E-18 2,53E-12 5,06E-12 4,91E-18 5,06E-12  METEOR   6,88E-251 2,28E-08 4,56E-08 4,0745109 1,48E-07 2,97E-07 4,43E-09  
CIDER   0,000869733 0,000368521 0,000869733 0,001739467 0,000737042 0,001739467  CIDER   0,00E+00 2,31E-08 4,63E-08 -0,899818691 1,48E-07 2,97E-07 4,43E-09  
                              
 

Metrics 

Table 7.19: P-Values for different types of T-test between WinnerTakesAll and 1-NN with Retrieval Augmented Generation baselines  
 

Metrics 

Table 7.26: P-Values and Cohen's d for different types of statistical tests between WinnerTakesAll and 1-NN with Retrieval Augmented Generation baselines 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

0,001615772 1,20E-42 0,001615772 0,003231545 2,40E-42 0,003231545  BLUE1 

Precision 

1,70E-223 1,16E-05 2,32E-05 -197 0,011671101 0,023342202 0,017035766  
BLUE2 0,007668634 1,79E-30 0,007668634 0,015337267 3,57E-30 0,015337267  BLUE2 4,38E-249 1,16E-05 2,32E-05 -41,5 0,011671101 0,023342202 0,017035766  
BLUE3 0,011783871 4,06E-27 0,011783871 0,023567742 8,13E-27 0,023567742  BLUE3 0,00E+00 1,16E-05 2,32E-05 -26,999995 0,011671101 0,023342202 0,017035766  
BLUE4 0,02118931 1,55E-22 0,02118931 0,042378621 3,11E-22 0,042378621  BLUE4 0,00E+00 1,16E-05 2,32E-05 -14,999996 0,011671101 0,023342202 0,017035766  
ROUGE_L Recall 0,00E+00 8,85E-272 2,88E-265 0,00E+00 1,77E-271 5,77E-265  ROUGE_L Recall 1,00E+00 1,13E-05 2,26E-05 -4,11E+15 0,011671101 0,023342202 0,017035766  
METEOR   0,009642803 1,10E-28 0,009642803 0,019285607 2,20E-28 0,019285607  METEOR   1,70E-223 1,16E-05 2,32E-05 33 0,011671101 0,023342202 0,017035766  
CIDER   0,00487171 5,08E-34 0,00487171 0,00974342 1,02E-33 0,00974342  CIDER   0,00E+00 1,16E-05 2,32E-05 -65,33333 0,011671101 0,023342202 0,017035766  
                              
 

Metrics 

Table 7.20: P-Values for different types of T-test between WinnerTakesAll baseline and Pegasus abstractive summarization algorithm  
 

Metrics 

Table 7.27: P-Values and Cohen's d for different types of statistical tests between WinnerTakesAll baseline and Pegasus abstractive summarization algorithm 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

0,007396865 0,002242038 0,007396865 0,014793729 0,004484076 0,014793729  BLUE1 

Precision 

0,00E+00 0,024668088 0,049336176 -1,631014289 0,027331968 0,054663936 0,012238153  
BLUE2 7,15E-06 6,40E-09 7,15E-06 1,43E-05 1,28E-08 1,43E-05  BLUE2 2,89E-78 0,001362266 0,002724532 -7,444444444 0,001973876 0,003947752 0,001299744  
BLUE3 3,53E-06 1,59E-09 3,53E-06 7,05E-06 3,18E-09 7,05E-06  BLUE3 3,18E-105 0,001362266 0,002724532 -8,590398699 0,001973876 0,003947752 0,001299744  
BLUE4 3,99E-06 2,03E-09 3,99E-06 7,98E-06 4,06E-09 7,98E-06  BLUE4 5,12E-104 0,001283339 0,002566678 -8,378986159 0,001973876 0,003947752 0,001299744  
ROUGE_L Recall 2,58E-05 7,91E-08 2,58E-05 5,17E-05 1,58E-07 5,17E-05  ROUGE_L Recall 0,00E+00 0,001389215 0,00277843 -5,727155665 0,001973876 0,003947752 0,001299744  
METEOR   1,35E-05 2,23E-08 1,35E-05 2,70E-05 4,45E-08 2,70E-05  METEOR   3,19E-73 0,001362266 0,002724532 6,541684947 0,001973876 0,003947752 0,001299744  
CIDER   1,39E-06 2,52E-10 1,39E-06 2,78E-06 5,04E-10 2,78E-06  CIDER   1,83E-105 0,001362266 0,002724532 -10,36857632 0,001973876 0,003947752 0,001299744  
                              
 

Metrics 

Table 7.21: P-Values for different types of T-test between WinnerTakesAll and 1-NN with Pegasus abstractive summarization baselines  
 

Metrics 

Table 7.28: P-Values and Cohen's d for different types of statistical tests between WinnerTakesAll and 1-NN with Pegasus abstractive summarization baselines 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

3,69E-07 1,34E-10 3,69E-07 7,39E-07 2,68E-10 7,39E-07  BLUE1 

Precision 

0,00E+00 7,91E-05 0,000158151 -1,651909835 0,000174288 0,000348575 5,41E-05  
BLUE2 4,93E-09 2,94E-14 4,93E-09 9,87E-09 5,88E-14 9,87E-09  BLUE2 1,88E-126 7,91E-05 0,000158151 -8,464657121 0,000174288 0,000348575 5,41E-05  
BLUE3 6,34E-09 4,82E-14 6,34E-09 1,27E-08 9,63E-14 1,27E-08  BLUE3 1,37E-170 7,77E-05 0,000155338 -2,918611806 0,000174288 0,000348575 5,41E-05  
BLUE4 1,80E-08 3,75E-13 1,80E-08 3,60E-08 7,49E-13 3,60E-08  BLUE4 1,29E-169 7,63E-05 0,000152562 -7,184156875 0,000174288 0,000348575 5,41E-05  
ROUGE_L Recall 4,66E-12 2,86E-20 4,66E-12 9,31E-12 5,72E-20 9,31E-12  ROUGE_L Recall 0,00E+00 7,70E-05 0,000153945 -1,694654357 0,000174288 0,000348575 5,41E-05  
METEOR   1,97E-07 3,98E-11 1,97E-07 3,93E-07 7,95E-11 3,93E-07  METEOR   2,11E-114 7,91E-05 0,000158151 5,289267563 0,000174288 0,000348575 5,41E-05  
CIDER   2,87E-06 6,61E-09 2,87E-06 5,74E-06 1,32E-08 5,74E-06  CIDER   4,80E-177 8,05E-05 0,000161001 -2,322267023 0,000174288 0,000348575 5,41E-05  
                              
 

Metrics 

Table 7.22: P-Values for different types of T-test between 1-NN (simple) and 1-NN with Retrieval Augmented Generation baselines  
 

Metrics 

Table 7.29: P-Values and Cohen's d for different types of statistical tests between 1-NN (simple) and Pegasus abstractive summarization algorithm 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

2,18E-10 0,004513418 3,47E-08 4,37E-10 0,009026836 6,94E-08  BLUE1 

Precision 

0,055797215 0,486692814 0,973385628 0,175147822 0,473423536 0,946847071 0,404165399  
BLUE2 0,00E+00 0,001567471 2,19E-08 0,00E+00 0,003134941 4,38E-08  BLUE2 0,004510237 0,150408301 0,300816603 -0,13684527 0,143061192 0,286122384 0,144200074  
BLUE3 0,018702559 0,00060651 1,36E-06 0,037405118 0,001213019 2,72E-06  BLUE3 0,000944316 0,033110052 0,066220104 -0,188316528 0,030974076 0,061948151 0,039375236  
BLUE4 0,00E+00 0,000702426 0,000906843 0,00E+00 0,001404851 0,001813685  BLUE4 0,000239313 0,037805708 0,075611416 -0,127265078 0,035930319 0,071860638 0,001171458  
ROUGE_L Recall 0,009092095 0,001507451 3,62E-09 0,018184189 0,003014902 7,25E-09  ROUGE_L Recall 0,001259181 0,308269101 0,616538202 -0,00488199 0,296901429 0,593802857 0,07784835  
METEOR   0,00E+00 0,000695965 6,57E-10 0,00E+00 0,001391929 1,31E-09  METEOR   0,2244522 0,070494617 0,140989234 -0,574009395 0,066807201 0,133614403 0,039375236  
CIDER   0,021917701 0,000403516 2,55E-10 0,043835403 0,000807031 5,10E-10  CIDER   2,27E-06 0,5 1,00E+00 0,456335897 0,486704386 0,973408772 0,249995848  
                              
 

Metrics 

Table 7.23: P-Values for different types of T-test between 1-NN (simple) and Pegasus abstractive summarization algorithm  
 

Metrics 

Table 7.30: P-Values and Cohen's d for different types of statistical tests between 1-NN (simple) and 1-NN with Pegasus abstractive summarization baselines 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

0,008791795 0,356893136 0,295077556 0,01758359 0,713786271 0,590155112  BLUE1 

Precision 

0,041513985 0,000842266 0,001684532 -1,083080384 0,000780175 0,001560351 0,000512379  
BLUE2 0,015001546 0,387155532 0,319198546 0,030003091 0,774311063 0,638397092  BLUE2 0,009997135 0,000704413 0,001408826 -4,428001285 0,000653011 0,001306022 0,000512379  
BLUE3 0,042763296 0,346695771 0,253216378 0,085526592 0,693391542 0,506432756  BLUE3 0,007863412 0,000702032 0,001404065 -1,742946084 0,000653011 0,001306022 0,000512379  
BLUE4 0,058449106 0,39484979 0,323834878 0,116898213 0,78969958 0,647669757  BLUE4 0,007610756 0,000753308 0,001506616 -4,707917372 0,000713988 0,001427975 0,039028216  
ROUGE_L Recall 0,007550328 0,495915193 0,493118378 0,015100656 0,991830385 0,986236755  ROUGE_L Recall 7,64E-06 2,63E-05 5,26E-05 -1,131071149 2,42E-05 4,84E-05 4,08E-05  
METEOR   0,083263874 0,118126832 0,066060677 0,166527748 0,236253664 0,132121353  METEOR   0,001789036 1,65E-05 3,31E-05 -8,645918132 1,55E-05 3,10E-05 2,31E-06  
CIDER   0,017225987 0,171774769 0,053910108 0,034451975 0,343549538 0,107820215  CIDER   0,188424684 0,001530465 0,003060931 -1,407060364 0,001426266 0,002852533 0,000512379  
                              
 

Metrics 

Table 7.24: P-Values for different types of T-test between 1-NN (simple) and 1-NN with Pegasus abstractive summarization baselines  
 

Metrics 

Table 7.31: P-Values and Cohen's d for different types of statistical tests between 1-NN (simple) and 1-NN with Retrieval Augmented Generation baselines 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

0,029341555 0,000194712 1,48E-05 0,05868311 0,000389423 2,96E-05  BLUE1 

Precision 

0,032526842 0,013705235 0,027410471 -2,180791063 0,011671101 0,023342202 0,017035766  
BLUE2 0,02122989 4,92E-05 1,68E-06 0,042459779 9,85E-05 3,37E-06  BLUE2 0,210367034 0,0135891 0,0271782 -2,540228367 0,011671101 0,023342202 0,017035766  
BLUE3 0,015272507 2,13E-05 5,83E-07 0,030545014 4,27E-05 1,17E-06  BLUE3 0,322171273 0,0135891 0,0271782 -2,858432586 0,011671101 0,023342202 0,017035766  
BLUE4 0,017592744 3,70E-05 1,13E-06 0,035185489 7,41E-05 2,27E-06  BLUE4 0,523716103 0,01558878 0,031177559 -2,809325131 0,01373432 0,02746864 1,95E-06  
ROUGE_L Recall 0,003040734 4,67E-06 1,55E-07 0,006081469 9,35E-06 3,10E-07  ROUGE_L Recall 0,00E+00 0,013560118 0,027120235 -2,553362073 0,011671101 0,023342202 0,017035766  
METEOR   0,000204704 8,62E-08 1,19E-09 0,000409408 1,72E-07 2,38E-09  METEOR   0,082599613 0,013300208 0,026600415 -2,812416198 0,011671101 0,023342202 0,017035766  
CIDER   0,076019151 0,000583578 0,000145621 0,152038302 0,001167157 0,000291241  CIDER   0,128696649 0,013473294 0,026946588 -2,994756705 0,011671101 0,023342202 0,017035766  
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Metrics 

Table 7.32: P-Values for different types of T-test between 1-NN with Retrieval Augmented Generation baseline and Pegasus abstractive 
summarization algorithm  

 

Metrics 

Table 7.35: P-Values and Cohen's d for different types of statistical tests between 1-NN with Retrieval Augmented Generation baseline and Pegasus abstractive 
summarization algorithm 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

4,15E-11 0,000143049 1,68E-05 8,29E-11 0,000286099 3,36E-05  BLUE1 

Precision 

0,077312591 0,033376508 0,066753015 6,141016785 0,022750132 0,045500264 0,032621652  
BLUE2 0,009841499 6,24E-06 0,000102472 0,019682997 1,25E-05 0,000204945  BLUE2 0,818073124 0,032566479 0,065132958 10,65481565 0,022750132 0,045500264 0,032621652  
BLUE3 0,013441718 8,82E-07 0,006008318 0,026883436 1,76E-06 0,012016637  BLUE3 0,553078009 0,032566479 0,065132958 14,87186097 0,022750132 0,045500264 0,032621652  
BLUE4 0,023535527 1,03E-06 0,02416574 0,047071053 2,05E-06 0,048331481  BLUE4 0,089770426 0,030149044 0,060298087 14,49568901 0,022750132 0,045500264 0,032621652  
ROUGE_L Recall 0,00267481 7,97E-07 2,12E-07 0,00534962 1,59E-06 4,25E-07  ROUGE_L Recall 0,00E+00 0,032566479 0,065132958 15,12759048 0,022750132 0,045500264 0,032621652  
METEOR   0,006240571 0,001063701 9,50E-05 0,012481141 0,002127402 0,000189909  METEOR   0,138651168 0,032566479 0,065132958 4,200169686 0,022750132 0,045500264 0,032621652  
CIDER   0,004694496 2,48E-10 0,002250419 0,009388991 4,96E-10 0,004500838  CIDER   0,324245623 0,032566479 0,065132958 58,53776476 0,022750132 0,045500264 0,032621652  
                              
 

Metrics 

Table 7.33: P-Values for different types of T-test between 1-NN with Retrieval Augmented Generation and 1-NN with Pegasus abstractive 
summarization baselines  

 

Metrics 

Table 7.36: P-Values and Cohen's d for different types of statistical tests between 1-NN with Retrieval Augmented Generation and 1-NN with Pegasus abstractive 
summarization baselines 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
Mann-Whitney U-

test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

0,168573605 0,046277296 0,001562726 0,33714721 0,092554591 0,003125452  BLUE1 

Precision 

0,066417605 0,022076339 0,044152678 0,498477205 0,016947427 0,033894854 0,024271208  
BLUE2 0,105876136 0,007482975 0,001022543 0,211752272 0,01496595 0,002045086  BLUE2 0,52616189 0,022076339 0,044152678 2,344899001 0,016947427 0,033894854 0,024271208  
BLUE3 0,068781983 0,002112761 0,007010996 0,137563966 0,004225521 0,014021993  BLUE3 0,811085495 0,021591546 0,043183092 1,074397959 0,016947427 0,033894854 0,024271208  
BLUE4 0,050901928 0,002067128 0,04059562 0,101803856 0,004134255 0,08119124  BLUE4 0,771779403 0,02110919 0,04221838 2,980734475 0,016947427 0,033894854 0,024271208  
ROUGE_L Recall 0,08750652 0,000160645 8,09E-07 0,175013041 0,000321289 1,62E-06  ROUGE_L Recall 0,00E+00 0,02110919 0,04221838 0,367044953 0,016947427 0,033894854 0,024271208  
METEOR   0,42202087 0,122630125 0,014793618 0,844041739 0,24526025 0,029587235  METEOR   0,268189014 0,143321589 0,286643178 0,971729112 0,119296415 0,238592829 0,138631229  
CIDER   0,101563007 0,004190111 2,85E-05 0,203126013 0,008380222 5,71E-05  CIDER   0,199980548 0,022563474 0,045126949 1,638842229 0,016947427 0,033894854 0,024271208  
                              
 

Metrics 

Table 7.34: P-Values for different types of T-test between 1-NN with Pegasus abstractive summarization baseline and Dense Passage 
Retriever (based on the captions)  

 

Metrics 

Table 7.37: P-Values and Cohen's d for different types of statistical tests between 1-NN with Pegasus abstractive summarization baseline and Dense Passage Retriever 
(based on the captions) 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 
Two tailed Mann-

Whitney U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon signed-

rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 
 P-Value P-Value P-Value P-Value P-Value P-Value  

 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  
BLUE1 

Precision 

7,25E-08 5,72E-12 7,25E-08 1,45E-07 1,14E-11 1,45E-07  BLUE1 

Precision 

0,00E+00 7,91E-05 0,000158151 2,037598034 0,000174288 0,000348575 5,41E-05  
BLUE2 2,68E-09 8,77E-15 2,68E-09 5,35E-09 1,75E-14 5,35E-09  BLUE2 0,00E+00 7,91E-05 0,000158151 9,145888087 0,000174288 0,000348575 5,41E-05  
BLUE3 5,62E-10 3,99E-16 5,62E-10 1,12E-09 7,98E-16 1,12E-09  BLUE3 3,36E-115 7,77E-05 0,000155338 3,962735908 0,000174288 0,000348575 5,41E-05  
BLUE4 4,27E-10 2,32E-16 4,27E-10 8,55E-10 4,63E-16 8,55E-10  BLUE4 0,00E+00 7,63E-05 0,000152562 11,52522629 0,000174288 0,000348575 5,41E-05  
ROUGE_L Recall 1,02E-13 1,39E-23 1,02E-13 2,04E-13 2,79E-23 2,04E-13  ROUGE_L Recall 2,45E-109 7,70E-05 0,000153945 2,733313479 0,000174288 0,000348575 5,41E-05  
METEOR   8,21E-11 8,71E-18 8,21E-11 1,64E-10 1,74E-17 1,64E-10  METEOR   0,00E+00 7,91E-05 0,000158151 14,18221193 0,000174288 0,000348575 5,41E-05  
CIDER   3,21E-11 1,34E-18 3,21E-11 6,42E-11 2,68E-18 6,42E-11  CIDER   1,97E-114 8,05E-05 0,000161001 9,947119477 0,000174288 0,000348575 5,41E-05  

 

Metrics 

Table 7.38: P-Values for different types of T-test between 1-NN (simple) and 1-NN with Retrieval Augmented Generation submissions  
 

Metrics 

Table 7.41: P-Values and Cohen's d for different types of statistical tests between 1-NN (simple) and 1-NN with Retrieval Augmented Generation submissions  

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 

Two tailed 
Mann-Whitney 

U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon 

signed-rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 

 P-Value P-Value P-Value P-Value P-Value P-Value  
 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  

BLUE_AVG Precision 0,019430287 0,163003184 0,16368125 0,038860575 0,326006368 0,327362499  BLUE_AVG Precision 0,928965346 0,349267679 0,698535358 -1,29027074 0,219289013 0,438578026 0,843819825  

ROUGE_L Recall 0,051078066 0,368008443 0,368137376 0,102156133 0,736016886 0,736274753  ROUGE_L Recall 0,943578011 0,349267679 0,698535358 0,387058511 0,219289013 0,438578026 0,843819825  

METEOR   0,098355257 0,491171742 0,491171869 0,196710513 0,982343483 0,982343739  METEOR   0,992822543 0,349267679 0,698535358 -0,024973978 0,219289013 0,438578026 0,843819825  

CIDER   0,090620716 0,339411022 0,340219793 0,181241432 0,678822043 0,680439586  CIDER   0,873424259 0,349267679 0,698535358 0,479625319 0,219289013 0,438578026 0,843819825  

SPICE F1 0,107065258 0,292258288 0,295093571 0,214130517 0,584516577 0,590187143  SPICE F1 0,795779303 0,349267679 0,698535358 0,64597824 0,219289013 0,438578026 0,843819825  

BERTscore   0,052045645 0,234558106 0,236246456 0,104091289 0,469116212 0,472492913  BERTscore   0,868173347 0,349267679 0,698535358 0,885937588 0,219289013 0,438578026 0,843819825  

                             
 

Metrics 

Table 7.39: P-Values for different types of T-test between 1-NN (simple) and Pegasus abstractive summarization algorithm submissions  
 

Metrics 

Table 7.42: P-Values and Cohen's d for different types of statistical tests between 1-NN (simple) and Pegasus abstractive summarization algorithm submissions  

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 

Two tailed 
Mann-Whitney 

U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon 

signed-rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 

 P-Value P-Value P-Value P-Value P-Value P-Value  
 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  

BLUE_AVG Precision 0,014417308 0,009516386 0,011154966 0,028834617 0,019032771 0,022309931  BLUE_AVG Precision 0,848491288 0,033376508 0,066753015 -2,597920072 0,022750132 0,045500264 0,032621652  

ROUGE_L Recall 0,173717149 0,030110393 0,227425933 0,347434298 0,060220786 0,454851866  ROUGE_L Recall 0,002325612 0,066807201 0,133614403 -1,886582377 0,047790352 0,095580705 0,114713137  

METEOR   0,064453869 0,008480305 0,115626234 0,128907738 0,016960611 0,231252468  METEOR   0,227339605 0,033376508 0,066753015 -2,67277122 0,022750132 0,045500264 0,032621652  

CIDER   0,35693478 0,489638758 0,494540778 0,71386956 0,979277515 0,989081555  CIDER   0,115525632 0,433816167 0,867632335 -0,022107134 0,5 1,00E+00 0,682310468  

SPICE F1 0,356409242 0,458692453 0,480599205 0,712818484 0,917384906 0,961198409  SPICE F1 0,04009871 0,433816167 0,867632335 0,0883232 0,5 1,00E+00 0,682310468  

BERTscore   0,387060574 0,47245327 0,487281564 0,774121149 0,94490654 0,974563129  BERTscore   0,032382713 0,433816167 0,867632335 -0,058825661 0,5 1,00E+00 0,682310468  

                       
  

   
 

 

Metrics 

Table 7.40: P-Values for different types of T-test between 1-NN with Retrieval Augmented Generation and 1-NN with Pegasus abstractive 
summarization submissions  

 

Metrics 

Table 7.43: P-Values and Cohen's d for different types of statistical tests between 1-NN with Retrieval Augmented Generation and 1-NN with Pegasus abstractive 
summarization submissions 

 

 One tailed T-test 
(default) 

One tailed T-test 
equal variance 

One tailed T-test 
unequal variance 

Two tailed T-test 
(default) 

Two tailed T-test 
equal variance 

Two tailed T-test 
unequal variance 

 

 F-test 
One tailed Mann-

Whitney U-test 

Two tailed 
Mann-Whitney 

U-test 

Cohen's d - 
Baseline Effect 

Size test 

One tailed 
Wilcoxon 

signed-rank test 

Two tailed 
Wilcoxon signed-

rank test 

Kolmogorov-
Smirnov test 

 

 P-Value P-Value P-Value P-Value P-Value P-Value  
 P-Value P-Value P-Value Cohen's d P-Value P-Value P-Value  

BLUE_AVG Precision 0,01306955 0,032813886 0,020300573 0,0261391 0,065627772 0,040601146  BLUE_AVG Precision 0,768768511 0,033376508 0,066753015 -1,835426139 0,022750132 0,045500264 0,032621652  

ROUGE_L Recall 0,115993637 0,005404706 0,158167038 0,231987274 0,010809412 0,316334075  ROUGE_L Recall 0,00347515 0,033376508 0,066753015 -2,973656871 0,022750132 0,045500264 0,032621652  

METEOR   0,064062754 0,008839869 0,115837589 0,128125508 0,017679738 0,231675179  METEOR   0,23368871 0,033376508 0,066753015 -2,645711939 0,022750132 0,045500264 0,032621652  

CIDER   0,454664135 0,156151563 0,287884006 0,909328271 0,312303126 0,575768012  CIDER   0,201912386 0,308537539 0,617075077 -0,900570675 0,252492538 0,504985075 0,682310468  

SPICE F1 0,326144181 0,081495923 0,244329314 0,652288363 0,162991847 0,488658628  SPICE F1 0,119328716 0,308537539 0,617075077 -1,298031071 0,252492538 0,504985075 0,682310468  

BERTscore   0,276241506 0,025180214 0,18807362 0,552483012 0,050360428 0,37614724  BERTscore   0,068301122 0,066807201 0,133614403 -1,993577875 0,047790352 0,095580705 0,114713137  
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