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A B S T R A C T   

Intelligently identifying rail vehicle faults instigating running instability from carbody floor acceleration is 
essential to ensure operational safety and reduce maintenance costs. However, the vehicle-track interaction’s 
nonlinearities and scarcity of running instability occurrences complicate the task. The running instability is an 
anomaly in the vehicle-track interaction. Thus, we propose unsupervised anomaly detection and clustering al-
gorithms based iVRIDA framework to detect and identify running instability and corresponding root cause. We 
deploy and compare the performance of the PCA-AD (baseline), Sparse Autoencoder (SAE-AD), and LSTM- 
Encoder-Decoder (LSTMEncDec-AD) model to detect the running instability occurrences. 

Furthermore, we deploy a k-means algorithm on latent space to identify clusters associated with root causes 
instigating instability. We deployed the iVRIDA framework on simulated and measured accelerations of European 
high-speed rail vehicles where SAE-AD and LSTMEncDec-AD models showed 97% accuracy. The proposed 
method contributes to smart maintenance by intelligently identifying anomalous vehicle-track interaction events.   

1. Introduction 

In Prognostics and Health Management (PHM), data-driven, physical 
model-based, and hybrid methods are the three main approaches for 
implementing diagnostic and prognostic solutions. The applicability of 
data-driven methods is primarily hindered by the unavailability of 
extensive training data which adequately covers the relevant state 
space. On the other hand, the applicability of physical model-based 
methods is not always suitable because the degradation process of the 
underlying technical system is highly complex and cannot be accurately 
described by first principles. The hybrid methods, which combine data- 
driven and model-based approaches, offer the possibility to mitigate the 
limitations of both previous methods partially. A hybrid model needs 
sufficiently detailed data-driven and physics-based models; however, 
development of both models is a cumbersome and expensive task. The 

physics-informed machine learning is a transitional field between data- 
driven and hybrid approaches where the physical knowledge is inte-
grated into a machine learning model. Physics-informed machine 
learning is a highly active research area and, in the literature, has been 
referred to as Physics informed machine learning, Theory-guided data sci-
ence, Physics-based learning, and Physics guided machine learning. This 
paper proposes a physics-guided machine learning algorithm for intel-
ligent vehicle running instability detection and responsible vehicle fault 
identification. In other words, we present rail vehicle dynamics guided 
unsupervised vehicle running instability detection algorithm (iVRIDA). 

The self-excited oscillations of wheelsets, running gears, or the whole 
vehicle in lateral direction constitutes a phenomenon which is called 
running instability. Running instability associated with wheelset, bogie 
and whole vehicle are called wheelset running instability, bogie running 
instability and vehicle running instability, respectively. Since, very early 
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days of railway engineering, a rail-vehicle/running gear oscillating at a 
limit cycle is termed as running instable. The reason being that the 
amplitude of limit cycle is usually larger than the amplitudes of track 
irregularities. Thus, the wheelset/running gear/ rail vehicle does not 
follow the track at all; and the vehicle starts oscillating over the track 
with constant amplitude i.e., limit cycle amplitude. Vehicle running 
instability is an important phenomenon in vehicle-track dynamic 
interaction and typically appears at a high vehicle speed and on a 
straight track or in large-radius curves. Running instability is an intrinsic 
behavior of a vehicle system that depends on the vehicle’s health and 
track subsystems. The foremost reasons for running instability are poor 
vehicle yaw dampers, too soft primary suspension in the horizontal 
plane, or poor wheel-rail interface geometry. Vehicle instability is a 
safety concern and can cause passenger discomfort [1]. 

In Europe, high-speed trains (above 250 km/h) are mandatorily 
equipped with hunting alarm systems in accordance with TSI-LOC & 
PAS [2] and if an alarm is triggered, the train driver must reduce vehicle 
speed and reports the incident to the train operator and the infrastruc-
ture manager [3]. Various international standards, listed in Table 1, 
outline procedures for detecting hunting by analyzing the filtered lateral 
acceleration data and comparing it against established limit criteria. In 
these standards, the limit criteria are mainly aim to detect fully devel-
oped limit cycles and alert the driver before a dangerous situation arises 
[4]. Thus, the limit criteria are defined for certifying the vehicle’s 

stability during certification tests. Unfortunately, those criteria and 
corresponding methods are not ideal for condition monitoring objective. 
Hence, recent articles propose methodologies for detecting vehicle 
instability and identifying root causes in-service conditions. 

The methods proposed by Bruni et al. [10], Forsberg et al. [11], 
Cavlo et al. [12], Bosso et al. [13], Kulkarni et al. [6], and Lebel et al. 
[14] are physical model-based methods. Bruni et al. [10] and Calvo et al. 
[12] employed Operational Modal Analysis (OMA) techniques to detect 
vehicle running instability from onboard accelerations. Forsberg et al. 
[11], Bosso et al. [13], Kulkarni et al. [6], and Lebel et al. [14] proposed 
spectral analysis-based methods for vehicle running instability detec-
tion. In recent years, Gasparetto et al. [15], Ning et al. [16], Zeng et al. 
[5], Ye et al. [17,18], Kulkarni et al. [19], Sun et al. [20,21] and Wang 
et al. [22] proposed purely data-driven methods for diagnosis of vehicle 
running instability. The methods proposed by Gasparetto et al. [15], 
Ning et al. [16], Ye et al. [17,23], Kulkarni et al. [19,24], Sun et al 
[20,21] and Wang et al. [22] are typical data-driven methods where a 
certain statistical classifier is trained and tested based on features 
extracted from vehicle response. Thus, these data-driven methods are 
based on supervised classification learning, and in practice, many 
challenges arise when deploying, continuously training, and updating 
supervised classifiers on measurements. These challenges are: 

(1) Occurrences of vehicle running instability and root cause iden-
tification reports, which represent ground truth for supervised 
learning tasks, are usually not collected and reported systemati-
cally and consistently [3].  

(2) The vehicle-track interaction is a complex open system with 
many sources of variability; thus, there exists a significant dif-
ference between the training domain and the target domain. The 
pretrained supervised classification model does not perform well 
in these scenarios because of inherent bias [25].  

(3) The training and test datasets are sampled independently from 
static statistical distribution is the underlying assumption of most 
supervised classification models. This fundamental assumption 
ensures that model parameters identified in training fit the test 
datasets. However, the assumption usually does not hold for real- 
world datasets related to open complex systems such as vehicle- 
track interaction; since the operating conditions vary signifi-
cantly over the service time [26]. 

Table 1 
Standards including vehicle running instability detection procedure [5,6].  

Standard Acceleration 
signal 

Filter Alarm method 

EN14363[7] / 
TSI-LOC & 
PAS/ UIC515 
[8] 

Lateral bogie 
frame 
acceleration 

Band-pass Hunting alarm if root- 
mean-square value >
limit value on bogie mass 

FRA[9] Lateral bogie 
frame 
acceleration 

0.5–10 Hz 
bandpass 

Hunting alarm if root- 
mean-square value (mean 
removed) for 2 s > 3.92 
m/s2 

AAR Lateral carbody 
acceleration 

15 Hz low- 
pass 

Hunting alarm if peak-to- 
peak value > 14.71 m/s2  

or standard deviation >
1.28 m/s2  

Fig. 1. Overview of deployment of the iVRIDA Framework for onboard monitoring [graphical illustration inspired from [45].  
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(4) In real-world sensor data from rail vehicles, there are scenarios 
when the behavior of a vehicle changes based on usage and 
external factors, which are difficult to capture. For example, a 
loaded vehicle behaves differently from an unloaded vehicle. 
Further, the relevant information on whether a vehicle is loaded 
or unloaded may not be available. The amount of payload on a 
vehicle at a time may be unknown or change frequently/abruptly 
as the vehicle travels on a route [27].  

(5) In recent years, the volume of collected data is rapidly grown; 
however, the data quality is not always satisfactory, which 
significantly affects the performance of pretrained supervise 
classification models [25]. 

All these challenges can be tackled if we learn partly or wholly 
unlabelled data, typically available in abundance. In the context of PHM 
of machines [28], unsupervised learning has successfully identified the 

causes of system failures without supervision. One of PHM’s most pop-
ular unsupervised learning approaches is signal reconstruction, also 
referred to as the residual-based approach. The general idea behind the 
signal reconstruction is to define a model that can learn the healthy 
system behavior and to distinguish it afterward from system states that 
are dissimilar to those observed under normal operating conditions. This 
technique is known as novelty or anomaly detection (AD) [29]. 

In this paper, we propose rail vehicle dynamics guided unsupervised 
vehicle running instability detection algorithm (iVRIDA, see Fig. 1). The 
proposed algorithm is unsupervised; thus, there is no need for labeled 
and balanced datasets. Here, we suggest unsupervised anomaly detec-
tion (AD) algorithms for detecting vehicle running instability. Then, 
unsupervised clustering of latent space to identify the vehicle fault 
instigating running instability. Moreover, we propose a generalistic AD- 
based vehicle instability detection framework, where any signal 
reconstruction-based AD algorithm and unsupervised clustering 

Fig. 2. The framework of the proposed iVRIDA algorithm.  
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algorithm can be integrated. In the detailed investigation, we compare 
the performance of three AD algorithms, namely: Principal Component 
Analysis (PCA-AD; Baseline model), Sparse Autoencoder (SAE-AD), and 
LSTM Encoder Decoder (LSTMEncDec-AD) within the iVRIDA framework 
to detect the occurrence of vehicle running instability. 

Moreover, we show that an unsupervised k-means clustering algo-
rithm can identify clusters and associate clusters with respective root 
causes of observed vehicle dynamic instability. The later step of the 
iVRIDA framework is called unsupervised vehicle fault detection. In this 
investigation, we show the superiority of the SAE-AD + k-means variant 
of iVRIDA in detecting the occurrence of vehicle dynamic instability and 
identification of corresponding vehicle fault on vehicle accelerations 
measured on a typical high-speed rail vehicle operating in Europe. 

Following this introductory Section, the rest paper is structured as 
follows. In Section 2, the iVRIDA framework is explained, where the 
theoretical background of AD and clustering models is briefly described. 
In Section 3, the application of the iVRIDA on simulated and measured 
vehicle accelerations is described. The section documents the simula-
tion, the acquisition and analysis of onboard measurements, followed by 
the articulation of the machine learning problem. Section 4 presents the 
results of unsupervised vehicle running instability detection and unsu-
pervised vehicle fault identification instigating dynamic instability. In 
Section 5, an offline demonstration of the iVRIDA framework on 
measured accelerations is described. Finally, our conclusions are sum-
marized in Section 6. 

2. The iVRIDA framework 

The emergence of running instability of rail vehicles during regular 
operation is a typical example of anomalous dynamic behavior. This 
abnormal behavior is reflected in accelerations (vibrations) in the car-
body. The AD-based framework for vehicle running instability detection 
and the root cause identification is illustrated in Fig. 2. The vehicle ac-
celerations measured with one or more accelerometers are stored in the 
database. This initial data is pre-processed according to a four-step 
scheme: data cleaning, data windowing, feature extraction, and 
feature normalization. The dataset of the regular operation of the 
vehicle forms a training dataset used for training the multiple AD 
models. The AD models are trained on the training dataset and are 
optimized for reconstructing the input time series by minimizing the 
reconstruction error (ε). Finally, the maximum reconstruction error (ε)
observed on the training dataset is defined as the reconstruction error 
threshold (εo) of a particular AD model. 

The AD model is employed on the test dataset to detect anomalies, if 
present. During this phase, the trained AD model has two outputs: latent 
space representation vector (h) of the input time series and recon-
struction error (ε). The later output of the AD model is compared against 
the reconstruction error threshold (εo) to identify the anomaly in vehicle 
accelerations. This branch of the iVRIDA algorithm is called an Unsu-
pervised Vehicle Running Instability Detection (VRID). The AD model’s 
second output is the input sequence’s latent space representation. The 
dataset composed of all observation’s latent space representations is a 
matrix H; which is later, grouped into clusters with the k-means algo-
rithm, where each cluster is associated with a respective vehicle fault 

that initiates vehicle running instability. This branch of iVRIDA is un-
supervised vehicle fault identification which intelligently identifies 
vehicle fault (VFI) instigating running instability. 

2.1. Anomaly detection (AD) models 

The anomalies are classified into point anomaly, pattern anomaly, 
and contextual anomaly, and the vehicle running instability occurrence 
is a combination of pattern and contextual anomalies. In the past two 
decades, many AD models have been proposed, which are categorized 
into distance-based, ensemble-based, statistical, domain-based, and recon-
struction-based methods. Reconstruction-based methods are often used in 
safety–critical applications [30] (e.g., vehicle running instability 
occurrence) for regression or classification purposes. These methods can 
autonomously model the underlying data, and when test data are pre-
sented to the AD model, the presence of anomaly is detected after 
comparing reconstruction error (ε) against the reconstruction error 
threshold (εo). Reconstruction-based methods are classified into 
subspace-based methods and neural network methods. In the present 
investigation, the subspace-based method: PCA [31] and the neural 
network-based method: Sparse Autoencoder (SAE) [32], and the Long 
Short Term Memory (LSTM) [33] method are compared against each 
other for their performance in VRID and VFI branches of iVRIDA. The 
fundamental schematic of reconstruction-based AD models is shown in 
Fig. 3. 

Typically, reconstruction-based AD models are trained to reconstruct 
instances of healthy machine behavior, with the target being the input 
itself [34]. During training, the model parameters are optimized to 
minimize the mean absolute error (MAE) between the input and 
reconstructed sequence, which is termed as reconstruction error (ε)
given by: 

ε =

∑n
i=1|x̂i − xi|

n
(1) 

where, x̂ and x are reconstructed and original sequences, respec-
tively. i is element index, 

Then, the reconstruction error (ε) of any test observation is used for 
computing the likelihood of anomaly in the test sequence. Thus, 
reconstruction-based models are trained only on normal or healthy data, 
and when the pretrained model encounters an anomalous sequence, it 
will not be able to reconstruct it well and hence would result in higher 
reconstruction error (ε) compared to those of a normal sequence. This is 
particularly useful in scenarios when anomalous data is not available or 
is sparse, making it difficult to learn a classification model over normal 
and anomalous sequences. This is especially true for rail vehicles and 
railway tracks that undergo periodic maintenance and therefore get 
serviced before anomalies/faults show up in the sensor readings. 

2.1.1. PCA-AD (Baseline Model) 
The PCA-AD model is based on a simple linear method called Prin-

cipal Component Analysis (PCA). PCA finds the linear projection that 
best preserves the variance measured in the input space [35]. The linear 
projections are created by identifying the dataset’s eigenvectors and 
sorting them by their eigenvalues. The dataset is projected along the first 
k eigenvectors to reduce the number of dimensions. This k dimensional 
space is the latent space of the PCA-AD model. The data is reconstructed 
to the original space by performing reverse PCA to obtain reconstructed 
input. The reconstruction error (ε) between the original and recon-
structed input is calculated with Equation (1). Although PCA is both easy 
to use and efficient, its effectiveness is limited when data is not linearly 
correlated. PCA-AD model is chosen as a baseline model to have a fair 
comparison with other AD models. 

2.1.2. SAE-AD model 
Autoencoder (AE) [36] is an unsupervised neural network that is 

Fig. 3. A schematic of the reconstruction-based AD model [34].  
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trained to reconstruct the input X on the output layer X̂ in a two-phase 
process: encoding learns the hidden/latent space representation (h) of 
the data X via a feature-extracting function and decoding maps h back 
into the input space to obtain a reconstruction of the data X. The most 
critical drawback of AE is the tendency to (learn) identity functions 
without extracting meaningful information about the input data. The 
Sparse Autoencoder (SAE) was proposed to overcome the drawbacks of 
AE; see Fig. 4 (a). SAE exploits the inner structure of the input data by 
including a sparsity constraint on the activations of the hidden units by 
adding the Kullback-Leibler (KL) divergence term to the cost function 
[32]. The sparsity of the hidden layer neuron is that neuron’s average 
output activation value. The average output activation of a neuron i is 
defined as: 

ρ̂i =
1
n

∑n

j=1
z(1)i

(
xj
)
=

1
n

∑n

j=1
h
(

w(1)T
i xj + b(1)

i

)
(2) 

where, n is the number of samples in the training dataset, xj is the jth 

training sample, w(1)T
i is the ith row of the weight matrix W(1), and b(1)

i is 
the ith entry of the bias vector b(1). A higher ρ̂i means the neuron is 
responsive to most training samples, whereas a lower ρ̂i means the 
neuron is responsive to only a few training samples. Thus, inserting a 
term into a cost function that constrains the values of ρ̂i to lower values 
introduces sparsity into AE, where each hidden layer reacts to a small 
number of training samples. The Sparsity regularizer [37] added to the 
cost function through the Kullback-Leibler (KL) divergence term is 
defined as: 

Ωsparsity =
∑D(1)

i=1
KL(ρ||ρ̂i) =

∑D(1)

i=1
ρlog

(
ρ
ρ̂i

)

+ (1 − ρ)log
(

1 − ρ
1 − ρ̂i

)

, (3) 

The KL divergence function measures similarity between ρ and ρ̂i 
distributions; its value is zero when the distributions are the same and 
becomes larger as these diverge from each other. Adding this term to the 
cost function, which is minimized during the training procedure, forces 
distributions ρ and ρ̂i to be close to each other. During the SAE training 
Ωsparsity may become small by increasing values of the weights w(1) and 
reducing values of z(1). Thus, to prevent it from happening; an L2 regu-
larization term is added to the cost function and is defined as: 

Ωweights =
1
2
∑L

l=1

∑nl

j=1

∑kl

i=1

(
w(l)

ji

)2
, (4) 

where L is the number of hidden layers, whereas nl and kl are the 
output and input sizes of layer l. Finally, the cost function of SAE is an 
adjusted mean squared error function which is given as: 

E =
1
N

∑N

n=1

∑K

k=1
(xkn − x̂kn)

2
+ λ*Ωweights + β*Ωsparsity, (5) 

where λ and β are coefficients of the L2 regularization term and the 
sparsity regularization terms, respectively. 

2.1.3. LSTMEncDec-AD model 
LSTM networks [33] are recurrent neural network models that have 

been a very popular choice for various sequence learning tasks like 
handwriting recognition, speech recognition, and time-series analysis. 
Recently an LSTM-based Encoder-Decoder (LSTMEncDec-AD) model has 
been proposed for AD in multi-sensor time-series [27]. In LSTMEncDec 
architecture, both the encoder and decoder are LSTM networks. The 
encoder network compresses the input to latent space, which is then 
decompressed with the decoder network into the original space. 
Consider a sequential data X =

{
x(1), x(2),⋯, x(L)

}
of length L, where 

each point x(i) ∈ Rm is a m dimensional vector for m variables. Given X,

h(i)
E is the hidden state of the encoder for each i ∈ {1,2,⋯, L}, where 

h(i)
E ∈ Rc, c is the number of LSTM units in the hidden layer of the 

encoder. The encoder and decoder are jointly trained to reconstruct the 
input X in reverse order [27], i.e., the output is 

{
x(L), x(L− 1),⋯, x(1)

}
. The 

final hidden state h(L)
E of the encoder is input for the decoder. A linear 

layer on top of the decoder layer is used to predict the target. During 
training, the encoder uses x(i) as an input to obtain the hidden state 
h(i− 1)

D , then predicts the corresponding target x(i− 1). During inference, the 
predicted value x̂(i) is the input to the decoder to obtain h(i− 1)

D and pre-
dicts x̂(i− 1); see Fig. 4 (b). The loss function of the LSTM-EncDec mode is 
as follows: 

E =
∑

X∈SN

∑L

i=1

⃦
⃦x(i) − x̂(i) ⃦⃦2

, (6) 

where SN is a set of normal training sequences. 

2.2. Unsupervised clustering with k-means 

Clustering is defined as identifying subgroups in the data such that 
observations in the same subgroup (cluster) are (very) similar while the 
observations in other clusters are very different. In clustering, the pri-
mary objective is to investigate the dataset’s structure by forming sub-
groups. Thus, there is no need to incorporate ground truth in the training 
phase of the clustering algorithms, and these are unsupervised learning 
methods. The most common clustering method is k-means [38] because 
of its simplicity. 

Fig. 4. Illustrative schematics of SAE and LSTMEncDec networks.  
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2.2.1. The k-means clustering algorithm 
The k-means algorithm is an iterative algorithm that partitions the 

input dataset into k predefined distinct non-overlapping subgroups 
where each observation is associated with only one cluster. The algo-
rithm tries to make the intra-cluster data points as similar as possible 
while keeping the other clusters as different and far away as possible. 
The algorithm assigns datapoints to a cluster such that the sum of the 
squared distance between the observations and the cluster’s centroid 

(arithmetic mean of all the data points belonging to the cluster) is 
minimized but maximizes the distance between two centroids. Thus, the 
k-means algorithm solves the Expectation-Maximization problem [38]. 
The Expectation step assigns the data points to the closest cluster, and 
the Maximization step computes the centroid of each cluster. The 
objective function is. 

J =
∑m

i=1

∑K

k=1
wik

⃦
⃦xi − μk

⃦
⃦2 (7) 

where wik = 1 for datapoint xi if it belongs to the cluster k; otherwise 
wik = 0. μk is the centroid of’s cluster. 

Table 2 
Some parameters of X2000 vehicle model [39].  

Vehicle Component Mass (kg) Mass moment of inertia 

Jxx (kgm2) Jyy (kgm2) Jzz (kgm2) 

X2000 Carbody 32,000 64,446 1,519,965 1,519,965 
Bogie 5500 3000 6000 8000 
Wheelset 1300 750 250 750  

Fig. 5. Spatial distributions of the four types of track irregularities (subfigures a-d). The running equivalent conicity (λ3mm) of nominal wheel and worn wheel profile 
with nominal rail, respectively, in subfigures e-f. 
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3. Application of iVRIDA 

3.1. Case studies 

3.1.1. Simulated acceleration-based case study (CS-I) 
The Swedish train operator SJ operates the high-speed train X2000 

on the Swedish rail network. Most SJ X2000 trains consist of a power 
car, five intermediate vehicles, and a driving trailer and operate at a top 
speed of 200 km/h. An intermediate vehicle is studied here [39] through 
vehicle dynamic simulations. 

3.1.1.1. MBS model of vehicle. The vehicle model consists of a carbody, 
two bogie frames, and four wheelsets modeled as 6 DOF rigid bodies 
connected by primary and secondary suspension elements. The primary 
and secondary suspension consists of spring and viscous damper ele-
ments in the x, y, and z-directions. Since the X2000 vehicle is specifically 
designed to run in curves with high cant deficiency, the primary sus-
pension is relatively soft to give the wheelsets improved radial self- 
steering capabilities. The X2000 vehicle model is also equipped with 
four yaw dampers, i.e., two per bogie, which works in a longitudinal 
direction. The vehicle data is mainly confidential, but some information 
is shown in Table 2, and the static axle loads are 118.1 kN for all 
wheelsets. 

3.1.1.2. Track layout and track irregularity. In the present investigation, 
the measured irregularities on the Swedish track section 416 (BDL416) 
are used for exciting the vehicle stochastically. The track section is 
selected because of the availability of measured rail profiles and track 
irregularity data. The Longitudinal Level (LL), Alignment Level (AL), 
Track Gauge (TG), and Cross Level (CL) irregularities are used in the 
simulation, and the spatial distributions of the track irregularities are 
shown in Fig. 5 (subfigures a-d) with black color. The quality of the track 
irregularities of the shortlisted section is evaluated according to the 
methodology and limits defined in EN 13848-5 [40]. The track section 
does not have any isolated track irregularity defects. LL irregularities are 
mainly in Class B and Class C. AL irregularities are equally distributed in 

Classes A, B, and C, respectively. CL irregularities of the selected track 
section are slightly poor where most of the track is in Class D, with less 
than 5% of the track section in Class E. In subfigure (c), black and yellow 
lines show the TG and 100 m moving mean of TG. The BDL416 has a 
tight gauge for several kilometers between the 144 km and 185 km 
position markers (subfigure c). 

The running equivalent conicity is calculated using the two equiva-
lent conicity functions. These two functions are obtained by combining 
nominal wheel profile S1002t31.5 [48] mm and worn wheel profile 
(WP-C) [6] with 60E1i30 [47] rail profile, respectively. In the calcula-
tion, it is assumed that the rail profiles are constant along the track, and 
only the variation in the track gauge is considered. The running equiv-
alent conicity at 3 mm (λ3mm) of these two combinations of wheel and 
rail profiles along the track is shown in Fig. 5 (subfigure e-f). In both 
subfigures, λ3mm and 100 m moving average of λ3mm are shown in black 
and yellow lines, respectively. The λ3mm of the first combination is very 
low in the beginning and end of the BDL416; even though there is a 
slight increase in λ3mm in between 144 km and 185 km markers, the 
value of 100 m moving average λ3mm is always below 0.1. On the con-
tratory, the λ3mm value of the second combination is significantly high 
along the track section; moreover, the λ3mm value is consistently 0.45 
between the 144 km and 185 km markers. 

3.1.2. Measured acceleration-based case study (CS-II) 
This case study is based on measured onboard accelerations acquired 

on a vehicle of a high-speed train family, which typically operates at 
300 km/h on track with 1435 mm nominal track gauge are studied. The 
vehicles (see Fig. 6 (a)) of this family are equipped with many sensors 
which measure and send data to cloud storage (Fig. 1). The stored data is 
usually used for the deployment of the latest and most innovative 
maintenance and optimization technologies to maximize the trains’ 
quality of service and reduce life cycle costs by implementing predictive 
and condition-based maintenance strategies. In the present investiga-
tion, vehicle accelerations measured on an intermediate vehicle is 
studied. The vehicle consists of a carbody, two bogie frames, and four 
wheelsets connected by primary and secondary suspension elements. 

Fig. 6. Schematic of vehicle model and sensor architecture of the iVRIDA Scheme.  
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The primary and secondary suspension has springs and viscous dampers 
in the vertical (Z) and lateral (Y) directions. The vehicle is also equipped 
with four yaw dampers, i.e., two per bogie, which acts in the longitu-
dinal (X) direction. These hydraulic dampers are designed to prevent 
running instability of the vehicle even at extreme service conditions. 
However, the vehicle may occasionally run unstably if one or more yaw 
dampers are malfunctional. 

3.1.3. Vehicle acceleration database 
The vehicle accelerations used in this research are measured with 

two bi-directional accelerometers mounted on the carbody floor above 
the bogie pivot points of the leading and trailing bogie, respectively. 
These two accelerometers are designated as CFA-I and CFA-II, respec-
tively. CFA-I and CFA-II measure lateral and vertical accelerations and 
store them locally for post-processing. A speed meter accompanying 
accelerometers on the vehicle and the sensor architecture, along with 
travel direction, is shown in Fig. 6. 

3.1.3.1. Simulated acceleration database. This database consists of the 
results of three simulation cases, namely Sim A, Sim B, and Sim C. These 
three simulations based on the vehicle model and track irregularities 
described in the earlier section, whereas, the wheel-rail interface friction 
coefficient is selected as 0.6 to simulate extremely dry friction condi-
tions. The additional simulation parameters are summarised in Table 3, 
where Sim A is a healthy vehicle running on BDL416. Sim B and Sim C 
are faulty vehicles where the faults are failed yaw damper and worn 
wheel profile, respectively. 

3.1.3.2. Measured acceleration database. The onboard accelerations are 
measured on a vehicle during research trials on the same European high- 
speed network. The data is obtained in three measurement campaigns, 
and three campaigns are designated as Measurement A, Measurement B, 
and Measurement C, respectively. Moreover, the vehicle during 

Measurement A was completely healthy whereas during Measurement B 
and Measurement C vehicle’s one yaw damper was failed. The vehicle 
speed and lateral acceleration at CFA-I recorded during measurement A 
are shown in Fig. 7. There, the time is on the horizontal axis; lateral 
carbody floor acceleration is on the left vertical axis, and vehicle speed is 
on the right vertical axis. The lateral carbody floor acceleration is shown 
in blue, whereas vehicle speed is shown in a dashed black line. It can be 
observed from the figure that the vehicle is accelerating from 0 to 330 
km/h. The lateral carbody floor acceleration amplitude gradually in-
creases along with the vehicle speed and rises upto 1 m/s2. The total 
measurement duration is 20 min. 

3.2. Analysis of vehicle accelerations 

The vehicle accelerations acquired in Sim A-C and Measurements A- 
C are compared against each other using methods typically used in the 
railway industry. The objective of analyzing vehicle accelerations using 
domain-specific methods is to discover the dynamic status of the vehi-
cles. This investigation uses fundamental spectral techniques such as 
Power Spectral Density (PSD) estimation and ride quality index [41]. 
The lateral accelerations acquired at CFA-I in Sim A-C and Measurement 
A-C are compared against each other in the frequency domain in Fig. 8 
(a) and (c), respectively, where horizontal and vertical axes are Fre-
quency and PSD, respectively. The lateral ride quality [41] of Sim A-C 
and Measurement A-C is compared against each other in Fig. 8 (b) and 
(d), respectively, where horizontal and vertical axes are Time and 
Sperling index, respectively. In subfigures (a, b) the black, green, and 
dashed-violet lines correspond to Sim A, B, and C, whereas in subfigures 
(c & d) those three lines correspond to Measurement A, B, and C, 
respectively. The PSDs of Sim A and Measurement A don’t show any 
dominant peak, whereas Sim B, Sim C, Measurement B, and Measure-
ment C show extreme peaks at 4.8 Hz, 6.1 Hz, 2.2 Hz, and 2.2 Hz, 
respectively. Thus, the frequency representation of Sim B & C is very 
different from that of Sim A; similarly, Measurement B & C is very 
different from that of Measurement A. In Fig. 8 (b) and (d), the sperling 
index of Sim A and Measurement A oscillates around 2, which means 
that the vehicles have very comfortable rides. On the contrary, the ride 
quality during Sim B, Sim C, and Measurements B and C is very poor and 
sometimes touch the sperling index 4. 

Table 4 summarizes the dynamic status of the vehicles in Sim A-C 
(Table 4 (a)) and Measurements A-C (Table 4 (b)). The respective ve-
hicles are running dynamically stable in Sim A and Measurement A, 
whereas the same respective vehicles are running dynamically instable 
in Sim B & C and Measurement B & C. The vehicle instability in Sim B & 
C is bogie + carbody instability with 4.8 Hz and 6.1 Hz, respectively, 
whereas in Measurements B and C, it is carbody instability, and the 
instability frequency is 2.4 Hz. 

3.3. Formulation of machine learning problem 

3.3.1. Pre-processing and dataset formation 
First, the lateral accelerations measured at CFA-I and CFA-II are 

down-sampled from a 1000 Hz sampling rate to 200 Hz because the most 
interesting vehicle dynamic behavior is observed below 100 Hz. The 
vehicle running instability is typically observed at high speed; thus, the 
time sequences when the vehicle speed is less than 200 km/h are 
removed. The remaining time series of down-sampled lateral accelera-
tions is divided into sequences of 16 s with 15 s of overlap between the 
sequences. Each sequence is scaled by the mean and standard deviation 
of the healthy data of the respective case studies i.e., Sim A and Mea-
surement A. This results in three datasets for each case-study (CS-I & CS- 
II) containing two one-dimensional time series of length 3200, each 
labelled by respective labels. 

Moreover, these six datasets are transformed with a feature extrac-
tion method. Here, the often applied power spectral density (PSD) 
method is applied separately on lateral acceleration measured at CFA-I 

Table 3 
Parameters of simulations Sim A, Sim B, and Sim C.  

Simulation 
ID 

Wheel 
Profile 

100 m Running 
Equivalent 
Conicity 

Yaw 
Damper 
condition 

Wheel 
condition 

Sim A S1002t31.5 less than 0.1 ( 
Fig. 5 (e)) 

No fault No fault 

Sim B S1002t31.5 less than 0.1 ( 
Fig. 5 (e)) 

Front left 
failed 

No fault 

Sim C Worn wheel 
(WP-C) 

~ 0.5 (Fig. 5 (f)) No fault Worn 
wheel  

Fig. 7. Vehicle speed and lateral acceleration recorded at CFA-I during Mea-
surement A. 
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and CFA-II to extract frequency domain features. The PSD features are 
calculated based on the previously extracted time series dataset, 
whereby the vector of PSD amplitudes between 1 and 20 Hz is consid-
ered as the input feature vector for all AD models. These datasets are 
designated as Sim-A, Sim-B, Sim-C, Measurement-A, Measurement-B, 
and Measurement-C, with datasets Sim-A and Measurement-A corre-
sponding to the stable dynamic behavior of the respective vehicles and 
the other four containing anomalies, i.e., occurrences of running 

instability. 

3.3.2. Unsupervised vehicle running instability detection with AD models 
In CS-I, AD models are trained with dataset Sim-A and tested with 

mixed datasets of Sim-A, Sim-B, and Sim-C. Similarly, in CS-II, AD 
models are trained with dataset Measurement-A and tested with a mixed 
dataset of Measurement-A and Measurement-B. All AD models are 
independently trained till 2000 epochs. After completion of the training 
procedure, the reconstruction error (ε) on the respective training dataset 
is calculated between the original and reconstructed samples. The 110% 
of the maximum reconstruction error (ε) of the respective training 
dataset is designated as the reconstruction error threshold (εo) for the 
respective AD model. This threshold is used for detecting anomalies in 
the respective test datasets, i.e., vehicle running instability. The 
respective hyperparameters of each AD model are optimized for the 
minimum εo, highest Anomaly Detection Rate (ADR) in the test dataset 
and the smallest size of the latent space. 

Fig. 8. PSD and the ride quality assessment of lateral acceleration evaluated at CFA-I for Sim A - C and Measurement A - C, respectively.  

Table 4 
Summary of vehicle acceleration database.  

Table 4 (a) Table 4 (b) 

Simulation 
ID 

Dynamic Status of 
the vehicle 

Measurement 
campaign ID 

Dynamic status of 
the vehicle 

Sim A Stable Measurement A Stable 
Sim B Unstable Measurement B Instable 
Sim C Unstable Measurement C Instable  
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3.3.3. Unsupervised vehicle fault identification instigating vehicle instability 
Since discovering novel fault types requires unsupervised evaluation 

of the latent feature space, a clustering approach was applied to the 
learned or extracted features. The latent features database (H) of the AD 
models is transformed into the principal component space using PCA 
with an explained variance of 95%. Then, the k-means clustering algo-
rithm is used to identify clusters in the database (H) as the clustering 
algorithm assigns each sample to the cluster with the nearest mean [42]. 

4. Results of the case studies 

4.1. Unsupervised vehicle running instability detection 

4.1.1. Prevalidation 
Firstly, we verify the three trained AD models of respective case 

studies by looking at their reconstruction performance on two se-
quences. We randomly chose one sequence measured at CFA-I from Sim- 
A, Sim-B, Measurement-A, and Measurement-B each. The reconstructed 
sequences (X̂PCA− AD, X̂SAE− AD, X̂LSTMEncDec− AD) are compared with the 
respective original sequences X in Fig. 9, where subfigures (a), (b), (c), 

and (d) correspond to randomly chosen observations from datasets Sim- 
A, Sim-B, Measurement-A, and Measurement-B, respectively. In sub-
figures, horizontal and vertical axes are frequency and PSD estimates, 
respectively; also, the sequences X, X̂PCA− AD, X̂SAE− AD,

and X̂LSTMEncDec− AD are shown by black, star-black, blue, and dashed- 
green lines, respectively. 

In subfigures (a) and (c), we can see that the reconstructed sequences 
of three AD models have good agreement with the original sequences of 
respective healthy datasets. Moreover, it is fascinating to point out that 
X̂LSTMEncDec− AD in subfigure (c) almost coincides with the original 
sequence X except for divergence at a few frequencies. In subfigures (a) 
and (c), the simple baseline model PCA-AD shows maximum recon-
struction error (as expected), and the neural network-based SAE-AD and 
LSTMEncDec-AD models show much smaller reconstruction errors. The ε 
of PCA-AD, SAE-AD and LSTMEncDec-AD for Sim-A (WindowID 23) is 
0.09, 0.05 and 0.04 whereas for Measurement-A (WindowID 23) is 0.04, 
0.01, and 0.002 respectively. 

In subfigures (b) and (d), we see that the sequences reconstructed by 
three AD models have, as expected, inferior agreement with the original 
sequence of anomalous (faulty) respective datasets. In subfigure (d), it is 

Fig. 9. Prevalidation of the three AD models. (a-d) comparison of the original input sequence (X) with reconstructed sequences (X̂PCA− AD, X̂SAE− AD, X̂LSTMEncDec− AD) 
on the randomly chosen window of Sim-A, Sim-B, Measurement-A, and Measurement B, respectively. 
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interesting to point out that X̂PCA− AD shows a reconstructed peak but is 
offset by a few Hz, and the X̂SAE− AD, and X̂LSTMEncDec− AD also cannot 
reconstruct the peak. The ε of PCA-AD, SAE-AD, and LSTMEncDec-AD for 
Sim-B (WindowID 550) is 1.2, 1.2, and 1.1, whereas for Measurement-B 
(WindowID 223) is 6.64, 2.28, and 2.17 respectively. The ε values of 
Sim-B (WindowID 550) and Measurement-B (WindowID 223) are much 
higher than that of Sim-A (WindowID 23) and Measurement-A (Win-
dowID 23) for all AD models. Thus, we confirm that all three AD models 
are trained to reconstruct only normal healthy sequences, thus not 
anomalous ones. 

4.1.2. Comparison of reconstruction error threshold (εo) for AD models 
The results of the three AD models while training on healthy datasets 

of respective case studies is compared against each other in Fig. 10, 
where subfigure (a) and (b) correspond to CS-I and CS-II, respectively. In 
both subfigures, vertical and horizontal axes are the εo size of the latent 
space, respectively. In both subfigures, the star-black, diamond-green, 
and circle-violet lines correspond to PCA-AD, SAE–AD, and LSTMEnc-
Dec-AD models, respectively. In both case studies, the baseline model 
PCA-AD has much higher εo for smaller latent space size and, as ex-
pected, εo reduces quickly with an increase in latent space size because 
of retention of a more significant number of principal components. The 
εo of the other two deep learning-based models are much lower than the 

Fig. 10. Comparison of reconstruction error threshold (εo) of AD models in CS-I and CS-II.  

Fig. 11. A representative histograms of reconstruction error ε on Measurement-A and Measurement-B datasets of CS-II for SAE-AD with h ∈ R8.  
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baseline model for the smaller size of latent space. This shows a higher 
capability of compressing information into smaller dimensions for these 
deep learning-based models. 

4.1.3. Detecting the vehicle running instability occurrences 
The histogram of the ε for the training and testing dataset of CS-II is 

shown in Fig. 11 with objective of demonstrating the procedure of 
vehicle running instability incidences detection. In both subfigures, the ε 
is on the horizontal axis, whereas probability on y axis. In subfigures (a) 
and (b) ε, histograms for Measurement A and B, i.e., training and test 
dataset, are shown, and, the dashed-black vertical line indicates the 
reconstruction error threshold (εo) of SAE-AD with h ∈ R8, which is 
0.027. The εo is the threshold for detecting the anomalies in Measure-
ment B, and the corresponding ADR is 100% (see Fig. 12 (b)). 

The testing phase results of the three AD models are compared 
against each other in Fig. 12, where subfigures (a) and (b) correspond to 
CS-I and CS-II, respectively. In the subfigures, vertical and horizontal 
axes are the Anomaly Detection Rate (ADR) and size of the latent space 
(h), respectively; and star-black, diamond-green, and circle-violet lines 
correspond to PCA-AD, SAE-AD, and LSTMEncDec-AD models, 

respectively. In CS-I, SAE-AD and LSTMEncDec-AD models outperform 
the PCA-AD model; however, PCA-AD shows improved ADR for larger 
horizontal axis values. Nevertheless, SAE-AD and LSTMEncDec-AD 
models show almost 100% ADR in CS-I. Similarly, in CS-II, SAE-AD and 
LSTMEncDec-AD models outperform the PCA-AD model for dimension 
size 1. Moreover, SAE-AD shows slightly better performance than 
LSTMEncDec-AD for the smaller size of latent space. The baseline model 
PCA-AD, as expected, performs very poorly for only one latent space 
dimension. However, the baseline model has 100% ADR for the other 
latent space dimensions. All models detect vehicle running instability 
occurrences in both case studies. Moreover, deep learning-based models 
outperform the baseline model in respective case studies. 

4.2. Unsupervised vehicle fault identification instigating vehicle instability 

4.2.1. Prevalidation 
In this phase, the latent space representation dataset (H) is used for 

Vehicle Fault Identification (VFI), and the k-means clustering algorithm 
is used to find the clusters in H. The H datasets of CS-I and CS-II are 
designated as HCS - I and HCS - II respectively, and Fig. 13 (a) and (b) 

Fig. 12. Comparison of ADR among three AD models on test data.  

Fig. 13. Illustration of unsupervised fault identification with k-means.  
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show respective scatter plots. In both subfigures, the horizontal and 
vertical axes are 1st and 2nd principal component of the respective 
datasets H. In subfigure (a), datapoints of the dataset HCS - I form three 
distinct clusters. K-means identifies the optimal centroids of the clusters 
(black cross mark) and designates ClusterID A, ClusterID B, and Clus-
terID C to these three different clusters. The respective clusters are 
shown in green, red, and blue colors; moreover, their centroids are 
(− 2.5, − 0.9), (0.2, 3.3), and (3.9, − 1). Furthermore, we discovered that 
datapoints of ClusterID A, ClusterID B, and ClusterID C belongs to Sim-A, 
Sim-B, and Sim-C of CS-I, respectively, with an overall accuracy of 0.9 
(out of 1). Moreover, referring to the simulated vehicle’s health as 
mentioned in Section 3.1.3.1, Sim-A, Sim-B, and Sim-C represent “No- 
fault”, “Failed yaw damper”, and “Worn wheel” respectively. Thus, these 
labels are transferred to respective clusters, and these three clusters are 
called as “no fault”, “failed yaw damper” and “worn wheels” clusters. 

Interestingly, similar clusters (subfigure (b)) are found in the data-
points of the dataset HCS - II, which corresponds to CS-II. Here, k-means 
identifies two clusters along with the optimal cluster centroids (black 
cross mark) and designates ClusterID A and ClusterID B to these two 

clusters. The observations of ClusterID A are concentrated around the 
cluster centroid (− 2.14, − 0.1) and shown in green color. ClusterID B’s 
observations are in red, and their cluster centroid is at (3.16, 0.15). The 
variance of ClusterID A datapoints is very low compared to the variance 
of ClusterID B datapoints. Also, in CS-II we discover that the ClusterID A 
and ClusterID B belong to Measurement-A and Measurement-B respec-
tively with overall accuracy of 0.98 (out of 1). Moreover, referring to the 
actual vehicle’s health as mentioned in Section 3.1.3.2, Measurement-A 
and Measurement-B represent “No-fault” and “Failed yaw damper” 
respectively. Thus, ClusterID A and ClusterID B are designated as “no- 
fault” and “failed yaw damper” as shown in the subfigure. 

Thus, here we show that the datapoints of H form distinct clusters 
associated with each fault instigating vehicle running instability. 
Moreover, we also show that the k-means clustering algorithm can be 
used for identifying the vehicle’s fault instigating vehicle instability. 

4.2.2. Comparison of AD model’s VFI performance 
In this section, we compare the performance of three variants of the 

iVRIDA algorithm for vehicle fault identification during CS-I and CS-II 

Fig. 14. Comparison of the three AD models in the vehicle fault identification phase. (a) and (c) Vehicle Fault Identification Accuracy (VFIA) plots of CS-I and CS-II; 
(b) and (d) F1 score in Vehicle Fault Identification phase for CS-I and CS-II. 
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with the help of a confusion matrices and associated metrics such as 
accuracy and F1 score [43,49]. The F1 score is the geometric mean of the 
recall and precision rates of the algorithm [44]. Fig. 14 (a) and (c) show 
the Vehicle Fault Identification Accuracy (VFIA) comparison of the three 
AD models for an increasing number of latent space dimensions during 
CS-I and CS-II, respectively. In both subfigures, the vertical and hori-
zontal axes of the plot are the VFIA and size h, and star-black, diamond- 
green, and circle-blue lines correspond to PCA-AD + k-means, SAE-AD +
k-means and LSTMEncDec-AD + k-means models respectively. In CS-I, the 
VFIA of the PCA-AD + k-means model is poor and hardly crosses the 0.6 
value. The SAE-AD + k-means’ VFIA varies between 0.7 and 0.9 ac-
cording to the size of latent space, which is excellent. The VFIA of 
LSTMEncDec-AD + k-means is very low for h ∈ R1 and h ∈ R2; however, 
afterward the LSTMEncDec-AD + k-means also outperforms the SAE-AD 
+ k-means model. The highest VFIA is 0.97, which is achieved by 
LSTMEncDec-AD + k-means. 

Similarly, in subfigure (c), VFIA results of CS-II show that the VFIA of 
the baseline model PCA-AD + k-means is around 0.8 irrespective of the 
size h. The VFIA for the SAE-AD + k-means model is 0.58 for 
h ∈ R1 and h ∈ R2; however, afterward, the model exhibits excellent 
VFIA for a larger size h. The VFIA for the LSTMEncDec-AD + k-means 
model is again excellent, and the model has the capability for high VFIA 
even if the latent space size is small. It must be noted here that the SAE- 
AD + k-means and LSTMEncDec-AD + k-means models outperform the 
baseline model and exhibit excellent accuracy for vehicle fault 
identification. 

Fig. 14 (b) and (d) show the F1 score in the vehicle fault identifica-
tion phase for case studies CS-I and CS-II. In both subfigures, the vertical 
and horizontal axes of the plot are the F1 score and size h.The star-black, 
diamond-green, and circle-blue lines correspond to PCA-AD + k-means, 
SAE–AD + k-means and LSTMEncDec-AD + k-means models respectively. 

In CS-I, the F1 score of the baseline model PCA-AD + k-means is also 
abysmal and hardly crosses the 0.6 value. The SAE-AD + k-means’s F1 
score varies between 0.7 and 0.9 according to the size of the latent space, 
which is excellent. The F1 score of LSTMEncDec-AD + k-means is also low 
for h ∈ R1 and h ∈ R2; however, afterward, the LSTMEncDec-AD + k- 
means also outperforms the SAE-AD + k-means model. The highest F1 is 
0.97 which is achieved by LSTMEncDec-AD + k-means. 

Similarly, in subfigure (d), the F1 score of CS-II shows that the F1 
score of the baseline model PCA-AD + k-means is around 0.75, irre-
spective of the size h. The F1 score for the SAE-AD + k-means model is 
0 for the h ∈ R1 and h ∈ R2, however afterward, the model exhibits 
excellent F1 score for larger sizes h. The F1 for the LSTMEncDec-AD + k- 
means model is always excellent, and the model has the capability for 
high F1 even if the latent space size is very small. It must be noted here 
that the SAE-AD + k-means and LSTMEncDec-AD + k-means models 
outperform the baseline model and exhibit excellent accuracy for 
vehicle fault identification. The F1 score above 0.95 emphasize both 
models’ superb precision and recall rates. This means that the SAE-AD +
k-means and LSTMEncDec-AD + k-means algorithms are accurate, pre-
cise, and reliable for identifying vehicle faults instigating vehicle 
running instability. The following section shows a virtual demonstration 
of the iVRIDA algorithm. 

5. Demonstration of the iVRIDA algorithm and discussion 

5.1. Demonstration of the iVRIDA algorithm on Measurement-C 

The iVRIDA algorithm is here deployed on the accelerations acquired 
during Measurement C to demonstrate and validate the algorithm. The 
vehicle accelerations recorded at CFA-I and CFA-II during Measurement 
C are pre-processed according to the procedure described in Section 

Fig. 15. Demonstration of iVRIDA on Measurement C. (a) Lateral carbody floor acceleration and vehicle speed; (b) Output of 

iVRIDA
(

SAE - ADh∈ℝ8
+ k-means

)
algorithm. 
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3.3.1 where the acceleration signals are windowed, normalized, and 
features are extracted. In the demonstration phase, the SAE-AD + k- 
means model of the iVRIDA scheme is used, and more specifically, we 
deploy SAE-AD + k-means with h ∈ R8. The results of the Vehicle 
Running Instability Detection (VRID) and Vehicle Fault Identification 
(VFI) are explained with the help of Fig. 15. Fig. 15 (a) shows the vehicle 
speed and lateral acceleration recorded at CFA-I during Measurement C. 
In Fig. 15 (a), the time is on the horizontal axis, acceleration is on the left 
vertical axis, and vehicle speed is on the right vertical axis. The accel-
eration and vehicle speed are shown in blue and dashed-black line, 
respectively. The vehicle accelerates from 0 km/h to 330 km/h, and then 
the vehicle speed is gradually reduced to 30 km/h. The acceleration 
amplitude gradually increases along with increasing vehicle speed and 
rises to 4 m/s2, making the ride very violent. The results obtained after 
analyzing the accelerations with the iVRIDA scheme are shown in Fig. 15 
(b). In this subfigure, the time is on the horizontal axis, whereas the left 
and right vertical axis are ε and outputs of VRID and VFI branches of 
iVRIDA. 

In Fig. 15 (b), the ε, εSAE-ADh∈R8

o , VRID output and VFI output are 
shown by blue, dashed black, black, and red lines, respectively. The blue 
curve, i.e., reconstruction error (ε), the curve starts with zero and 
gradually increases as the acceleration increases along with increasing 

vehicle speed. The ε curve crosses the threshold εSAE-ADh∈R8

o at 114 s and 
stays above the same until 883 s. Even though the ε curve is above the 

εSAE - AD with h∈R8

o in-between these two timestamps, the ε curve varies 
significantly and is directly correlated with acceleration. The ε reaches 
its maximum when the acceleration reaches its maximum. The VRID 
output curve is obtained from the ε curve. The VRID output shows that 
the vehicle is running instable in-between 114 s till 883 s; otherwise, the 
vehicle is stable. The VFI output curve shows the identified vehicle fault, 
and it is observed that the curve fluctuates between “No Fault” and 
“Failed Yaw Damper” at the beginning of the measurement but even-
tually settles at the “Failed Yaw Damper” when the vehicle speed is 
above 250 km/h. This VFI output curve ultimately comes down to “No 
Fault” after the vehicle speed reduces below 250 km/h because the ac-
celeration also reduces along with speed. We make the following ob-
servations from Fig. 15:  

(1) An enlarged section of Fig. 15 is shown in Fig. 16, where we take a 
close look at the vehicle behavior and outputs of iVRIDA from 
180 s to 200 s. The vehicle speed and acceleration amplitudes are 
around 200 km/h and 0.5 – 1 m/s2, respectively. The sperling 
index during these 20 s is also approximately 2.5 (see Fig. 8), 
which is quite well within acceptable limits. Moreover, the 
bandpass-filtered lateral acceleration doesn’t show a strong si-
nusoidal pattern, typically visible during vehicle running insta-
bility. However, these accelerations are eventually amplified 
when vehicles exhibit violent running instability starting after 

Fig. 16. Closeup of Fig. 15 i.e. Demonstration of iVRIDA on Measurement C. (a) Lateral carbody floor acceleration and vehicle speed profile; (b) Output of iVRIDA 
(

SAE - ADh∈R8
+ k - means

)
algorithm. 
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300 s. Usually, the vehicle gradually becomes unstable. This 
phase of initiating vehicle running instability is also typically 
observed in high-speed rail vehicles in China [38] and referred to 
as small amplitude hunting/instability. 

The iVRIDA output for these 20 s is also shown in subfigure (b). The 
subfigure shows that the VRID branch of iVRIDA successfully detects the 
presence of small amplitude running instability. The VFI branch also 
identifies vehicle fault, i.e., “Failed Yaw Damper” which instigates small 
amplitude running instability; however, only after the 190-second mark. 
Nevertheless, the proposed iVRIDA detects the presence of small 
amplitude running instability which is present in the timestamp from 
150 s to 300 s. 

(2) The iVRIDA consistently detects running instability and corre-
sponding vehicle fault when the vehicle speed is above 200 km/h.  

(3) The vehicles are typically dynamically stable at lower operational 
speeds, which is also identified by iVRIDA, specifically at the 
beginning and end of Measurement C. The VRID and VFI outputs 
are directly correlated with reconstruction error (ε), directly 
correlated with the amplitude of lateral carbody floor 
acceleration. 

5.2. Discussion on limitations of the current research 

The section above, demonstrates the potential of deploying iVRIDA 
framework; as with every research, the current work has its limitations 
which must be acknowledged. However, it is important to note that 
these limitations should not be viewed as negative aspects of the iVRIDA 

Fig. 17. ROC plot of yaw damper fault in CS-I for PCA-AD, SAE-AD and LSTMEncDec-AD for latent space size 1 to 8.  
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framework, but rather as opportunities for further research and 
development.  

(1) The current research focuses on identifying and analyzing rigid 
body dynamic instability in rail vehicles. However, it is important 
to note that other forms of instability, such as those associated 
with flexbody modes of wheelset, bogie frame, and carbody, can 
also occur in real-world. While these instabilities are typically 
mitigated through proper vehicle design, they may still arise due 
to malfunctions of certain components. Additionally, these in-
stabilities may manifest at different frequency ranges [4] and 
require different sensor types and architectures than those stud-
ied in this research. Further research investigation is need to 

ensure the performance of the iVRIDA framework is not detoeri-
ated due to appearance of instabilities associated with flexbody 
modes. 

(2) The iVRIDA framework’s training dataset, Measurement A, rep-
resents an ideal healthy vehicle. Test datasets, Measurements B 
and C, represent ideal faulty datasets. The datasets originate from 
the same vehicle and were acquired during certification tests, 
which may introduce bias. However, it’s important to note that in 
real-world scenarios, the distinction between healthy and faulty 
vehicles is not always clear cut as vehicle degradation is a 
continuous process. Additionally, the current dataset may not 
fully reflect real-world scenarios as Measurement A represents an 
ideal healthy vehicle and Measurements B and C represent ideal 

Fig. 18. ROC plot of yaw damper fault in CS-I for PCA-AD, SAE-AD and LSTMEncDec-AD for latent space size 16 to 128.  
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faulty vehicles. In reality, the boundary between healthy and 
faulty is not always clear cut.  

(3) This study utilizes a machine learning model that is trained on a 
limited amount of data, which may affect the generalization 
capability of the model to new, unseen data. To improve the 
model’s performance and increase the confidence in its pre-
dictions, future research should consider using larger and more 
diverse datasets and sensitivity studies. 

In conclusion, the iVRIDA framework demonstrated encouraging 
results until now. However, to further strengthen its performance, it is 
important to expand the dataset and rigorously verify its algorithm for 
increased accuracy. 

6. Conclusions and future work 

6.1. Conclusions 

The appearance of running instability of high-speed rail vehicles 
negatively affects operational safety and passenger ride comfort. 
Moreover, the emergence of running instability is sporadic; i.e. it is an 
anomaly in the vehicle-track dynamic interaction. This paper proposes 
an unsupervised Anomaly Detection (AD) framework, iVRIDA, is 
developed to detect the emergence of the vehicle running instability of 
high-speed rail vehicles and to identify corresponding vehicle fault. 
More importantly, the iVRIDA framework utilizes only carbody floor 
accelerations which are easy to measure, store, and transfer to the cloud 

Fig. 19. ROC plot of wheel profile fault in CS-I for PCA-AD, SAE-AD and LSTMEncDec-AD for latent space size 1 to 8.  
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for further processing; additionally, the placement of accelerometers in 
the carbody is simple and cost-effective. The present work is concluded 
as follows:  

(1) This paper firstly expresses the vehicle running instability 
detection problem as an Anomaly Detection (AD) problem, which 
is a unique perspective towards vehicle running instability 
detection problem and has not yet been explored by other re-
searchers. The problem of vehicle running instability detection 
and corresponding vehicle fault identification should be treated 
as an AD problem because vehicles seldomly run instable during 
service, and accelerations recorded on the healthy (stable) vehi-
cles are abundantly available. Moreover, ground truth about 

vehicle running instability and respective vehicle fault is usually 
not collected and reported systematically and consistently. Thus, 
preparing labeled datasets mandatory for training supervised 
classification algorithms is impossible.  

(2) Thus, this paper proposes an unsupervised vehicle running 
instability detection algorithm, called iVRIDA, for detecting oc-
currences of vehicle running instability of high-speed rail vehi-
cles. The iVRIDA framework incorporates three different AD 
models, namely PCA-AD (baseline model), SAE-AD, and 
LSTMEncDec-AD, to detect vehicle running instability from car-
body floor acceleration. A popularly used unsupervised clustering 
algorithm, k-means is deployed to identify clusters in the latent 
space of AD models. We show that faults instigating the running 

Fig. 20. ROC plot of wheel profile fault in CS-I for PCA-AD, SAE-AD and LSTMEncDec-AD for latent space size 16 to 128.  
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instability develop distinct clusters in the latent space. Thus, an 
unsupervised machine-learning algorithm can identify the faults 
instigating the vehicle running instability.  

(3) We demonstrate the potency of the iVRIDA framework with help 
of two case studies. These case studies are based on simulated and 
measured vehicle acceleration of European high-speed rail vehi-
cles respectively. In both case studies, we found that the SAE-AD 
and LSTMEncDec-AD models outperform the baseline model in 

unsupervised vehicle running instability detection and unsuper-
vised fault identification.  

(4) The proposed iVRIDA framework is a generic framework where 
any signal reconstruction-based anomaly detection algorithm can 
be integrated in the VRID branch of iVRIDA. Moreover, any un-
supervised / supervised clustering / classification algorithm can 
be integrated into the VFI branch to identify the underlying 
vehicle faults that instigate vehicle running instability. 

Fig. 21. ROC plot of yaw damper fault in CS-II for PCA-AD, SAE-AD and LSTMEncDec-AD for latent space size 1 to 8.  
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(5) The proposed iVRIDA framework is under continuous develop-
ment and validation process. The next step is to implement the 
iVRIDA framework on vehicle accelerations recorded on a fleet of 
rail vehicles. 

6.2. Future work 

6.2.1. Implementation of iVRIDA framework on fleet of inservice vehicles  

(1) The very interesting offshoot of current research work is to 
implement iVRIDA framework on fleet of passenger trains with 
federated learning approach. 

Fig. 22. ROC plot of yaw damper fault in CS-II for PCA-AD, SAE-AD and LSTMEncDec-AD for latent space size 16 to 128.  

R. Kulkarni et al.                                                                                                                                                                                                                               



Measurement 216 (2023) 112894

22

(2) The fleetwise implementation of iVRIDA framework enables 
investigating the performance of iVRIDA in very common 
everyday situations such as  

(a) A particular vehicle exhibiting running instability at one or more 
than one track sections while other vehicles operating smoothly 
on same track sections.  

(b) More than one vehicle exhibiting running instability on a 
particular track sections on particular day but running smoothly 
on rest days.  

(c) A particular vehicle exhibiting running instability at a particular 
track section on a specific time whereas other vehicle smoothly 
passing through same track section on a same time. 

(3) Every individual vehicle may introduce its own bias in acceler-
ations; this must be addressed before fleetwide implementation of 
iVRIDA. 

6.2.2. Further developments of iVRIDA framework 

(1) The core of iVRIDA framework can be strengthened with diver-
sification of data sources i.e. incorporating realtime information 
on track irregularities, rail profiles, wheel profiles and so on. This 
will openup very interesting avenue of research work.  

(2) The framework can also be expanded to incorporate various other 
types of features [46] extracted from carbody floor accelerations. 

(3) The iVRIDA framework can be extended to incorporate Varia-
tional Autoencoder, Convolutional Autoencoder, Generative 
adversarial network models. Furthermore, hyperparameters of 
each model can also be finetuned for further improvement in the 
performance. 
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Appendix A:. ROC plots of all models in CS-I and CS-II 

ROC plots of CS-I 

Yaw damper fault 
The ROC curves along with optimal operating point for yaw damper 

fault class in CS-I for PCA-AD, SAE-AD and LSTMEncDec-AD for various 
latent space sizes are shown in Fig. 17 and Fig. 18. In all plots, x and y 
axis are False Positive Rate (FPR) and True Positive Rate (TPR). More-
over, in each figure, the first, second and third coloumn corresponds to 
PCA-AD + kmeans, SAE-AD + kmeans and LSTMEncDec-AD + kmeans 
models. Further more each row of plot corresponds to different latent 
space dimensions and these dimension are mentioned in Y axis label. 
The ROC plots also confirm that the performance of SAE-AD + kmeans 
and LSTMEncDec + kmeans models is significantly better than baseline 
model. 

Wheel profile fault 

The ROC curves for wheel profile fault class in CS-I for PCA-AD, SAE- 
AD and LSTMEncDec-AD for various latent space sizes are shown in 
Fig. 19 and Fig. 20. 

ROC plots of CS-II 

Yaw damper fault 

The ROC curves for yaw damper fault class in CS-I for PCA-AD, SAE- 
AD and LSTMEncDec-AD for various latent space sizes are shown in 
Fig. 21 and Fig. 22. 
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