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Abstract— Signal Temporal Logic (STL) is a rigorous spec-
ification language that allows one to express various spatio-
temporal requirements and preferences. Its semantics (called
robustness) allows quantifying to what extent are the STL
specifications met. In this work, we focus on enabling STL
constraints and preferences in the Real-Time Rapidly Explor-
ing Random Tree (RT-RRT∗) motion planning algorithm in
an environment with dynamic obstacles. We propose a cost
function that guides the algorithm towards the asymptotically
most robust solution, i.e. a plan that maximally adheres to the
STL specification. In experiments, we applied our method to
a social navigation case, where the STL specification captures
spatio-temporal preferences on how a mobile robot should avoid
an incoming human in a shared space. Our results show that
our approach leads to plans adhering to the STL specification,
while ensuring efficient cost computation.

Index Terms— Signal Temporal Logic, Real-Time Planning,
Sampling-based Motion Planning.

I. INTRODUCTION

Recent research has broadened the scope of motion plan-
ning to handle advanced goals, requirements, and preferences
that are defined using temporal logics: for instance, Linear
Temporal Logic (LTL) can, among others, express various
safety, reachability, sequencing, request-response require-
ments as well as their arbitrary combinations. Signal Tem-
poral Logic (STL) [1] extends LTL with explicit temporal
and spatial constraints for continuous signals. When viewing
robot trajectories as signals, STL can express properties, such
as that a robot should always keep a safe distance to people,
or that it should move slow when in a narrow passage. A
key benefit of STL is its quantitative semantics – robustness
– which provides a score indicating to what extent a signal
satisfies or violates a given specification.

Maximizing STL robustness has become a goal of a
number of motion planning algorithms based on a variety
of principles, from reformulation to a Mixed Integer Linear
Programming problem [2], [3], to leveraging STL spatial
robustness as part of a cost function in RRT∗ [4], [5], [6].
For instance, Karlsson et al. [4] define the cost function
as a compromise between the STL spatial robustness and
trajectory duration. This cost function was also utilized
in [5], where the authors enhance the autonomous exploration
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planner with STL preferences to increase the exploration
performance. Finally, the approach in [6] is particularly re-
lated to this work: the goal is to synthesise motion plans that
maximize the spatial robustness of STL specifications. They
define quantitative satisfaction of partial trajectories (i.e.,
trajectories for which there is not enough data to compute
robustness) as robust satisfaction intervals [7], and guide
the exploration process accordingly. The existing approaches
have, however, certain limitations: they do not consider the
presence of moving obstacles, and the structure of the used
cost function prevents its efficient use in real time.

In this work, we address these limitations by extending
the Real-Time RRT∗ (RT-RRT∗) algorithm [8] to handle
STL specifications. In contrast to other real-time variants of
RRTs that either regrow the entire tree or prune infeasible
branches [9], [10], RT-RRT∗ retains the whole tree in the
environment and rewires its nodes based on the location of
the tree root (which moves with the robot) and changes in
dynamic obstacles. This allows for possible changes in the
goal point and efficient rewiring of the nodes around the
moving obstacles. Another algorithm, RRTX [11], operates
in a similar fashion, but concentrates rewiring operations
on sub-trees around dynamic obstacles to ensure asymptotic
optimality. However, it may fail to avoid collisions with
obstacles that move significantly faster than the robot.

In this work, we define an STL-based robustness function
computed recursively along the nodes of the RRT∗ tree,
which enables time efficiency for its online use. We handle
a fragment of STL including timed and untimed always and
eventually operators but restricting the until operator. Unlike
in [6] and [7], our cost function returns a real number instead
of robust satisfaction intervals. Indeed, RT-RRT∗ needs real
values for the inclusion of the STL robustness in a cost
function.

Our contributions are as follows:
• we define a cost function that includes a derivation

of the robustness of an STL specification, that can be
updated in real time and that we include in RT-RRT∗.

• we integrate our real-time motion planning with STL
preferences in simulations and real-world experiments
and show that our approach leads to plans closely
adhering to the STL specification.

II. PRELIMINARIES

Let R and N be the set of real and natural numbers
including zero, respectively. We use a discrete notion of
time throughout this paper, and time intervals are in the
form [a, b] ⊂ N, a, b ∈ N, a ≤ b. Further, we denote
t + [a, b], t ∈ N by [t + a, t + b]. An n-dimensional,



finite, discrete-time signal σ is defined as a sequence σ :
σ(t0)σ(t1)σ(t2) . . . σ(t∥σ∥), where σ(ti) ∈ Rn is the value
of signal σ at time ti ∈ N, ti < tj if i < j, and ∥σ∥ is the
length of signal σ. The set of all signals with values taken
from Rn is denoted by Σ. The syntax of STL is defined as
follows [1]:

ϕ ::= ⊤ | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2
where ⊤ is the Boolean True constant, π a predicate over
Rn in the form of f(x) ∼ µ, f : Rn → R, µ ∈ R, and ∼∈
{≤, >}; ¬ and ∧ are the Boolean operators for negation and
conjunction, respectively; and U[a,b] is the temporal operator
until over bounded interval [a, b]. Other Boolean operations
are defined using the conjunction and negation operators to
enable the full expression of propositional logic. Additional
temporal operators eventually and always are defined as
♢[a,b]ϕ ≡ ⊤U[a,b]ϕ and □[a,b]ϕ ≡ ¬♢[a,b]¬ϕ, respectively.
In this paper, we consider the following fragment of STL:

ϕ ::= ⊤ | π | ¬ϕ | ϕ1∧ϕ2 | ♢[a,b]ϕ | □[a,b]ϕ | ♢ϕ | □ϕ (1)

where ♢ and □ denote the untimed eventually and always
operators, respectively. This fragment enables the specifica-
tion of conjunctions/disjunctions of preferences having to
eventually or always hold within given time intervals (♢[a,b],
□[a,b]) or indefinitely (♢, □).

The robustness of an STL formula is a function ρ : Σ ×
ΦΣ × N→ R, recursively defined as [1]:

ρ(σ, (f(σ) ∼ µ), t) =

{
µ− f(σ(t)) ∼=≤
f(σ(t))− µ ∼=≥ ,

ρ(σ,¬ϕ, t) = −ρ(σ, ϕ, t),
ρ(σ, ϕ1 ∨ ϕ2, t) = max(ρ(σ, ϕ1, t), ρ(σ, ϕ2, t)),
ρ(σ, ϕ1 ∧ ϕ2, t) = min(ρ(σ, ϕ1, t), ρ(σ, ϕ2, t)),
ρ(σ,♢[a,b] ϕ, t) = max

t′∈t+[a,b]
ρ(σ, ϕ, t′),

ρ(σ,□[a,b] ϕ, t) = min
t′∈t+[a,b]

ρ(σ, ϕ, t′)

ρ(σ,♢ ϕ, t) = max
∀t′

ρ(σ, ϕ, t′),

ρ(σ,□ ϕ, t) = min
∀t′

ρ(σ, ϕ, t′).

where f is a function over signal σ and µ ∈ R. A
signal satisfies an STL specification at a certain time t iff
σ(t) |= ϕ ⇔ ρ(σ, ϕ, t) ≥ 0. In previous work [12], we
used STL as a suitable formalism for social navigation, to
learn specifications of human-robot encounters from data.
In a real-world scenario, we will reuse these specifications
describing 2-D trajectories (in a space with dimensions x
and y, see Sect. V-A).

III. PROBLEM FORMULATION

Let X ⊆ Rn be the bounded workspace that contains
(dynamic) obstacles Xobs ⊂ X , and the free space is denoted
by Xfree = X \ Xobs. The current position of the robot is
denoted by xa and it is assumed to be known, as well as the
position of the obstacles.

The RT-RRT∗ tree is denoted by T and each node is
denoted by xi ∈ X . The current tree root is denoted by x0,
and T is rerooted to the position of the robot xa, when the

position is updated (with a given refreshing frequency). The
Euclidean distance d between nodes xi and xj is denoted by
d(xi,xj). The parent node of xi is denoted by parent(xi),
and its children as children(xi). ϖ = (x0,x1, . . . ,xgoal)
is a sequence returned by the motion planning algorithm,
where xgoal is the position of the goal. We denote by σϖ the
trajectory of the robot tracking ϖ and this is the signal over
which we evaluate an STL specification.

Since the planning algorithm involves rerooting of the tree
T with the updated robot’s position, we want to store, for
each node xi ∈ X – and for monitoring purposes – the
succession of nodes the robot has visited so far since the
beginning of the planning process, plus the nodes in the path
from the robot’s actual position to xi. We denote by ξi such
a trajectory taken by the robot until node xi. As an example,
if x0 is the tree root, ξ0 is the trajectory taken by the robot
until x0 since the initialization of the algorithm. We denote
the concatenation of 2 sequences ϖ′ = (xi, . . . ,xj) and
ϖ′′ = (xk, . . . ,xl) as ϖ′ +ϖ′′ = (xi, . . . ,xj ,xk, . . . ,xl).

We formulate the problem of real-time motion planning
under STL specifications, and in a dynamic environment as
2 sub-problems. Given a robot operating in a workspace X ,
and a specification ϕ, we want to:

Problem 1: Find a suitable cost function J that assigns
a cost to each possible sequence ϖ = (x0,x1, . . . ,xi) and
takes into consideration the total completed distance, from
x0 to each node, as well as the degree of satisfaction of the
specification ϕ.

Problem 2: Extend RT-RRT∗ to find a motion plan ϖ =
(x0,x1, . . . ,xgoal), from the robot’s current position to the
goal, such that the cost of ϖ is minimized.

IV. METHOD

A. Cost function

In this section, we define a cost function J that includes
a derivation of the robustness of an STL specification. We
later use this function in STL-RT-RRT∗. Since the real-time
aspect of the algorithm is crucial, the calculation of the cost
function is deemed efficient. To that end, after each rerooting
of the tree T , the computation of the cost of the nodes has
to be as least time-consuming as possible. This drives the
design of the cost function to be recursive, to enable fast
computation of the updated costs.

Hereinafter, we define the robustness value ρ̄ associated
to a node xi in T . Since a trajectory until a given node
in the RT-RRT∗ tree might be partially testable against the
STL specification, we recursively define the robustness of
(partial) trajectories until node xi. Consider for example
the specification ♢[4,5](x > 2). Until no observation of the
trajectory for time t4 has been made, it is not possible to
assess the trajectory’s robustness against the specification.
Similar to [7], we use and maintain in memory the syntax
tree of the STL formula, augmented with a robustness value
ρ̄ associated to the nodes in T . As shown in Fig. 1, each
vertex in the syntax tree corresponds to an STL operator
(¬,∨,∧,♢[a,b],□[a,b],♢,□), and the leaves to a predicate π.
We equip the temporal operators with the robustness values



∧

□∨

♢[2,4] ♢[4,5] ¬

x < 0x > 3 x > 2

t 0 1 2 3 4 5 6 7 8
ρ̄ 0.5 0.5 −1.5 −1.5 0 0.5 0.5 −1 −1
¯̄ρ 0 0 −1.5 −1.5 0 0 0 −1 −1

t 0 1 2 3 4 5 6 7 8
ρ̄ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 −1 −1

t 0 1 2 3 4 5 6 7 8
ρ̄ 0.5 1 1.5 1 2 2.5 0.5 −1 −0.5

t 0 1 2 3 4 5 6 7 8
ρ̄ −0.5 −1 −1.5 −1 −2 −2.5 −0.5 1 0.5

t 0 1 2 3 4 5 6 7 8
ρ̄ ⋆ ⋆ −1.5 −1.5 0 0.5 ⋆ ⋆ ⋆

t 0 1 2 3 4 5 6 7 8
ρ̄ ⋆ ⋆ ⋆ ⋆ 0 0.5 ⋆ ⋆ ⋆

t 0 1 2 3 4 5 6 7 8
ρ̄ − − − − 0 0.5 − − −

t 0 1 2 3 4 5 6 7 8
ρ̄ ⋆ ⋆ −1.5 −1.5 −1 ⋆ ⋆ ⋆ ⋆

t 0 1 2 3 4 5 6 7 8
ρ̄ − − −1.5 −2 −1 − − − −

t1 2 3 4 5 6 7 8

−2

−1

1

2

3 ξ
¯̄ρ(xi, ψ)

Fig. 1: Calculation of the ρ̄ function for the specification ψ = (♢[2,4](x > 3) ∨ ♢[4,5](x > 2)) ∧ □¬(x < 0) for 1-D
nodes x0 . . .x8 (top left, blue), where ξ is the trajectory between nodes. The underlying data structure is the syntax tree of
specification ψ, where for each temporal operator the nodes’ values of ρ̄ are stored. An entry marked ‘–’ means that the
value does not need to be computed. We also show the value of the ¯̄ρ function (top left, red) for the different nodes, as well
as

∫ ∥ξi∥
0

¯̄ρ(xi, ψ, t) dt (top left, red area) used in the computation of Jψ(xi).

ρ̄ for nodes xi ∈ X , that are stored. Further, we define by
ρ̄parent : X × ΦΣ → R ∪ {⋆} the ρ̄ value of a temporal
operator in the syntax tree of the specification, for the parent
of node xi in the RT-RRT∗ tree, where ⋆ is a dummy symbol
used to provide no real value to a formula, the robustness
of which cannot be stated for a given trajectory (i.e., for
trajectories shorter than the lower bound of the interval of
a temporal operator). In the following, ρ̄parent is called to
compute the actual value of ρ̄ for node xi (since ρ̄ depends
on the value of ρ̄ for the parent node of xi). The robustness
value ρ̄ : X × ΦΣ × N → R ∪ {⋆} associated to a node xi
in T is given by the recursive function:

ρ̄(xi, (f(ξi) ∼ µ), t) =

{
µ− f(ξi(t)) ∼=≤
f(ξi(t))− µ ∼=≥

ρ̄(xi,¬ϕ, t) =

{
⋆ if − ρ̄(xi, ϕ, t) = ⋆

−ρ̄(xi, ϕ, t) otherwise

ρ̄(xi, ϕ1 ∨ ϕ2, t) =



⋆
if ρ̄(xi, ϕ1, t) and
ρ̄(xi, ϕ2, t) = ⋆

ρ̄(xi, ϕ1, t) if ρ̄(xi, ϕ2, t) = ⋆

ρ̄(xi, ϕ2, t) if ρ̄(xi, ϕ1, t) = ⋆

max(ρ̄(xi, ϕ1, t), otherwise
ρ̄(xi, ϕ2, t))

ρ̄(xi, ϕ1 ∧ ϕ2, t) =



⋆
if ρ̄(xi, ϕ1, t) and
ρ̄(xi, ϕ2, t) = ⋆

ρ̄(xi, ϕ1, t) if ρ̄(xi, ϕ2, t) = ⋆

ρ̄(xi, ϕ2, t) if ρ̄(xi, ϕ1, t) = ⋆

min(ρ̄(xi, ϕ1, t), otherwise
ρ̄(xi, ϕ2, t))

ρ̄(xi,♢[a,b]ϕ, t) =


⋆ if t < a or t > b

ρ̄(xi, ϕ, t) if t = a

max(ρ̄(xi, ϕ, t), otherwise
ρ̄parent(xi,♢[a,b]ϕ))

ρ̄(xi,□[a,b]ϕ, t) =


⋆ if t < a or t > b

ρ̄(xi, ϕ, t) if t = a

min(ρ̄(xi, ϕ, t), otherwise
ρ̄parent(xi,□[a,b]ϕ))

ρ̄(xi,♢ϕ, t) = max(ρ̄(xi, ϕ, t), ρ̄parent(xi,♢ϕ))
ρ̄(xi,□ϕ, t) = min(ρ̄(xi, ϕ, t), ρ̄parent(xi,□ϕ))

For timed temporal operators, the design of ρ̄ only uses
the evaluation of predicates for the relevant time intervals.
Outside of these, predicates are not evaluated, hence are not
reflected in the calculation of the cost function. Also, the
definition of ρ̄ as such enables an easy computation of the
min and max in the case of temporal operators: for a given
node xi, the whole trajectory until node xi doesn’t need to
be tested, but only the spatial coordinates of node xi and
the value of ρ̄ of the temporal operator for the parent of xi,
which leads to a lower computational complexity. We now
define ¯̄ρ : X × ΦΣ × N→ R, that will be directly called by
the RT-RRT∗ cost function:

¯̄ρ(xi, ϕ, t) =

{
0 if ρ̄(xi, ϕ, t) = ⋆

min(ρ̄(xi, ϕ, t), 0) otherwise
(2)

Note that, by construction, ¯̄ρ is upper-bounded by 0. We
now define the cost function J :

J(xi) = Jd(xi) + Jϕ(xi) (3)

where Jd(xi) is the total completed distance of trajectory
until node xi, and Jϕ(xi) the STL-based cost of xi given
specification ϕ. Further, we define Jd(xi) and Jϕ(xi) as:

Jd(xi) = d(xi, parent(xi)) + Jd(parent(xi)) (4)

Jϕ(xi) = −
∫ ∥ξi∥

0

¯̄ρ(xi, ϕ, t) dt (5)

where the integral is evaluated over discrete observations
using the trapezoidal rule.

Lemma 4.1: Given ¯̄ρ(xi, ϕ, t) in (2), J(xi) in (3) and
Jϕ(xi) in (5) are monotonically increasing.

Lemma 4.2: J(xi) in (3) is Lipschitz continuous.
Proof: (Sketch) Since ¯̄ρ in (2) is bounded (by most

violating value of robustness in a bounded workspace) and
called on the closed and bounded interval [0, ∥ξi∥], then
integral in (5) is Lipschitz continuous. Hence, Jϕ(xi) and
J(xi) are Lipschitz continuous. For the extensive proof, we
redirect the reader to our Appendix1.

1See https://www.diva-portal.org/smash/record.jsf?pid=diva2:1746700

https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1746700&dswid=-2718


Algorithm 1: STL RT RRT∗

Input: xa – initial position, Xobs – set of obstacles,
xgoal – goal position, ϕ – STL formula in form of (1).

1 initialize T
2 while goal is not reached do
3 update xa, xgoal, Xobs, Xfree
4 reroot T to xa
5 update traj until node(x0, ξ0 + xa)
6 update stl costs(x0, ϕ)
7 while time left for tree extension do expand T
8 while time left to rewire do rewire nodes in T
9 plan ϖ = (x0,x1, . . . ,xgoal)

10 move robot to x0,x1, . . .

B. Algorithm

We propose STL-RT-RRT∗ (Algorithm 1), an extension to
RT-RRT∗ using the cost function J listed in (3). It introduces
an online tree rewiring strategy that allows the tree root
to move with the robot while updating the position of the
obstacles with a given frequency.

First, we need to initialize a tree T (line 1, either with
an empty tree or an existing tree computed offline) that
will contain nodes sampling the workspace. We follow the
same fixed-time loop consisting of first updating the robot’s
position, rerooting the tree to the current robot’s position, and
recursively updating the nodes’ costs (lines 3–6). In addition
to [8], to keep track of the robot’s completed trajectory since
the start of the algorithm, we update the trajectories until
a given node so that the prefix of all ξi’s for each node
xi is the robot’s completed trajectory so far (Algorithm 1,
line 5; Algorithm 2). Then, we can recursively update the
cost of each node using the cost function J (line 6). Note
that while updating the obstacle’s position, we set the cost
of the nodes blocked by the obstacle (i.e. nodes falling in
the radius of the obstacle – as well as all the descendants
of blocked nodes) to infinity. Further, after an obstacle has
moved and “freed” some previously blocked nodes, the cost
of the “freed” nodes is again set to J , and priority rewiring
is performed around the “freed” nodes. To minimize the
computational complexity of the re-rooting operations, we
use a grid-based spatial indexing for the nodes in T to enable
fast rewiring of neighbouring nodes [8].

The rest of Algorithm 1 is as follows: within the fixed
computation time, we dedicate some time to expand the tree
T (line 7). According to Algorithm 3 of [8], but using our
cost function J instead, tree expansion in Xfree is performed
either by sampling the environment uniformly, creating a
node inside an ellipsis containing the path from x0 to xgoal
[13], or creating a node in the line between xgoal and the node
of the tree that is the closest to xgoal. Finally, we dedicate
the rest of the computation time of the iteration to rewire
the tree from the root [8, Algorithm 5] (that is, for a given
node in the tree, find a potential better parent node regarding
cost function J). The focus of rewiring is around the robot’s
position; rewiring operations are successively executed from
the tree root to its children, and so recursively until rewiring

Algorithm 2: UPDATE TRAJ UNTIL NODE
Input: x – node in T , ξnew – trajectory until node x

1 ξ ← ξnew ;
2 for xi ∈ children(x) do
3 update traj until node(xi, ξ + xi)

the leaves of T . Rewiring continues over iterations until
all the leaves of the tree are reached. When no rewiring
operation is left, we start rewiring from the tree root again
at the next iteration.

The planned motion ϖ = (x0,x1, . . . ,xgoal) is a set of
nodes starting from the tree root to the goal node (line 9).
Note that if the goal node is blocked by an obstacle (or has
infinity cost due to blockage of one of its ancestors), then
the algorithm will plan from the tree root to the closest node
to the goal that is not blocked itself (or has infinity cost due
to blockage of one of its ancestors). Also, note that if an
obstacle directly blocks the robot, no motion plan is returned
(and the robot is commanded to stop). At each iteration, we
move the robot to the next waypoint in the plan (line 10).
When motion planning is done, and the robot is at the tree
root, we change the tree root to the next immediate node
after x0 in the planned path; hence we enable the robot to
move along the planned path on the tree towards the goal.

The loop of line 2 is run until the goal is reached or a new
goal is set. To dedicate more time to rewiring operations, a
warm start is possible. We start by growing a large tree offline
and then only dedicate the online computation to updating
the obstacles, node costs, and rewiring of nodes. This is
an advantage when the robot is deployed in a controlled
environment (when, e.g., little sampling is needed).

C. Analysis
a) Asymptotic optimality: The structure of Algorithm

1 and cost function J in (3) suggest that STL-RT-RRT∗ is
asymptotically optimal. Given the fact that tree expansion
is done in the same way as in RRT∗, the proof follows
from the asymptotic optimality of RRT∗. Further, since our
alternative optimality criterion is monotonically increasing
and Lipschitz continuous (Lemmas 4.1 and 4.2), the returned
trajectory is indeed optimal with respect to this criterion,
provided that the refreshing frequency leaves enough time
for the nodes’ cost update, and tree rewiring.

b) Time complexity: The computational complexity of
Algorithm 1 is O(|ϕ| log(n)) per iteration, where |ϕ| is the
size of the formula. This follows from the computational
complexity of RRT∗, which is in O(n log(n)) [14]. The
computational complexity of our cost function is in O(|ϕ|),
for the computation of the values for ρ̄ for the temporal
operators for trajectories shorter than the lower bound of the
interval of a temporal operator, following results in [6], [7].

V. EVALUATION

We implemented and tested our algorithm in Python 3.8,
both in simulation (Sect. V-B), and in real-world experiments
in a Motion Capture (MoCap) lab on Softbank Robotics
Pepper, which is a commonly used social robot [15]. In both
cases, we conducted experiments to highlight differences

https://www.softbankrobotics.com/emea/en/pepper
https://www.softbankrobotics.com/emea/en/pepper
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(d) t = 2.5s, STL-RT-RRT∗
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(e) t = 3.5s, RT-RRT∗
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(f) t = 3.5s, STL-RT-RRT∗

Fig. 2: Simulations of RT-RRT∗ (left column) and STL-RT-
RRT∗ (right column) in a 520x440cm room, at t = 1.5s, t =
2.5s and t = 3.5s from the initialization of the algorithm.
The obstacle is represented by the blue circle, the robot by
the red dot, and its planned trajectory at a given iteration by
the red-dotted segments. The underlying tree T is in green.

between RT-RRT∗ and STL-RT-RRT∗ in terms of computa-
tional time (to expand the tree, update the costs of the nodes,
and rewire the nodes), as well as the number of collisions
between the robot and the dynamic obstacles 2.

A. Case study
Our case study considers social robot navigation and,

more precisely, human-robot encounters in X ⊆ R2. In
this case, a human and a robot walk towards each other on
a collision course in a square environment, and the robot
should avoid the human in, preferably, a socially acceptable
way. The preferences for avoiding the human “obstacle” are
encapsulated in STL. In our earlier work [12], we focused
on learning STL formulas that capture human preferences
in such human-robot encounters. In this work, we use the
formulas learned therein. The specification is defined in
centimeters, in the human’s coordinate system (i.e., where
the human has coordinates (0,0) – so that the specification
captures how the robot has to avoid the human) as ϕ =
φleft ∨ φright with:

φleft = ♢(−90 ≤ x ≤ −80 ∧ −90 ≤ y ≤ 0)

φright = ♢(70 ≤ x ≤ 85 ∧ −60 ≤ y ≤ 50)

2implemented at https://github.com/KTH-RPL-Planiacs/STL-RT-RRTstar

TABLE I: Nb. of trials the robot stopped during navigation
(#Rstops); nb. of trials with collisions (#col). Average time
spent in the human’s personal space (thzone); smallest distance
between human and robot (mind); robot completion time
(tcompl); robot completed distance (dcompl); nb. of pairs of
nodes in T tested for rewiring (#rewire); computation time
for cost updates (tupdate Jd and tupdate Jϕ) over 1000 trials.

Condition RT-RRT∗ STL-RT-RRT∗

#Rstops 286 4
#col 513 0

Condition RT-RRT∗ STL-RT-RRT∗

min max avg stdev min max avg stdev
thzone (s) 1.1 1.9 1.3 0.15 0.8 1.6 1.1 0.12
mind (cm) 0.1 43.5 27.8 8.7 35.3 94.9 66.4 9.9
tcompl (s) 7.2 8.6 7.5 0.26 6.6 8.2 7.0 0.21
dcompl (cm) 548 613 562 8.17 562 690 589 13.96
#rewire 5097 45952 32180 4964 91 39002 2430 2740
of which successful 0 87 24 11 0 2110 113 82
tupdate Jd

(ms) 1.0 34.3 1.7 1.2 1.2 16.7 1.4 1.3
tupdate Jϕ

(ms) - - - - 2.1 31.2 9.2 4.8

B. Simulations

We ran our experiments on an Intel i7-8665U CPU and
32GB RAM. In a simulated environment, we recreated
human-robot encounters where a human and a robot had
to swap positions – i.e. the robot had to go from point
A to point B, and the human from point B to point A.
The simulated workspace corresponded to our 520x440cm
MoCap facility (see Sect. V-C). Both RT-RRT∗ and STL-RT-
RRT∗ were configured to handle the human as an obstacle
of radius 25cm and the human and robot speeds were set to
1.1m/s and 0.55m/s respectively. The robot was commanded
to stop if the human directly blocked the robot. Samples
were drawn from a subset of the workspace up to 50cm away
from the walls. The underlying tree contained a maximum
of 2,000 nodes (to sample up to 2,000 nodes, computation
times of 419ms for RT-RRT∗; 589ms for STL-RT-RRT∗).
The duration of each iteration was set to 100ms. At each
iteration, the human’s position was randomized ± 10cm
along the line leading to the human’s goal, and the position
of the robot ± 2cm from the first waypoint of the trajectory
returned by the last iteration of the 2 planning algorithms.
An execution of (STL-)RT-RRT∗ in shown in Fig. 2.

We measured, for each iteration of 100ms, how much
time is spent to update the cost of each node using the cost
function J (Algorithm 1, line 6). We also measured, for the
remaining time, how many rewiring checks were performed
(that is, for a given node in the tree, find a potentially better
parent node than its current one regarding J). The number
of rewiring operations (Algorithm 1, line 8) gives a good
indication of the performance of the algorithm to update the
underlying tree, hence to be able to keep on finding a motion
plan to the goal that avoids the dynamic obstacle. From the
results we obtained in Table I over 1000 trials, we can see
that over 2,000 nodes, an iteration of 100ms can test up to
2,430 pairs of nodes for rewiring operations. On average,
STL-RT-RRT∗ can successfully rewire up to 113 nodes per
iteration of 100ms, which is more than RT-RRT∗ (merely 24).

https://github.com/KTH-RPL-Planiacs/STL-RT-RRTstar


This shows how the algorithm can keep on finding updated
collision-free paths over time, while always updating STL
costs in a reasonable time.

Compared to the baseline RT-RRT∗, collisions were easily
avoided (over 1000 trials, no collisions were reported STL-
RT-RRT∗, instead of 513 for RT-RRT∗), which suggests that
the STL specification could drive the robot to avoid the
human with a sufficient distance. Further, we could observe
that a robot driven by STL-RT-RRT∗ had to come to a full
stop fewer times to let the human pass (over 1000 trials,
only 4 times with STL-RT-RRT∗, in contrast to 286 times
with RT-RRT∗). We can also note that the time the robot
spent in the human’s personal space (i.e., within a 1.2m
radius) [16] is lower in the case of STL-RT-RRT∗. This
suggests that our algorithm could anticipate better how to
avoid the incoming obstacle (see Fig. 2d and 2f), while
maintaining low completion time and distance. This suggests
also that the trajectory adheres well to the STL preferences
on how to avoid the human.

C. Real-world setup

In a real-world experiment, we implemented and tested our
algorithm on Pepper. For the evaluation, we asked human
participants to walk from one end of a room to the other,
in a straight line, while the robot walked in the opposite
direction. Both with STL-RT-RRT∗ and RT-RRT∗, the robot
should avoid the human; given the simulation results, we
hypothesize that our algorithm will perform better in terms
of social acceptance, while not decreasing performance.

(a)

vx = k1 cos(atan2((yt+1 − yt),

(xt+1 − xt))− θt)

vy = k1 sin(atan2((yt+1 − yt),

(xt+1 − xt))− θt)

ω = γ

(b)

Fig. 3: (a) MoCap lab, with disposition of the participant’s
starting point and robot’s starting point; they are approx-
imately 3.5 meters away from each other. (b) Feedback
control law with linear velocities vx and vy , angular velocity
ω and k1 > 0 a defined constant.

The in-person evaluation was conducted in a 520x440cm
MoCap lab designed to measure and digitally record the
movement of the robot and the human participant (Fig. 3).
The robot avoids the human according to the RT-RRT∗ and
STL-RT-RRT∗ algorithms. Every 100ms, given the updated
positions of the robot and the human, the algorithm provides
an updated plan leading to the robot’s goal point, while
avoiding the human. The resulting plan ϖ consists in a set
of waypoints, and at each iteration t the robot has a position
(xt, yt) and an orientation θt with respect to the global
reference frame of the MoCap room. Considering that the
next waypoint in the plan has coordinates (xt+1, yt+1), we

TABLE II: Nb. of trials where the robot (#Rstops) and
human (#Hstops) stopped during navigation; nb. of trials with
collisions (#col). Average time spent in the human’s personal
space (thzone); smallest distance between human and robot
(mind); robot completion time (tcompl) and robot completed
distance (dcompl) in the two conditions.

Condition RT-RRT∗ STL-RT-RRT∗

#Rstops 36 8
#Hstops 30 5
#col 10 1

Condition RT-RRT∗ STL-RT-RRT∗

min max avg stdev min max avg stdev
thzone (s) 1.2 24.5 5.5 4.5 1.6 10.2 3.4 1.3
mind (cm) 11.9 59.0 35.5 11.1 29.2 77.1 52.0 10.1
tcompl (s) 5.6 39.6 20.4 9.3 5.6 31.4 22.0 5.0
dcompl (cm) 12 427 211 114 29 431 240 103

can define the pointing error γ = atan2((yt+1−yt), (xt+1−
xt)) + π − θt. We consider the robot as a nonholonomic
wheeled mobile robot, and command it through the feedback
control law in Fig. 3b to reach the next waypoint of the
trajectory. Note that, since in our case planning is updated
every 100ms, there is no guarantee that the robot will have
reached the next waypoint before a new plan is returned.
Further, if the trajectory is updated, so is the next waypoint.

a) Results: We recruited a total of 16 participants.
To study the statistical variability between STL-RT-RRT∗

and RT-RRT∗, we conducted repeated measures analysis of
variance (ANOVA) for all objective and subjective outcomes.
Details on the procedure, the user study design, as well as
the objective [17], [18] and subjective metrics [19] on social
acceptance can be found in Appendix1.

We found that the robot in our STL-RT-RRT∗ condition
kept an overall larger distance from the human than the
robot in the baseline RT-RRT∗ condition (F (1, 22334) =
441.80, p < .001) as prescribed by the STL preference; the
minimum distance kept at each trial was also larger in the
STL-RT-RRT∗ condition (F (1, 79) = 70.67, p < .001); the
time spent within the human’s personal space (< 1.2 metres)
was shorter in the STL-RT-RRT∗ condition (F (1, 79) =
9.34, p < .005); there were more collisions and stops in
the RT-RRT∗ condition than in the STL-RT-RRT∗ condition
(see Table II); but the time taken by the robot to reach its
goal was not statistically different between the two conditions
(F (1, 79) = 1.29, p = .26).

For the subjective measures, the robot in the STL-
RT-RRT∗ condition was perceived as more intelligent
(F (1, 30) = 13.63, p < .001), predictable (F (1, 30) =
4.10, p = .05), and as having more social competence
(F (1, 30) = 4.51, p = .04) than the robot in the RT-RRT∗

condition. There were no statistically significant differences
between the two conditions on the perceived safety scale.

VI. CONCLUSION AND FUTURE WORK

We developed a real-time motion-planning algorithm un-
der STL preferences. Our results showed that adhering to
STL preferences in real-time is tractable, despite a slightly
longer time update of the cost of the nodes, as well as
a lower amount of rewiring operations. We applied our



algorithm to a social robot, where the STL specifications
encapsulate desired ways for a robot to perform encounters
with an incoming human. The resulting plan leads to fewer
collisions and stops than the baseline algorithm. Further,
in a user study, our results showed that the adherence to
STL preferences learned from trajectories in simulations
[12] can lead to improved performance of the robot from a
human’s perspective, while not sacrificing performance (the
robots in both conditions took, on average, the same amount
of time to reach their destination). Our approach improves
the social acceptance of the robot, both with objective and
subjective measures. An interesting line of work to pursue
would be to analyze the impact of the STL preference on
human behaviour and to see whether a new specification
could be inferred from the adapted behaviour of people (and
eventually observe convergence in the long run).

A limitation of our method when dealing with multiple
obstacles – or when in an environment cluttered with ob-
stacles – would be the lack of guarantee, in the case of
timed temporal operators, that completion of part of the
specifications (i.e., timed eventually or always) would be
satisfied on time. Indeed, in case the robot is blocked by an
obstacle (e.g., a human in a narrow passage), the robot would
have to stop, which might incur delays until the robot can
move again to complete the rest of the plan. The algorithm,
instead, at every iteration and given the context, finds the
best motion plan given the cost function J and the position
of the obstacles.

In future work, we will include human motion prediction
[20], [21] in our planning algorithm and study how different
human internal states and goals influence social navigation
[22]. We will also look into integrating STL to broader
social navigation scenarios [23]. For instance, we would
like to consider drone navigation around humans under
STL preferences on how to perform 3D navigation. Our
method can be easily applied to cases with higher dimensions
since expanding the underlying tree and handling signals
in STL with extra dimensions requires minor changes in
our implementation. Further, STL has recently been used
to guarantee the functioning of robotic interactions with
humans and perceived safety [24]: we wish to study, as a
future direction, how to align STL preferences with human
perception of robots.
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APPENDIX

A. Theoretical analysis of the cost function

1) Monotonicity of the cost function: In this section,
we prove that our cost function in (3) is monotonically
increasing.

Lemma 1.1: Given ¯̄ρ(xi, ϕ, t) in (2), J(xi) in (3) and
Jϕ(xi) in (5) are monotonically increasing.

Proof: The definition of ¯̄ρ(xi, ϕ, t) in (2) serves as a
proxy to ρ̄(xi, ϕ, t) to guaranty increasing monotonicity. In
fact, the definition of ¯̄ρ(xi, ϕ, t) guarantees that ¯̄ρ(xi, ϕ, t)
is strictly negative or equal to 0. The definition of the cost
function Jϕ(xi) in (5) – as an integral calculation – is there-
fore monotonically increasing for trajectories of increasing
lengths. Since Jd(xi) is also monotonically increasing [14],
then J(xi) in (3) is also monotonically increasing.

2) Lipschitz continuity of the cost function: In this section,
we prove Lipschitz continuity of our cost function in (3),
which is a requirement for asymptotic optimality of RRT∗.

Following [25, Assumption 13], the cost function used in
RRT∗’s should be Lipschitz continuous, to ensure that two
paths that are very close to each other, both in terms of spatial
and temporal features, have similar costs. The authors of
[25] note that, in optimal control, the integral of continuous
functions over trajectories of bounded length is often used,
see e.g. [4]. A function f(x) defined on a metric space is
Lipschitz continuous if there exists a constant K ≥ 0 such
that for any two points x and y in the domain, the following
condition holds:

|f(x)− f(y)| ≤ K|x− y| (6)

To prove that our cost function J in (3) is Lipschitz
continuous, we need to show the existence of the Lipschitz
constant K that satisfies the Lipschitz condition in (6), that
is, there exists a constant K s.t.

|J(xi)− J(xj)| ≤ K|xi − xj |. (7)

in other words, that the absolute difference between the
values of J for two nodes is bounded by constant K.

Since J(xi) = Jd(xi) + Jϕ(xi), let us first look into
Lipschitz continuity of Jd and Jϕ respectively.

Lemma 1.2: Function Jd(xi) in (4) is Lipschitz continu-
ous.

Proof: Following [14], the Euclidean distance between
two points in n-dimensional space is Lipschitz continuous,
with a Lipschitz constant of Kd = n.

Lemma 1.3: Function Jϕ(xi) in (5) is Lipschitz continu-
ous.

Proof: By definition, each node is the RT-RRT∗ tree
takes its values in X ⊆ Rn which is the bounded workspace.
Therefore, values returned by the function ¯̄ρ in (2) are also
bounded by the most violating value of robustness of a given
node of the tree. In (5), the bounded and continuous function
¯̄ρ is called on the closed and bounded interval [0, ∥ξi∥].
Note that, if function ¯̄ρ is both bounded and continuous
on a closed and bounded interval [0, ∥ξi∥], then its integral

∫ ∥ξi∥
0

¯̄ρ(xi, ϕ, t) dt is Lipschitz continuous on [0, ∥ξi∥]. Note
that the Lipschitz constant Kϕ of Jϕ(xi) can be chosen as
the product of the bound on ¯̄ρ, and ∥ξi∥ the length of the
trajectory until node xi.

Lemma 1.4: Function J(xi) in (3) is Lipschitz continu-
ous.

Proof: We demonstrated that both functions Jd(xi) and
Jϕ(xi) are Lipschitz continuous with respective Lipschitz
constants Kd and Kϕ. Since J(xi) = Jd(xi) + Jϕ(xi),
and since the sum of two Lipschitz continuous functions
is Lipschitz continuous, then we can conclude that function
J(xi) in (3) is Lipschitz continuous with a Lipschitz constant
of K = Kd +Kϕ.

B. Real-world setup – User study design

In this section, we give further details on the procedure
and the user study design of the real-world experiments on
human-robot encounters of Sect. V-C.

a) Procedure: Participants were instructed to walk in
a straight line from one end of the room to the other. They
were told to stay within a clearly marked path as much as
possible, and that the robot would avoid them. They were
allowed to stop or move outside of the motion if they felt the
need to. Since Pepper has a moving speed that is significantly
slower than human walking speed (max 0.3 m/s), we reduced
participants’ walking speed by having them wear a rope
around their knees, and asked them to only start walking after
the robot started moving, to avoid them reaching the goal too
soon. Further, the robot was commanded to stop if the human
directly blocked the robot. Participants completed 3 trials for
each of the STL-RT-RRT∗ and RT-RRT∗ conditions: half of
the participants saw one condition first, and the other half
saw the other condition first. After the first 3 trials, they
were asked to rate their perception of the robot and how
they felt during the interaction, filling out the questionnaires
described below. Then the same procedure was repeated for
the second set of 3 trials. The study took around 20 minutes
per participant.

b) Measures: Following previous literature in HRI, we
collected a mix of objective and subjective metrics on social
acceptance. For the objective metrics, we took inspiration
from [17], [18] and calculated the smallest distance between
the human and the robot; the overall average distance be-
tween the human and the robot, computed at every refreshing
frequency of 100ms; the total time spent by the robot inside
the human’s personal space (within a 1.2m radius, according
to Hall’s Proxemics Theory [16]); the total navigation time
for the robot to reach its goal; the total number of collisions;
the number of times the participants and the robot stopped
to avoid a collision. Regarding subjective metrics, [19] lists
some of the most commonly used questionnaires to assess
social acceptance. Of these, we chose to use the perceived
intelligence and perceived safety scales from the Godspeed
questionnaire [26], and the scale used in [18] (see Table III).

c) Results: We recruited 16 participants (13 women, 3
men, median age = 28.5) who were naive to the purpose of
the experiment. The study was conducted in accordance with



Perceived Intelligence
Please rate your impression of the robot on these scales:
Incompetent Competent
Ignorant Knowledgeable
Irresponsible Responsible
Unintelligent Intelligent

Perceived Safety
Please rate your emotional state on these scales:

Anxious Relaxed
Agitated Calm
Quiescent Surprised

Social competence
Please rate your impression of the robot on these scales:
Unfriendly Friendly
Unsafe Safe
Unpleasant Pleasant
Rude Polite

Predictability
Please rate your impression of the robot on these scales:
Unpredictable Predictable

TABLE III: Subjective measures collected during the study.
Participants rated their impressions on a scale from 1 to 5.

the ethical guidelines of our institution. To study the statis-
tical variability between STL-RT-RRT∗ and RT-RRT∗, we
conducted repeated measures analysis of variance (ANOVA)
for all objective and subjective outcomes. The purpose of
ANOVAs is compared to the variability within each of the
conditions, for the different measures. In Sect. V-C, results
are expressed in the form of an F-distribution F (α, β) =
γ, p < δ, with α, β, γ > 0 and δ ∈ [0, 1] where α is the
numerator degrees of freedom (variation between conditions)
and β the denominator degrees of freedom (variation within
conditions); γ is the F-statistic and δ its p-value.
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