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Stochastic Approximation for Identification of Non-Linear
Differential-Algebraic Equations with Process Disturbances

Robert Bereza, Oscar Eriksson, Mohamed R.-H. Abdalmoaty, David Broman and Håkan Hjalmarsson

Abstract— Differential-algebraic equations, commonly used
to model physical systems, are the basis for many equation-
based object-oriented modeling languages. When systems de-
scribed by such equations are influenced by unknown process
disturbances, estimating unknown parameters from experimen-
tal data becomes difficult. This is because of problems with
the existence of well-defined solutions and the computational
tractability of estimators. In this paper, we propose a way
to minimize a cost function—whose minimizer is a consistent
estimator of the true parameters—using stochastic gradient
descent. This approach scales significantly better with the
number of unknown parameters than other currently available
methods for the same type of problem. The performance of the
method is demonstrated through a simulation study with three
unknown parameters. The experiments show a significantly
reduced variance of the estimator, compared to an output error
method neglecting the influence of process disturbances, as well
as an ability to reduce the estimation bias of parameters that
the output error method particularly struggles with.

I. INTRODUCTION

Differential-algebraic equations (DAEs) are a class of
models commonly used to describe physical systems. In
particular, they are the mathematical basis for equation-based
object-oriented modeling languages [1] such as Modelica1,
MathWorks Simscape, or VHDL-AMS. These kinds of lan-
guages are commonly used to model and simulate complex
physical systems. However, in practice, such models can
contain unknown parameters that have to be identified using
measured data. The presence of both measurement noise
and process disturbances affecting the dynamics makes the
identification of such parameters challenging. In this paper,
we address the problem of computationally tractable and
consistent estimation of unknown parameters for a class of
non-linear DAEs using experimental data.

DAEs are different from ordinary differential equations
(ODEs), and solving DAEs is generally harder than solving
ODEs. The differential index (or index) of a system of DAEs
is the minimum number of times we need to differentiate

This work was supported by the Swedish Research Council under con-
tracts 2019-04956 and 2016-06079 (the research environment NewLEADS),
by Digital Futures, and by the Swedish Foundation for Strategic Research
(FFL15-0032).

R. Bereza and H. Hjalmarsson are with the Division of Decision and Con-
trol Systems, EECS and Digital Futures, KTH Royal Institute of Technology,
SE-100 44 Stockholm Sweden (robbj, hjalmars)@kth.se.

O. Eriksson, D. Broman are with the Division of Software and Computer
Systems, EECS and Digital Futures, KTH Royal Institute of Technology,
SE-100 44 Stockholm Sweden (oerikss, dbro)@kth.se

M. Abdalmoaty is with the Division of Systems and
Control, Uppsala University, 751 05 Uppsala Sweden
mohamed.abdalmoaty@it.uu.se

1https://www.modelica.org/

all or some equations of the DAEs to explicitly determine
the solution as a function of time, at which point the DAEs
become equivalent to a set of (implicit) ODEs. Consequently,
an ODE has index 0 and we can view the index of a system
of DAEs as a measure of its distance to (implicit) ODEs [2].
Numerical DAE solvers, such as the DASSL [3] family of
solvers, typically handle DAEs with index 1 (and index 2 in
special cases). Solving high-index DAEs, therefore, involves
a transformation of the DAEs prior to numerical solving
so that the transformed DAEs are both of sufficiently low
index and are numerically stable with respect to their original
constraint equations. Several efficient algorithms for index
reduction [4] [5] and stabilization [6] [7] of DAEs exist. An
additional challenge with DAEs is the modeling of process
disturbances. Derivatives of the disturbances can appear in
the solution of the DAEs, so then special care has to be taken
to ensure that the solution is well-defined.

A. Prior Work

Because of the aforementioned difficulties, while some
prior work on parameter estimation for DAE models has been
done, process disturbances have often been neglected, e.g.
in [8] [9]. It is known that neglecting process disturbances
when estimating parameters for non-linear systems can lead
to a loss of consistency as well as an increased variance error,
see e.g. [10]. Process disturbances have been occasionally
considered in methods for state estimation, such as [11]
[12], but then the DAE system is assumed to be in semi-
explicit form with only additive disturbances. Conditions for
the identification problem to be well-defined for linear DAEs
are provided in [13], and the same is done for non-linear
DAEs in [14]. In the latter, an approximate method for state
estimation using a particle filter is developed. However, the
proposed method for computing the likelihood function is
restricted to systems that can be rewritten in a particular
form, which can be challenging or require heuristics such as
the removal of disturbances from certain parts of the model.

To the best of our knowledge, the method proposed in [15]
is the only one of its kind, treating non-linear DAE models
that can be simulated using existing numerical solvers, with
process disturbances modeled as stochastic processes. The
method is implemented and demonstrated with a numerical
example for estimating a scalar parameter using grid search,
but the method scales very poorly with the number of
unknown parameters and the size of the search space. This
is because the estimates are found by approximating the cost
function using Monte-Carlo simulations, and the number of
required simulations grows exponentially with the number
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of unknown parameters. In this paper, we consider the
same problem and show how stochastic gradient descent can
be applied for its solution, which improves computational
tractability. We solve the problem of obtaining an unbiased
estimate of the gradient cost function, allowing us to solve
problems with several unknown parameters in a computation-
ally tractable way. Implementation details are also provided,
and we demonstrate the approach through a simulation study
on a simple model with three unknown parameters.

B. Contributions

We consider the problem of estimating parameters of non-
linear DAEs with process disturbances that are modeled
as continuous-time stochastic processes. We use the same
method as in [15], which gives us an estimator that is
consistent even in the presence of such disturbances, but
with a different algorithm. The newly proposed algorithm
is based on classical stochastic gradient descent and scales
significantly better with the number of unknown parameters
than the algorithm used in the aforementioned paper. This
makes problems with several unknown parameters computa-
tionally tractable. However, for stochastic gradient descent
to converge, an unbiased estimate of the gradient of the
cost function is needed. Obtaining such an estimate for the
considered cost function requires additional steps, which are
taken in this paper. Specifically, our contributions are:

1) We demonstrate how the considered prediction error
can be minimized with stochastic gradient descent and
how to compute unbiased gradient estimates using
sensitivity analysis of DAEs.

2) We provide implementation details on how to use
the developed approach, together with the ADAM
algorithm [16] that extends stochastic gradient descent,
to obtain estimates that are computationally tractable
in cases with several unknown variables.

II. PROBLEM FORMULATION

We consider general non-linear DAEs on the form

F (ẋ(t), x(t), u(t), w(t); θ) = 0 (1a)
y(t) = q(x(t), u(t); θ) + v(t), (1b)

where x(t) ∈ Rnx is the state of the system, u(t) ∈ Rnu

is the control input, y(t) ∈ Rny is the output, w(t) ∈ Rnw

is the process disturbance, and v(t) ∈ Rnv is white zero-
mean measurement noise. The model is parameterized by
the parameter vector θ ∈ Rnθ . The model of the process
disturbance is described in more detail in Section III-C. The
problem we aim to solve is to, given the data set

DN (T ) = {(y(tk), u(s)) : k = 1, . . . , N, s ∈ [0, T ]} ,

estimate the value of the parameter vector θ parameterizing
a model in the model set (1), that is also assumed to have
generated the data. Note that the control input u is user-
specified and therefore known for all t, while we only have
access to N samples of the otherwise unknown output y.

III. ESTIMATOR USING STOCHASTIC GRADIENT
DESCENT

A. Estimation Method and Gradient Computation

Estimators, such as the maximum likelihood estimator and
the prediction error method using the one-step ahead optimal
predictor, are intractable to compute for general non-linear
DAEs. We instead use a simpler predictor proposed in [17],
which provides consistent estimates and was used previously
for non-linear DAEs in [15]. This predictor is the mean of
the model output, and our estimator θ̂ is then obtained by
minimizing the following cost function:

JN (θ) =
1

N

N∑
k=1

∥y(tk)− E[y(tk; θ); θ]∥2, (2)

where y(tk) is the measured output of the system, and
y(tk; θ) is the simulated output of the model parameterized
by θ, both computed at time tk. The expectation of the model
output is taken over the process disturbance w(t) and the
measurement noise v(t). Assuming that we can interchange
derivatives and expectations, the gradient of the cost function
is given by

∇θJN (θ) =
2

N

N∑
k=1

E[∇θy(tk; θ)]
T (E[y(tk; θ)]− y(tk)),

(3)

where ∇θy(tk; θ) denotes the Jacobian matrix of y(tk; θ)
with respect to θ. In general, the expected values of the
model output and its Jacobian are intractable to compute.
However, it is possible to obtain an unbiased estimate of (3),
which can be used for minimizing the cost function using
stochastic gradient descent. For a given θ, let ∇θŷ

(1)(tk; θ)
and ŷ(2)(tk; θ) be two independent and unbiased estimates of
E[∇θy(tk; θ)] and E[y(tk; θ)] respectively, which are also re-
placed in (3). Then the obtained value is an unbiased estimate
of ∇θJN (θ). The estimates ∇θŷ

(1)(tk; θ) and ŷ(2)(tk; θ) can
be computed by taking the mean over some independent
simulated realizations of the model output and its gradient.
Note that, if these two estimates are not made independent,
the estimate of the gradient of the cost function will, in
general, be biased and not allow stochastic gradient descent
to converge. The estimate ∇θŷ

(1)(tk; θ) is non-trivial to
compute, but we show how this can be done in Section III-B.

Note that this approach provides improved scaling with
the number of unknown parameters, compared to the most
recent method for this type of problem from [15], which uses
grid search to find the minimizer of (2). For that method,
the number of times the model (1) has to be solved scales
exponentially with the number of unknown parameters. For
the proposed approach using stochastic gradient descent, the
number of times the system of DAEs has to be solved
does not change with the number of parameters. Instead,
the number of equations in the set of DAEs, as well as the
number of variables, will grow linearly with the number of
unknown parameters, as we will see in the coming section.



B. Sensitivity Analysis

In this section, we allow the parameter vector θ to pa-
rameterize not only the model in (1), but also the process
disturbance w(t), whose model will be discussed in Section
III-C. For simplicity, we will drop the explicit dependence
on t from our notation. As we saw earlier, to estimate
the gradient of the cost function, we need to compute the
derivatives (sensitivities) of the model output with respect to
θ. There are two families of methods able to do this: forward
sensitivity methods [18, Sec. 2.5] and the adjoint sensitivity
method [19]. Forward sensitivity methods are simpler and
suitable for situations when the parameter vector is not of
too high dimension. It is this type of method we will use
in this paper, and one can obtain the desired sensitivities as
follows:

Define new variables s(i) := ∂x
∂θi

, ṡ(i) := ∂ẋ
∂θi

, and r(i) :=
∂w
∂θi

, where θi denotes the i:th element of the parameter
vector θ. If we differentiate (1) with respect to θi, using
the chain rule, we obtain

∂F

∂ẋ
ṡ(i)+

∂F

∂x
s(i) +

∂F

∂w
r(i) +

∂F

∂θi
= 0, (4a)

∂y

∂θi
=

∂q

∂x
s(i) +

∂q

∂θi
. (4b)

Note that this is a system of linear DAEs in the variables
s(i) and ṡ(i), with an affine output function, if r(i) is
considered as an external signal. These equations can then
be added to the original DAE system (1). Note that the total
number of equations and variables both grow linearly with
the dimension of θ.

For details on implementing algorithms for solving sensi-
tivity equations like (4), see [18, Sec. 2.5] and the references
therein. Furthermore, many index-1 systems are such that
their sensitivity equations are also index-1. This holds for
DAEs that have been index-reduced and stabilized using the
method [7], based on [2], as well as systems obtained by
index-reducing DAEs according to the structural analysis
methods of, e.g., [5] or [20]. In Section IV, we use this prop-
erty to solve the sensitivity equations by simply appending
them to the nominal system of DAEs.

C. Disturbance Modeling

We use the same approach as [15] for modeling the process
disturbance as a continuous-time stochastic process. If we
assume that the disturbances have rational spectrum, then
their second-order properties can be modeled by

dxw(t) = A(θ)xw(t)dt+B(θ)dzc(t) (5a)
w(t) = Cxw(t), (5b)

where dzc(t) is a process with orthogonal increments and
incremental variance E[dzc(t)dzTc (t)] equal to the identity
matrix. Details on how to ensure sufficient differentiability
of the disturbance, as well as exact discretization of the
model, can be found in [15]. The resulting discrete-time
model (under the assumption of uniform sampling), that
has the same second-order properties as its continuous-time

counterpart, is then given by

x(m)
w (τk+1) = Ad(θ)x

(m)
w (τk) +Bd(θ)zm(τk) (6a)

w(m)(τk) = Cx(m)
w (τk). (6b)

The superscript (m) denotes the index of the realization,
where realizations for different m are made to be indepen-
dent. We also assume that the disturbance w(t) is a Gaussian
process, which means that zm(τk) is a discrete-time zero-
mean Gaussian white noise process with identity covariance.

As we will see later, our DAE solver will have varying
step sizes and we will therefore need to compute w(t)
for arbitrary t, which are not known a priori. This is
challenging, because it is unfeasible to store values of the
process disturbance for all t ∈ [0, T ], and the discrete-
time model (6) only provides samples at a finite number
of time instants. The approach we take is to generate Nw

samples w(τ1), · · · , w(τNw
) using (6), and linearly inter-

polate between the two neighbors closest in time when we
need to compute w(t) for a different value of t. While more
advanced interpolation methods—such as spline interpola-
tion or polynomial interpolation of higher order—are also
applicable, linear interpolation performs sufficiently well for
the problem considered in Section IV. These interpolation
methods have in common that they will cause our realization
of the disturbance to have a different frequency spectrum
than our disturbance models (5) and (6), though this effect
can be reduced by using densely spaced τk. If one would
want to preserve the spectrum of the disturbance realization
even after sampling, one could sample w(t) from its condi-
tional distribution given the neighboring samples w(τk) and
w(τk+1), which can be done easily when the white noise
used to generate the disturbance is Gaussian.

IV. NUMERICAL EXPERIMENT

In this section, we perform simulation experiments on
the model of a pendulum in Cartesian coordinates. The
mathematical description of the model is given in Sec-
tion IV-A. Section IV-B describes how the data used in
the experiment is generated, and an output error method
neglecting the disturbance w(t)—used for comparison with
the proposed method explicitly modeling the disturbances—
is also described. In Section IV-C, ADAM, the optimization
method used for minimizing the prediction error, is intro-
duced. Finally, in Section IV-D, the proposed method using
the ADAM algorithm is compared to the approach based
on grid-search from [15] as well as the output error method
that neglects the process disturbances altogether. To solve the
system of DAEs (1), we use the IDA solver from the Sundials
suite [18], similar to default solvers in many equation-based
object-oriented modeling languages, such OpenModelica or
Dymola. It uses a variable step method, which allows it to
handle stiff problems, and means that the time step is dy-
namically changed during solving. The code is implemented
in Julia2 using the DiffEq package [21] and can be found on

2https://julialang.org/



Github3.

A. Model

The method is evaluated on the same model as in [15].
The original form of the model is not suitable for numerical
solving due to its high index, and it is therefore transformed
to a stabilized, index-1, first-order form by manually apply-
ing the method [7]. In this form, the model is given by

ẋ1(t) = x4(t)−2ẋ6(t)x1(t) (7a)
ẋ2(t) = x5(t)−2ẋ6(t)x2(t) (7b)

mẋ4(t) = ˙̃x3(t)x1(t)−k|x4(t)|x4(t)+u(t)+w2(t) (7c)

mẋ5(t) = ˙̃x3(t)x2(t)−k|x5(t)|x5(t)−mg (7d)

L2 = x2
1(t)+x2

2(t) (7e)
0 = x4(t)x1(t)+x5(t)x2(t) (7f)

where g is the gravitational acceleration, x1(t) and x2(t)
denote the x- and y-position of the pendulum respectively,
˙̃x3(t) is a differential variable substituted for the tension per
unit length of the pendulum-arm during the index reduction
process, x4(t) and x5(t) are the pendulum velocity in the
x- and y-direction respectively, while x6(t) = 0 is a dummy
variable ensuring that we have the same number of variables
as equations. The free parameters of this model are subsets of
{m,L, k} whose elements represent, respectively, the mass
of the pendulum, the length of the pendulum arm, and the
drag coefficient. The process disturbance is assumed to be
scalar and is not parameterized by θ in these experiments.
The model of the disturbance is given by (5) with matrices

A =

[
0 1

−42 −0.8

]
, B =

[
0
1

]
, C =

[
1 0

]
. (8)

The output of this model is then re-scaled depending on its
use, as described in the next section. The control input is
taken as a known realization of the same model as the process
disturbance, but with a different scale. The output of the
model is chosen as the angle of the pendulum, given by

y(t) = arctan(−x1(t)/x2(t)) + v(t). (9)

The sensitivity equations are computed from (7) as described
in Section III-B, and remain index-1.

B. Experimental Setup

The experimental setup used for a single data set is
shown in Figure 1. We do not use real data in this
example, but instead generate 100 independent data sets
D

(1)
N (T ), ..., D

(100)
N (T ), representing measurements of the

true system, simulated from the model (7) with N = 50000
samples. The data sets contain u(t) and the output (9) with
v(t) sampled from a Gaussian distribution with zero mean
and variance 0.002. The model output realizations are instead
generated with v(t) = 0, since the measurement noise has
zero mean and including v(t) neither lowers the variance nor
improves the bias of the output estimate. For both the data

3https://github.com/br4sco/dae-param-est/tree/
CDC22

M
(
θ(i)

)

S

1
M

∑M
m=1

∇̂θJN (θ)
u(t)

v(t)

y(tk)

-
θ(i+1)

θ(i)zc(t)

w∗(t)

Fig. 1: The setup of the estimation procedure. M
(
θ(i)

)
represents

the model, including the model of the pendulum (7), its sensitivity
equations, and the disturbance model (6). S denotes the true system,
where w∗(t) represents the true, unknown, process disturbance. The
model takes the true control input and simulated white noise zc(t)
to produce several output realizations (shown in the small 3D plot
to the left) that are averaged to estimate the expected value of the
output and the Jacobian of the output (shown in the small 3D plot
to the right). This allows one to estimate the cost function gradient,
used to iteratively optimize the parameters θ.

sets and the model output, the process disturbances w(t) and
input u(t) are generated using (5) with matrices given by (8),
scaled with factors 0.6 and 0.2 respectively. The used real-
izations of w(t) are independent between the data sets and
the model output. To closer imitate a realistic scenario with
measured data, inter-sample values of the process disturbance
for the true system are obtained by sampling them from their
distribution conditioned on the a priori generated samples,
while linear interpolation is used instead for the input and
for simulating the model. The output is sampled uniformly
with a sampling time of tk+1− tk = 0.1 s, while the process
disturbance and input are also sampled uniformly and 10
times as frequently as the output, with a sampling time of
τk+1 − τk = 0.01 s. Finally, the unbiased estimates of the
model output and its gradient, used in the proposed method,
are generated averaging 4 realizations each. The relative and
absolute tolerances of the DAE solver are set to 10−5 and
10−8, respectively.

To illustrate the benefits of explicitly modeling the process
disturbances, an output error method neglecting the distur-
bance w(t) is also implemented for comparison. For that
method, the model output is computed in the same way as for
the proposed method, except that we set w(t) = 0 for all t.
This makes the model output deterministic, which allows us
to compute the cost function exactly, and there is no need to
use stochastic gradient descent for the minimization. Instead,
the Levenberg-Marquardt algorithm, first proposed in [22], is
used to minimize the cost. Specifically, the implementation of
the algorithm included in the Julia package LsqFit4 is used,
with default tolerances. The Leverberg-Marquardt algorithm
also uses the Jacobian of the output with respect to the
unknown parameters, computed using forward sensitivity
analysis as described in Section III-B.

4https://github.com/JuliaNLSolvers/LsqFit.jl
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Fig. 2: Comparison of grid-search and ADAM algorithm for es-
timating a single unknown parameter, marked by a blue dotted
line. For both methods, the same 100 independent data sets are
used, from which 5000 samples are taken. The horizontal lines and
diamonds represent the median and mean, respectively.

C. Stochastic Optimization Method

For minimizing the cost function (2) with process dis-
turbances, the ADAM algorithm [16], extending stochastic
gradient descent, is used. This algorithm is meant to speed up
convergence, especially when the problem is ill-conditioned,
and it is commonly used for optimizing neural networks. We
use Algorithm 1 from [16] exactly, except that we alter the
returned value. Since the algorithm might only converge to
a noise ball around the minimizer when a constant step size
is used, we make the algorithm return the average of the
estimates from the last K iterations of the algorithm. This
approach is inspired by Polyak-Ruppert averaging [23].

The hyper-parameters for the ADAM algorithm, described
in detail in [16], are set to β1 = 0.9, β2 = 0.999, α = 1,
and ϵ = 0. The algorithm is run for nits = 100 iterations.
When the gradient of the cost function (2) is computed, the
first 500 samples of the outputs are discarded to allow for
any transient effects from the initial conditions to die out.
Finally, to ensure that all parameters of the pendulum model
(7) are approximately of the same order of magnitude for
the iterative minimization, we re-scale the mass m with a
factor 10 and instead work with m̃ = 10m. In practice, this
is equivalent to re-scaling the component corresponding to
m in each gradient step with a factor 0.1. For convergence
guarantees of the ADAM algorithm, see [16].

D. Simulation Results

As a first experiment, the proposed method using the
ADAM algorithm is compared to the approach based on grid-
search from [15]. Only the drag coefficient k is estimated,
and N = 5000 samples are used. For the grid search, the
cost function is estimated for 26 evenly spaced values of the
parameter in the interval θ ∈ [5.0, 7.5]. For each value of
θ, the mean is taken over 100 independent simulations of
the model output. The same 100 realizations of {zm(τk)}k
are used for every value of θ, to improve the smoothness of
the cost function. For each of the 100 data sets D

(1)
N (T ) to

D
(100)
N (T ), the grid search chooses the one out of 26 values

of θ that minimizes the cost (2), with the expected value
replaced by the mean over the 100 independent realizations.
The proposed method using the ADAM algorithm uses the
initial parameter estimate θ(0) = 5.0. A comparison of the
two methods can be seen in Figure 2.
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Fig. 3: Comparing the output error method ignoring w (left column)
with the proposed method explicitly modeling w (right column).
For every N , the statistics of the estimators are summarized over
E = 100 data sets. The true parameter values are marked with
blue dotted lines. The horizontal line and the diamond in each box
denote the median and the mean of the estimates, respectively.

In a second experiment, the proposed method is compared
to an output error method assuming w(t) = 0, realized using
the Levenberg-Marquardt algorithm for minimization. It also
uses the forward sensitivity analysis for computing the state
Jacobian, as described in more detail in Section III-B. The
methods are used to simultaneously identify the three free
parameters of the pendulum, i.e. θ = [m L k]T . The two
methods are tested for different numbers of data points. A
comparison of their performance can be found in Figure 3,
with the initial estimate chosen as θ(0) = [0.5 4.25 4.25]T

and the true value θ = [0.3 6.25 6.25]T .
Grid search was not included in this experiment because

of its poor scaling. With three unknown parameters and N =
50000, the proposed method took approximately 55min to
compute an estimate for a single dataset. In this time, the
grid search only managed to sample the cost function at 15
different parameter values, instead of 263 values needed to
maintain the same grid density as in the first experiment.



V. DISCUSSION

In Figure 2, we see that the stochastic method has compa-
rable performance to grid search in the case where a single
scalar parameter is unknown. This indicates that the ADAM
algorithm successfully approximates the same minima that
were found using grid search. Figure 3 shows the results of
applying the proposed stochastic method to a problem with
three unknown parameters. Note that the proposed method
provides estimates with significantly lower variance than
an output error method neglecting the process disturbances.
However, while the used estimator is consistent in theory
(see [15]), no clear improvement of the small bias for the
proposed method is visible as N increases. The bias is still
significantly lower than for the output error method which,
despite having a relatively low bias for its estimates of θ1
and θ2, retains a large bias when estimating θ3, even for large
N . This matches the observations in [15], and demonstrates
an ability of the proposed method to lower the bias due to
explicitly modeling the disturbances.

The proposed method provides a significant improvement
over the state-of-the-art method for this type of model with
process disturbances used in [15]. Instead of having expo-
nential scaling with the number of unknown parameters, the
bottleneck of the proposed method is the size of the system
of DAEs that has to be solved when computing sensitivities.
However, while the size grows linearly with the number
of unknown parameters, this can also become prohibitively
expensive to solve for large problems with many unknowns.
The scaling can be improved by using the adjoint sensitivity
method, described in [19], instead of the forward sensitivity
approach. How the adjoint method can be applied for the
problem formulation considered in this paper, and how to
also then include parameters of the disturbance model, is
something we are currently working on. For future work, we
are also considering how the presence of multivariate, and
potentially correlated, disturbances can affect the estimation.

VI. CONCLUSIONS

We propose a way to use stochastic gradient descent to
compute consistent estimators of parameters for non-linear
DAE models under the influence of process disturbances.
Other methods for identification of non-linear DAEs either
neglect process disturbances, are restrictive in the types of
DAEs they consider, or require a large number of Monte-
Carlo simulations to compute. The proposed approach allows
one to iteratively compute the minimizer of the prediction
error with only a few solutions of the DAEs per iteration,
even when several parameters are unknown. Implementation
details of the method are provided, and its performance is
demonstrated in a simulation study on a non-linear system
of DAEs with three unknown parameters, where a previ-
ous method using grid search would be computationally
unfeasible to perform on the same hardware. The proposed
method demonstrates a significant reduction of the variance
of the estimator compared to a method neglecting process
disturbances, and a reduction of the bias in estimating a
parameter that the latter method particularly struggles with.
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