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Abstract 

Concrete hydraulic structures are of great importance in today's society. When situated in 

areas with hard bedrock, these structures may become extra vulnerable to seismic excitations 

as these here are dominated by high-frequency vibrations which can have disastrous 

consequences for slender structures. The aim of this thesis was to investigate special 

considerations that must be made when conducting analyses of such hydraulic structures 

during high-frequency excitations. Underground and on the ground structures were 

investigated separately. Underground concrete pipelines and concrete buttress dams were 

selected for the study because their behaviour when exposed to seismic excitations is 

dominated by their stiffness. The most effective models and modelling methods for the 

seismic analyses of such structures were implemented and evaluated. Two-dimensional finite 

element (FE) models were developed for the dynamic analysis of underground concrete 

pipelines loaded by seismic waves propagating from bedrock through soil. The interaction 

between the bedrock and the surrounding soil was investigated with respect to rock geometry 

and soil properties. The surface of dam foundations is commonly irregular, resulting in non-

uniform motions at the dam-foundation interface. The free-field modelling methods for 

concrete dam foundations were adapted in order to accurately describe the propagation of 

earthquake vibrations from the source to the ground surface. The implementation of a three-

dimensional FE model for concrete buttress dams was investigated. Two different methods 

for free-field modelling are presented, which can be implemented independently of the 

software used. The seismic loads are applied as effective earthquake forces at non-reflecting 

boundaries. In the first method, the free-field motions at the non-reflecting boundaries are 

determined by the so-called domain reduction method using the direct FE calculation. In the 

second method, the free-field motions are analytically determined based on the one-

dimensional wave propagation theory. The results are also compared with the massless 

foundation modelling approach, in which the topographical amplifications are neglected. 

It was demonstrated that a two-dimensional model can effectively account for pipeline 

behaviour. The most important aspect of the models is the ability to capture bending 

deformations, as segmented structures such as pipelines are vulnerable in this respect. Non-

uniform bedrock reduces the safety of concrete pipeline, especially because of bending 

deformations in the pipe and joints. The massless method gave unreliable results for analyses 

of dams, especially for high-frequency excitations. The analytical method was also unreliable 

in estimating the non-linear behaviour of the dams. But, a new time domain deconvolution 

method was developed to transform the earthquake motion from the foundation surface to 

the corresponding input motion at depth. It was found that free-field modelling of foundations 

using the direct FE method can accurately capture the topographic amplifications of the 

seismic excitations. It was shown that a three-dimensional model is required for seismic 

evaluation of concrete buttress dams. The topographic amplification of high-frequency 

waves at the surface of canyons had a significant effect on the response of this type of dam.  
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Sammanfattning 

Betongkonstruktioner för vattenkraft och vattenförsörjning är av stor betydelse för dagens 

samhällen. I områden med hård berggrund kan dessa konstruktioner vara särskilt känsliga för 

seismiska händelser då de domineras av höga frekvenser, vilket kan leda till katastrofala 

konsekvenser för slanka konstruktioner. Syftet med föreliggande avhandling var att 

undersöka överväganden och antaganden som måste göras vid analyser av sådana strukturer 

för vattenkraft och vattenförsörjning vid excitationer med högre frekvenser. Strukturer under 

jord och på markytan undersöktes separat. Underjordiska rörledningar och lamelldammar av 

betong valdes till studien eftersom de vid seismiska excitationer domineras av deras styvhet. 

De mest effektiva modellerna och modelleringsmetoderna för de seismiska analyserna av 

sådana strukturer implementerades och utvärderades. Tvådimensionella finita element (FE) 

modeller utvecklades för dynamisk analys av underjordiska rörledningar av betong utsatta 

för seismiska vågor som utbreder sig från berggrunden och genom jordlager. Samspelet 

mellan berggrunden och den omgivande marken undersöktes med avseende på bergets 

geometri och markegenskaperna. Bergytan hos dammfundament är vanligtvis oregelbunden, 

vilket resulterar i ojämna rörelser vid gränsytan mellan damm och grundläggning. 

Modelleringsmetoderna med fria fält för betongdammars berggrundläggning har här 

anpassats för att korrekt beskriva utbredningen av jordbävningsvibrationer från 

vibrationscentrum till markytan. Implementeringen av en tredimensionell FE-modell för 

betonglamelldammar undersöktes. Två olika metoder för frifältsmodellering presenteras, 

vilka kan användas oberoende av aktuell programvara. De seismiska belastningarna 

appliceras som effektiva jordbävningskrafter vid icke-reflekterande materialgränser. Med 

den första metoden bestäms de fria fältens rörelser vid de icke-reflekterande gränserna genom 

den så kallade domänreduktionsmetoden, med direkt FE-beräkning. I den andra metoden 

bestäms frifältsrörelserna analytiskt utifrån teorin om endimensionell vågutbredning. 

Resultaten jämförs också med metoden för modellering med antagen masslös undergrund, 

där de topografiska förstärkningarna försummas.  

Det visades att en tvådimensionell modell effektivt kan redogöra för rörledningarnas 

beteende. Den viktigaste aspekten av modellerna är förmågan att beskriva böjdeformationer, 

eftersom segmenterade strukturer såsom rörledningar är sårbara i detta avseende. Ojämn 

berggrund minskar säkerheten för betongrörledningar, särskilt på grund av böjdeformationer 

i rör och fogar. Metoden som ej beaktade undergrundens massa gav opålitliga resultat vid 

analys av dammar, speciellt vid högfrekventa excitationer. Den analytiska metoden var också 

opålitlig när det gäller att uppskatta dammars icke-linjära beteende. Men, en ny metod med 

konvolution i tidsdomänen utvecklades för att omvandla jordbävningens rörelse från 

grundläggningsytan till motsvarande rörelse på djupet. Det framkom att modellering av fria 

fält för grundläggningen med den direkta FE-metoden exakt kan beskriva de topografiska 

förstärkningarna av de seismiska excitationerna. Det visades att en tredimensionell modell 

krävs för seismisk utvärdering av betonglamelldammar. Den topografiska förstärkningen av 

högfrekventa vågor vid markytan hos dalgångar hade en betydande effekt på responsen hos 

denna typ av damm.  
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CHAPTER 1 

Introduction 

Concrete structures as parts of the civil infrastructure are of great importance for today's 

society. They connect cities, enable the transportation of people and goods, and protect the 

land from flooding and erosion. Water-related infrastructures are called hydraulic structures. 

They can be part of power plants, water transport systems, water supply systems or irrigation 

systems. Hydraulic structures are categorised as water retention structures like dams, water-

conveying structures (artificial channels and pipelines) or special-purpose structures (for 

hydropower generation or inland waterways). Figure 1.1 illustrates the most common types 

of hydraulic structures in hydropower plants. Figure 1.2 shows a schematic representation of 

a water supply and distribution system. These types of structures are exposed to different 

loads due to interaction with environmental factors such as water, ice, thermal and 

earthquakes. An earthquake can cause failure or damage of hydraulic structures. Failure of 

hydraulic structures can lead to severe environmental damage, loss of life and economic 

damage [2; 40; 55; 92; 150]. 

Figure 1.1: Schematic cross section of a hydropower facility [55]. 
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Figure 1.2 Schematic view of a water supply and distribution system [174]. 

1.1 Background 

There are various causes for earthquakes – e.g., volcanic activity, the sudden collapse of a 

mine/cave or reservoir-induced seismicity (when the reservoirs are filled or drained) – but 

the cause of most earthquakes globally is plate tectonics. The movement of tectonic plates, 

both in magnitude and direction, leads to an accumulation of stress within the plates and at 

their boundaries. When strain reaches its limit along a weak region or at plate boundaries or 

existing faults, a sudden movement or slip releases the energy of the accumulated strain. This 

generates elastic waves in the rock mass, which propagate through the elastic medium to the 

ground surface [45; 50]. The ground motion of an earthquake consists of a combination of 

harmonic motions with different frequencies. The initial level and frequency content of the 

motion are influenced by the source conditions [36]. High-frequency seismic waves are 

generated by a rupture front that concentrates in the initial phase of the earthquake and causes 

pulses with a high slip rate [66]. High frequencies are quickly attenuated in soft soils and 

propagate further in stiff soils or rocks. Tests carried out by Svinkin [149] show that the range 

of dominant frequencies of waves propagating during blasting on construction sites, similar 

to an earthquake with sudden energy release, is mainly between 10 and 60 Hz. The 

propagation of such high-frequency waves through rock masses and soil medium can affect 

underground structures such as pipelines and tunnels, and when the waves reach the ground 

surface they can damage brittle structures and installations [80; 114; 134]. 

Before the 1995 Kobe earthquake in Japan, underground structures were considered 

relatively safe with respect to earthquakes. But the damage done to the Daikai subway station 

during the earthquake raised new concerns about the vulnerability of underground structures 

[29; 47]. During an earthquake, buried pipelines can be damaged by deformations caused by 

wave propagation. An example of this is the damage caused during the 1985 Michoacan 

earthquake in Mexico City. The local geology and soil variations in the area resulted in 

damage to large-diameter pipelines [54; 122]. The damage pattern of pipelines largely 

depends on their material properties and the joint details. According to empirical data from 
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earthquake loads on pipelines, the damage caused by wave propagation is more severe in 

brittle than in ductile pipelines, which are 30% more vulnerable compared to the latter [60; 

95].  

Pipeline materials are generally divided into two groups: rigid and flexible. Concrete and 

steel pipelines are examples of rigid and flexible piping materials, respectively. Compared to 

steel, concrete is an economical and durable material that is often used in water and 

wastewater networks [116]. Concrete pipelines are of particular interest because they are 

relatively heavy and non-deformable in comparison with steel pipelines. Different types of 

concrete pipelines are used in water and wastewater networks, i.e., non-reinforced, reinforced 

and pre-stressed. The joints of concrete pipelines are generally in the form of bells and spigots 

and sealed with rubber gaskets or mortar [23; 24; 116]. Figure 1.3 shows a typical joint for a 

reinforced concrete pipeline with a bell and spigot joint sealed with a rubber gasket. 

 

Figure 1.3: Typical joints for reinforced concrete pipelines. Reproduced from [98]. 

Observations from previous earthquakes show that the principal failure mode of segmented 

pipelines is axial pull-out at the joints [95; 123; 145]. Field observations and theoretical and 

experimental studies indicate that damage to buried pipelines is often concentrated to areas 

with irregular topography and non-uniform soil properties in the horizontal direction [10; 87; 

98; 151]. Therefore, for concrete pipelines distributed in regions with hard rock, it is 

important to investigate how high-frequency excitations can affect the response of concrete 

pipelines depending on the geological conditions. 

Large structures, such as concrete dams, have a large contact area at the interface to the 

foundation. In most cases, the surface of such foundations has an irregular topography, which 

can have a significant effect on the wave patterns at a particular site, especially for high-

frequency excitations [157; 164]. Data recorded during earthquakes at several points near the 

interface between a large concrete dam and its foundation showed that the motion is more 

irregular for the higher-frequency components [121]. Accurate assessment of the seismic 

performance of concrete dams is of great importance, as the consequences of failure during 

an earthquake are catastrophic for downstream communities. Chopra [33] recommends 

certain factors to be considered in the seismic response of concrete dams. It has been shown 

that neglecting the topography amplifications leads to unrealistic responses in concrete dams. 

The different methods developed in recent years for the analysis of concrete dams can be 

divided into two main types: the substructure method [63] and the direct method [163]. The 
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direct finite element (FE) method has been widely used compared to frequency-based 

analyses. The reason for this is its ability to account for non-linear effects such as concrete 

cracking, separation and sliding at joints and interfaces of dam and rock foundation. To 

facilitate non-linear dynamic analyses, simplifications are considered by engineers and 

researchers when modelling the rock foundation. A common simplification method is the 

massless method, which causes uniform movement of the rock surface and is widely used in 

seismic analyses of concrete dams, e.g., [70; 77; 160]. To account for topographic 

amplification, a foundation mass with a non-reflective boundary and a suitable free-field 

input should be used. In recent years, several methods for free-field modelling of foundations 

have been developed and shown to be effective for low-frequency excitations and for 

foundations with uniform surfaces [35; 89; 101; 115; 147]. Therefore, adaptation of these 

methods for modelling irregular rock surface foundations in regions with high-frequency 

excitations should be investigated. 

There are three common types of concrete dams: gravity, arch and buttress dams, as 

illustrated in Figure 1.4. The gravity dam resists the horizontal pressure of the water through 

its own weight and consists of several monoliths that are independently stable (see 

Figure 1.4a). The arch dam is designed to transfer the acting forces to the foundation or 

abutments through a combination of arch and cantilever action (see Figure 1.4b). Buttress 

dams are a type of gravity dam, as their design follows the same basic principles. However, 

they are a lighter version of the gravity dam. In a typical buttress dam, the inclined upstream 

face (front plate) is supported by buttresses at regular intervals (see Figure 1.4c). The 

hydrostatic pressure is transferred to the foundation via the slab and buttresses (analogous to 

gravity dams) [39; 69].  

The seismic behaviour of concrete gravity dams and arch dams has been studied by many 

researchers, e.g., [7; 15; 52; 53; 71; 74; 109; 113; 126; 142; 154; 172]. Concrete buttress 

dams are vulnerable to strong earthquakes. Examples of two dams that have been shaken by 

strong earthquakes are the Hsinfengkiang Dam in China and the Sefidrud Dam in Iran [144; 

5]. However, there is little discussion of the dynamic behaviour of buttress dams in the 

literature, which mainly focuses on the dams’ behaviour in the stream directions [30; 68; 76; 

88]. The design of older buttress dams usually only considered gravity and water pressure 

loads, and the buttress configuration is remarkably efficient in providing the resistance 

required for these loads. However, for efficiency reasons, the buttresses were built slender 

and therefore had very little strength to resist cross-stream vibrations [69; 77]. In addition, 

lower mass and high stiffness lead to a higher natural frequency of the dam, which can have 

devastating consequences in regions with high-frequency excitations. Therefore, it is 

important to study the seismic response of such structures, especially in the transverse valley 

direction during high-frequency excitations.  
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(a) (b) 

(c) 

Figure 1.4: Different types of concrete dams: (a) gravity dam, (b) arch dam and (c) buttress dam [39]. 

1.2 Aim and goals 

The overall objective of this thesis is to investigate special considerations that must be made 

when conducting analyses of concrete hydraulic structures subjected to seismic loading at 

higher dominant frequencies. In this regard, the most effective models and modelling 

approaches were implemented and evaluated. Underground and on the ground structures 

were studied separately. For underground structures, the interaction between bedrock and 

surrounding soil was investigated. For structures located on the ground, free-field modelling 

methods were adapted to accurately describe the propagation of earthquake vibrations from 

their source to the ground surface. The goals of this thesis are defined by the following 

specific research questions. 

When exposed to high-frequency seismic loads:  

How can 2D FE models be used effectively for the analysis of underground concrete 

structures (pipelines)? 

How do variations in bedrock geometry and soil properties affect buried concrete 

pipelines? 

How can free-field modelling be used to describe vibrations at dam foundations? 

How can 2D and 3D FE models be effectively used for the analysis of concrete structures 

(gravity dams) on the ground?  

How does the structural response of stiffness-dominated concrete structures on the ground 

change with variations in the dominant load frequencies? 
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1.3 Limitations 

It would be practically impossible to study all the different types of concrete hydraulic 

structures. Therefore, representative structures were selected for this study. Concrete 

pipelines were chosen to represent underground concrete structures, since they are stiffness 

dominated and have large elongations. They are also often important infrastructure 

components from a safety point of view. When verifying the numerical results of an analysis 

of concrete pipelines, it was not possible to determine the stresses of the pipes during seismic 

events in situ, so model tests should be considered, which is beyond the scope of this project. 

The analyses were carried out for a fixed pipe dimension in a frictional soil. Non-linear soil 

behaviour and varying soil material properties with ground depth are not considered in the 

numerical examples. 

For on the ground structures, concrete gravity dams were studied as a general case and 

concrete buttress dams as a special case. A buttress dam is slender and stiffness dominated, 

meaning that it has higher characteristic natural frequencies and should therefore be more 

affected by high-frequency loads. The Pine Flat concrete gravity dam was chosen for the 

numerical benchmark. This is because this dam has been extensively studied and the 

behaviour of the dam has also been measured through experimental tests. In the cases of the 

concrete dams considered here, the effects of spillways were neglected. In the modelling of 

the foundation, non-linearities in the rock due to the sliding along discontinuities were 

neglected and the rock mass was considered to be linearly elastic and homogeneous.  

In this thesis, case studies from a Swedish context are considered because in regions with 

hard rock i.e., such as Sweden, ground motions are associated with high frequencies. Since 

Sweden is a region with low seismicity, artificial accelerograms corresponding to Swedish 

hard rock response spectra were selected in the absence of real earthquake data.  

1.4 Contents of thesis 

Chapter 2 provides background information on wave propagation in half-space (i.e., an 

elastic medium where the ground surface is considered as a stress-free edge), numerical 

modelling of wave propagation and methods for modelling seismic sources. At the end of the 

chapter, a numerical example of one-dimensional wave propagation is given. Chapter 3 

describes the methods implemented for free-field modelling of foundations. This chapter 

includes numerical examples to show the effects of free-field modelling on the computed 

surface motion of the dam foundations. This chapter also presents a developed method for 

seismic wave deconvolution. Chapter 4 presents numerical modelling aspects for the FE 

modelling of the underground pipeline system and the dam-foundation-reservoir system. 

Numerical examples for an underground concrete pipeline, a concrete gravity dam and 

buttress dam are also presented. Chapter 5 provides a summary of the appended papers. 

Chapter 6 presents the results and a discussion of the work presented in this thesis. Chapter 7 

presents the conclusions and suggestions for future work. 



  

 

 

 

 

CHAPTER 2 

 

Wave Propagation in Half-Space 

This chapter describes the fundamental concepts of seismic wave propagation in half-space. 

First, the different types of seismic waves generated during an earthquake are briefly 

introduced. Then, one-dimensional and three-dimensional wave propagation theories are 

summarised. Numerical aspects for the simulation of wave propagation with the FE method 

are then described. Finally, an example of one-dimensional wave propagation with the FE 

method is given. 

2.1 Earthquake waves 

During an earthquake, two types of seismic waves are generated: body waves and surface 

waves. Body waves are of two types: P-waves and S-waves. An earthquake source 

simultaneously generates both types of body waves which can propagate through the interior 

of the earth. However, they arrive at earthquake observation stations at different times due to 

different propagation speeds. P-waves are known as compressional, longitudinal or primary 

waves. They are a propagation of compressions and extensions, i.e., a variation of pressure 

and volume changes. The particle motion during wave propagation is parallel to the direction 

of propagation (see Figure 2.1a). A typical example of a P-wave is the propagation of sound, 

and thus P-waves can also propagate through solids and liquids.  

S-waves are known as shear, transverse or secondary waves, which cause shear deformation 

as they propagate through a material. As shown in Figure 2.1b, the motion of the particles is 

perpendicular to the direction of propagation.  

Undisturbed mediumCompresions

WavelengthRarefactions

(a)

Undisturbed medium

Wavelength

(b)
 

Figure 2.1: Deformations induced by body waves: (a) P-wave; (b) SV-wave [93]. 
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The S-wave is divided into two components depending on the direction of particle movement: 

movement in the horizontal plane, SH, and movement in the vertical plane, SV. Shear waves 

generate a considerable amount of horizontal motion at the ground surface, and are thus 

considered the most significant cause of seismic damage [93]. 

The propagation velocity of body waves depends on the stiffness of the materials through 

which they propagate. Geological materials are stiffest when compressed. Therefore, P-

waves propagate faster than other seismic waves and are the first to arrive at a given location. 

Liquids have no shear stiffness and therefore cannot carry S-waves. The propagation 

velocities of body waves are given by: 

 

  

1

1 2 1
p

E
V



  




 
 ,           s

G
V


                                                    (2.1) 

where Vp and Vs are the propagation velocity of P- and S- waves, respectively. Here, E is the 

elastic modulus, G the shear modulus, υ the Poisson’s ratio and ρ the density. Table 2.1 shows 

the typical values for P- and S- wave velocities. 

Table 2.1: P- and S- wave velocity for different materials [165; 170]. 

Material Type  S-Wave velocity (m/s) P-Wave velocity (m/s) 

Granite  3000-3500 4500-5500 

Sandstone, Shale  1200-1600 2300-3800 

Fractured rock  800-1400 2000-2500 

Moraine  300-600 1400-2000 

Saturated sand and Gravel  100-300 1400-1800 

Clay below GW*  40-100 1480-1520 

Organic soils  30-50 1480-1520 

Dry sand and Gravel  150-350 500-800 

Ice  1500-1600 3000-3500 

Water  0 1480-1520 

Air (-20°C to +60 °C)  - 315-370 

*GW: Ground Water level 

Surface waves are generated by the interaction between body waves, the surface and surficial 

layers of the earth. Therefore, they propagate along the ground surface with amplitudes that 

decrease roughly exponentially with depth. For engineering purposes, the most important 

surface waves are Rayleigh waves and Love waves. The interaction of P-waves and SV- 

waves with the ground surface produces Rayleigh waves [93]. Figure 2.2a shows the 

propagation of Rayleigh waves, which include both vertical and horizontal particle motion. 

An example of this type of motion is ocean surface waves [155]. The interaction of SH- 
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waves with a soft surface layer results in Love waves. Figure 2.2b illustrates the propagation 

of Love waves that do not have a vertical component of particle motion. 

Wavelength Undisturbed medium

(b)

Wavelength

(a)

Undisturbed medium

Figure 2.2: Deformations induced by surface waves: (a) Rayleigh wave; (b) Love wave [93]. 

2.2 One-dimensional wave propagation theory 

Consider the free vibration of a semi-infinitely long, linearly elastic soil column with unit 

cross-sectional area, as shown in Figure 2.3. 



 z dz   

u

 u u z dz  

 2 2dz u t  dz

z



 z dz   

 2 2dz w t  

 w w z dz  

w

z

z

1 1

dz

Free surface

E, G, 

dz

 a  b

1D Column

Figure 2.3: Stresses and displacements for an element of length dz in the semi-infinite long column 

due to one-dimensional propagation of (a) P-wave and (b) S-wave, adapted from [93; 156]. 

The one-dimensional (1D) equation of motion is obtained by constraining the particle motion 

to allow only axial deformation for the P-wave or only shear deformation for the S-wave 

propagation [93; 156]. As the compressive stress wave propagates along the column and 

passes through the small element in Figure 2.3a, axial stresses and displacements are induced. 

The dynamic equilibrium of the element gives the one-dimensional equation of motion: 

2 2

2 2
      

u u
dz dz

z t z t

 
   

    
     
    

                                                                           (2.2) 

where u is the displacement in the z-direction. The equation of motion is simplified by 

expressing the left-hand side as displacement, using stress-strain relationship, M  and
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u z    , where the constrained modulus is (1 ) (1 )(1 2 )M E       . These 

substitutions give the one-dimensional longitudinal wave equation of the column: 

2 2 2 2
2

2 2 2 2
     p

u M u u u
V

t z t z

   
  

   
                                                                                                   

(2.3) 

The particle velocity is determined by using the strain-displacement relationship: u z   , 

the stress-strain relationship: M   and the definition of the wave propagation velocity 

pz V t   : 

2

p

p p

p p

V tu z
u V V

t t M t M V V

    

 

 
     
  

                                                           (2.4) 

Eq. (2.4) shows that the particle velocity is proportional to the axial stress, and where 
pV  

is the specific impedance of the material, which is another important property that influences 

the behaviour of waves at boundaries.  

Figure 2.3b shows the shear stresses and displacements caused by the passage of the shear 

wave in the element. The dynamic equation of motion gives the one-dimensional equation of 

motion of the S-wave: 

2 2

2 2
      

w w
dz dz

z t z t

 
   

    
     
    

                                                                             (2.5) 

where w is the displacement in the transverse direction. With the same method as for the P-

wave, but using stress-strain relationship G   and w z    , the one-dimensional shear 

wave equation is obtained: 

2 2 2 2
2

2 2 2 2
     s

w G w w w
V

t z t z

   
  

   
                                                                                                  (2.6) 

The particle motion is derived by using w z   (from the strain-displacement relationship), 

G  (from the stress-strain relationship) and sz V t   (from the definition of the wave 

propagation velocity): 

2

s
s s

s s

V tw z
w V V

t t G t G V V

    

 

 
     
  

                                                               (2.7) 

Eq. (2.7) shows that the particle velocity is proportional to the shear stress, where sV is the 

specific impedance of the material for the shear wave propagation. 



Chapter 2: Wave Propagation in Half-Space 
 

11 

 

From the comparison between Eqs. (2.3) and (2.6), the one-dimensional wave equation for 

the body wave can be written as a partial differential equation of the form: 

2 2
2

2 2

v v
V

t z

 


 
                                                                                                                                             (2.8) 

where V is the wave propagation velocity corresponding to the type of stress wave of interest 

and v is the particle motion. The solution to such an equation can be written as:  

     , w wv z t f Vt z g Vt z                                                                                                           (2.9) 

where wf  and wg  can be any arbitrary functions of  Vt z  and  Vt z  satisfying 

Eq. (2.8). The argument f remains constant as z increases with time (at velocity V), and the 

argument g remains constant as z decreases with time. Therefore, the solution describes a 

displacement wave  wf Vt z  propagating with velocity V in the positive z-direction and 

another  wg Vt z  propagating with the same speed in the negative z-direction.  

2.3 Reflection of waves 

When a stress wave propagating along a one-dimensional body reaches an interface, part of 

its energy is transmitted to the other side of the interface and the rest is reflected back. At the 

interface, the following equilibrium must be satisfied:  

I R T                                                                                                                        (2.10) 

I R Tu u u                                                                                                                      (2.11) 

where I , R and T are the stresses of the incident, reflected and transmitted waves, 

respectively, where, Iu , Ru and Tu are the particle velocities of the incident, reflected and 

transmitted waves. At an interface between two materials with a specific impedance of A AV

and B BV , the particle velocity for incident, reflected and transmitted waves are obtained 

from  Eq. (2.4) or Eq. (2.7): 

I
I

A A

u
V




                                                                                                                        (2.12) 

T
T

B B

u
V




                                                                                                                        (2.13) 

R
R

A A

u
V






                                                                                                                        (2.14) 
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During reflection, a positive stress leads to a negative particle velocity which is illustrated 

by the negative sign in Eq. (2.14). Combining Eqs. (2.10)-(2.11) with Eqs. (2.12)-(2.14), 

and defining impedance ratio as z B B A AV V   results in: 

2 2

1

1

1

T B B z

I B B A A z

R B B A A z

I B B A A z

V

V V

V V

V V

  

   

   

   


   



  
  

 

                                                                                        (2.15) 

 

2 2

1

1

1

T A A

I B B A A z

R A A B B z

I B B A A z

u V

u V V

u V V

u V V



  

  

  


   



  
  

 

                                                                                        (2.16) 

From Eqs. (2.15) and (2.16), it is clear that the impedance ratio has a significant influence on 

the reflection and transmission waves at the interface. Different behaviours occur when the 

impedance ratio is less than or greater than 1. Of particular interest, for example, are the cases 

of 0z  and z  , where the former represents a free surface and the latter a rigid 

boundary. The particle velocity and the stress of the reflected and transmitted waves 

encountering a free surface and a rigid boundary are calculated from Eqs. (2.15) and (2.16) 

and presented in Table 2.2.  

Table 2.2: Particle velocity and stress of reflected and transmitted waves for free surface and a rigid 

boundary [11]. 

Impedance           Particle velocity         _                          Stress                _ 

ratio Incident Reflected Transmitted Incident Reflected Transmitted 

0 �̇�𝐼 �̇�𝐼 2�̇�𝐼 𝜎𝐼 −𝜎𝐼 0 

 �̇�𝐼 −�̇�𝐼 0 𝜎𝐼 𝜎𝐼 2𝜎𝐼 

Figure 2.4 shows the reflection of a rectangular stress pulse from a free surface and a rigid 

boundary. As can be seen, a pressure wave that reaches a free surface is reflected as a tensile 

wave and vice versa. The reason for this is that R I    while the particle velocity is 

maintained, R Iu u  (see Table 2.2). However, with a rigid boundary it is the other way 

round: the sign of the tension is maintained and the direction of the particle velocity is 

reversed. Figure 2.4 also shows the principle of superposition, i.e., the net stress and the net 
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particle velocity at each point where the impulses meet or reflect are the algebraic sums of 

the instantaneous stresses and the instantaneous particle velocities acting at that point [11; 

93]. 

STRESS PARTICLE VELOCITY

(a)

(b)

 

Figure 2.4: Reflection of a rectangular stress pulse at (a) a free surface and (b) a rigid boundary. 

Dashed lines are pulse components prior to superposition, reproduced from [11]. 

2.4 Three-dimensional wave propagation theory 

Seismic waves in half-space are described by three-dimensional wave propagation because 

the earth and the sources of seismic energy are three-dimensional. The three-dimensional 

equations of motion are obtained by the same step used for one-dimensional wave 

propagation [93]. Figure 2.5 shows the variation of stress in an infinitesimal cube in the x-

direction. The dynamic equilibrium in the x-direction gives: 

2

2

2

2

             

                      +            

                      +

x xx
xx xx

xy xyx xx xz
xy xy

xz
xz xz

u
dxdydz dydz dydz

t x

u
dxdz dxdz

y t x y z

dxdy dxdy
z


  

  
  


 

  
   

  

     
      

     

 
  

 

(2.17a) 

Dynamic equilibrium in the y- and z-directions is also obtained by repeating this operation: 
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y yx yy yzu

t x y z

  

   

  
   

                                                                                                   (2.17b) 

2

2
    

zyzxz zzu

t x y z

 


 
  

   
                                                                                                    (2.17c) 

where xu , 
yu and zu  are the displacement components in the x-, y- and z-directions, 

respectively. xx , 
yy and zz are normal stresses

xy yx  , xz zx   and 
yz zy   are shear 

stresses.  The first and second letters in the subscript describe the direction of the stress itself 

and the axis perpendicular to the plane in which it acts. 

𝜎𝑥𝑧 +
𝜕𝜎𝑥𝑧
𝜕𝑧

𝑑𝑧 

𝜎𝑥𝑦 +
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Figure 2.5: Stresses in the x-direction of an infinitesimal cube with dimensions dx × dy × dz [93]. 

Eqs. 2.17 describe the three-dimensional motion of an elastic solid. These equations are 

expressed in terms of displacements using stress-strain relationship, and strain-displacement 

relationship. The final equations of motion are formulated: 

 
2

2

2

k
L k

u
G G u

t i


 
 

   
 

,  k=x,y,z                                                                         (2.18) 

Where   is the volumetric strain, ku  is the displacement component with respect to the k-th 

spatial coordinate and L  is the Lame’s first constant which is expressed: 
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 
2

1 2
L

G






                                                                                                                                          (2.19) 

The solution of the equation of motion is a set of uncoupled wave equations representing the 

propagation of P- and S- waves.  

2
2 2

2 pV
t





 


                                                                                                                   (2.20) 
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2 2

2
,           

kj jk
s kj kj

uu
V

t j k

   
      

   
                                                                   (2.21) 

where 
kj is the rotation about the normal axis of the kj-plane. The numerical modelling of 

wave propagation is described below. 

2.5 Numerical modelling of wave propagation in half space 

Since there are no exact solutions for wave propagation in complex domains, numerical 

methods are widely used. Various numerical techniques have been used in seismic wave 

simulations, such as the finite difference method [8], boundary element and boundary integral 

methods [141], the finite element (FE) method [105], hybrid methods [124] and the spectral 

element method [59]. Compared to the other methods, the finite element method offers more 

flexibility in the simulation of geometrically complex domains. The following sections 

describe important aspects that must be considered in the FE modelling of earthquake waves. 

2.5.1 Truncated medium  

When simulating wave propagation with the FE method, it is not possible to model a semi-

infinite domain directly. The infinite domain must be converted into a finite domain by 

truncating the physical domain. Suitable boundary conditions should be defined at the 

truncated surface to absorb outgoing waves and prevent reflections at the truncated surface. 

Different types of absorbing boundary conditions have been developed, such as viscous 

boundary conditions [106], viscous spring boundary conditions [48; 99] and perfectly 

matched layers [16; 18]. One of the earliest non-reflective boundaries is the viscous boundary 

proposed by Lysmer and Kulemeyer [106], where dashpots on the truncation surface are used 

to absorb outgoing waves. The dashpot coefficients are obtained by enforcing the one-

dimensional radiation condition for body waves, i.e., outgoing waves should not return from 

the infinite domain to the finite domain. This radiation condition, which assumes that the 

body waves are perpendicular to the boundary, is defined as follows: 

    0pt V u t                                                                                                           (2.22a)  
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    0st V w t                                                                                                            (2.22b) 

In a FE model, the distributed damper is lumped at the boundary nodes by discrete dampers 

with coefficients (see Figure 2.6):  

p pc A V                                                                                                                      (2.23a) 

s sc A V                                                                                                                        (2.23b) 

where A is the tributary area for the boundary node. The viscous damper perfectly absorbs 

the body waves normally incident on the boundary, but body waves with arbitrary angle of 

incidence and surface waves are partially absorbed. However, acceptable accuracy is 

achieved if the boundary is placed at a sufficient distance from the wave source [38]. In this 

thesis, infinite elements provided by the FE software ABAQUS [1] are implemented as a 

non-reflective boundary for 2D and 3D models. The infinite element is based on the work of 

Zienkiewicz et al. [175] for static response and Lysmer and Kuhlemeyer [106] for dynamic 

response (see Figure 2.7).  

pc

sc

A

, w

,u

Absorbing 

boundary  

Figure 2.6: Schematic view of lumped viscous dampers in FE modelling, reproduced from [103]. 

 

Figure 2.7: Schematic view of infinite elements, reproduced from [1]. 
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2.5.2 Seismic source modelling 

One of the major challenges in numerical modelling of seismic wave propagation is the 

introduction of seismic loading. Two main methods can be considered for modelling seismic 

sources [129]. There are also other methods that simplify the modelling of seismic sources. 

In the following sections, the two main methods are presented first, followed by some of the 

simplified methods. 

1. Including seismic source within the computational domain. This is a general method 

for modelling seismic sources that requires a large computational domain to simulate the 

propagation of seismic waves from the earthquake source to the local site (see Figure 2.8a). 

Point source [64; 72; 73] and extended source models [14; 67; 125] can be used to model 

seismic sources within a computational domain. The former is suitable for simulating faults 

with insignificant size effects compared to the seismic zone dimension or for simulating weak 

earthquakes and aftershocks. The latter is used to model faults that are relatively large 

compared to the seismic zone or to simulate strong earthquake events. However, there are 

limitations in simulating seismic source within the computational domain, such as: lack of 

information about the rupture of the specific earthquake, simulation models being limited to 

lower-frequency components, and also that this method is expensive and time-consuming in 

practice [86; 129]. 

2. The seismic source is considered outside the computational domain. In this method, 

seismic loading is introduced into the FE model in the form of effective earthquake forces 

(see Figure 2.8b). This method is also called the Domain Reduction Method (DRM) and was 

proposed by Bielak et al [19]. The DRM is a two-stage FE method in which the effects of 

incoming waves due to remote excitations are introduced by equivalent nodal forces applied 

in a single continuous layer of elements inside the truncated boundary. The rigorous 

procedure for free-field foundations is based on the use of a perfectly matched layer (PML) 

as the absorbing boundary and DRM for the earthquake input mechanism [17; 173]. 

The PML boundary and DRM procedure are currently not available in most commercial FE 

codes; the only exception is LS-DYNA [100]. To overcome this, Lokke and Chopra [103] 

have developed a DRM-based method using the direct FE method for viscous boundaries. In 

this method, the effective earthquake forces are applied at the non-reflected boundaries. The 

effective earthquake forces at non-reflected boundaries can be calculated with an analytical 

approach using one-dimensional wave theory, a method developed for boundaries with 

viscous springs [28; 35; 89]. Subsequently, Song et al. [147] further developed this method 

for use with infinite elements. In the following chapter, two methods for calculating the 

effective earthquake forces are presented. In the first method, the effective earthquake forces 

are calculated by direct FE modelling and in the second by an analytical approach. 

There are other methods that simplify the modelling of the seismic source, such as 1) using 

only the artificial boundary condition [41; 42], 2) tied degrees of freedom at the boundaries 
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[175] and 3) massless foundation [37]. In the first method, the effective earthquake forces on 

the artificial boundary side are excluded. In the second, the degrees of freedom of the nodes 

at each level are assumed to be bounded at the side of the truncated domain. The method 

satisfies the 1D wave propagation requirements, but the radiation condition is not satisfied 

and waves may be reflected from the boundaries. To minimise scattered wave reflections 

from the boundaries, a large domain size should be considered [148]. The third method is to 

use a common approximation in seismic analysis of dams. The massless approach assumes 

that the rock foundation has no mass. Therefore, the flexibility of the foundation is considered 

in the dam-foundation interaction system. A limitation of the massless method is the 

neglected radiation damping effect of the infinite foundation [28; 35; 171]. 

(b)

Fault

Free surface

Computational domain
Absorbing

boundary

Fault

Free surface

Computational domain
Absorbing

boundary

(a)

Figure 2.8: Schematic view of seismic source modelling: (a) simulation of seismic source in the 

computational domain and (b) excluding seismic source from computational domain by computing 

effective earthquake forces. 

2.5.3 Wave propagation in a discrete mesh 

When seismic waves propagate through the FE mesh, this behaves like a low-pass filter with 

a certain cut-off frequency. In this way, seismic waves above the cut-off frequency cannot 

propagate through the FE model. The cut-off frequency is considered to be the highest 

frequency of interest. The maximum element size must be adjusted to capture the wavelength 

of the cut-off frequency. To achieve acceptance accuracy in a FE model, Kuhlemeyer and 

Lysmer [94] recommended eight elements per wavelength of the slowest-propagating body 

wave (shear wave) in the elastic material to simulate seismic wave propagation: 

8 s
el

V
l

f
                                                                                                                  (2.24) 

where   is the wavelength of the cut-off frequency f  (Hz).  To see the significant effect of 

a FE mesh in seismic wave transmission, a 1D FE column exposed to vertical propagation of 

harmonic S- and P- waves with uniform amplitude and frequency has been modelled. The 

1D FE column is developed by constraining the degrees of freedom of the nodes on each 

level. For the propagation of the S-wave, a tangential dashpot is placed at the base of the FE 
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column and subjected to a shear stress 2 s IV w  , where Iw is the incident displacement 

time history at the base of the column (see Figure 2.9). For the propagation of the P-wave, a 

normal dashpot is placed at the base of the FE column and subjected to a normal stress

2 p IV u  , where Iu is the incident displacement time history at the base of the FE column 

(see Figure 2.10). The derivation of the equations for the base stresses applied to the 

absorbing boundaries is described in the following chapter. The material properties assigned 

to the column have a shear wave propagation velocity of 1600 m/s2, a density of 2500 kg/m3 

and a Poisson's ratio of 1/3. The analyses are performed using the FE software ABAQUS [1]. 

Tied DOFs

2 s IV w 
sc

 

 

 

Figure 2.9: Propagation of 1D shear stresses in an FE column. 

 

 

Tied DOFs

2 p IV u 

 

 

 

Figure 2.10: Propagation of 1D P-wave stresses in an FE column. 
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Figure 2.11 shows the recorded time history of the displacement at the free surface of the 1D 

FE columns due to the propagation of S-waves for different mesh sizes corresponding to two, 

three, five and eight elements per wavelength. The results are compared with the theoretical 

solution. As can be seen from the figure, at two and three elements per wavelength, the FE 

mesh cannot capture the seismic wave and numerical dissipation occurs. With five elements 

per wavelength, the seismic wave is captured, but with some errors, and with eight elements, 

acceptable accuracy is achieved. With the P-wave, on the other hand, the wave is captured 

with two and three elements (see Figure 2.12). 

  

  

 

Figure 2.11: FE mesh effect on transmitting a harmonic S-wave with a frequency of 1 Hz in a 1D 

FE column, considering two, three, five and eight elements per wavelength. 
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Figure 2.12: FE mesh effect on transmitting a P-wave with frequency of 1 Hz in a 1D FE column, 

considering two and three elements per wavelength. 
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CHAPTER 3 

 

Effective Earthquake Forces 

This chapter describes the formulation of effective earthquake forces. It then presents the 

calculations of effective forces based on: 1) the direct FE method [103] and 2) the analytical 

method [147]. The chapter ends with a description of a method developed for seismic wave 

deconvolution. 

3.1 Formulation of effective earthquake forces 

The effective earthquake forces are determined based on the scattering problem, where the 

local structure disturbs the free-field motion in the unbounded media. Figure 3.1a shows the 

semi-infinite seismic region before the construction of the local structure. 

Fault

0 0: r
f

Free surface

0: r

Fault

: t r
f

Free surface

0: t r r

(a) (b)

Figure 3.1: Local structure and truncated domain as a scattering problem: (a) semi-infinite seismic 

region before constructing local structure with displacement field defined by r0 in 
0   ; (b) 

truncated seismic region including local structure with displacement field defined by the total motion 

rt in   and the scattered motion  
0t r r in

 , reproduced from [103]. 

This domain is divided into two sub-domains: the region interior of the future absorbing 

boundary Гf and the semi-unbounded exterior region, denoted respectively by 
0  and 

 .  

The free-field displacement at the nodes in both sub-domains is denoted by 
0

r . The actual 

system with local structure is also separated into two sub-domains: the truncated seismic 

region with local structure interior of the absorbing boundary Гf and the semi-unbounded 
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exterior region, denoted by   and  . The displacement field in the actual system, which 

contains local structure, is defined by the total displacement 
t

r  in the interior region   and 

the scattered motion 
0t r r  in the exterior region  . Therefore, the total motion in the 

system consists of the free-field motion and the scattered motion caused by the presence of 

the local structure.  

The governing equation of motion in the FE model of the local structure with a truncated 

domain and an absorbing boundary (Figure 3.1b) is: 

 t t t t
Mr + Cr + f r = q                                                                                                        (3.1) 

where M and C are the mass and damping matrices, respectively;  t
f r is the internal forces 

vector, which may be non-linear in the local structure and the adjacent part of the truncated 

domain; and 
t

q  are the forces associated with the absorbing boundary
f , which include the 

effect of the excitation induced by the propagation of seismic waves from a distant earthquake 

source to the local site and the radiation conditions at the boundaries. 

The semi-unbounded region 
  is modelled by the viscous-damper boundary, where the 

displacements are defined by the scattered motion, 
0tu u u  and

0tw w w  . Since the 

region 
 is assumed to be linear, the boundary tractions associated with the scattered motion 

are also defined by 
0t    and

0t    . Substituting the scattered motion and the 

corresponding tractions into the viscous boundary radiation condition, Eq. (2.22), yields: 

0 0t t

pV u u                                                                                                           (3.2a) 

0 0t t

pV w w                                                                                                           (3.2b) 

Therefore, the total tractions at the non-reflected boundary are composed of two parts: the 

free-field tractions, and the product of the scattered motion and a damper coefficient. For the 

boundary
f , Eq. (3.2) in matrix and vector notation can be written: 

0 0t t

f
    q q C r r                                                                                                         (3.3) 

where 
0

q is the nodal forces vector consistent with the free-field tractions and fC  is the 

matrix of damper coefficients 
pc and sc . The final equations of motion for the local structure 

and the truncated domain are obtained by substituting Eq. (3.3) into Eq. (3.1) and rearranging 

the terms: 
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    0t t t

fMr + C C r + f r = f                                                                                            (3.4) 

where the effective earthquake forces acting on the boundary 
f are: 

0 0 0

f f q C r                                                                                                                    (3.5) 

The comparison between Eqs. (3.4) and (3.1) shows that the unknown forces 
t

q  at the 

absorbing boundary are expressed by the viscous damper forces t

fC r and the effective 

earthquake forces 0
f . The effective earthquake forces consist of two parts: (1) the forces 

0
q  

which are consistent with the free-field tractions at 
f , and (2) 0

fC r , the damper forces 

determined from the spatially varying free-field motion at 
f . The methods for calculating 

the effective earthquake forces are described below. 

3.2 Computing effective earthquake forces 

Effective earthquake motions are calculated based on the assumption of vertical propagation 

of seismic waves from an underlying elastic medium.  

3.2.1 Bottom boundary 

Assuming that the free-field system (Figure 3.1a) is linear and homogenous or horizontally 

layered, the tractions at bottom boundary due to vertical propagation of seismic waves can 

be defined as the sum of the tractions 0

I  and 0

R  due to the incident (propagating upward) 

and reflected (propagating downward) seismic waves, respectively: 

0 0 0

I R                                                                                                                         (3.6) 

The free-field motion at the boundary in the normal direction is also defined as the sum of 

the incident wave 0

Iu  and reflected wave 0

Ru , ( 0 0 0

I Ru u u  ). The radiation condition at the 

boundary must be fulfilled for both the incident and the reflected wave: 

  0 0 0 00                   0      I p I R p RV u V u                                                                    (3.7) 

Substituting 0 0 0

R Iu u u   into Eq. (3.7), and inserting the result into Eq. (3.6), a new 

expression for the free-field boundary tractions 
0 is obtained: 

0 0 02p IV u u                                                                                                              (3.8a) 

For the tangential tractions
0 , a similar expression is derived:  
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0 0 02s IV w w                                                                                                              (3.8b) 

Free-field tractions in Eq. (3.8) in vector and matrix notation are written as: 

 
0 0 02f I

   q c r r                                                                                                            (3.9) 

The final expression for the effective earthquake forces at the bottom of the foundation 

domain is obtained by substituting Eq. (3.9) into Eq. (3.5): 

0 02 f If C r                                                                                                                        (3.10) 

where 0

Ir  is the incident (upward-propagating) seismic wave. The incident motion is 

calculated as 1/2 of the outcrop motion at the bottom boundary. The outcrop motion at the 

base of the foundation is obtained from the deconvolution analysis described in this chapter.   

3.2.2 Side boundaries 

The free-field motions and tractions at two side boundaries are computed by an auxiliary 

analysis of the free-field system shown in Figure 3.1a. This system is reduced to a single FE 

column with a viscous damper at the base subjected to the forces of Eq. (3.10). The FE 

column is analysed and the free-field motions 0
r  and tractions 0

q  at each node along the 

height are calculated. The procedure is shown in Figure 3.2. 

Tied DOFs

  Record 

 and 

  Apply forces 

 from Eq. (3.5)

to side boundaries

  Apply forces 

 from Eq. (3.10) to bottom boundaries

  Apply forces 

 from Eq. (3.10) 

Viscous damper

0
q 0

r

0
f

0
f

0
f

 

Figure 3.2: Computing effective earthquake forces 
0

f with direct FE method using auxiliary 

analysis of 1D column to compute 
0

r and 
0

q , reproduced from [103]. 

Based on this processor, the following steps are required to compute the lateral effective 

earthquake forces: 

1. Deconvolution: The outcrop motion at the bottom boundary is computed for each 

component of the surface control motion  k

ga t , k =x, y by 1D deconvolution methods. 
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2. Computing effective forces at FE column bottom boundary: The effective earthquake 

forces 0
f  at the bottom boundary are calculated from Eq. (3.10). The incident (upward-

propagating) 0

Ir is equal to the 1/2 of the outcrop motion extracted from the deconvolution 

analysis. 

3. Developing 1D FE column: The 1D FE column with a single column of elements having 

the same mesh density as the main FE model at the side boundaries is developed. Viscous 

dampers are attached at the base in the x- and y-directions (Figure 3.2). 

4. Analysing FE column: The column is analysed subjected to the force computed at step 2 

and the free-field velocities 0
r  and forces 0

q  at each node over the height are recorded. 

5. Computing lateral earthquake forces: The effective earthquake forces 0
f at the side 

boundaries are determined from Eq. (3.5) using 0
r  and 0

q  recorded in step 4. 

3.2.3 Propagation of high-frequency impulsive load 

Case B1 presented at the 15th ICOLD International Benchmark Workshop [140] was not 

included in Paper IV due to space limitations. Case B1 was an analysis of the dam foundation 

using a high-frequency impulsive loading to show how modelling of the free field at non-

reflective boundaries can affect the propagation of shear waves in the rock foundation. 

Figure 3.3 shows a time history of the impulse velocity and the corresponding Fourier 

amplitude at the free surface. The characteristic frequency of the load is 40 Hz and the signal 

sampling frequency is 1000 Hz. 

 

Figure 3.3: High-frequency impulsive time history and corresponding Fourier amplitude spectra. 

The response of the foundation was evaluated subjected to a vertical propagation of SH-

waves and the responses at the points shown in Figure 3.4 were compared. The incident shear 

wave at the base of the foundation is 1/2 the free surface motion because the foundation is 

homogeneous and undamped [27]. The effective earthquake forces at the base of the 

foundation were obtained from Eq. (3.10). The lateral effective earthquake forces were 
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determined according to the steps described in the previous section. The generation of the 1D 

FE column and the force transfer were carried out using Python programming [130]. The 

analyses were performed for the two cases with inclusion and then with neglect of the lateral 

earthquake forces. 

 

Figure 3.4: Schematic view of a two-dimensional foundation and locations of the points used for 

results comparison. Dimensions: L=700 m, L1=20 m, L2= 100 m and H=122 m. 

Figure 3.5 shows the recorded velocity time history at specified points on the foundation base 

and the free surface in the foundation, taking into account the effective earthquake forces at 

the lateral absorbing boundaries. Figure 3.6 shows the recorded velocity time history in the 

foundation without taking into account the effective earthquake forces at the lateral absorbing 

boundaries. 

 

Figure 3.5: Recorded velocity time history in the foundation, considering effective earthquake forces 

at absorbing boundaries: (a) base of the foundation and (b) free surface. 
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Figure 3.6: Recorded velocity time history in the foundation, neglecting lateral effective earthquake 

forces at absorbing boundaries: (a) base of the foundation and (b) free surface. 

From Figure 3.5 it can be seen that all points correspond exactly to the theoretical solution 

of wave propagation. In the case where the lateral effective earthquake forces are not 

considered (Figure 3.6), the points on the absorbing boundary and near the boundary are 

considerably attenuated by the absorbing boundaries. This effect can also be seen in 

Figure 3.7, which shows the propagation of the high-frequency impulsive shear stress wave 

at the time 0.006 seconds before the stress wave arrives at the surface. As can be seen in 

Figure 3.7a, a shear stress propagates uniformly along the boundaries and within the area. 

However, in the model without effective earthquake forces, the lateral absorbing boundaries 

attenuate the upward-going shear stress wave. 

(a)  

(b)  

Figure 3.7: Propagation of high-frequency impulsive shear stress at time 0.006 s: (a) including 

lateral effective earthquake forces and (b) excluding lateral effective earthquake forces. 

3.3 Effective earthquake forces for foundations with uniform canyon 

For a three-dimensional, semi-unbounded seismic region with an irregular free surface, such 

as a dam foundation with canyon, the effective earthquake forces are also formulated based 

on a scattering problem where the dam disturbs a free-field state of the system. Similar to the 
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2D system described above, the effective earthquake forces are calculated from Eq. (3.10) 

for the bottom foundation boundaries and Eq. (3.5) for the lateral foundation boundaries. The 

free-field motions 0
r  and tractions 0

q  at each node are calculated using the auxiliary 

analyses. The free-field system shown in Figure 3.8a is reduced to a two-dimensional free-

field system with corresponding 1D corner columns, Figure 3.8b. The effective earthquake 

forces at each node along the lateral boundaries are calculated from Eq. (3.5), where 0
r and 

0
q  are determined from analyses of a 1D column assumed at the along-canyon boundaries, 

Figure 3.8c. Free-field motions 0
r  and tractions 0

q  at the cross –canyon boundaries at the 

upstream and downstream ends of the domain are determined by analysing the 2D system 

shown in Figure 3.8d. The required steps for auxiliary analyses are described in 

Sections 3.3.1-2. 







1D column

2D system

Record 
0

r and

Apply forces

From Eq. (3.10)

Apply forces

from Eq. (3.10)

to bottom boundary

Apply forces

from Eq. (3.5)

to side boundaries
Viscous 

damper(Infinite 

element)

Viscous 

damper(Infinite 

element)

(a) (b)

(c) (d)

Record 
and

0
r

0
q0

q

 

Figure 3.8: Effective earthquake forces with the direct FE method: (a) 3D free-field system with 

uniform canyon cut in the foundation rock half-space; (b) two-dimensional free-field system with 

corresponding 1D corner columns; (c) analysis of 1D foundation-rock column to compute 
0

r and q0 

at side boundaries, (d) analysis of 2D system to compute 
0

r  and q0 at upstream and downstream 

boundaries, reproduced from [103]. 

This method was implemented in Papers III and V. Analyses were performed using Python 

programming [130] to develop 1D and 2D foundation rock systems and transferring forces. 

The described procedure for calculating the effective earthquake forces is rigorous because 

the free-field system is identical to the actual system in the domain exterior to the non-
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reflected boundaries. However, it requires large amounts of data transfer and bookkeeping. 

In the following section, an analytical method based on one-dimensional wave propagation 

theory is presented that simplifies the free-field system to the one-dimensional column [147]. 

3.3.1 Analysis of 1D column 

The following steps are required to develop the 1D corner columns shown in Figure 3.8c: 

1. Develop an FE model for the 1D foundation column that has the same mesh density as the 

boundary of the 2D system. 

2. For each component of ground motion, k x, y, z, add a viscous damper at the base in the 

k direction and constrain the DOFs in the other directions to allow only shear (k x, z) or 

axial (k=y) deformations of the 1D column. 

3. Apply the effective earthquake forces from Eq. (3.10) to the base in the k direction and 

compute 0
r  and 0

q at each node along the height. 

3.3.2 Analysis of 2D system 

The following steps are required to develop the 2D system shown in Figure 3.8d: 

1. Develop an FE model for the 2D foundation-rock system with the same mesh density as 

the main FE model at the upstream/downstream boundary. 

2. For each component of ground motion, k =x, y, z, add viscous dampers at the bottom and 

side boundaries and constrain the DOFs at the faces to model the "infinite length" in the 

direction perpendicular to the model boundary. 

3. Apply the effective earthquake forces from Eq. (3.10) to the bottom boundary and from 

Eq. (3.5) to the side boundaries using 0
r  and 0

q  from the 1D analysis, and compute 0
r  and 

0
q at each node in the 2D system. 

3.4 Analytical method 

In this method, the free-field system of the foundation with any free surface shape is reduced 

to the 1D column. The effective earthquake forces at the absorbing boundaries are determined 

by applying the one-dimensional wave theory. The effective earthquake forces are calculated 

using the following equation: 

0 0 0

f f C r σ n                                                                                                               (3.11)                 

where 0
σ  the free-field stress and n  cosine vectors of the outer normal direction of the 

artificial boundary. The components of the free-field stress are obtained from elastic theory: 
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                               (3.12)                   

where 
T

x y zu u u   denotes the displacement vector. When a P-wave propagates 

vertically from the bottom boundary, the displacements of the incident wave are

 0,  0,  x y z z Iu u u u t   . The free-field displacement, velocity and the partial derivative 

of the displacement in height h are determined from the 1D wave motion theory in two parts, 

the incident and the reflected waves: 
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                                                                (3.13)                      

where H is the distance from the bottom boundary to the free surface. Using Eqs. (3.12) and 

(3.13) and taking into account the conditions 0,  0,  0x yu u h    at the bottom boundary, 

the free-field stress is calculated as follows: 
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Substituting Eq. (3.14) into Eq. (3.11) and taking into account the boundary condition

 0 0 1
T

n   , the effective earthquake force in each direction at the bottom boundary is 

expressed as: 
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        (3.15)          

When the shear wave propagates vertically from the bottom boundary, the particle 

displacements within the input wave are  ,  0,  0x xI y zu u t u u   , and the effective forces 

are derived by the analogous method: 
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                              (3.16) 

The corresponding effective forces on the four lateral boundaries are derived using the above 

method. A MATLAB script [110] was used to obtain the effective forces at the foundation 

boundary nodes, which were then assigned to each node in the FE model. A MATLAB script 

developed for two- and three-dimensional FE models is implemented in Papers III, IV and 

V. 

3.5 Deconvolution 

Design earthquake motions for dynamic analyses are usually given as outcrop motions. 

However, for direct FE analysis, the seismic input must be applied at the base of the 

foundation. The corresponding input motion at depth can be calculated by a deconvolution 

analysis. A typical method for this is carried out in the frequency domain based on 1D shear 

wave propagation in horizontally layered media, using 1D wave propagation software such 

as SHAKE or DEEPSOIL [81; 143], or by directly calculating the inverse of the transfer 

function for a 1D half-space [93]. Software for 1D wave propagation usually calculates two 
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different base motions at depth: a within motion and an outcrop motion. The within motion 

is the superposition of the incident and reflected waves, i.e., the actual motion at a certain 

depth in half-space. This type of base motion is suitable for the input of a rigid base, where 

a time history of the acceleration (or velocity or displacement) is specified at the base. The 

main disadvantage of the rigid base is that the downward wave is reflected back to the model. 

A rigid base is suitable for example when simulating low-velocity sediments over high-

velocity rocks at the base [112]. In Papers I and II, rigid base motion is used for the 

propagation of waves from the hard rock to the soil layer. The outcrop motion is the motion 

that would occur at a theoretical outcrop location (free surface) at the same depth. To fulfil 

the condition of zero shear stress at the free surface, the upward and downward wave should 

be the same. Therefore, the outcrop motion is equal to twice the amplitude of the incident 

motion. This type of base motion is suitable for a compliant base where an absorbing 

boundary is used at the base. In this case, the input motion should be applied in the form of 

seismic stress or nodal force. Note that applying the time history of the incident acceleration 

(or velocity or displacement) at the absorbing boundary is equivalent to considering a rigid 

base [112; 128]. 

In this thesis, a deconvolution method in the time domain is developed based on an iterative 

procedure. This type of iterative method has been used as an earthquake input mechanism in 

2D systems of dam foundations [148]. Here, the iterative method is developed using a one-

dimensional FE column subjected to vertical propagation of P- or S- waves. In this method, 

the frequency and amplitude of the incident motion are adjusted to obtain the target motion 

at the surface. In the first estimation, it is assumed that the outcrop motion at the base is 

identical to the target motion. Therefore, the incident motion is considered to be 1/2 of the 

target motion. The effective earthquake forces are calculated from Eq. (3.10) and applied to 

the base of the 1D FE column:   

   Input Input2 S-wavei s iF t V u t                                                                                         (3.17a) 

   Input Input2 P-wavei p iF t V u t                                                                                        (3.17b) 

where Input

iu  is the velocity time history of the incident wave. The 1D FE column subjected 

to the assumed incident motion is analysed and the acceleration time history of the surface 

and the base is recorded. The correction factor is then calculated by dividing the target 

response acceleration,  Target

aS   by the response acceleration of the recorded motion at the 

free surface of the column,  Response

a iS 
:     

 
 

 

Target

Response

a

a i

S
H

S






                                                                                                       (3.18) 
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The input motion is modified by multiplying the correction factor by the Fast Fourier 

Transform (FFT) [32] of the incident motion,  Input

1iA 
:  

     Input Input

1i iA H A                                                                                               (3.19) 

The new incident motion is transformed into the time domain by Inverse Fast Fourier 

Transform (IFFT) [32]. The 1D FE column is analysed using the new incoming motion. The 

free surface motion generated is compared with the target motion. The iteration procedure is 

continued until the response motion on the surface closely matches the target motion. The 

accuracy can be calculated using the Euclidean 2 norm [27]. 
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                                                                                       (3.20) 

In the last iteration step, the acceleration time history at the base of the FE column is recorded 

as a within motion consisting of incident and reflected waves. The outcrop motion is twice 

the modified input motion: 

  Responsewithin
deconvolved baseitu u                                                                                          (3.21a) 

 outcrop Input
deconvolved 2 itu u                                                                                             (3.21b) 

The procedure described is summarised in Figure 3.9. 
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Figure 3.9: Deconvolution of the seismic surface ground motions using time domain iteration method. 
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To validate the iteration procedure described above, the deconvolution of the Taft earthquake 

[127] is performed for the foundation shown in Figure 3.4 and compared with within motion 

at the foundation base provided by the formulators of the 15th ICOLD benchmark workshop 

[140], which was computed based on the frequency domain analysis. Figure 3.10 shows the 

deconvolution of the Taft earthquake using the iteration method in the time domain. At each 

iteration, the recorded motion at the base and free surface of the column is recorded. As can 

be seen from the figure, the free surface motion recorded in the second iteration agrees with 

the target free surface motion with an error of r= 1.5%.  

 

 

Figure 3.10: Deconvolution of the Taft earthquake using time domain iteration procedure. 

The within motion recorded in the iteration procedure is compared in Figure 3.11 with the 

deconvolved motion computed by frequency method (ICOLD) [140]. It can be seen from the 

figure that the deconvolved motions determined by the two methods are very similar. To 

compare the free surface motions produced by the deconvolved motions, a 1D convolution 

analysis was performed. As can be seen in the figure, the recorded motions of the free surface 

in the iteration method match the target surface motion. For the frequency method (ICOLD) 

[140], there are only minor deviations at high frequencies. The reason for this could be related 

to the input defined for the deconvolution method in the frequency domain. For example, the 

time domain analysis uses Rayleigh damping, which is frequency dependent, while the 

frequency domain analysis uses frequency-independent damping. The advantage of 

deconvolution in the time domain is that the material properties considered in the FE column 

are the same as in the FE model. With the iteration method in the time domain, the non-linear 

material behaviour can be taken into account in the case of strong ground motion. 

Furthermore, the available deconvolution software is based on the vertical propagation of 

shear waves. Here, deconvolution is performed for both P- and S- waves. However, this 

method should be extended to take into account the angle of incidence of the waves, as the 
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angle of incidence is not vertical for soft soil layers near the surface. The inclusion of the 

non-linearity of the material should also be investigated. 

 

 

Figure 3.11: Comparison between deconvolved Taft response spectras computed with iteration 

method and provided by ICOLD [140] and the corresponding produced surface response spectra 

from 1D convolution analysis. 

 



  

 

 

 

 

CHAPTER 4 

 

Numerical Modelling 

This chapter describes numerical aspects for the FE modelling of underground pipelines and 

dam-foundation-reservoir systems. Numerical examples for these types of hydraulic 

structures are then presented. 

4.1 Underground pipelines 

For seismic analysis of buried pipelines, accounting for the soil-pipe interaction, the 

following types of modelling approaches can be found in the literature: 

1) Quasi-static analysis with soil-structure interaction, where a soil-pipeline system is 

modelled as a beam embedded in an infinite isotropic homogeneous elastic-plastic medium 

or surrounded by soil springs, thereby neglecting inertia and damping terms in the dynamic 

equation [159; 161]. 

 2) Dynamic analysis considering the theory of beams on elastic foundations. In this method, 

the pipe is modelled as a lumped mass and the interaction between the soil and the pipe is 

considered through a spring-dashpot system whose reactions are derived from static and 

dynamic continuum theories [43; 44; 82; 83; 120]. 

3) Dynamic analysis by considering shell theory with soil-structure interaction [46; 90; 91; 

117; 153; 168].  

4) Three-dimensional FE analysis where the pipe is modelled by shell elements with soil-

pipe interaction considered in the model including the soil around the pipe [167]. 

5) The Beam on Non-linear Winkler Foundation (BNWF) model, in which the pipe is 

modelled with beam or shell elements and the soil is represented by independent springs 

lumped at discrete locations on the pipe. This method was proposed by the American 

Lifelines Alliance (ALA) and has recently been implemented by many authors, e.g., [84; 85; 

96; 133; 136; 137; 138].  
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Models 1 and 2 cannot be used for evaluation of the stress distribution around the cross 

section of the pipeline. Models 3 and 4 offer the possibility to consider the deformation of 

the cross section. However, the solution procedures contain a number of equations, which in 

turn require a large computational effort. Model 5 can be used to derive the cross-sectional 

deformation of the pipeline, but it has some limitations, e.g., in modelling the lateral variation 

of the local soil. To address this, this project implements two-dimensional plain strain models 

where the interaction at the soil-pipe interface is modelled by springs with the behaviour 

proposed in the ALA guideline. With this model, both longitudinal and cross sections of 

pipelines are modelled taking into account the lateral variation of the local soil. 

4.2 Soil-pipe interface 

The soil-pipe interface formulation is modelled using a method proposed by the American 

Lifeline Alliance (ALA) [9]. This model consists of springs that are distributed in three 

perpendicular directions with respect to the pipe (see Figure 4.1). The springs have an elastic-

plastic behaviour that can describe the sliding of pipelines in the soil during strong 

earthquakes. The equations corresponding to the spring elements are described below. A full 

description of how to calculate the parameters can be found in Papers I and II. 

Maximum soil resistance to movement in the pipe axial direction is given in units of force 

per unit length of pipe, as: 

01
tan

2
u a B s

K
t Dc DH    


                                                                                    (4.1)  
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Figure 4.1: Load-deformation relationships for spring elements representing soil-pipeline 

interaction [9]. 
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These soil springs are based on pile shaft load transfer theory, where D is the outside diameter 

of the pipe, c the coefficient of cohesion of backfill soil, HB the depth of soil above the center 

of the pipeline, s  the effective unit weight of soil, a an adhesion factor,    the interface 

angle of friction between pipe and soil, and K0 a coefficient of soil pressure at rest. An 

ultimate relative displacement (xu) corresponding to maximum soil resistance (tu) is 3-5 mm 

for sand and 8-10 mm for clays. The maximum lateral resistance of soil per unit length of 

pipe can be calculated as: 

u ch qh s Bp N c D N H D                                                                                                    (4.2) 

These soil springs are picked up from footing and vertical anchor plate pull-out capacity 

theory and laboratory tests on model pipelines simulating horizontal pipe movements. Here, 

Nch and Nqh are the horizontal bearing capacity factor for clay and sandy soil, respectively. 

Relative displacement yu at pu can be determined by: 

0.04 0.01 to 0.02
2

u B

D
y H D D

 
   

 
                                                                        (4.3) 

The soil spring properties are different for uplift and bearing cases. The maximum soil 

resistance per unit length of the pipeline in vertical uplift can be calculated as: 

  cv qv s Bu up
q N cD N H D                                                                                                 (4.4) 

The properties of these soil springs are from pull-out capacity theory and laboratory tests on 

anchor plates and models of buried pipelines, where Ncv and Nqv are the vertical uplift factor 

for clay and sand, respectively. The mobilising displacement of soil, zu(up) at qu(up), can be 

taken as 0.01HB to 0.02HB  for sands and 0.1HB  to 0.2HB  for clay. The maximum soil 

resistance per unit length of pipeline in vertical bearing can be calculated as: 

 

2

2
c q s B su down

D
q N cD N H D N                                                                                (4.5)     

These soil springs are based on bearing capacity theory for footings, where Nc, Nq and  are 

bearing capacity factors and s  is the total unit weight of soil. The soil displacement, zu(down) 

at qu(down), can be taken as 0.1D for granular soils and 0.2D for cohesive soils. 

4.3 Numerical example for underground concrete pipeline 

In this example, a reinforced concrete pipeline with a nominal diameter of 1200 mm and a 

wall thickness of 135 mm was used for the analyses [135]. The concrete pipeline segments 

are 2 m long and the 10 cm joints are sealed with cement mortar. Material types B500B and 

C45/55 are used for the reinforcement and concrete, respectively [22; 56]. The joints of the 

pipelines are bell and spigot type which are sealed with cement mortar. The pipe joints are 
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modelled based on Shi's model [145]. The performance of the joints is influenced by the pull-

out capacity of the joints, which depends on the tensile strength. Therefore, the joints are 

modelled by elastic spring elements that take into account the axial and the bending stiffness 

of the joints depending on the cement mortar properties. A modulus of elasticity of 24.9 GPa, 

based on [21], is assumed for the mortar. For the simulation of the soil around the pipelines, 

three types of friction soils with similar properties to Swedish soil types are assumed: the 

first with low, the second with medium and the third with high stiffness, see Table 4.1 [6; 

75]. 

 Table 4.1: Soil and rock properties. 

Soil-rock  

type  

Density 

(kg/m3) 

Average shear 

wave velocity (m/s) 

Friction angle Young’s 

modulus (GPa) 

Loose  1400 75 28° 0.021 

Medium  1800 250 38° 0.293 

Dense  2200 450 45° 1.158 

Granite  2500 2600 - 40 

As for the damping ratio in the soil according to Eurocode 8 [57], the internal soil damping 

should be measured by appropriate field or laboratory tests. If there are no direct 

measurements and the ground acceleration ratio is less than 0.1g, a damping ratio of 0.03 

should be used. For ground acceleration ratios of 0.1g-0.2g and 0.2g-0.3g, a damping ratio 

of 0.03-0.06 and 0.06-0.10 respectively can be used. Here, for a seismic excitation with 

amplitude of 0.146g, a material damping ratio of 0.05 was assumed for soil and pipeline [58]. 

Two-dimensional (2D) plane strain FE models were developed for the seismic analysis of 

concrete pipelines. The models describe two cross sections of the pipelines: longitudinal and 

transverse cross sections. The FE domain for these cross sections is shown in Figures 4.2-

4.4. For the longitudinal cross section, two cases are considered. The first describes the 

pipeline buried in uniform ground (see Figure 4.2) and the second shows the pipeline buried 

in non-uniform ground caused by inclined bedrock (see Figure 4.3). The FE models are 

discretised with four-node bilinear plane strain quadrilateral (CPE4R) elements for the soil 

medium and the pipe cross section, three-node quadratic 2D truss (T2D3) elements for the 

reinforcement and two-node linear 2D beam (B21) elements for the longitudinal cross 

sections of the pipelines. A fine mesh is used near the soil-pipe interfaces, while a coarser 

mesh is used away from pipe-soil interfaces. The interaction between the reinforcement and 

the concrete elements is assumed to be fully bonded. The soil-pipe interaction is modelled 

with SPRING2 elements at the soil-pipe interface. Infinite elements (CINPE4) were placed 

at the lateral boundaries. 

The length of the pipeline has been chosen to capture the longest possible incoming seismic 

wavelength, where L=150 m is an adequate length for the analyses. See Section 4.4 for a 

sensitivity analysis of the pipeline length. The relevant soil width Z for the transverse cross 
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section of the pipe is considered to be Z/2 = 3W [3]. Using the above models, the effects of 

burial depth, soil layer thickness and inclined bedrock are investigated in Paper II (see 

Table 4.2). The influence of water mass is investigated in Paper I. Wave effects in the water 

and the interaction between the water and the inside of the pipe are not considered in the 

model. The water effect is taken into account by increasing the mass of the pipe system. 

L

W

Ground surface

X

Y

Pipe segments

Soil

Bed Rock  

Figure 4.2: Schematic view of FE domain for longitudinal cross section of the pipelines with uniform 

ground (model 1), from Paper II. 
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Figure 4.3: Schematic view of FE domain for longitudinal cross section of the pipelines with non-

uniform ground (model 2), from Paper II. 
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Figure 4.4: Schematic view of FE domain for transverse cross section of the pipelines (model 3), from 

Paper II. 
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Table 4.2: Model description for parametric study of concrete pipeline. 

 

 Model description 

Parameter Model Rock slope 

(degrees) 

Burial depth 

(m) 

Soil depth (m) 

Burial depth  1 and 3 0 H =1, 

H =5 

W =25 

Soil layer thickness  1 and 3 0 H =1 W =25, 

W =12 

Inclined bedrock  2 α=45°, 

α=90° 

H =1 Wa=5, 

Wb=25 

4.4    Sensitivity analysis for pipeline length 

For the dynamic analysis of buried pipelines, it is practically impossible to simulate the actual 

length of a long pipeline. On the other hand, modelling a small segment of the pipeline cannot 

provide accurate results because the other parts of the pipeline are completely neglected. 

Therefore, in this study, a sensitivity analysis was performed to find a relevant length for the 

FE modelling of the studied pipelines. In this regard, four lengths of 75 m, 150 m, 300 m and 

600m were selected, corresponding to 0.5, 1, 2 and 4 times the longest wavelength (dominant 

wavelength) for the cases studied. The analyses were carried out for a uniform ground with 

dense soil, which gives the longest possible wavelength. The models were subjected to the 

Swedish design earthquake and the Chi-Chi earthquake [127; 146]. Figures 4.5 and 4.6 show 

acceleration time history and response spectra of the horizontal component of the Swedish 

design and Chi-Chi earthquake, repectively. 

 

Figure 4.5: Horizontal component (H1) of the Swedish design earthquake: a) acceleration time 

history and b) response spectra, from Paper II. 
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Figure 4.6: Horizontal component (EW) of the Chi-Chi earthquake: a) acceleration time history and 

b) response spectra, from Paper II. 

Figures 4.7 and 4.8 show examples of the maximum envelopes of tensile stresses for axial 

and bending stresses, respectively. As shown, the maximum stresses occur near the pipeline 

ends. In Figure 4.7, the maximum axial stresses show some convergence with increasing 

pipeline length, until the pipelines reach the same stress level at L=300 m and L=600 m. 

Similar results are obtained for the Swedish earthquake. In Figure 4.6, the maximum bending 

stresses occur near the pipeline ends in almost all cases, but with internal peaks along the 

pipelines. As can be seen in this figure, the maximum stresses for L=150 m have converged. 

For the Chi-Chi earthquake, the results are similar, but with a larger number of internal stress 

peaks, possibly indicating the occurrence of resonant oscillations.  

The results of the sensitivity analysis indicate that the axial and bending stresses converge at 

pipeline lengths L between 150 and 300 m. In some cases convergence is evident already at 

L=150 m, but in other cases it occurs close to L=300 m. In the latter case, which is twice the 

150 m that corresponds to the largest wavelength, this relationship is such that the results can 

be due to the signal sampling, which is governed by the Nyquist sampling theorem that 

specifies that the sampling rate should be twice the highest frequency present in the 

signal [166]. This needs to be thoroughly investigated in future work, but for the purpose of 

the numerical work put forth in this thesis, pipe lengths of L=150 m will give adequate 

precision for the seismic analysis examples that are compared. 



Chapter 4: Numerical Modelling 
 

46 

 

 

Figure 4.7: Examples of calculated axial stresses for the longitudinal plane section model with 

varying lengths of pipelines subjected to the Chi-Chi earthquake [3]. 

 

Figure 4.8: Examples of calculated bending stresses for the longitudinal plane section model 

subjected to the Swedish design earthquake [3].  

4.5 Reservoir modelling 

The interaction between the reservoir, the dam and the rock foundation during seismic 

excitation results in hydrodynamic pressure. A simplified method to account for 

hydrodynamic pressure is the added mass approach [162; 169], where point masses are added 

to the structure. This method neglects the water-foundation interaction and the 

compressibility of water. Chopra [33] has shown that neglecting the compressibility of water 

leads to unreliable seismic evaluation of dams, and stresses are underestimated for some dams 

but overestimated for others. Numerical modelling of water with finite solid elements was 

introduced around 1980 and offered the possibility to take into account certain phenomena 

such as the compressibility of water. However, solid elements can cause other numerical 

problems, such as instability of the analysis due to the introduction of zero-energy modes. 
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Modelling water with acoustic elements is more advantageous because there are hardly any 

numerical problems. Moreover, most phenomena of dynamic fluid-structure interaction can 

be modelled [108]. The acoustic fluid method has recently been used by many researchers 

for numerical modelling of the reservoir in the dam-water-foundation system, e.g., [20; 115; 

140]. The acoustic fluid is used to simulate the propagation of sound waves, but considering 

the following assumption, the acoustic wave equation can also be used to simulate fluid-

structure interaction problems [70]: 

 the fluid is compressible (density changes due to pressure variations) 

 the fluid is irrotational 

 the fluid viscosity is neglected  

 there are only small translations and small velocity (no mean flow of the fluid) 

 there are no body forces 

The equation for acoustic fluids is derived by using conservation of mass (continuity 

equation) and conservation of momentum. Expressing the stresses in the acoustic fluid only 

in terms of pressure, ignoring all external forces and taking into account the above 

assumptions, yields conservation of momentum: 

. 0r r rp u                              (4.6)                                                  

where ru  is fluid particle acceleration and rp is acoustic pressure. With a constant water 

density 𝜌r, the continuity equation for an acoustic medium gives: 

. 0r
r ru

t





  


                                                                                                                 (4.7) 

where ru  is fluid particle velocity. The two aforementioned equations consist of three 

unknowns which another equation is needed for solving this set of equations. A constitutive 

equation or constitutive law describing the differential pressure-density relationship in a 

compressible fluid is used as an auxiliary equation defined as: 

2

r r rp V                                                                                                                           (4.8) 

where rV  is the velocity of wave propagation in water.  The time derivative of Eq. (4.7) gives 

2

2
. 0r

r ru
t





  


                                                                                                             (4.9) 

The acoustic wave equation is obtained by combining Eqs. (4.6), (4.8) and (4.9), with the 

fluid pressure as the independent variable: 
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In FE modelling of acoustic fluids using an FE software, such as ABAQUS, there are special 

proposed elements called acoustic elements. These elements have only one degree of freedom 

(pressure), which can be used to simulate the hydrodynamic pressure that occurs in water. In 

the following, the coupling between a structural-acoustic fluid and the boundary conditions 

of the reservoir is introduced. 

4.6 Reservoir boundary conditions 

In the dam-rock-reservoir system, acceleration of the boundaries in contact with the reservoir 

results in hydrodynamic pressure. The reservoir is in contact with the dam on the upstream 

side h  and with the rock foundation on the bottom and sides b , (see Figure 4.9).   
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Figure 4.9: Schematic view of the dam-rock-reservoir FE model, with boundary conditions at the 

reservoir boundaries, reproduced from [103]. 

The boundary conditions at the fluid–solid interface relate hydrodynamic pressures to the 

total accelerations 
t

r :    

. . ,t

r h r h hp   n n r             at h , the upstream face of the dam                                    (4.11) 

 

. . ,t

r b r b bp qp    n n r      at b , the reservoir bottom and sides                                  (4.12) 

 

where bn  and hn  are the outward normal vectors to the fluid boundaries b and h , 

respectively; r is the density of water; and q represents the partial absorption of the incident 

hydrodynamic pressure waves by the sediments at the bottom of the reservoir, the damping 

coefficient q is given by: 
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r

r r

q
V






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
                                                                                                                                         (4.13) 
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where r  is the wave reflection factor that is defined by the ratio of the reflected to the 

incident pressure wave amplitude [103]. The effects of the reservoir bottom sediments can 

be modelled by using the impedance values of the materials as boundary conditions on the 

reservoir bottom [4]: 

 
sediments

1

1

r
r r

r

C K









                                                                                                (4.14) 

where Kr is the bulk modulus. In an advanced method, the sediments of the reservoir are 

modelled directly and discretised by finite elements [49; 104; 111]. However, in the direct 

FE method, where the water-foundation interaction and associated radiation damping are 

included in the analysis, the additional vibrational energy dissipated by the sediments is 

insignificant. Therefore, the effect of the sediments can be ignored [102]. 

The boundary condition at the free surface is simply defined as pr=0 when neglecting the 

effects of surface waves, as they have little influence on the seismic response of concrete 

dams [34]. 

In FE modelling of reservoirs, it is impractical to do a full modelling of the reservoir as it 

may be kilometres long due to its nature. Therefore, a truncated region with a suitable 

radiation condition at the truncated boundary Γr should be considered. To avoid reflection 

problems, Goldgruber [70] recommends a reservoir length that is at least twice the reservoir 

depth.  

4.7 Dam-foundation-reservoir system 

In the FE discretisation, the coupled equation of the dam-rock-reservoir system with 

truncated fluid and foundation regions is given as follows: 

 

 
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p f0 H

                                              (4.15) 

 

where M, K and C are the standard mass, stiffness and damping matrices, respectively, for 

the dam–foundation system; S, B and H are the mass, damping and stiffness matrices, 

respectively, for the water; Cf and Cr are the damping matrix at the non-reflected boundaries 

of the foundation and the reservoir, respectively; rt is the total displacement vector in the dam 

and foundation rock; and 
t

rp  is the total hydrodynamic pressure vector in the fluid. The 



Chapter 4: Numerical Modelling 
 

50 

 

matrices
bQ  and 

hQ  couple accelerations to the hydrodynamic pressures at the water–

foundation rock interface and the dam–water interface, respectively: 

h

T

h h h hd


 Q N n N                                                                                                           (4.16) 

The shape functions of the dam and fluid nodes are 
hN  and

hN , respectively, at the interface

h . The matrix 
bQ  is constructed in the same way, but integrated over b . 

The effective earthquake forces associated with the absorbing boundary at the truncated 

boundaries of the foundation and reservoir are 0

ff  and 0

rf , respectively [103]. The effective 

earthquake forces at the upstream fluid boundary are ignored in analyses that include a 

sufficiently long fluid domain. This requirement is usually met because long domains are 

needed to accurately model dam-water interaction and radiation damping when the upstream 

boundary is modelled by a non-reflected boundary [102]. 

Damping at the dam is determined from low-amplitude motions within the linear range of 

response recorded during forced vibration tests, ambient vibrations or small earthquakes. 

These measured values represent the total damping in the system, which includes material 

damping, radiation damping and energy loss at the reservoir boundaries – see Lokke and 

Chopra [102], who summarise the data for damping measured at 32 concrete dams during 

forced vibration tests and estimated from ambient vibration measurements (see Figure 4.10). 

The data are for both gravity and arch dams and cover a wide range of system parameters. 

As the figure shows, the overall damping values measured at these dams are all in the range 

of about 1-5%. Based on the measured data, the total damping in the numerical model should 

not exceed 5% unless a higher value was measured at a particular dam. Lokke and Chopra 

[102] recommend setting viscous damping ratios in the range of 1-2% for the dam alone and 

1-4% for the foundation domain to achieve a total damping of 5% or less in 3D numerical 

models. Material damping in direct-integration dynamic analyses is considered by Rayleigh 

damping, which defines a mass and stiffness proportional damping ratio for the i-th mode 

described by the following equation: 

.

2. 2

i
i

i

 



                                                                                                                 (4.17) 

 

where  and   are a mass damping coefficient and a stiffness damping coefficient, 

respectively. This equation yields a curve that is a function of the circular natural frequency 

of the i-th mode of vibration 2i f  , [32]. 
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Figure 4.10: Damping at 32 concrete dams measured during forced vibration field tests and estimated 

from ambient vibration measurements. The range for each dam shows the minimum and maximum 

damping values measured in the first few (1 to 5) resonant frequencies [102]. 

4.7.1 Contraction joints 

The monoliths and blocks of concrete dams are divided by contraction joints to allow relative 

movement between the monoliths due to thermal expansion or contraction. These joints are 

constructed with a water-stop, which is often consisting of bitumen, PVC or steel and has 

low or no shear resistance in the stream direction. There are also dams where the joints have 

shear keys.  Shear key contraction joints are used in the construction of many dams, 

especially large arch dams. Shear keys result in a high shear resistance in the stream direction 

[107]. 

However, it is likely that the contraction joints will open and close during intense ground 

motion. A common method for modelling joints is a contact formulation on the surfaces 

between monoliths [70; 160; 171]. The opening and closing of a joint in the normal direction 

is modelled by a zero-tensile strength contact constraint with an exponential pressure-

overclosure relationship. In an exponential (soft) contact pressure-overclosure relationship, 

the surfaces begin to transmit contact pressure once the clearance between them, measured 

in the contact (normal) direction, reduces to 0c . The contact pressure transmitted between the 

surfaces then increases exponentially as the clearance decreases further (see Figure 4.11a and 

the corresponding formula in Eq. (4.13), [1]). Here, p is the contact pressure, d the 

overclosure and 0p the contact pressure at zero opening. In practice, 0p may be better 

selected based on the elastic modulus of the contacting bodies, the element size, and the 

element height normal to the contact interface which results in a high value. A large value of 

0p may reduce penetration, but also cause a problem in convergence [118; 158]. However, 
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if 0c  is set to zero, Eq. (4.18) becomes a hard contact relationship (Figure 4.11b), which does 

not help improve convergence.  
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Figure 4.11: Pressure-overclosure relationship: a) exponential and b) hard contact, reproduced 

from [1]. 

 

In the tangential directions, frictional sliding can be modelled by the penalty contact 

formulation, which is based on the Coulomb friction model [1]. In the ideal Coulomb friction 

model (Figure 4.12a), two surfaces in contact can carry shear stresses up to a certain 

magnitude across their interface before they begin to slide relative to each other. This state is 

called sticking. The Coulomb friction model defines this critical shear stress, crit , at which 

sliding of the surfaces starts as a fraction of the contact pressure p, crit p  .The fraction,

 , is known as the coefficient of friction. 

Penalty friction formulation based on the Coulomb friction model includes a stiffness that 

allows some relative motion, i.e., elastic slip of the actual surfaces when they are in the 

sticking phase (see Figure 4.12b). This can be understood as linear spring stiffness. In 

ABAQUS, elastic slip can be specified either as a fraction of the element length (slip 

tolerance) or as an absolute distance. By default, elastic slip is defined as 0.5% of the average 

length of all contact surface elements in the model. If the value for elastic slip is smaller than 

the default value, it can be used to increase accuracy [70]. 
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Figure 4.12: Friction curve: (a) ideal Coulomb friction model and (b) general friction curve with 

penalty formulation, reproduced from [1]. 

4.7.2 Dam-foundation interface 

There are various methods for modelling the interface between dam and foundation. A 

common assumption is that there is a full bond between the dam and the rock. This 

assumption can be valid if the rock surface is irregular (blasted), cleaned and free of loose 

particles [107]. A more realistic modelling of the dam-foundation interface can be achieved 

by joint interface elements [97] or by a contact formulation described above. 

 4.8 Numerical example for concrete gravity dam 

A concrete gravity dam and concrete buttress dam are studied within Papers IV and V, 

respectively. The case of the concrete gravity dam includes an analysis of monolith 16 of 

Pine Flat Dam, which is the tallest non-overflow monolith. Pine Flat Dam is located on the 

King's River, east of Fresno, California, USA, and was built in 1954. The dam has a length 

of 561 m with 37 monoliths. The case has been extensively studied before, e.g., [25; 26; 31; 

51; 61; 62; 131], which makes it a good choice for comparing analysis methods. Therefore, 

the formulators of the 15th ICOLD benchmark chose monolith 16 for analyses [139]. 

Figure 4.13 shows the cross-section geometry of the monolith. As can be seen from the figure, 

the monolith has a height of 121.91 m and a width of 95.80 m and 9.7 5 m at the base and the 

crest, respectively. The width of the monolith (out-of-plane thickness) is 15.24 m. The 

material properties for the concrete and rock material are summarised in Table 4.3. 

Table 4.3: Material properties for both concrete and rock [139]. 

Density 

(kg/m3) 

Young’s modulus 

(GPa) 

Poisson’s ratio Material 

damping (%) 

2483 22.4 0.2 2 
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Figure 4.13: Cross-section geometry of monolith 16 of the Pine Flat dam, reproduced from [139]. 

Figure 4.14 shows a 2D FE domain of Pine Flat Dam. The size of the foundation was given 

by the formulators as 700 m long and 122 m deep. The foundation is discretised by 2,340 

elements of CPE4R. A total of 157 infinite elements of CINPE4 are placed at the lateral and 

bottom boundaries of the foundation. The monolith is discretised by 11862 three-node linear 

plain strain (CPE3) elements. A tie constraint has been defined between the intersections of 

the dam, the foundation and the reservoir. The reservoir has a length of 305 m. The 

formulators specified three different reservoir levels: the winter reservoir water level 

(WRWL) at El. 268.2 m, the summer reservoir water level (SRWL) at El. 278.6 m and the 

normal reservoir level (NRWL) at El. 290.0 m. The influence of the different reservoir levels 

on the dam's response is described in Section 4.9. In Paper IV, the water level of the winter 

reservoir was considered. The reservoir is discretised by 28,858 acoustic elements of AC2D4. 

At the end of the reservoir there are absorbing boundaries. 

 

Figure 4.14: FE domains in 2D of the Pine Flat concrete gravity dam, from Paper IV. 
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4.9 Effect of reservoir level on seismic response of concrete gravity dam 

The FE model shown in Figure 4.14 was used to investigate the influence of reservoir depth 

on the seismic response of the dam. The de-convolved Taft earthquake in the stream direction 

described in the previous chapter is applied as the effective earthquake forces at the base and 

sides of the foundation, calculated using an analytical method. From dynamic analysis, the 

responses of the dam are computed at the heel, point A and crest point C (see Figure 4.13). 

Figure 4.15 shows the response spectra of acceleration time histories at the heel and crest of 

the dam for different reservoir levels. As can be seen from this figure, the maximum 

acceleration at point A at the heel decreases with increasing water level. The same trend can 

be seen at the dam crest, but the decrease in acceleration is more pronounced with increasing 

elevation from 278.6 m to 290.0 m. 

  

Figure 4.15: Response spectra of acceleration time histories at the heel and crest of the dam for 

different reservoir levels. 

Figure 4.16 shows the time histories of the displacements at the heel and crest of the dam for 

different reservoir levels. The positive values of the time histories indicate a displacement in 

the downstream direction. The negative values indicate a displacement in the upstream 

direction. As can be seen from the figure, the change in reservoir level has no significant 

effect on the time history of the displacement at the heel. For point C at the crest, a rising 

water level leads to a decreasing displacement in the upstream direction. A different trend is 

seen for the displacement in the downstream direction, which may be due to initial static 

displacement. Figure 4.17 illustrates the hydrodynamic pressure in the reservoir at point A. 

As can be seen from the figure, there is no clear dependence between hydrodynamic pressure 

and water level. 
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Figure 4.16: Displacement time histories at the heel and crest of the dam for different reservoir levels. 

 

Figure 4.17: Hydrodynamic pressures at the heel for different reservoir levels. 

4.10 Numerical example for concrete buttress dam  

The concrete buttress dam considered in the following example is representative of a typical 

large concrete buttress dam in Sweden. There are about 25 concrete buttress dams with 

similar geometry in Sweden [12]. The example dam is about 100 m long and consists of 13 

almost identical concrete monoliths (see Figure 4.18). Each monolith consists of a 2 m-thick 

and 8 m-wide front plate facing the water and a 40 m-high supporting buttress, 2 m thick and 

34 m wide near the bedrock. The upper 10 m of the front plate is vertical, while the lower 

part is inclined at an angle of 56.3° with respect to the horizontal axis, and the downstream 

edge of the buttress has an inclination of 68.2°. The crest of the dam, the horizontal upper 

part of the buttress and front plate, is 4.5 m wide. There is a 2.0 m × 1.5 m inspection gangway 

that passes through all buttresses.  
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Figure 4.18: Geometry of the concrete monolith, reproduced from [12]. 

The concrete material has the following parameters: modulus of elasticity Es=25 GPa, 

density ρs=2400 kg/m3 and Poisson’s ratio νs=0.2 [12]. The concrete buttress dam is founded 

on a rock foundation in a rectangular canyon where the rock material has the following 

material parameters: Ef=25 GPa, density ρf=2400 kg/m3 and Poisson’s ratio νf=0.2. For 

numerical modelling, the elastic modulus and density of hard rock in Sweden are typically 

between 16-40 GPa and 2500-2800 kg/m3, respectively [13]. The higher limit corresponds to 

intact rock. The rock foundation of the dam is typically an old riverbed, which is likely to be 

fractured to some extent, and the rock mass also contains discontinuities. Therefore, the same 

stiffness is assumed here as for concrete. A viscous damping of 1% and 2% is assumed for 

the dam and the rock foundation, respectively [102]. 

In the FE modelling of the concrete buttress dam, the monoliths are discretised by solid 

elements (C3D8). Contraction joints in the tangential direction have no shear strength and 

are modelled as frictionless interaction. Joints in the normal direction are modelled by using 

soft contact constraint when assuming 0 5 MPap  and 0 0.1 mmc   [70]. The interface 

between the dam and foundation in the normal direction is modelled using a hard contact 

constraint with zero tensile strength to allow this joint to open and close. A friction coefficient 

and slip tolerance of 1 and 0.0001 respectively are used here [70; 132]. 
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Figure 4.19 shows the FE model of the rock foundation for the dam. The FE domain is 

discretised by 14,355 solid elements. Infinite elements are placed at the side boundaries to 

prevent seismic waves from reflecting into the FE domain. An acceptance place for infinite 

elements is obtained by extending the rock foundation to twice the height of the dam, along 

the lateral sides in the cross-stream direction and from the bottom of the dam (see the 

convergence analysis in Section 4.11). In the stream direction, the rock foundation is 

extended to the length of the reservoir. A minimum length of twice the height of the reservoir 

is recommended. In this case, a reservoir length of 3.5 times the depth is assumed. Therefore, 

the total size of the foundation is 264 m in the stream and cross-stream direction and 120 m 

in the vertical direction. A full reservoir with a depth of 38.5 m is considered. The reservoir 

is discretised with 10,816 acoustic elements (AC3D8), with a non-reflective boundary 

defined at the upstream end of the reservoir. A tie constraint is used at the interfaces between 

the water of the reservoir and the foundation of the dam. 

 

Figure 4.19: FE model of rock foundation for concrete buttress dam. 

4.11 Sensitivity analysis for foundation size 

To find a suitable place for infinite elements in the cross-stream direction of the dam 

foundation, a 2D model of a rectangular canyon is analysed under the horizontal (SV -wave) 

and vertical (P-wave) components of the Swedish design earthquake and the Taft earthquake. 

The non-reflected boundaries are in the horizontal direction at the distance nxH from the 

canyon sides and in the vertical direction at the nyH distance from the free surface (see 

Figure 4.20).  

 

 

 



Chapter 4: Numerical Modelling 
 

59 

 

H

xn H

n Hy

W

 

Figure 4.20: FE model of rock foundation with rectangular canyon by H=40 m and W=104 m. 

The analyses are carried out for different combinations of nxH×nyH with 25H×25H, 

10H×10H, 3H×3H, 2H×3H and 1H×2H. Figures 4.21a and 4.21b show the distribution of 

peak ground acceleration (PGA) along the free surface of the foundation generated by the 

Swedish design earthquake and the Taft earthquake, respectively.   

Figure 4.21a shows that the Swedish design earthquake underestimates the PGA in the 

canyon due to the small size of 1H×2H. It can also be seen that there is no significant 

difference between the domain sizes of 3H×3H and 2H×3H. However, the size of the 

domains of 3H×3H and 2H×3H overestimates the PGA compared to the larger domains. For 

the Taft earthquake in Figure 4.21b, it can be seen in the canyon that the difference between 

the PGAs for different domain sizes is insignificant. Thus, increasing the size of the domain 

is not beneficial. Therefore, in the analyses in Paper V, the domain size of 2H×3H was 

chosen, which has acceptable accuracy for both high-frequency and low-frequency 

excitations compared to the enlarged domains. 
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(a) Swedish design earthquake 

 

 (b) Taft earthquake 

 

 

Figure 4.21: Distribution of PGA along the rectangular canyon surface for domain sizes of 

25H×25H, 10H×10H, 3H×3H, 2H×3H and 1H×2H generated from the (a) the Swedish design 

earthquake and (b) the Taft earthquake. 

 

 

 

 

 

 



  

 

 

 

 

CHAPTER 5 

 

Summary of Appended Papers 

This chapter contains a summary of the appended papers that have contributed to answering 

the research questions of this thesis. 
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Paper II: Abbasiverki, R., Ansell, A., Seismic response of large diameter buried concrete 

pipelines subjected to high frequency earthquake excitations, Int. J. Structural Engineering, 

10(4), 307-329, 2020. 

Paper III: Abbasiverki, R., Malm, R., Ansell, A., Implementation of free-field modelling of 

foundations for large dam structures exposed to high-frequency vibrations, submitted for 

review. 

Paper IV:  Enzell, J., Malm, R., Abbasiverki, R., Ahmed, L., Non-linear behaviour of a 

concrete gravity dam during seismic excitation, A case study of the Pine Flat Dam, In: 

Numerical Analysis of Dams: Proceedings of the 15th ICOLD International Benchmark 

Workshop, , Milan, Italy, Springer Nature, 2021. 

Paper V: Abbasiverki, R., Malm, R., Ansell, A., Nordström, E., Nonlinear Behaviour of 

Concrete Buttress Dams under High-Frequency Excitations Taking into Account 

Topographical Amplifications, Shock and Vibration, Vol 2021, Article ID 4944682, 1-22, 

2021. 

 

 

 

 



Chapter 5 : Summary of Appended Papers 
 

62 

 

5.1 Paper I: Analysis of shallowly buried reinforced concrete pipelines subjected to 

earthquake loads 

In this paper, two-dimensional FE models were developed to investigate the influence of 

high-frequency excitations on buried concrete pipelines. Two models were considered: the 

first model represents the longitudinal cross section of the pipeline, and the second model 

represents the transverse cross section. It was assumed that the joints have the same properties 

as the pipe, so that the whole concrete pipeline has continuous properties. The effects of soil 

stiffness and water mass were studied for two earthquake excitations: the Swedish design 

earthquake (high-frequency excitation) and the Northridge earthquake (low-frequency 

excitation). It was shown that the stiffness of the soil has a significant influence on the 

dynamic characterisation of the soil-pipe system. The dynamic response of concrete pipeline 

subjected to high-frequency excitation is significantly affected by soil stiffness, with the 

maximum stresses in the pipeline occurring in stiff soil. The water mass has only a minor 

influence on the axial stresses, but a greater influence on the bending and ring stresses. 

5.2 Paper II: Seismic response of large diameter buried concrete pipelines subjected to 

high-frequency earthquake excitations 

This paper investigates the influence of rock geometry on the response of buried concrete 

pipelines when subjected to high-frequency excitations. The influence of soil stiffness, burial 

depth and soil layer thickness is also investigated. The longitudinal plane model described in 

Paper I was developed taking into account the inclined bedrock and the pipeline joints. The 

analyses were carried out for the Swedish design earthquake (high-frequency excitation) and 

the Chi-Chi earthquake (low-frequency excitation). It was shown that inclined bedrock 

causes critical stress conditions in the pipelines for both earthquake excitations. Increasing 

the soil stiffness and considering inclined rock resulted in a stress increase that was higher 

for high-frequency excitation. Inclined bedrock reduces the safety of the concrete pipeline, 

especially due to bending deformations in the pipe and in the joints of the pipeline. The safety 

against high-frequency damage was more than ten times higher than the assumed tensile 

strength for all soil types considered in uniform soil. When pipe joints were considered, the 

safety was reduced to three times due to axial tensile failure at the joints. For the inclined 

bedrock, this safety was reduced to about three times the tensile strength in the pipeline barrel 

and 1.5 times the tensile strength in the pipe joints. With increasing installation depth, the 

ring stresses increased. However, the risk of pipeline failure due to local cross-sectional 

damage within the pipe segments was low. The thickness of the soil layer influenced the 

bending stresses induced by high-frequency excitation. Decreasing thickness of the soil layer 

reduces the safety of the pipeline. 
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 5.3 Paper III: Implementation of free-field modelling of foundations for large dam 

structures exposed to high-frequency vibrations 

This paper investigates the implementation of free-field modelling to describe vibrations at 

dam foundations in the presence of high-frequency excitations. Two methods for free-field 

modelling of dam foundations are presented: 1) the direct FE method and 2) the analytical 

method. A rock foundation with semi-cylindrical canyon is considered for the study. First, 

verification analyses were performed for vertical harmonic P-, SV- and SH- waves with unit 

amplitude and frequency f. It was shown that the free-field modelling based on the direct FE 

method accurately calculates the topographic amplification due to high-frequency excitation. 

However, the analytical method is not accurate for all frequencies and wave types. In order 

to consider different frequency ranges in the analyses, the topographic amplification due to 

earthquake excitations was determined. Two groups of earthquakes with low- and high-

frequency content were considered. The topographic amplification was also calculated using 

other simplified methods popular in dam design: the massless method and neglecting the 

effective forces at the lateral boundaries. Here, the direct FE method was used as a reference 

solution. The analytical method has been shown to produce errors at high-frequency 

excitations. The massless method produces significant errors in the rock surface motion due 

to high-frequency excitations. Ignoring the effective forces at the lateral boundaries leads to 

energy losses and underestimates the surface motions. For high-frequency excitations, the 

energy loss was less than for low-frequency excitations. 

5.4 Paper IV: Non-linear behaviour of a concrete gravity dam during seismic 

excitation: a case study of the Pine Flat Dam 

In this paper, a 2D model of the Pine Flat concrete gravity dam was used to investigate 

considerations to be made in numerical modelling of rock foundations in free vibration and 

dynamic analysis of a concrete gravity dam. It was shown that the natural frequencies 

obtained from FE analysis using mass and massless foundation models agree well with the 

measured frequencies. The advantage of using a massless foundation was that the non-

structural modes originating from the rock mass were removed.  

Wave propagation in the rock foundation was investigated for low- and high-frequency 

impulsive excitation. The effects of considering and neglecting the effective earthquake 

forces at the lateral boundaries were investigated. The effective earthquake forces were 

calculated using an analytical method. When free-field conditions were used, the velocity 

along the surface was more or less identical, which is a clear indication that the 

implementation of free-field input data at the boundaries works as intended. Neglecting the 

lateral forces, on the other hand, resulted in significant differences in the velocity along the 

surface. A linear dynamic analysis of the dam-water-foundation system due to the Taft 

earthquake was performed. The analyses were performed for a massless foundation and a 

mass foundation considering and neglecting the effective earthquake forces at the lateral 

boundaries. The massless approach provided accurate displacements at the base of the dam, 
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but overestimated the accelerations in the dam compared to the more realistic case with mass 

foundation. Neglecting the lateral forces, on the other hand, resulted in an underestimated 

displacement at the upstream heel of the dam.  

5.5 Paper V: Nonlinear Behaviour of Concrete Buttress Dams under High-Frequency 

Excitations Taking into Account Topographical Amplifications 

The fifth paper investigates how high-frequency excitations affect the structural response of 

a concrete buttress dam. First, the dynamic characterisation of a concrete dam was 

investigated. Then, the dynamic response of the dam to vibrations in the stream direction was 

calculated and compared with the case where vibrations in the stream and cross-stream 

directions were considered. The response to low-frequency excitations was also compared 

with high-frequency excitations. The non-linear effect of contraction joints was also included 

in the dynamic analyses. However, in the linear free vibration analysis, this effect was taken 

into account by modelling the joints with hinges. It was found that the natural frequency of 

the concrete buttress dam was relatively high. High natural frequencies resulted in a higher 

amplification of acceleration between the dam crest and the dam base with high-frequency 

excitation than with low-frequency excitation. The free vibration analysis of the monoliths 

revealed two types of bending modes: lateral bending and bending in the stream direction. 

The lateral bending modes had higher natural frequencies. Therefore, the inclusion of 

vibrations in the cross-stream direction led to an increase in the stresses in the monoliths. 

This increase due to the high-frequency excitation was higher than that due to the low-

frequency excitation. 

Due to the importance of free-field modelling of the foundation for high-frequency 

excitations, the dynamic response of the dam was compared for different free-field modelling 

approaches using the direct FE method, the analytical method and the massless approach. 

The calculated dynamic response of the dam was significantly influenced by the free-field 

modelling approach used for the foundation. The results underline the importance of using 

an accurate foundation modelling approach, especially in cases where non-linearity is 

considered. The analytical method resulted in unreliable joint openings, while the massless 

method gave unreliable results, especially for high-frequency excitations. 

 

 

 

 

 



  

 

 

 

 

CHAPTER 6 

 

Results and Discussion 

In this study, first, frequency analyses were performed to investigate the mechanical 

properties of the FE models. The models were then subjected to earthquakes with different 

frequency contents in order to study the dynamic response. The following sections describe 

the results and discuss the numerical examples presented in Papers I-V which have 

contributed to answering the research questions of this thesis. 

6.1 Effective two-dimensional FE models for underground pipelines 

Underground pipelines are long tubular structures. In three-dimensional FE analysis of such 

systems, it is computationally intensive to simulate the propagation of high-frequency waves 

in the soil-pipe system. Since high-frequency excitations have a shorter wavelength than low-

frequency excitations (see Eq. (2.24)), a finer element size is required to capture high-

frequency waves, resulting in a large number of degrees of freedom that increase the 

computational cost. Therefore, in Papers I and II, the use of two-dimensional plain strain 

models was evaluated. The models effectively consider the behaviour of the pipeline in the 

longitudinal and cross-sectional planes. The axial and bending stresses are obtained from a 

model for the longitudinal plane and the ring stresses from a model for the cross-sectional 

plane. These models can also be further developed to include details of the geological 

conditions; for example, the geometry of irregular bedrock as considered in the examples in 

Paper II. 

The dynamic characterisation of the soil-pipeline system was investigated by eigenvalue 

analysis and the results were presented as cumulative effective mass. Figure 6.1 shows the 

comparison between the effective mass for the models of the longitudinal plane section with 

25 m and 12 m soil layer thickness. Three levels of soil stiffness were considered: loose, 

medium and dense. For the model with 25 m soil layer thickness, the dominant natural 

frequencies for dense, medium and loose soil are 8.59 Hz, 4.08 Hz and 1.27 Hz, respectively. 

For the model with a soil layer thickness of 12 m, the corresponding frequencies are 17.61 Hz, 

9.80 Hz and 2.34 Hz. It can be seen that the dynamic characterisation of the soil-pipeline 

system is significantly influenced by the stiffness of the soil. The highest natural frequencies 

correspond to a dense soil. The predominant frequency is almost twice as high for a soil layer 
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thickness of 12 m as for 25 m soil. This is due to the inverse relationship between the natural 

frequency of the soil deposit and the thickness of the soil layer [93]: 
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Thus, for underground structures dominated by stiffness, the dynamic characterisation of the 

soil-structure system is significantly influenced by the stiffness of the soil. The thickness of 

the soil layer also has a significant influence on the natural frequency content of the soil-

pipeline system. 

 

    

Figure 6.1: Cumulative effective modal mass for the longitudinal plane models with 25 m and 12 m 

soil layer thickness. 

The dynamic response of pipelines is described by the maximum tensile stress. For the 

longitudinal plane section model, the maximum axial tensile stress and the maximum bending 

tensile stress are calculated. For the cross-section model, the maximum principal tensile 

stress is calculated. The influences of soil layer thickness and pipeline installation depth were 

investigated in Paper II. Figures 6.2 and 6.3 show the influence of soil layer thickness and 

installation depth on the maximum axial, bending and ring stresses of the concrete pipeline 

from the Swedish design earthquake and the Chi-Chi earthquake, respectively.  
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Figure 6.2: The maximum axial, bending and ring stresses developed in a concrete pipeline due to 

the Swedish design earthquake for the models with a soil layer thickness of W=25 m and W=12 m 

and a burial depth of H=1 m and H=5 m. 

 

 

Figure 6.3: The maximum axial, bending and ring stresses developed in a concrete pipeline as a 

result of the Chi-Chi earthquake for the models with soil layer thickness of W=25 m and W=12 m 

and a burial depth of H=1 m and H=5 m. 
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Figure 6.2 shows that a decrease in the thickness of the soil layer from W=25 m to W=12 m 

increases the bending stresses due to the high-frequency excitation. The maximum bending 

stresses of the pipeline with 12 m soil layer thickness in dense, medium and loose soil are 

1.30, 1.50 and 1.35 times, respectively, that of the cases with 25 m soil layer thickness, but 

for the low-frequency excitation in Figure 6.3, they are 0.26, 0.72 and 0.67. Figure 6.2 also 

shows that as the depth of the pipeline increases from H=1 m to H=5 m, the axial and ring 

stresses caused by the high-frequency excitation increase, with the effect on the ring stress 

being greater than the axial stress. In dense, medium and loose soil, the ring stresses in the 

pipeline at a laying depth of 5 m are 3.0, 2.6 and 6.0 times higher, respectively, than at a 

laying depth of 1 m. For low-frequency excitation, increasing burial depth increased the ring 

stresses, being 2.8, 4.3 and 8.0 times for dense, medium and loose soil. Therefore, the 

concrete pipelines are susceptible to bending deformations under high-frequency excitation 

when the thickness of the soil layer decreases and the burial depth increases. 

In Paper I, the influence of water mass on seismic response of concrete pipelines was 

investigated. Table 6.1 shows this influence on the maximum tensile stresses induced in the 

concrete pipelines from the Swedish design earthquake and the Northridge earthquake [127]. 

Table 6.1 shows that the inclusion of the water mass has a relatively small effect on the 

amplification of the axial stresses generated by the high-frequency excitation. On the other 

hand, it has a greater influence on the bending and ring stresses of the pipeline. The reason 

for this could be the lower stiffness of the concrete pipeline during bending deformations. 

The maximum amplification factor of 2 was determined for the bending and ring stresses in 

dense soil. For the low-frequency excitation, a maximum amplification of 1.5 was determined 

for the bending and ring stresses in the medium soil. Therefore, the water mass may reduce 

the safety of the pipeline in stiff soil due to bending deformations. 

Table 6.1: The influence of water mass on the maximum tensile stress induced in concrete pipelines 

from the Swedish design earthquake and the Northridge earthquake. 

 

Soil type 

Axial stress 

(kPa) 

Bending stress 

(kPa) 

Ring stress 

(kPa) 

Sweden  Northridge  Sweden  Northridge  Sweden  Northridge  

M
ed

iu
m

 s
o

il
 With water 150 1350 190 900 58 62 

Without 

water  
155 1600 120 600 55 40 

Amplification 

factor  
0.96 0.84 1.58 1.50 1.05 1.55 

D
en

se
 s

o
il

 With water 320 1300 320 600 110 2500 

Without 

water  
300 1550 150 610 55 4000 

Amplification 

factor  
1.06 0.83 2.13 0.98 2.00 0.62 
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In Paper II, the influence of the joints was investigated. Figures 6.4a and 6.4b show the 

maximum axial and bending stresses that occur in the continuous and segmented pipeline 

models with a soil layer thickness of 25 m and a burial depth of 1 m for the Swedish design 

earthquake and the Chi-Chi earthquake, respectively. It can be seen that considering the joints 

in the pipeline reduces the stresses in both excitations. This is because the relative 

displacement at the pipe joints accommodates the ground strain induced by seismic waves 

along the segmented pipelines [145]. It can also be seen in the figures that the influence on 

the bending stresses is greater than the axial stresses. However, the joints are critical parts of 

the mechanical system that reduce the safety of the concrete pipeline. In Paper II, it was 

shown that for a continuous pipeline with uniform bedrock geometry, the safety from high-

frequency damage is about ten times the assumed tensile strength, while this was reduced to 

three times when the pipe joints were considered due to axial tensile failure at the joints.  

(a) Swedish design earthquake 

   

 (b) Chi-Chi earthquake 

  

Figure 6.4: Comparison between the maximum axial and bending stresses in continuous and 

segmented pipelines with W=25 m, H=1 m generated by (a) the Swedish design and (b) the Chi- Chi 

earthquake. 

It is shown that a two-dimensional model can effectively account for the axial and bending 

deformations in the pipeline. The most important aspect of the models is the capture of 

bending deformations in the concrete pipeline, as these structures are vulnerable in this 

respect. As described in Section 2.5.2, there are different methods for modelling seismic 

sources. For the two-dimensional models, a method that uses only non-reflective boundary 
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conditions was used. As shown in Paper III, the errors using this method were lower for high-

frequency excitations than for low-frequency contents, but it is recommended to improve 

two-dimensional models by considering effective earthquake forces at the lateral boundaries. 

6.2 Influence of rock geometry variations on buried concrete pipelines 

Underground pipelines generally cross large areas with varying geological conditions. 

Damage to buried pipelines often occurs in areas with irregular topography [10; 87; 98; 151]. 

The influence of inclined bedrock on the propagation of high-frequency waves and thus on 

concrete pipelines was investigated in Paper II. A two-dimensional longitudinal plane model 

from Paper I was implemented to account for variations in bedrock geometry. According to 

the work of O'Rourke and Liu [122] on the effects of variable subsurface conditions, the 

maximum soil strain occurs at a slope angle of 45º. Therefore, for θ > 45º, the soil strain is 

assumed to be the value corresponding to an angle of inclination of 45º. In this paper, an 

angle of inclination of 45º was chosen, but θ = 90º was also investigated for comparison. 

Paper II also showed an insignificant difference between the 45º inclination angle and the 

45º inclination angle. 

Inclined rock affects the dynamic characterisation of the soil-pipeline system. Figure 6.5 

shows the comparison between the cumulative effective modal mass for the longitudinal 

plane section models with uniform rock and inclined bedrock =45°. It can be seen that 

considering inclined bedrock results in active higher free vibration modes than with uniform 

rock, and this effect is more pronounced for dense soil. Therefore, for concrete pipelines 

installed in regions with hard rock, it is important to investigate how high-frequency 

excitations can affect the response of concrete pipelines depending on the geological 

conditions. 

 

 

Figure 6.5: Cumulative effective modal mass for the longitudinal models, taking into account the joint 

effect. For the model with uniform bedrock and 25 m soil layer thickness and inclined bedrock =45°. 
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The dynamic response is presented here in terms of stress envelopes, i.e., the maximum 

tensile stress at each section of the pipelines reached during the analysis period. Figures 6.6a 

and 6.6b show the comparison of the axial stresses for the longitudinal models with uniform 

and inclined bedrock generated from the Swedish design earthquake and the Chi-Chi 

earthquake, respectively. Figures 6.7a and 6.7b show the comparison between the bending 

stresses of the longitudinal models of uniform and inclined bedrock, from the Swedish design 

earthquake and the Chi-Chi earthquake, respectively. 

  

 

Figure 6.6: Effect of the inclined bedrock on the axial stress for the longitudinal plane section model 

with consideration of the joint effect. From (a) the Swedish design earthquake and (b) the Chi- Chi 

earthquake. 

  

  

Figure 6.7: Effect of the inclined bedrock on the bending stress for the longitudinal plane section 

model with consideration of the joint effect. From (a) the Swedish design earthquake and (b) the Chi- 

Chi earthquake. 

Figure 6.6a shows that for high-frequency excitation, the maximum axial stress generated in 

a model with an inclined bedrock is 3.1, 3.0 and 1.4 times the stress of a uniform ground for 

loose, medium and dense soils, respectively. For low-frequency excitation, the amplifications 

are 2.80, 1.18 and 1.17 (see Figure 6.6b). It can be seen that the stresses are concentrated 

around the slope for non-uniform ground, which was also observed by [10; 152]. For the 
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bending stresses generated by the high-frequency excitation in Figure 6.7a, the maximum 

bending stress generated by the high-frequency excitation in a model with inclined bedrock 

is 3.7, 4.9 and 5.2 times that of the uniform ground for loose, medium and dense soils, 

respectively. The amplification of the bending stress for low-frequency excitation is 2.4, 4.1 

and 1.3 times, respectively (see Figure 6.7b). Thus, for high-frequency excitations, there is a 

significant amplification of stresses between non-uniform and uniform soils, where the 

higher stresses occur due to the inclined bedrock. The amplifications occur for both axial and 

bending stresses. 

Figure 6.8 shows the maximum axial stresses in the pipeline joints in the uniform and non-

uniform bedrock caused by the Swedish design earthquake. The maximum bending stresses 

in the joints are shown in Figure 6.9. 

 

Figure 6.8: Comparison between the maximum axial tensile stress in the pipeline joints in uniform 

and non-uniform bedrock. From the Swedish design earthquake. 

 

Figure 6.9: Comparison between the maximum bending tensile stress in the pipeline joints in 

uniform and non-uniform bedrock.  From the Swedish design earthquake. 

It can be seen from Figures 6.8 and 6.9 that the safety due to tensile failure in the joints was 

significantly reduced because of the inclined rock. Considering a characteristic tensile 

strength of the cement mortar as 0.76 MPa, the maximum axial tensile stresses experienced 

in the joints of the pipeline in dense, medium and loose soil are 50%, 60% and 30% of the 

tensile strength of the cement mortar, respectively (see Figure 6.8). For the bending stresses, 

they are 70%, 40% and 30% respectively (see Figure 6.9). The maximum axial and bending 
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stresses in the joints occurred at the joints connected to pipe segments with high stress. It can 

thus be seen that different soil depths along the pipeline reduce the safety of the concrete 

pipeline, especially due to bending deformations in the pipeline barrel and joints. Compared 

to the parameters studied with uniform rock geometry, there were critical stress conditions 

for pipelines in non-uniform ground. The models with non-uniform ground did not consider 

the effects of water mass or burial depth, which reduce safety due to bending deformations. 

Therefore, the inclusion of the above parameters and consideration of geological conditions 

reduce the safety of concrete pipelines. Due to the significant influence of inclined bedrock, 

it is recommended that special attention be paid to other irregularities in the ground, such as 

rock outcrops. 

6.3 Implementation of free-field modelling of dam foundations 

Concrete dams are commonly founded on an irregular rock surface. Previous numerical and 

analytical studies have shown that the irregular surface topography and frequency of 

excitation can have a significant effect on the wave patterns at a given site [157; 164]. One 

of the major challenges in numerical modelling of seismic wave propagation in dam 

foundations is the modelling of the foundation free field. Section 2.5.2 presented a method 

for seismic source modelling. The influence of implementing different approaches to 

modelling seismic source on the motion of the free surface of the rock foundation was studied 

in Papers III-V. Figure 6.10 shows the distribution of surface displacement amplitudes along 

the free surface of the 2D FE model of a semi-cylindrical canyon. The foundation is excited 

by vertical harmonic P- and SV- waves with unit amplitude and frequency f. Four 

dimensionless frequencies 2 sfR V  0.5, 1.0, 1.5, 2.0 were chosen, where R is the canyon 

radius. The surface motion of the rock is determined by free-field modelling of the foundation 

using the direct FE method and the analytical method. The numerical results obtained by 

Wong [164] are used for comparison. It is found that for the two-dimensional foundation, the 

difference between the surface motions obtained by the direct FE method and by the 

analytical method for both SV- and P-waves is insignificant. The reason is that for the two-

dimensional model, both the direct FE method and the analytical method calculate the 

effective earthquake forces based on the 1D column. In Paper III, it was shown that the free-

field modelling with the direct FE method accurately calculates the motion of the free surface 

of the 3D foundation with semi-cylindrical canyon due to SH-, SV- and P-waves. This is 

because this method obtains the effective earthquake forces at the absorbing boundaries from 

the free-field system, which is identical to the actual system in the area outside the non-

reflected boundaries. The effective earthquake forces were determined by the direct FE 

method using auxiliary analyses of a 1D column and a 2D system. In the analytical method, 

where the free-field system is simplified to a one-dimensional column and the effective 

earthquake forces are calculated analytically, errors occur, especially due to SV- and P-wave 

excitations. Therefore, for the three-dimensional foundations with irregular surface 

topography, the direct FE method accurately calculates the topographic amplifications. 
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(a) SV-wave 

  

 
 

(b) P-wave 

  

  

 

Figure 6.10: Surface displacement amplitudes for incident plane SV- and P- waves with 

dimensionless frequencies of   0.5, 1.0, 1.5 and 2.0 in a 2D FE model of the semi-cylindrical 

canyon foundation calculated by the direct FE method and the analytical method, compared with 

results from Wong [164]. The responses are plotted against the dimensionless distance Z/R, where Z 

is the distance in the transverse direction from the centre and R is the radius. 

Figures 6.11a and 6.11b show the response spectra of the time history of acceleration at the 

centre of the semi-cylindrical canyon considered in Paper III caused by the LaMalbaie and 
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Livermore earthquakes [127], respectively. The responses are calculated by the foundation 

modelling approaches using the massless method, the direct FE method, the analytical 

method and exclusion of the lateral effective forces. Taking the direct FE method as a 

reference solution, the error tolerance of the different methods is calculated. 

(a) Lamalbaie earthquake 

 

                                                     (b) Livermore earthquake 

 

 

Figure 6.11: Response spectra of the acceleration time history in the centre of the semi-cylindrical 

canyon in the stream and cross-stream directions caused by (a) the Lamalbaie earthquake and (b) 

the Livermore earthquake. The responses are calculated by the foundation modelling approaches 

using the massless, direct FE, analytical and no lateral effective forces methods. The error tolerance 

r was calculated using the direct FE method as a reference solution. 

As shown in Figure 6.11a, for the high-frequency excitation, the maximum errors of 22.56%, 

18.75% and 76.40% were produced by the analytical method, the method excluding lateral 

effective forces and the massless method, respectively. For the low-frequency excitation in 

Figure 6.11b, the maximum errors of 14.51%, 74.15% and 21.07% were generated by the 

analytical method, the method excluding lateral effective forces and the massless method, 

respectively. It can be seen that the massless method produces a significant error for the high-

frequency excitation. In Paper III, the distribution of the maximum acceleration and the 

corresponding error tolerance along the foundation surface were shown. A high error 

tolerance was found for higher-frequency excitations with the massless foundation modelling 

approach. For the high-frequency excitations, a maximum error tolerance of 130% was 

determined. For excitations with lower frequencies, the maximum error tolerance was 40%. 
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A significant error introduced by the massless method for the high-frequency excitations is 

due to the fact that the recorded motions at the foundation surface due to high-frequency 

excitations are non-uniform compared to the low-frequency excitations. This behaviour 

cannot be captured when modelling the foundation using a massless approach. This approach 

neglects topographic amplifications and the free surface motion is identical for all points. 

This leads to a high error tolerance for excitations with higher frequency. Modelling the 

foundation mass by excluding lateral effective forces leads to significant errors for low-

frequency excitations due to energy leakage.  

It was shown that the errors are lower when the foundation mass and the free-field modelling 

by the analytical method are taken into account than with the massless method. However, the 

errors for the analytical method are above the acceptance criterion of 5%. The errors for the 

high-frequency excitation are greater than for the low-frequency excitation. In Paper III, it 

was shown that the errors for the high-frequency excitations are between 8-45%. Paper V 

also investigated the influence of the free-field modelling method on the calculation of the 

free rock surface motion in a rectangular canyon. Figures 6.12a and 6.12b show the 

distribution of error tolerance along the rectangular canyon generated by the analytical and 

massless methods due to the Swedish design earthquake and the Taft earthquake, 

respectively. 

(a) Swedish design earthquake 

 

(b) Taft earthquake 

 

Figure 6.12: Distribution of error tolerance along a rectangular canyon in the stream and cross-

stream directions determined by the analytical and massless methods, from (a) the Swedish design 

earthquake and (b) the Taft earthquake. 
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For the high-frequency excitation in Figure 6.12a, it can be seen that the foundation 

modelling with the massless method gives an error between 20-80%, and for the analytical 

method between 14-32%. For the low-frequency excitation, the errors are between 10-33% 

for the massless method and 5-16% for the analytical method (see Figure 6.12b). The 

comparison between the results of the high-frequency and low-frequency excitation shows 

that the massless method produces significant errors in the high-frequency excitation 

compared to the low-frequency excitation. This is due to the non-uniform surface motion 

produced by the high-frequency excitation (see Paper V). The errors for the analytical method 

are also higher for the high-frequency excitation than for the low-frequency excitation. The 

errors for the analytical method are lower than for the massless method, still exceed the 

acceptance criterion of 5%. 

The results obtained from examples of foundations with irregular surface topography in 

Papers III and V show that the massless method produces significant errors, especially for 

high-frequency excitations. It should be noted that for foundations with a uniform surface, 

such as the 2D FE model of the foundation in Paper IV, there are no amplifications due to 

irregularities on the surface. Consequently, the motion of the free surface is the same for the 

massless method and the methods considering the foundation mass and the effective 

earthquake forces. In the analytical method, where the free-field system is simplified to a 

one-dimensional column and the effective earthquake forces are calculated analytically, 

errors occur especially for high-frequency excitations. Therefore, for high-frequency 

excitations, it is important to implement an accurate foundation modelling procedure that 

uses free-field modelling by the direct FE method to capture topographic amplifications. It 

is worth noting that the bedrock considered in the analyses is homogeneous. Therefore, non-

linearities, such as those created by sliding rock fractures, are neglected. This is expected to 

affect the foundation surface motions and may increase the errors obtained by simplified rock 

foundation modelling methods. However, the influence of the non-linearity of the dam was 

investigated in Paper V. It was found that simplified foundation modelling methods cannot 

reliably capture the non-linear behaviour of the dam. 

6.4 Implementation of 2D and 3D FE models (concrete gravity dams)  

Relatively long and straight concrete gravity dams are usually represented with a 2D FE 

model. However, for curved gravity dams and those built in narrow canyons, 3D models are 

usually required [69]. For a concrete buttress dam, which is a lighter version of the gravity 

dam, 3D FE modelling is required because the dam responds weakly to cross-stream 

vibrations due to its slenderness. This was investigated in Paper V. In Paper IV, the Pine Flat 

gravity dam was investigated using a 2D FE model. It was shown that a 2D FE model can 

capture the natural frequencies that agree well with the results obtained from field testing. 

During field tests, six modes of vibration were excited [131]. Figure 6.13 shows the natural 

frequency and normalised mode shapes on the upstream side of the dam obtained from free 

vibration analysis for the first six mode shapes. 
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Figure 6.13: Normalised mode shapes for the six lowest modes of the 2D FE model of the Pine Flat 

gravity dam. 

As seen from Figure 6.13, a 2D FE model gives similar mode shapes for the different modes. 

However, the experiments showed that the modes have different mode shapes [131]. Harrison 

and Nöjd [79] investigated a comparison between 2D and 3D FE models for the dynamic 

characterisation of concrete gravity dams. It was found that the 3D FE model is the most 

effective method for determining the dynamic characterisations of a dam. This is because the 

3D FE model captures the mode shapes of the dam accurately. The influence of the mass and 

massless foundation modelling on the calculated dynamic characterisation of the dam was 

investigated in Paper IV. There were slight differences between the natural frequencies 

obtained with the mass model and the massless model of the foundation. However, the 

advantage of using a massless foundation is that all non-structural modes emanating from the 

rock mass are suppressed and therefore post-processing is much easier than with the mass 

model. 

In Paper IV, a 2D FE model was implemented and the sensitivity of the calculated response 

of a concrete gravity dam in relation to the foundation modelling approach was investigated. 

The seismic response of a concrete gravity dam was calculated based on stream vibrations. 

Free-field modelling of the foundation was performed using an analytical method. The results 

were then compared with the massless method and with neglecting the effective earthquake 

forces at the absorbing boundaries. The sensitivity of the dam response with respect to the 

foundation modelling approach was investigated by linear analysis. Table 6.2 shows the peak 

acceleration at the heel and crest and the amplification factor from different free-field 

modelling approaches. 
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Table 6.2: Peak acceleration at the heel and crest of the concrete gravity dam and amplification 

factor. 

  Massless 

foundation 
Mass foundation 

   Analytical Direct FE* Without free 

field BCs 

Peak acceleration 

(m/s2) 
Heel 2.10 1.47 1.47 1.30 

 Crest 23.20 10.20 10.10 7.30 

Amplification 

factor 
- 11.04 6.93 6.90 5.61 

* Computed in [79] 

As shown in Table 6.2, modelling the mass foundation using the analytical and direct FE 

methods results in a similar amplification factor between the heel and crest, but neglecting 

the effective earthquake forces at the lateral boundaries of the foundation leads to an 

underestimation of the dam response. The massless method overestimates the responses with 

a 60% higher amplification factor than the cases with mass foundation and considering free-

field boundary conditions. Therefore, the mass foundation modelling approach based on the 

analytical and direct FE methods reliably calculates the dam response. 

Figure 6.14 illustrates the comparison between the response spectra of the acceleration time 

histories at the heel and crest of the dam and the record of the free surface of the foundation 

due to the Taft earthquake. It can be seen that at the base of the dam, at frequencies above 

2 Hz, there are differences between the dam response and the record at the free surface, 

showing the influence of the dam-reservoir system. As seismic waves propagate towards the 

dam crest, a frequency interval of 2-6 Hz is amplified. The first peak in the response spectra 

has a frequency of 2.3 Hz, which corresponds to the first mode of the dam (see Figure 6.13). 

 

Figure 6.14: Response spectra of acceleration time history at the heel and crest and the free surface 

of the foundation due to the Taft earthquake. 
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Harrison and Nöjd [79] studied the response of a dam to low-frequency and high-frequency 

impulsive loading. The characterisation frequency of the low-frequency impulsive loading 

was 4 Hz and that of the high-frequency 40 Hz. Table 6.3 shows the amplification factor 

between the dam crest and the heel due to the impulsive loading. It can be seen that the 

amplification factor for the low-frequency impulsive loading is about 8.5, while for the high-

frequency loading it is about 2. Thus, due to the lower natural frequencies of the dam, a 

higher amplification factor occurred for the low-frequency load compared to the high-

frequency load. Table 6.3 also shows that the direct FE method and the analytical method 

give similar results. The massless method overestimates the dam's response to low-frequency 

impulsive loading, as its amplification factor is about 20% higher than in cases where the 

foundation mass is taken into account. For high-frequency loading, the amplification factor 

is about 43% higher than in cases where the mass is taken into account. However, in this case 

Harrison and Nöjd [79] found that the massless method underestimates the responses. 

Table 6.3: Amplification factor between the dam crest and the heel due to impulsive loading [79]. 

 Massless Analytical Direct FE method 

Low-frequency  10.1 8.5 8.4 

High-frequency  3.0 2.1 2.1 

It can thus be seen that concrete gravity dams are significantly affected by low-frequency 

excitations due to their low natural frequencies. For a linear 2D FE model, the foundation 

mass provides reliable results using both the direct FE and analytical methods compared to 

the massless method. However, the non-linear effect associated with the foundation and dam 

could influence the differences between the methods. Consideration of three-dimensional 

effects, such as the non-linear behaviour of contraction joints, could also affect the results of 

the different foundation modelling methods. This was investigated in Paper V for a concrete 

buttress dam. 

6.5 Stiffness-dominated concrete structures on the ground (buttress dams) 

In Paper V, the non-linear behaviour of a typical concrete buttress dam was investigated with 

respect to variations in dominant load frequencies. Figure 6.15 shows the bending mode 

shapes for the buttress monoliths. There are two types of bending modes for the monoliths 

of the dam, namely lateral bending and bending in the stream direction. The natural 

frequencies of a typical buttress dam considered here are above 6 Hz. This is much higher 

than a concrete gravity dam. At Pine Flat, for example, the first six modes were below 6 Hz. 

Concrete buttress dams are a stiffness-dominated concrete structure due to their slenderness. 

This results in higher natural frequencies compared to a concrete gravity dam where mass is 

the primary concern. 
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 f=6.18 Hz (mode 1)  f=6.28 Hz (mode 2) 

(a)         (b) 

Figure 6.15: Bending mode shapes for the central monolith: (a) lateral bending mode shape and (b) 

bending in the stream direction.  

The existing literature dealing with the seismic response of concrete buttress dams is mainly 

focused on low-frequency vibrations in the stream direction using a simplified foundation 

model with the massless method, which does not consider topographic amplifications [30; 

68; 76; 88]. To account for the effects of topography on the dam's response, the mass of the 

foundation should be considered with appropriate free-field modelling. In Paper V, free-field 

modelling was used with the direct FE method and the analytical method, and the responses 

were compared with the massless method. Figures 6.16 and 6.17 show the response spectra 

of the acceleration time histories at the centre of the heel and the crest of the dam in the 

stream and cross-stream directions for the free-field modelling of the rock foundation using 

the direct FE method, the analytical method and the massless method, generated by the 

Swedish design earthquake and the Taft earthquake, respectively. 

Figure 6.16 shows that the massless method leads to sliding failure because contact between 

the foundation and the dam is lost. In contrast, the analyses performed with a mass foundation 

approach, which model the foundation more realistically, result in significant radiation 

damping, which reduces the risk of sliding failure. Many researchers have also found that the 

vibrations induced in the dam are significantly overestimated with the massless approach, for 

example [28; 35; 140]. To overcome this problem, an unrealistically high damping ratio of 

about 15% was used to fit the results to the measurements [65]. It was also shown in Paper 

V that the risk of sliding failure decreases with increasing damping. Figure 6.16 also shows 

that the analytical method at the dam heel gives a similar answer to the direct FE method, 

while the difference between the two methods becomes greater at the dam crest. These 

differences are greater in the cross-stream direction due to the non-linear behaviour at the 

joints. For low-frequency excitation, the massless method overestimates the responses at the 

heel, but at the crest of the dam it overestimates the responses in the stream direction and 
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underestimates them in the cross-stream direction (see Figure 6.17). As can be seen from the 

figure, there are insignificant differences between the responses of the analytical method and 

the direct FE method at the heel. At the crest, however, the free-field modelling with the 

analytical method significantly underestimates the response in the cross-stream direction. 

This is due to the effect of joint opening, which the analytical method underestimates 

compared to the direct FE method.  

(a) Stream direction 

                                       

(b) Cross-stream direction 

  

Figure 6.16: Response spectra of the acceleration time histories generated by the Swedish design 

earthquake at mid-heel and dam crest for free-field modelling of the rock foundation using the direct 

FE method, the analytical method and the massless method in the (a) stream and (b) cross-stream 

directions. 
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                                                         (a) Stream direction 

  

                                                       (b) Cross-stream direction 

  

Figure 6.17: Response spectra of the acceleration time histories generated by the Taft earthquake at 

mid-heel and dam crest for free-field modelling of the rock foundation using the direct FE method, 

the analytical method and the massless method in the (a) stream and (b) cross-stream directions. 

Figures 6.18a and 6.18b show the time history of the joint opening at joint 6 in the middle of 

the dam caused by the Swedish design earthquake and the Taft earthquake, respectively. 

Figures 6.19a and 6.19b show the time history of the joint opening at joint 12 near the 

abutment caused by the Swedish design earthquake and the Taft earthquake, while 

Figures 6.20a and 6.20b show the response spectra of the acceleration time histories at 

coordinate +44 m at the crest, generated by the Swedish design earthquake and the Taft 

earthquake. It can be seen from Figure 6.18 that the analytical method and direct FE method 

result in similar responses in the middle of the dam for the high-frequency excitation, but for 

the low-frequency excitation the diffrences between the two methods are greater, with the 

analytical method underestimating the joint opening. The same behaviour was observed for 

the joints near the abutments. Figure 6.19 shows that for the low-frequency excitation there 

are significant differences between the analytical method and the direct FE method. The 

opening and closing of the joints affects the acceleration at the crest. High-frequency 

accelerations in a short time are generated by triggering an impact load at the joints. In the 

case of low-frequency excitation, the analytical method was not able to capture the high-

frequency vibrations. Therefore, the differences in the dam's response are greater for low-

frequency excitation than for high-frequency excitation (see Figure 6.20). Therefore, it is 

important to use an accurate modelling approach for the rock foundation, especially in cases 
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where non-linearity is considered. The calculated response of the dam is significantly 

influenced by the modelling approach used for the foundation. The massless method 

produces an unreliable estimate of the behaviour of the dam, especially for high-frequency 

excitations. Free-field modelling with the analytical method resulted in unreliable joint 

openings, especially for the low-frequency excitation. 

 

 

 

Figure 6.18: Time history of the joint opening at joint 6 (coordinate -4 m) with foundation modelling 

using direct FE method and analytical method, triggered by (a) the Swedish design earthquake and 

(b) the Taft earthquake.  
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Figure 6.19: Time history of the joint opening at joint 12 (coordinate +44 m) with foundation 

modelling using direct FE method and analytical method, triggered by (a) the Swedish design 

earthquake and (b) the Taft earthquake. 

 

 

Figure 6.20: Response spectra of the acceleration time histories at the crest, the coordinate +44 m, 

generated by (a) the Swedish design earthquake and (b) the Taft earthquake. 
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It should be noted that the high-frequency acceleration in the dam response is not only due 

to the opening and closing of the joints. The opening of the joints in the middle of the dam is 

smaller than near the abutments (see Figures 6.18-6.19). Moreover, the opening of the joints 

due to high-frequency excitation is smaller than that due to low-frequency excitation. 

Therefore, for the high-frequency excitation in Figure 6.16, the influence of the joint opening 

on the acceleration response spectra is very small. As can be seen, frequencies between 10-

30 Hz are excited at the crest, with the higher frequencies related to the excitation of the 

higher bending eigenmodes. This is due to the slenderness of the structure and the higher 

natural frequencies excited at high-frequency excitation. With low-frequency excitation, 

however, a frequency interval of 5-13 Hz is excited (see Figure 6.17). As mentioned earlier, 

the openings of the joints are larger with low-frequency excitation than with high-frequency 

excitation, so that high-frequency accelerations are generated in the cross-stream direction. 

The sensitivity of the buttress dam due to the cross-stream excitation was investigated by 

comparing the responses of a model of the dam subjected only to the vibrations in the stream 

direction and a model that considered all components of the earthquake. Figures 6.21a-b 

show the maximum envelope of the maximum principal stresses at upstream of the dam 

caused by the Swedish design earthquake when only the stream motion and all components 

of the earthquake are considered, respectively. Figures 6.22a and 6.22b show the maximum 

envelope of the maximum principal stresses at upstream of the dam caused by the Taft 

earthquake when only the stream motion and all components of the earthquake were 

considered.  

It can be seen that the inclusion of the cross-stream oscillations leads to an increase in stresses 

for both excitations, with a higher increase in stress for high-frequency excitation than for 

low-frequency excitation (see Figures 6.21 and 6.22). As mentioned earlier, this is due to the 

high natural frequencies of the dam, which are more excited by the high-frequency excitation. 

In addition, the inclusion of cross-stream vibrations causes the joints to open, which 

significantly reduces safety during strong seismic excitations. The uneven topographical 

amplification of the high-frequency excitations at the foundation surface also resulted in 

uneven stress distribution between the monoliths (see Figure 6.21). However, for low-

frequency excitations, the stress distribution between the monoliths is more uniform (see 

Figure 6.22). Therefore, for stiffness-dominated structures such as concrete buttress dams 

built in areas where high-frequency excitations are prevalent, it is important to consider the 

cross-stream vibrations, taking into account the topographic amplifications of the foundation 

surface using the effective foundation modelling method. 
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(a) 

 

(b) 

Figure 6.21: Maximum envelope of maximum principal stresses at upstream of the buttress dam 

triggered by the Swedish design earthquake considering (a) stream motion only and (b) all 

components of the earthquake. 
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(a) 

 

(b) 

 Figure 6.22: Maximum envelope of maximum principal stresses at upstream of the buttress dam 

triggered by the Taft earthquake considering (a) stream motion only and (b) all components of the 

earthquake. 

 

 

 

 

 

 

 



  

 

 

 

  

CHAPTER 7 

 

Conclusions  

The main contribution of the work of this thesis was to identify and investigate special 

considerations to be made when conducting analyses of concrete hydraulic structures 

subjected to seismic loading with relatively high dominant frequencies. In this context, two-

dimensional FE models for underground structures (pipelines) were developed and the 

interaction between the bedrock and the surrounding soil was studied. With this method, the 

influence from the ground geometries can be taken into account. One of the major challenges 

in numerical analysis of the propagation of seismic waves in structures on the ground is 

modelling the free field of the foundation. Therefore, the free-field modelling methods were 

adapted to accurately describe the propagation of earthquake vibrations from the source to 

the ground surface. Two- and three-dimensional FE models were implemented and evaluated 

to investigate the dynamic behaviour of hydraulic structures on the ground (gravity dams and 

buttress dams) during the propagation of high-frequency seismic waves. In the following 

sections, the major conclusions related to the research questions of this thesis are 

summarised, and suggestions for future research are presented. 

7.1 Two-dimensional FE models for underground pipelines  

It was demonstrated that a two-dimensional model can effectively account for the behaviour 

of pipelines in the longitudinal and cross-sectional planes. The most important aspect of the 

models is the ability to capture bending deformations in the concrete pipelines, as these 

segmented structures are vulnerable in this respect. Due to the low stiffness of concrete 

pipelines during bending deformations, it could be concluded that the consideration of the 

water mass, a decreasing thickness of the soil layer and an increasing burial depth reduce the 

safety of a pipeline. 

7.2 Influence of variations in rock geometry and soil stiffness on buried pipelines 

An increase in soil stiffness and the modelling consideration of non-uniform effects lead to 

a greater amplification of the stresses calculated under high-frequency excitation compared 

to when the frequencies are lower. Varying soil depths along the pipeline reduce the safety 
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of the concrete pipeline, especially due to bending deformations in its barrel and joints. For 

a pipeline above a uniform bedrock geometry, the safety against high-frequency damage 

when in dense soil is about ten times the assumed tensile strength of the pipeline barrel and 

three times that of the pipe joints. A non-uniform bedrock reduces the safety to about three 

times in the pipeline barrel and 1.5 times in the joints. 

7.3 Implementation of free-field modelling for dam foundations 

A new time-domain deconvolution method was developed for both shear and pressure wave 

propagation based on an iterative procedure using a one-dimensional FE column to transform 

the earthquake motion from the foundation surface to the corresponding input motion at 

depth. It was concluded that free-field modelling of dam foundations had significant impact 

on computing the amplification of the high-frequency excitations due to the irregular surface 

topography. Free-field modelling of the foundation using the direct FE method was able to 

accurately capture the topographic amplifications of the seismic excitations. Free-field 

modelling of the foundation using an analytical method leads to errors in surface motions 

which exceed the acceptance criteria. Neglecting the effective earthquake forces at non-

reflecting boundaries leads to a significant underestimation of the surface motion, especially 

for excitations with lower frequencies. The massless approach leads to extremely large errors 

in surface motion due to high-frequency excitations compared to those found for low-

frequency excitations. A significant error was determined for excitations with a frequency of 

more than 20 Hz. 

7.4 Implementation of 2D FE models for on the ground structures (gravity dams) 

Concrete gravity dams are mass-dominated structures that have low natural frequencies and 

are therefore susceptible to low-frequency excitations. A two-dimensional model is able to 

capture the natural frequencies of such a dam. In contrast to the dynamic analysis, the 

massless foundation method is suitable for an eigenvalue analysis. For a linear dynamic 

analysis of a two-dimensional model, both the free-field modelling of the foundation with 

the direct FE method and the analytical method are accurate when calculating the dam 

response. It was found that neglecting the effective earthquake forces at non-reflecting 

boundaries leads to an underestimation of the dam response, while the massless method gives 

an overestimation. 

7.5 Structural response of stiffness-dominated concrete structures (buttress dams) 

Concrete buttress dams are stiffness-dominated structures that have high natural frequencies 

due to their slenderness. This type of structure is therefore more sensitive to high-frequency 

excitations. In the typical buttress dam studied in this work, high-frequency waves excited 

free vibration frequencies above 10 Hz, while low-frequency seismic vibrations only affected 

free vibration modes up to 13 Hz. The stresses in the concrete monoliths were higher during 

high-frequency excitations than with low frequencies. A three-dimensional model is required 
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for seismic evaluation of concrete buttress dams, as the cross-stream vibrations reduce the 

safety of the dam due to the increase in the stresses in the monoliths and the opening of the 

contraction joints. Topographical amplification of high-frequency waves at the surface of 

canyons has a significant effect on the response of this type of dam. High-frequency 

excitation also leads to a non-uniform stress distribution between the monoliths, which is not 

the case during low-frequency excitation. It was seen that the foundation modelling approach 

has a significant impact on the calculated response of the dam while the massless method 

leads to unreliable results, especially for high-frequency excitations. It could also be 

concluded that free-field modelling using the analytical method leads to unreliable joint 

openings.  

7.6 Future research 

Based on the results obtained for the soil-pipeline system, and considering the significant 

effect of non-uniform ground due to inclined bedrock, future studies including more 

examples with non-uniform ground, such as cases with rock outcrop, are motivated. The 

analyses performed with the simplified method ignore effective forces at non-reflected side 

boundaries. This will result in energy leakage and attenuation of incoming seismic waves, 

and when this effect is considered, the evaluated safety will decrease. Therefore, for future 

research it is highly recommended to consider effective earthquake forces at non-reflecting 

boundaries. Furthermore, by defining nonlinear soil behaviour and introducing varying soil 

material properties with ground depth, it can be expected that the accuracy of the FE models 

will be significantly improved. For verification of numerical results, it is difficult to obtain 

in-situ pipe stresses from seismic events, and therefore scale model tests should be 

considered. 

Effective earthquake forces were calculated based on vertical propagation of seismic waves. 

The influence of the incidence angle should be investigated. This is more important for soft 

soils as the angle of incidence is not vertical for soft soil layers near the surface. For the dam-

water-foundation systems, the foundation was in this case modelled for one rock stiffness. 

For future work, it is recommended to consider different rock stiffnesses and to study this 

effect with respect to the following rock foundation modelling methods: massless method 

and massed foundation using effective earthquake forces. For the buttress dam considered 

here, the effect from spillways was not included. Spillways are slender structures and a study 

of their response during high-frequency excitation is recommended. An investigation of the 

effect of slenderness of the buttress dam also is of interest for high-frequency excitations. 

The type of buttress dam considered here has a partly inclined front plate. The other type of 

buttress dam has an all inclined front plate, the Ambursen buttress dam type, which should 

also be considered in future studies. The effect from struts that are built between buttresses 

for lateral supports is also recommended as a future research topic. 
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NOMENCLATURE 

 

Latin letters-upper case 

 

A tributary area for the boundary node 

B damping matrix for reservoir   

C damping matrix for dam-foundation 

fC  matrix of damper coefficients 
pc and sc  

sedimentsC  impedance values for sediments 

D  outside diameter of pipe 

E   Young’s modulus 

G shear modulus 

H distance from bottom boundary of foundation to free surface 

H stiffness matrix for reservoir     

HB  depth of soil above centre of the pipeline 

0K   coefficient of soil pressure at rest 

Kr bulk modulus 

M constrained modulus 

M mass matrix 

hN  shape functions of dam nodes 

hN  shape functions of reservoir nodes 

chN   horizontal bearing capacity factor for clay 

qhN   horizontal bearing capacity factor for sandy soil 

cvN   vertical uplift factor for clay 

qvN   vertical uplift factor for sand 

cN ,
qN , N

  bearing capacity factors 

hQ  coupling matrix at reservoir-dam interface 

bQ  coupling matrix at reservoir-foundation interface 

R canyon radius 

S mass matrix for reservoir   
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Target

aS  target response acceleration 

Re sponse

a iS   response acceleration of the recorded motion 

T time 

U particle motion in normal direction 

V wave propagation velocity 

pV  P-wave propagation velocity 

sV  S- wave propagation velocity 

rV  velocity of wave propagation in reservoir water 

V particle motion 

W particle motion in transverse direction 

X spatial coordinate 

Y spatial coordinate 

Z spatial coordinate 

 

Latin letters-lower case 

 
k

ga  surface control motion in k =x, y, z direction 

c  the coefficient of cohesion for backfill soil 

pc , sc  coefficient for viscous damper in normal and tangential directions 

0
f  effective earthquake forces 

0

ff  effective earthquake forces at absorbing boundary of foundation  

0

rf  effective earthquake forces at absorbing boundary of reservoir 

f  excitation frequency (Hz) 

fw arbitrary function 

g  gravity constant 

gw arbitrary function 

ell  element length 

n  cosine vectors of the outer normal direction of artificial boundary 

hn  outward normal vectors to reservoir-dam interface 

bn  outward normal vectors to reservoir-foundation interface 

 p contact pressure 
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t

rp  total hydrodynamic pressures vector in reservoir water 

rp  acoustic pressure 

up   maximum lateral resistance of soil 

t
q  vector of dynamic forces associated with absorbing boundary

f  

0
q  vector of free-field tractions at absorbing boundary 

f  

q  damping coefficient for reservoir sediments 

 u up
q   maximum vertical uplift resistance of soil 

 u down
q   maximum vertical bearing resistance of soil 

0
r  

vector of free-field displacements 

t
r  

vector of total displacements 

0

Ir  vector of incident free-field displacements 

t

hr  displacement vector at reservoir-dam interface h  

t

br  displacement vector at reservoir-foundation interface b  

ut   maximum axial soil resistance 

Iu  incident particle motion 

Ru  reflected particle motion 

Tu  transmitted particle motion 

ru  fluid particle motion 

ku  displacement component with respect to  k-th spatial coordinate 

ux   ultimate relative displacement in axial direction 

yu  ultimate relative displacement in vertical direction 

 

Greek letters 

 

 adhesion factor 

r  wave reflection factor for reservoir bottom 

z  
impedance ratio 

    interface friction angle between pipe and soil 

h  reservoir-dam interface 

b  reservoir-foundation interface 
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Γr truncated boundary for reservoir 

f  absorbing boundary of the foundation 

 structural damping ratio 

  non-dimensional frequency 

  wavelength 

L  
Lame’s first constant 

   Poisson’s ratio 

   mass density 

r  reservoir water density 

  normal stress 

I  
incident stress 

R  
reflected stress 

T  
transmitted stress 

xx  
normal stress in x-direction 

yy  normal stress in y-direction 

zz  
normal stress in z-direction 

xy  shear stress in xz- plane 

xz  
shear stress in xy- plane 

yz  shear stress in yx- plane 

0
σ  free-field stress 

  shear stress 

  normal strain 

  volumetric strain 

  shear strain 

s       total unit weight of soil 

s   the effective unit weight of soil 

       circular frequency (rad/s) 

kj  rotation about the normal axis of the kj-plane 

0  
region interior of the absorbing boundary

f  
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  
region exterior of the absorbing boundary

f  

 

Abbreviations 

 

P-waves Primary waves 

S-waves Shear waves 

SV Shear waves with vertical plane movement  

SH Shear waves with horizontal plane movement  

GW Ground Water 

DRM Domain Reduction Method 

PML Perfectly Matched Layer 

1D One dimensional 

2D Two dimensional 

3D Three dimensional 

ALA American Lifeline Alliance 

PGA Peak Ground Acceleration 

FFT Fast Fourier Transform 

IFFT Inverse Fast Fourier Transform 

 

 

 

 






