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NAAQA: A Neural Architecture for Acoustic
Question Answering

Jérome Abdelnour™, Jean Rouat

, Senior Member, IEEE, and Giampiero Salvi

, Member, IEEE

Abstract—The goal of the Acoustic Question Answering (AQA) task is to answer a free-form text question about the content of an
acoustic scene. It was inspired by the Visual Question Answering (VQA) task. In this paper, based on the previously introduced CLEAR
dataset, we propose a new benchmark for AQA, namely CLEAR2, that emphasizes the specific challenges of acoustic inputs. These
include handling of variable duration scenes, and scenes built with elementary sounds that differ between training and test set. We also
introduce NAAQA, a neural architecture that leverages specific properties of acoustic inputs. The use of 1D convolutions in time and
frequency to process 2D spectro-temporal representations of acoustic content shows promising results and enables reductions in
model complexity. We show that time coordinate maps augment temporal localization capabilities which enhance performance of the
network by ~17 percentage points. On the other hand, frequency coordinate maps have little influence on this task. NAAQA achieves
79.5% of accuracy on the AQA task with ~four times fewer parameters than the previously explored VQA model. We evaluate the
performance of NAAQA on an independent data set reconstructed from DAQA. We also test the addition of a MALiMo module in our
model on both CLEAR2 and DAQA. We provide a detailed analysis of the results for the different question types. We release the code
to produce CLEAR2 as well as NAAQA to foster research in this newly emerging machine learning task.

Index Terms—Audio, question answering, reasoning, temporal reasoning, CLEAR, coordcony, auditory scene analysis

1 INTRODUCTION

UESTION answering (QA) tasks are examples of con-
strained and limited scenarios for research in reasoning.

The agent’s task in QA is to answer questions based on con-
text. Text-based QA uses text corpora as context [1], [2], [3],
[4], [5], [6]. In visual question answering (VQA) the questions
are related to a scene depicted in still images [7], [8], [9], [10],
[11], [12], [13]. Finally, video question answering attempts to
use both the visual and acoustic information in video mate-
rial as context [14], [15], [16], [17], [18], [19]. The use of the
acoustic channel is usually limited to linguistic information
that is expressed in text form, either with manual transcrip-
tions (e.g., subtitles) or by automatic speech recognition [20].
In most studies, reasoning is supported by spatial and
symbolic representations in the visual domain [21], [22].
However, reasoning and logic relationships can also be
studied via representations of sounds [23]. Including the
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auditory modality in studies on reasoning is of particular
interest for research in artificial intelligence [24], but also
has implications in real world applications [25]. In [26],
audio was used in combination with video and depth infor-
mation to recognize human activities. It was shown that
sound can be more discriminative than the corresponding
visual cues. As an example, imagine using an espresso
machine. Besides possibly a display, all information about
the different phases of producing coffee, from grinding the
beans, to pressing the powder into the holder and brewing
the coffee with high pressure hot water are conveyed by the
sounds. Detection of abnormalities in machinery where the
moving parts are hidden, or the detection of threatening or
hazardous events are other examples of the importance of
the audio information for cognitive systems.

The audio modality provides important information that
can be leveraged in the context of QA reasoning. Audio
allows QA systems to answer relevant questions more accu-
rately, or even to answer questions that are not approach-
able from the visual domain alone. In [27], we introduced
the AQA task and proposed a new database (CLEAR) to
promote research in AQA. The agent’s goal, in the proposed
task, was to answer questions related to acoustic scenes com-
posed by a sequence of elementary musical sounds. The ques-
tions foster reasoning on the properties of the elementary
sounds and their relative and absolute position in the scene.
To build CLEAR, we were inspired by the work of Johnson
et al. [7] for VQA. Similarly, we tested an architecture built
for VQA and based on FiLM layers [28] on the newly pro-
posed AQA task. Fayek and Johnson [29] later proposed to
extend the questions to more acoustically realistic situations
by developing a new database called DAQA. To evaluate
the results, they proposed the MALiMo network which
relies on several FILM layers.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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The works cited above use neural network architectures
that are largely inspired by image processing research.
However, the structure of acoustic data is fundamentally
different from that of visual data. This is illustrated for
example in [30] where two standard data sets in computer
vision (MNIST) and speech technology (Google Speech
Commands) are compared via T-SNE [31]. A legitimate
question is whether it is possible to obtain better results (in
terms of accuracy and network complexity) by adapting the
first layers of the architectures to take into account intrinsic
characteristics of acoustic signals. Even within the AQA
domain, the properties of acoustic data may vary signifi-
cantly depending on the nature of the auditory scenes (e.g.,
CLEAR versus DAQA). It is, therefore interesting to evalu-
ate the impact of the dataset on system performance.

To answer the above questions, we present a study that
evaluates the impact of audio pre-processing, of acoustic
feature extraction and of dataset characteristics on the per-
formance neural architectures for AQA. When considering
performance, we focus both on accuracy and complexity of
the models. We provide a detailed analysis of our results
based on question type to improve interpretability. The
main contributions can be summarized as follows:

e Weintroduce CLEAR2 a more challenging version of
the CLEAR dataset, which comprises scenes of vari-
able duration and different elementary sounds for
the training and test sets.

e We propose a highly optimized FiLM-based archi-
tecture (NAAQA) inspired by VQA tasks containing
new feature extraction modules that are tailored to
acoustic inputs.

o We study the effect of time and frequency coordinate
maps for acoustic data at different levels in the
architecture.

o We evaluate the generality of the methods by testing
NAAQA on a regenerated a version of the DAQA
dataset (DAQA’) and by adding a MALiMo module
(from [29]) into our NAAQA architecture.

e We provide a detailed analysis of our experimental
results that helps interpretability of the model.

On the CLEAR? dataset NAAQA outperforms the VQA
baseline (which is 4 times more complex in terms of num-
ber of parameters) by 17.2 percent points in the accuracy
score.

The rest of the paper is organized as follows: Section 2
reports on recent related work, Section 3 describes both our
CLEAR? dataset and the DAQA’ dataset, Section 4 presents
the QA models we have tested, Section 5 gives details on
the experimental settings, Section 6 presents and discusses
the results and, finally, Section 7 concludes the paper. Some
extra information can be found in the supplementary mate-
rial, on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2022.3194311.

2 RELATED WORK

This section presents previous research in QA systems
including data generation and modeling.

2.1 Text-Based Question Answering

The question answering task was introduced as part of
the Text Retrieval Conference [1]. In text-based question

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

answering, both the questions and the context are expressed
in text form. Answering these questions can often be
approached as a pattern matching problem in the sense that
the information can be retrieved almost verbatim in the text

(e.g. [3], [4], [5], [6D).

2.2 Visual Question Answering (VQA)

Visual Question Answering aims to answer questions
based on a visual scene. Several VQA datasets are avail-
able to the scientific community [7], [8], [9], [10], [32], [33],
[34], [35], [36], [37]. However, designing an unbiased data-
set is non-trivial. Agrawal et al. [11] observed that the type
of questions has a strong impact on the results of neural
network based systems which motivated research to
reduce the bias in VQA datasets [7], [12], [13], [38], [39],
[40]. Gathering good labeled data is also non-trivial which
induced Zhang et al. and Geman et al. [12], [13] to constrain
their work to yes/no questions. To alleviate this problem,
Johnson et al. [7] proposed the use of synthetic data for
both questions and visual scenes. The resulting CLEVR
dataset has been extensively used to evaluate neural net-
works for VQA applications [28], [41], [42], [43], [44], [45]
which helped foster research on VQA. To create visual
scenes, the authors automated a 3D modelling software.
This allows for an unlimited supply of labeled data elimi-
nating the time and effort needed for manual annotations.
For the questions, they first manually designed semantic
representations for each type of question. These represen-
tations describe the reasoning steps needed to answer a
question (i.e., “find all cubes | that are red | and metallic”).
The semantic representations are then instantiated based
on the visual scene composition thus creating a question
and an answer for a given scene. This gives complete con-
trol over the labelling process.

2.3 Dababases for AQA

As in VQA, using generated data in the design of AQA
datasets has substantial advantages. Data can be automati-
cally annotated which saves time and complexity. The
number of training examples that can be generated is only
limited by the available computational resources. Control-
ling the generation process gives a complete understanding
of the properties and relations of the objects in a scene.
This understanding can be leveraged to reduce bias in
the dataset and to generate complex questions and their
corresponding answers. The CLEAR dataset [27] has been
initially generated using semi-synthetic data. The elemen-
tary sounds were real recordings of musical notes played
by various instruments and players. The auditory scenes
were obtained by concatenating these elementary sounds
in different combinations. The data set had two main limi-
tations: scenes had fixed duration, and the same elemen-
tary sounds were used to generate the test and training
scenes (although test and training scenes were different).
The DAQA dataset [29] comprises more complex and less
stationary elementary natural sounds coming for example
from aircrafts, cars, doors, human speaking, bird singing,
dog barking, etc. Although more complex and varied than
CLEAR, the evaluation also uses the same elementary
sound recordings for training and testing.
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Fig. 1. Overview of the CLEAR dataset generation process. Highlighted in red: ten randomly sampled sounds from the elementary sounds bank, are
assembled to create an acoustic scene. The attributes of each elementary sound are depicted in blue. The question template (orange) and the ele-
mentary sounds attributes are combined to instantiate a question. The answer is generated by applying each steps of the question functional pro-
gram (purple) on the acoustic scene definition (blue). The impact of the reverberations can be seen in the changes of the signals envelops.

In this paper, we propose a more challenging version of
CLEAR which uses different elementary sound recordings
for the training and test sets and generates variable duration
auditory scenes.

2.4 Convolutional Neural Network on Audio
Convolutional neural networks (CNN) have dominated the
visual domain in recent years. More recently, they have also
been applied to a number of problems in the acoustic
domains such as acoustic scene classification [46], [47], [48],
[49], music genre classification [48], [50], instrument classifi-
cation [51], [52], sound event classification and localization
[53] and speech recognition [48]. Some authors [49], [50],
[51], [52] wuse intermediate representations such as
STFT [54], MFCC [55] or CQT [56] spectrograms while
others work directly with the raw audio signal [46], [48].
Square convolutional and pooling kernels are often used
to solve visual task such as VQA, visual scene classification
and object recognition [57], [58], [59], [60]. oddapati et al.,
Hershey et al., Kumar and Raj [47], [61], [62] have success-
fully used visually motivated CNN with square filters to
solve audio related tasks. Time-frequency representations
of audio signals are however structured very differently
than visual representations. Pons et al. [63] explore the per-
formance of different structures of convolutive kernels
when working with music signals classification. They pro-
pose the use of 1D convolution kernels to capture time-spe-
cific or frequency-specific features. They demonstrate that
similar accuracy can be reached using a combination of 1D
convolutions instead of 2D convolutions by combining 1D
time and 1D frequency filters while using much fewer
parameters. They also explore rectangular kernels which
capture both time and frequency features at different scales.
The impact of such strategies for music classification is still
an open question in the context of auditory scene analysis.
Coordinate maps initially proposed in [64] by Liu et al.
have proven successful for processing visual data in the
context of VQA. The method consists in augmenting the
visual input with matrices containing numbers in the range
-1 to 1 which vary either in the = or in the y-dimension.
With MALiMo [29], the same strategy is used to indicate the

simultaneous relative positions of features in frequency and
time. Koutini et al. [65] proposed Frequency-Aware convolu-
tions which are equivalent to concatenating coordinate
maps only in the frequency axis. The effectiveness of coordi-
nate maps on the time dimension for audio signals have not
been studied to the best of our knowledge.

In this study we first evaluate the performance of a net-
work initially designed for the VQA task (Visual FiLM) [28]
on the AQA task, using the CLEAR2 data set. Then we
introduce the NAAQA architecture to leverage specific
properties of acoustic inputs. For this architecture, we ana-
lyze the influence of separate time and frequency coordinate
maps. We then study the impact of adding a MALiMo block
into our architecture. Finally, we evaluate our model on the
DAQA' dataset.

3 DATA

We use two very different datasets in our experiments in
order to study the effect of the AQA task characteristics on
the model performance. The first set, that is also a contribu-
tion of this paper, comprises musical sounds (CLEAR?2); the
second includes short environmental sounds (DAQA).

3.1 CLEAR2

CLEAR? is an updated version of CLEAR [27]. A graphical
overview of the generation process is depicted in Fig. 1.
Each record in the dataset is a unique combination of a
scene, a question and an answer.

To build acoustic scenes, we prepared a bank of elemen-
tary sounds composed of real musical instrument record-
ings extracted from the Good-Sounds [66] dataset'.
Differently from CLEAR, in CLEAR2 we make sure that the

1. Each elementary sound in a scene is characterized by an n-tuple:
[Instrument, Brightness, Loudness, Musical Note, Duration, Absolute posi-
tion in scene, Relative position in scene, Global position]. The Brightness
property is computed by using the timbralmodels [67] library. A
threshold is used to define the label of the sound (Dark or Bright). The
Loudness labels are assigned based on the perceptual loudness as
defined by the ITU-R BS.1770-4 international normalization standard
[68]. Again, a threshold is used to determine if the sound is Quiet or
Loud. All attribute values are listed in Table 1 as possible answers to the
questions explained below.
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TABLE 1

Types of Questions with Examples and Possible Answers
Question type Example Possible Answers
Note What is the note played by the flute that is after the loud bright D note? A, A#,B,C,C#,D,D#,E, F, F#, G, G# 12
Instrument What instrument plays a dark quiet sound in the end of the scene? bass, cello, clarinet, flute, trumpet, violin 5
Brightness What is the brightness of the first clarinet sound? bright, dark 2
Loudness What is the loudness of the violin playing after the third trumpet? quiet, loud 2
Abso.lute P0§iFion What is the position of the A# note playing before the bright B note? } first, second .. fifteenth 15
Relative Position Among the trumpet sounds which one is a F?
Global Position In what part of the scene is the clarinet playing a loud G note ? beginning, middle, end (of the scene) 3
Counting How many other sounds have the same brightness as the third violin? 16

. : . . 0,1..15

Counting Instruments How many different instruments are playing before the second trumpet?
Exist Is there a bass playing a bright C# note? } s, 10 2
Counting comparison Is there an equal number of loud cello sounds and quiet clarinet sounds? yes
Total 57

The variable parts of each question is emphasized in bold italics. The number of possible answer per question type is reported in the last column. Certain questions
have the same possible answers, the meaning of which depends on the type of question.

recordings (players, instruments, microphones) of the ele-
mentary sounds are different for the training and test sets.
For the training set, the bank comprises 135 unique record-
ings (compared to 56 in CLEAR) sampled at 48KHz includ-
ing 6 different instruments (bass, cello, clarinet, flute,
trumpet and violin), 12 notes (chromatic scale) and 3
octaves. A different set of 135 recordings of the same instru-
ments recorded using different microphones and players is
used to create the test set. The acoustic scenes are built by
concatenating between 5 to 15 randomly chosen sounds
from the elementary sound bank into a sequence (as
opposed to CLEAR which comprised fixed duration
scenes). Silence segments of random duration are added in-
between elementary sounds. The acoustic scenes are then
corrupted by filtering to simulate room reverberation and
by adding a white uncorrelated uniform noise. Both the
amount of noise and reverberation vary from scene to scene
with the goal of increasing variability in the data.

For each scene, a number of questions is generated using
CLEVR-like [7] templates. A template defines the reasoning
steps required to answer a question based on the composi-
tion of the scene (i.e., “find all instances of violin | that plays
before trumpet | that is the loudest”). 942 templates where
designed for this AQA task. Not all template instantiations
results in a valid question. The generated questions are fil-
tered to remove ill posed questions similarly to [7]. Table 1
shows examples of questions with their answers.

The a priori probability of answering correctly with no
information about the question or the scene, and assuming
a uniform distribution of classes, is % = 1.75%. These proba-
bilities are higher, on average, if we introduce information
about the question. For example, if we know that the ques-
tion is of the type Exist or Counting comparison, there are
only two possible answers (yes or no) and the probability of
answering correctly by chance is 0.5. The majority class
accuracy (always answering the most common answer: Yes)
is 7.5%. Statistics on the CLEAR2 dataset are presented in
Table 2.

The generation process was built with extensibility in
mind. Different versions of the dataset with fewer or more
objects per scene can be generated by using different param-
eters for the generation script. It is also possible to modify

the elementary sounds bank to generate datasets for AQA
in other domains, speech or environmental sounds, for
example. The code for generating the dataset is available on
GitHub.”? Pre-generated version of the dataset is available
both on IEEE Dataport® and HuggingFace.

3.2 Reproducing DAQA

We were not able to fully recreate the DAQA dataset
because it relies on some AudioSet [69] YouTube videos
that have since been deleted. We were able to retrieve 358
sounds out of the 400 sounds that were used to generate the
original dataset. We used these sounds to generate the data-
set. Changing the number of elementary sounds also
impacts the whole generation process. This dataset is there-
fore different from the original DAQA and will be referred
to as DAQA’ from now on. Our results are therefore not
fully comparable to the ones reported in [29]. A list of all the
missing sounds is available in Supplementary Materials.

3.3 Comparing CLEAR2 and DAQA’

Table 2 report statistics on both CLEAR2 and DAQA'. The
major difference between both datasets is the type of ele-
mentary sounds used to generate the acoustic scenes, that
is, sustained musical notes (CLEAR?2) versus possibily tran-
sient environmental sounds (DAQA').

Acoustic scenes in DAQA’ are much longer on average
than the ones in CLEAR?2. This results in much bigger input
spectrograms, and, in turns, much higher computational
requirements and longer training time.

Finally, the original DAQA [29] and, consequently, our
reconstruction (DAQA’) suffer from the same problem as
the original CLEAR. The same elementary sounds are used
in the training and test scenes. Although scenes are still dif-
ferent between training and test set, this may cause the
models to “remember” the elementary sounds rather than
extracting their properties. In CLEAR?2, this problem was
mitigated by using different elementary sounds for the
training and test set.

2. https:/ /github.com/NECOTIS/CLEAR-AQA-Dataset-Generator
3. https:/ /dx.doi.org/10.21227 / 7x26-a025
4. https:/ /huggingface.co/datasets/J3romee/CLEAR
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TABLE 2
Datasets Statistics

Datasets global statistics

Dataset
CLEAR2 DAQA’
# of questions 200 000 599 441
# of scenes 50 000 100 000
# of answers 57 52
# of elementary sounds 135 ( + 135 for test) 358
# of types of question 11 5
# of unique vocabulary words 91 158
CLEAR?2 Dataset detailed statistics

Mean Min Max
# of sounds per scene 10 5 15
Elementary sound duration 0.85s 0.69s 1.11s
Scene duration 10.69s 4.46s 17.82s
# of words per question 17 6 28
# of unique words per question 12 5 19

DAQA'’ Dataset detailed statistics

Mean Min Max
# of sounds per scene 9 5 12
Elementary sound duration 9.35s 0.6s 20s
Scene duration Imin 19s 9s 3min 4s
# of words per question 13 5 27
# of unique words per question 11 5 22

4 METHOD

We first describe the original Visual FILM architecture [28]
that we use as baseline model, then the proposed modifica-
tions that lead to our NAAQA architecture and, finally,
NAAQA with a MALiMo module.

4.1 Baseline Model: Visual FiLM

Both the proposed NAAQA and Visual FILM [28] share an
overall common architecture which is depicted in Fig. 2.
Visual FiLM, that we will use as baseline model, is
inspired by Conditional Batch Normalization architec-
tures [70] and achieved state of the art results on the
CLEVR VOQA task [7]. The network takes a visual scene
and a text-based question as inputs and predicts an answer
to the question for the given scene. The text-processing
module uses G unidirectional gated recurrent units (GRUs)
to extract context from the text input (yellow area in
Fig. 2). The visual scene is processed by the convolutional
module (blue area in the figure). The first step of this mod-
ule is feature extraction (orange box), performed by a
Resnet101 model [59] pre-trained on ImageNet [71]. The
extracted features are processed by a convolutional layer
with batch normalization [70] and ReLU [72] activation fol-
lowed by J Resblocks illustrated in details in the red area
in the figure. Unless otherwise specified, batch normaliza-
tion and ReLU activation functions are applied to all con-
volutional layers. Each Resblock j comprises convolutional
layers with M filters that are linearly modulated by FiLM

5001
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O Classifier Module §
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Fig. 2. Common Architecture. Two inputs: a spectro-temporal represen-
tation of an acoustic scene and a textual question. The spectro-temporal
representation goes through a feature extractor (Parallel and Interleaved
feature extractor detailed in Section 4.2.1 for NAAQA and Resnet101
pretrained on ImageNet for Visual FiLM) and then a serie of J Resblocks
that are linearly modulated by g; and y; (learned from the question input)
via FiLM layers. Coordinate maps are inserted before convolution blocks
that are illustrated with a pink border. The output is a probability distribu-
tion of the possible answers.

layers through the two M x 1 vectors B; (additive) and y;
(multiplicative). This modulation emphasizes the most
important feature maps and inhibits the irrelevant maps
given the context of the question. 8; and y; are learned via
fully connected layers using the text embeddings extracted
by the text processing module as inputs (purple area in the
figure). The affine transformation in the batch normaliza-
tion before the FiLM layer is deactivated. The FiLM layer
applies its own affine transformation using the learned B;
and y; to modulate features. Several Resblocks can be
stacked to increase the depth of the model, as illustrated in
Fig. 2. Finally, the classifier module is composed of a 1 x 1
convolutional layer [73] with C filters followed by max
pooling and a fully connected layer with H hidden units
and an output size O equal to the number of possible
answers (Gray in Fig. 2). A softmax layer predicts the prob-
abilities of the answers. In order to use the Visual FiLM as
a baseline for our experiments, we extract a 2D spectro-
temporal representation of the acoustic scenes as depicted
at the bottom of Fig. 2. The Resnet101 pre-trained extractor
expects a 3 channels visual input but the spectro-temporal
representation comprises only 1 channel. To work around
this constraint, the spectro-temporal information is simply
repeated 3 times thus creating a 3 channels input (only
when using Resnet101 as feature extractor). This modified
spectro-temporal representation is then fed to the model as
if it was an image which is the simplest way to adapt the
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unmodified visual architecture to acoustic data. We call
this architecture Visual FiLM Resnet101.

4.2 The Proposed NAAQA Architecture

To create the NAAQA architecture, we made modifications
to the baseline architecture that will be described in the fol-
lowing sections. The code is available on GitHub.”

4.2.1 Feature Extraction

As in Visual FiLM, the first step in the NAAQA model is
feature extraction (orange box in Fig. 2). The most obvious
adaptation of Visual FILM to acoustic data is to retrain the
feature extraction module on the scenes from CLEAR2. To
do this, we used three 2D convolutional layers, with 3 x 3
kernels, stride 2 x 2 and N;, Ny, and Nj filters respectively
followed by a 1 x 1 convolutions with NV, filters. We refer to
this model as NAAQA 2D Conv.

However, as acoustic signals present unique properties,
we introduce two feature extraction modules that are specif-
ically tailored to sounds: the Parallel feature extractor
(Fig. 3a) processes time and frequency features indepen-
dently in parallel pipelines; the Interleaved feature extractor
(Fig. 3b) captures time and frequency features in a single
convolutional pipeline. In both cases, the feature extractor is
trained end-to-end with the rest of the network and uses a
combination of 1D convolutional filters to process a 2D
spectro-temporal representation. The 1D filters process the
time and frequency axis independently as opposed to the
2D filters typically used in image processing.

5. https:/ / github.com/NECOTIS/NAAQA-Acoustic-Question-
Answering
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(b) Interleaved feature extraction. 1D time (in yellow) and fre-
quency (in green) convolutions are applied alternately on the
input spectrogram building a time-frequency representation
after each block. The order of the convolution in each block
can be reversed. The extractor is composed of K blocks where
each convolution has Ny filters followed by a 1 x 1 convolution
with P filters.

The design of the Parallel feature extractor (Fig. 3a) is
inspired by the work of Pons et al. [63] where 1D filters are
used to capture time and frequency features separately.
While Pons et al. time-frequency model includes only 1 time
and 1 frequency convolution which are then concatenated
together, our extractor stacks multiple 1D convolutions in
two parallel pipelines. The time and frequency features are
only fused at the end of both pipelines. This yields more
complex features. The frequency pipeline (green in the figure)
comprises a serie of K frequency blocks. Each block is com-
posed of a 1D convolution with Nk 3 x 1 kernels and 2 x 1
strides followed by a 1 x 2 maxpooling. With a stride larger
than 1 x 1, the convolution operation downsamples the fre-
quency axis and the pooling operation downsamples the
time axis. This downsampling strategy allows features in
both parallel pipelines to be of the same dimensions. The
time pipeline (yellow in the figure) is the same as the fre-
quency pipeline except that the convolutional kernel oper-
ates along the time dimension and the pooling along the
frequency dimension. The convolution kernel is 1 x 3 and
the pooling kernel 2 x 1. The activation maps of both pipe-
lines are concatenated channel-wise and a representation
combining both the time and frequency features is created
using a 1 x 1 convolution [73] with P filters and a stride of
one. The feature maps dimensionality is either compressed
or expanded depending on the number of filters P in the 1 x
1 convolution. We name the corresponding model as NAAQA
Parallel. The 1 x 1 convolution can also be removed thus
leaving it up to the next 3 x 3 convolution to fuse the time
and frequency features.

The Interleaved feature extractor (Fig. 3b) processes the
input spectrogram in a single pipeline composed of a serie
of K interleaved blocks (purple in the figure). Each block
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comprises a 1 x 3 time convolution with N filters and
stride 1 x 2 followed by a 3 x 1 frequency convolution with
Ny filters and stride 2 x 1. A 1 x 1 convolution with P fil-
ters processes the output of the last block to either compress
or expand its dimensionality. We name the corresponding
model as NAAQA Interleaved Time.

As an alternative configuration, the order of the convolu-
tion operation in each block can be reversed so that it first
operates along the frequency axis and then the time axis.
The model is called NAAQA Interleaved Fregq, in this
case. Compared to the Parallel feature extractor, time-fre-
quency representations are created after each block instead
of only at the end of the pipeline.

For all extractors, the convolutions in the first block com-
prise N; convolutional filters and the number of filters is
doubled after each block (N; = 2N;_;). More blocks (higher
K) gives a larger downsampling of the feature maps which
brings down the computational cost of the model.

4.2.2 Coordinate Maps for Acoustic Inputs

When tackling the VQA task, the Visual FILM model con-
catenates coordinate maps (CoordConv [64]) to the input of
convolutional layers (pink border boxes in Fig. 2). In the
visual domain both axis of an image encode spatial informa-
tion. Coordinate maps have, therefore, the same meaning in
the z or y-axis.

In spectro-temporal representations for audio, how-
ever, the y-axis corresponds to frequency and the z-axis to
time. We, therefore, call the maps frequency and time coor-
dinate map, respectively. All spectro-temporal representa-
tions in CLEAR2 have the same range for the frequency
axis but the range for the time axis varies depending on
the duration of the acoustic scenes. We hypothesize that
time coordinate maps might have a stronger impact on
performance because they provide a relative time scale
that the model can use to enhance its temporal localiza-
tion capabilities.

4.2.3 Complexity Optimization

We performed optimization of the most important hyper-
parameters in the NAAQA architecture with the goal of
reducing model complexity. These include number of GRU
text-processing units G; the number of Resblock J that dic-
tates the number of FiILM layers and, therefore, the number
of modulation coefficients to compute; the number of con-
volutional filters M in each block; the number of filters C'
and the number of hidden units H in the classifier module.
We refer to the resulting model by prepending Optimized
to the model name.

4.2.4 NAAQA with a MALiMo Module

In MALiMo [29], Fayek and Johnson add a second set of
FiLM layers that acts has an auxiliary controller. The con-
troller uses the extracted acoustic features to further modu-
late the intermediate Resblocks. To evaluate the impact of
MALiMo on CLEAR2, a MALiMo module was added to
NAAQA. We refer to this configuration by appending
MALiMo ctrl to the names introduced above. In our imple-
mentation of the module we replaced LSTMs with GRUs
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and adapted the inputs to the acoustic features that we
study.

5 EXPERIMENTS

We perform experiments to compare the effect on perfor-
mance of our modification to the baseline model. Most
experiments are conducted on the proposed CLEAR2 data-
set. We first investigate different feature extraction methods
and compare them to the Visual FiLM Resnet101 feature
extractor. Then, we show the effect of time and frequency
coordinate maps at different levels of the model. Moreover,
we perform an hyper-parameters ablation study to reduce
the complexity of the model. We finally test the addition of
a MALiMo module to our model. To demonstrate the gener-
ality of the results, we compare the performance of our
model on CLEAR2 and DAQA’ datasets.

5.1 Acoustic Pre-Processing

The raw acoustic signal (sampled at 48 kHz for CLEAR2
and 16kHz for DAQA') is processed to create a 2D time-
frequency representation with Mel scale [74] spectro-
grams. After preliminary tests it was decided to extract 64
Mel coefficients for both CLEAR2 and DAQA’ computed
over samples weighted by a Hanning window. The win-
dow size was of 512 samples (~10.6 msec) for CLEAR2
whereas for DAQA’ it was of 400 samples (~25ms) as
in [29]. The time shift between consecutive windows
(stride) was also optimized depending on the characteris-
tics of audio data. We found that the best results for
CLEAR?2 was a time shift of 2048 samples (~42.7 msec).
This is feasible because of the sustained notes which vary
slowly in time. Using such a long time shift allowed us to
reduce more than ten folds the computational costs. As
DAQA’ contains sounds that are shorter and less stable,
the same optimization is not feasible. In fact, with a time
shift of 1600 samples (100ms) a 5% drop in accuracy is
observed in comparison with 160 samples (10ms) shifts.
All results based on CLEAR? are reported with long win-
dow shifts (long stride), with the exception of the compari-
son between short and long strides on both CLEAR2 and
DAQA’ in Supplementary Materials.

As duration of scenes are not constant in CLEAR2, spec-
trograms are zero padded along the time axis so that they
all have the same dimension (1 x 64 x 418) which corre-
sponds to a maximum length of ~17.9 sec. The power
spectrum is normalized to the mean and standard devia-
tion of the training data with the goal of speeding up
convergence [75].

5.2 Experimental Conditions

Unless specified otherwise, the models presented in subse-
quent sections are trained on the CLEAR2 dataset which
comprises 50 000 scenes and 4 questions per scene for a total
of 200 000 records from which 140 000 (70%) are used for
training, 30 000 (15%) for validation and 30 000 (15%) for
test. The test set is generated using a different set of elemen-
tary sounds which ensures that the network could not mem-
orize them and can therefore acts has a better generalization
benchmark. The optimization techniques and other training
settings are further described in Supplementary Materials.
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TABLE 3
Results on CLEAR2

Number of — Overall Accuracy by question type (%)
Configuration Parameters Acc. Instrument  Note  Brightness Loudness  Exist Abs. Pos. Glob. Pos.  Rel. Pos. Count  Count Comp. Count Inst.
Baselines
Random Answer — 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75
Most common Answer (Yes) — 7.3 0 0 0 55.62 0 0 0 0 47.27 0
Visual FilM Resnet101 671M 6232078 61.9£0.85 37.8+1.30 839 £0.58 81.90.61 73.2+0.70 51.7 +1.40 73.1 £2.29 48.4 +1.82 4152042 59.8+0.57  39.9 +3.03
NAAQA
NAAQA 2D Conv 56IM 776072 80.6+0.66 73.4=1.28 90.5=1.44 8652076 81.3 057 74.7 250 875+042 540+1.43 538 =1.01 60.8=1.34 49.0+353
NAAQA Interleaved Freq 561M 6722098 63.0+1.93 4802214 845107 81.1052 721 £1.24 65.1+1.04 80.1 £0.66 49.3 £1.59 425+151 56.6 245  46.5 £1.57
NAAQA Interleaved Time 561 M 78.0 £0.51 81.8 £1.06 70.6 +1.24 90.9 +0.78 87.9 £0.94 81.6 £0.66 759 +1.08 87.4 +0.25 60.0 +4.07 53.6 +0.63  61.2 £0.73 50.0 £2.23
NAAQA Parallel 561 M 785045 80.4+0.83 72.6+1.19 91.2+0.74 87.1+028 80.4 +0.16 78.7 £1.26 88.8 +0.53 55.4 +1.63 52.6 +0.43  59.8 +2.13 50.2 +3.49
Optimized NAAQA Parallel 1.68 M 79.5 £0.05 81.7 £0.20 74.2 +0.58 91.9 £0.17 87.4 +0.31 81.2 £0.10 79.3 £0.77 90.0 £0.15 58.0 +1.32 53.8 +1.40  60.6 +0.89 50.4 +1.10
NAAQA + MALiMo
Visual FilM Resnetl0l + MALiMo ctrl 6.82 M 63.6 120 61.8+1.40 36.3 +1.41 83.5+0.86 823 +0.59 73.4 +1.06 57.1 £3.58 76.1 +1.94 47.4 4298 41.6 +0.80  56.7 +4.23 43.2 +3.64
NAAQA 2D Conv + MALiMo ctrl 6.71 M 771112 79.2+1.01 713 £1.54 90.5 £0.81 86.1 £0.73 80.3 £0.77 75.7 £2.08 87.8 +0.74 52.7 +1.94 51.9 22.73  59.0 +3.00 50.2 +2.48
NAAQA Interleaved Freq+MALiMo ctrl 671M 6482391 5534833 43.1x877 832133 80.0x1.75 70.3 £2.74 63.6 +4.72 787 +327 458 £3.53 414196 5512275 487 £2.05
NAAQA Interleaved Time + MALiMo ctrl 6.71M 771 £0.63 79.9 +0.86 70.8 £1.10 90.5+1.00 86.7 +0.89 80.3 £0.34 74.5+1.06 87.6 +0.35 552 +2.39 53.8 +0.43  59.9 +2.32 50.0 £0.93
NAAQA Parallel + MALiMo ctrl 6.71 M 773 +093 782150 71.3+1.00 89.9 +0.66 85.8 +0.67 79.7 +0.45 77.7 +£2.02 87.6 +0.53 53.6 +1.84 51.9 +1.82  59.0 +2.29 48.1 £1.65
Optimized NAAQA Parallel + MALiMo ctrl 2.78 M 78.2 +0.06 80.8 +0.41 72.4+0.33 89.6 £0.62 86.2 +0.04 79.7 £0.10 79.3 £0.22 88.4 +0.36 54.0 +0.33 52.2+0.70  58.8 +0.45 45.6 £0.00

Table gives the number of parameters, average accuracy (%), and standard deviation over five repetitions of the training. Overall accuracy as well as question-kind
dependent accuracy are reported. Different configurations are reported in the same order as they are discussed in the paper. The most common answer is “Yes”.

Results are reported in terms of accuracy, that is in percent-
age of correct answers over the total. Since initialization of
deep architectures has a profound impact on training con-
vergence, we developed a python library torch-repro-
ducible-block® to control the model initial conditions
and design reproducible experiments. To ensure the robust-
ness of the results, each model is trained 5 times with 5 dif-
ferent random seeds.

5.3 Initial Model Configuration

The initial configuration for the proposed model comprises
G = 4096 GRU units, J = 4 Resblocks with M = 128 filters
each and a classifier composed of a 1 x 1 convolution with
C = 512 filters and H = 1024 hidden units in the fully con-
nected layer. This configuration includes both time and fre-
quency coordinate maps in each location highlighted in pink
in Fig. 2.

6 RESULTS AND DISCUSSION

Main results on the CLEAR? data set are presented in Table 3.
The complexity of the models in terms of number of parame-
ters, the overall accuracy and accuracy dependent on ques-
tion’s type are reported. Results from two theoretical
baselines - random chance and majority class answers - are
first given. Then we report results from the Visual FiLM
Resnet101 baseline model with the initial configuration
described in Section 5.3. This architecture achieves the lowest
accuracy of 62.3% in comparison with all tested models. As
expected, the pre-learned knowledge gathered in a visual
context does not transfer directly to the acoustic context. Mel
spectrograms have a very different structure than visual
scenes features.

6.1 NAAQA Modifications
Unless specified otherwise, the initial configuration described
in section 5.3 is used for all models in this section.

6.1.1 Feature Extraction

The first improvement to the baseline is given by introduc-
ing a specific audio feature extraction module based on 2D

6. https:/ / github.com /NECOTIS/ torch-reproducible-block

convolutions. The NAAQA 2D Conv model has slightly fewer
parameters than Visual FiLM Resnet101 because of the
simpler feature extraction module and a much higher over-
all accuracy of 77.6%.

We then tested two versions of the Interleaved feature
extractor (Fig. 3b). The computation order of the 1D convo-
lutions in each block has a significant impact on perfor-
mance. When the first 1D convolution in each block is
computed along the frequency axis (NAAQA Interleaved
Freq), the network reaches an overall accuracy of 67.2%. It
performs especially poorly with questions related to count
(42.5%), count instruments (46.5%) and notes (48.0%). The
performance on position questions is also the lowest among
all extractors. When the computation order of the convolu-
tion is reversed (NAAQA Interleaved Time), information
is better captured and the network reaches 78.0% of overall
accuracy. A possible explanation relates to the nature of the
sounds in the CLEAR? dataset which mainly consists of sus-
tained musical notes. The time dimension at short scales
does not contain much information that helps identifying
the individual sounds. At larger scales, however, the time
axis contains information relative to the scene as a whole
which is exploited by higher level layers (Resblocks) to take
into account the connections between different sounds.
Because its stride is greater than 1x1, each 1D convolution
downsamples the axis on which it is applied. When the first
is a frequency convolution, the frequency axis of the result-
ing features is downsampled which reduces the information
that can be captured by the time convolution that follows.

The Parallel feature extractor (NAAQA Parallel, Fig. 3a)
reaches an overall accuracy of 78.5%. It performs well on all
question’s types except relative position, count and count
instrument. Refer to Section 6.2 for further analysis. These
results show that building complex time and frequency fea-
ture separately and fusing them at a later stage is a good
strategy to learn acoustic features for this task. This claim is
further strengthen by the analysis of Section 6.3.2.

Out of all extractors, NAAQA Parallel is the one that
performs the best and constitutes the basis of NAAQA in all
subsequent experiments.

6.1.2 Coordinate Maps

Coordinate maps can be inserted before any convolution
operation (Fig. 2). We therefore analyzed the impact of the
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placement of Time and Frequency coordinate maps at differ-
ent depths in the network. All possible locations were eval-
uated via grid-search. For each location, we inserted either a
Time coordinate map, a Frequency coordinate map or both.
Results are detailed in Table 5. Time coordinate maps have
the biggest impact on performance, especially when
inserted in the first convolution after the feature extractor or
in the Resblocks. This could be because the fusion of the tex-
tual and acoustic features, and therefore most of the reason-
ing, is performed in the Resblocks. The network might be
using the additional localization information to inform the
modulation of the convolutional feature maps based on the
context of the question. Surprisingly, the Frequency coordi-
nate maps have a minimal impact on performance. We
further compare the impact of Time versus Frequency coordi-
nate maps in Supplementary Materials.

6.1.3 Complexity Optimization

As described in Section 4.2.3, we optimized the most impor-
tant hyper-parameters (G, J, M) in the NAAQA model to
reduce its complexity. The baseline Visual FiLM
Resnet101 configuration comprises 6.71 M parameters
and achieves only 62.3%. NAAQA Parallel comprises 5.61
M parameters and performs significantly better with 78.5%.
With this model as a starting point, we performed an abla-
tion study to find which hyper-parameters can be reduced
without impacting accuracy. The Optimized NAAQA Par-
allel configuration is the best trade-off between model
complexity and performance. It comprises 1.68 M parame-
ters and achieves the best overall accuracy with 79.5%. The
most notable complexity reduction comes from the reduc-
tion of the number of GRU units G. Reducing G from 4096
to 512 increased accuracy while reducing the number of
parameters by a factor of 3 (6.61 M versus 1.68 M). The
Optimized NAAQA Parallel is composed of a Parallel
extractor with K =3 blocks and P =64, G =512 GRU
units, J = 4 Resblocks with M = 128 filters, a classifier mod-
ule with C' = 512 filters and H = 1024 units. Results for this
configuration can be found in Table 3 and Fig. 4. Further
results related to the ablation study can be found in Supple-
mentary Materials.

6.1.4 Adding a MALiMo Controller

The bottom rows of Table 3 show results where the con-
figurations described in previous sections are augmented
with a MALiMo controller. Although the model com-
plexity is significantly increased (~1M parameters), this
addition does not bring any improvement in the model
performance on CLEAR2. Almost all the tested configu-
rations with a MALiMo controller perform slightly worse
than the same configuration without the module, as can
be seen in Table 3. This may be again explained by the
characteristics of the sounds in CLEAR2. A more in-
depth discussion is given when we evaluate the models
on DAQA'.

6.2 Summary of Results on CLEAR2

NAAQA performs well on the CLEAR2 AQA task with
79.5% overall accuracy. It does however struggle with
certain types of question as shown in Table 3 and Fig. 4.
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Fig. 4. Test accuracy by question type and the number of relation in the
question for Optimized NAAQA Parallel. The overall accuracy for
this configuration is 79.1%. The presence of before or afterin a question
constitutes a temporal relation. The accuracy is N/A for relative position
and count compare since these types of question do no include relations.
The hyper-parameters are described in the end of Section 6.1.3.

When asked to count the number of sounds with specific
attributes, NAAQA reaches only 53.8% accuracy. This
limitation is more severe if the question is to count the
different instruments playing in a given part of the scene
(50.4%). It attains slightly higher accuracy when asked to
compare the number of instances of acoustic objects
(more, fewer or equal number) with specific attributes
(60.6%). In contrast, the network can successfully recog-
nize individual instruments in the scene (81.7%). This
suggests, that the problem lies in the logical complexity
of the question rather than in the pattern matching from
the acoustic scene. As an example, the question (count
instrument): "How many different instruments are play-
ing after the third cello playing a C# note?” requires to
first identify the cello playing the C# note, then identify
all acoustic objects that are playing after this sound,
determine which instruments are of the same family and
finally count the number of different families. The model
struggles when it must focus on a large number of
acoustic objects which explains the low accuracy for this
type of question.

A similar argument could explain why models also
have difficulties with questions related to the relative posi-
tion of the instruments (58.0%). For example, to answer
the question “Among the flute sounds, which one plays
an F note?”, the model must find all flutes playing in the
scene, determine which one plays an F note, counts the
number of flute playing before and translates the count to
a position.” This also requires the network to focus on
multiple objects.

Certain questions include temporal relations between
sounds (before and after) as exemplified in Table 1. Ques-
tions that include relations require focusing on several
sounds to be answered. Fig. 4 shows the accuracy for
each question type depending on the presence of

7. This is one possible strategy to answer the question. There may be
other ways.
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TABLE 4
Results on DAQA' the Table Presents Number of Parameters, Average Training, Validation and Test Accuracy (%)
With Standard Deviation Over Five Repetitions of the Training as Well as Average Training Time
Configuration # Parameters Train Acc. Val Acc. Test Acc. Trainig time
Optimized NAAQA 2D Conv 1.68 M 65.2 +0.64 58.0 £0.82 58.3 £0.98 0 days 06:48:12
Optimized NAAQA Parallel 1.68 M 66.6 £0.51 60.4 £0.08 60.4 £0.21 0 days 06:49:52
Optimized NAAQA 2D Conv + MALiMo ctrl 2.78 M 58.5 £3.03 54.2 £2.42 54.4 £2.35 0 days 07:31:37
Optimized NAAQA Parallel + MALiMo ctrl 2.78 M 67.3 £1.22 64.1 +0.54 64.3 +£0.72 1 days 04:59:46

Results are reported for four configurations, with and without the MALiMo module in the same order as they are presented in the paper.

TABLE 5
Impact of the Placement of Time and Frequency Coordinate Maps
Coordinate maps Accuracy (%)

Extractor 1st Conv Resblocks Classifier Train val Test

- - Time - 95.0 +0.79 90.2 +0.62 79.0 +0.44
- Time - - 95.1 £0.90 90.0 £0.28 79.0 +0.43
- - Both - 949 +1.08 90.1 +0.83 78.8 +£0.52
- Both - - 95.1 £1.23 90.0 +0.46 78.7 £0.70
Time - - - 94.7 +£1.06 88.3 +1.24 76.7 +£0.83
Both - - - 94.1 +£1.47 88.4 +1.06 76.6 £0.36
- - - Freq 84.0 £2.17 73.5 +£1.40 64.8 +1.51
- - - - 85.2 +0.71 72.9 +£1.36 63.8 £0.70
- - - Both 83.5 +3.46 72.3 £2.71 63.5 +1.93
- - Freq - 84.5 +0.67 71.7 £2.85 62.6 +2.36
- Freq - - 83.4 +1.53 70.7 £1.74 61.7 +1.16
- - - Time 81.9 +0.88 70.1 £1.99 61.7 £0.76
Freq - - - 79.7 £3.70 67.1 £3.36 59.3 £2.20

All possible positions are illustrated by the pink border boxes in Fig. 2. The value Both indicate that both Time and Frequency coordinate maps were inserted at
the given position. The NAAQA Parallel is used with hyper-parameters from the initial configuration (defined in section 5.2. The rows are ordered by test

accuracy).

temporal relations. Questions that require the network to
focus on a single acoustic object (brightness, loudness,
instrument, note, global position and absolute position) bene-
fit from the presence of a relation in the question. This
might be explained by the fact that the question contains
more information about the scene which helps to focus
on the right acoustic object. However, the presence of
relations in questions that already require the network to
focus on multiple objects (exist, count and count compari-
son) is detrimental. This again supports the idea that
having to focus on too many objects in the scene hinders
the network performance.

6.3 Evaluation on DAQA’

To compare our results to those of Fayek and Johnson [29],
we evaluated our models on a version of the DAQA data
set. As mentioned in Section 3.2, we were not able to repro-
duce the original DAQA dataset which means that results
presented in this section are not fully comparable with [29].
Results for different configurations of NAAQA tested on
our modified DAQA' are reported in Table 4.

6.3.1 NAAQA on DAQA'

The models explored in this section matches the perfor-
mance of previous efforts [29]. The smallest model they
evaluated had 5.49M parameters, the biggest model had
21.33M parameters and the best performing model had

13.20M parameters. The Optimized NAAQA 2D Conv
model only has 1.68 M parameters and reaches an accuracy
of 58.3% on DAQA’. The Optimized NAAQA Parallel
has the same number of parameters and performs slightly
better with and accuracy of 60.4%. When we analyzed both
of these models on CLEAR2 dataset in Section 6.1.1, we
found a much smaller difference between the performance
of the NAAQA 2D Conv and the NAAQA Parallel. This dif-
ference suggests that the parallel extractor is more effective
in the context of complex acoustic sounds (DAQA’) than
with sustained musical notes (CLEAR2).

Even though these results are not 100% comparable with
[29] because of the difference in the dataset composition, we
want to emphasize that Optimized NAAQA Parallel
reaches a somewhat similar accuracy than the smallest
FiLM in [29] (60.4% versus 64.3%) with significantly smaller
number of parameters (1.68 M versus 5.49 M).

6.3.2 NAAQA with a MALiMo Module on DAQA'

In Section 6.1.4, we found that adding a MALiMo con-
troller to our NAAQA models did not improve the accu-
racy on CLEAR2. On the other hand, the MALiMo
controller has a significant positive impact when the
model is evaluated on DAQA’ dataset (Table 4). We see
an increase of almost 4% when using Optimized NAAQA
Parallel + MALiMo ctrl compared to Optimized
NAAQA Parallel alone. These results are consistent
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with Fayek and Johnson findings and with the hypothesis
that MALiMo increases performance when working with
complex sounds.

The Optimized NAAQA Parallel + MALiMo ctrl con-
figuration performs about the same as the smallest MALiMo
model evaluated in [29] (64.3% versus 65.1%) with signifi-
cantly fewer parameters (2.78 M versus 8.91 M).

7 CONCLUSION

Acoustic Question Answering (AQA) is a newly emerging
task in the area of machine learning research. As perfor-
mance is strongly dependent on the acoustical environments
and types of questions, it is important to understand the rela-
tionship between the application and the chosen neural
architecture. We propose a benchmark for AQA based on
musical sounds (CLEAR2) and a neural architecture that is
tailored to interpreting acoustic scenes (NAAQA). NAAQA
introduces a number of modifications to a FiILM based archi-
tecture to optimize acoustic scenes analysis. These includes
several strategies for neural feature extraction, an ablation
study of the hyper-parameters and the optimization of coor-
dinate maps. We confirm that FiILM layers are very effective
to modulate activation maps in the AQA application. We are
able to optimize our NAAQA neural network so to obtain
competitive results with a fraction of the model complexity.
These results are confirmed on a different AQA task
(DAQA') comprising more complex sounds with the addi-
tion of a MALiMo controller in the model. We release all
code openly in the hope that these resources may foster
increased research activity in solving the AQA task.
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