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Abstract—In this paper, we develop an algorithm for joint
handover and beam tracking in millimeter-wave (mmWave)
networks. The aim is to provide a reliable connection in terms of
the achieved throughput along the trajectory of the mobile user
while preventing frequent handovers. We model the association
problem as an optimization problem and propose a reinforcement
learning-based solution. Our approach learns whether and when
beam tracking and handover should be performed and chooses
the target base stations. In the case of beam tracking, we
propose a tracking algorithm based on measuring a small spatial
neighbourhood of the optimal beams in the previous time slot.
Simulation results in an outdoor environment show the superior
performance of our proposed solution in achievable throughput
and the number of handovers needed in comparison to a multi-
connectivity baseline and a learning-based handover baseline.

Index Terms—Millimeter-wave, user association, beam track-
ing, handover, reinforcement learning.

I. INTRODUCTION

Millimeter-wave (mmWave) is a key radio access technol-
ogy for beyond 5G communication systems, offering ultra-
high data rates due to a large amount of free spectrum [1].
However, due to the fewer scattering paths and significant
penetration loss, mmWave links are vulnerable to static or
dynamic obstacles. To overcome such severe loss, both base
station (BS) and user equipment (UE) may need directional
communication using a large number of antennas, which may
result in frequent misalignment of beams due to mobility and
blockage. Hence, finding and maintaining the optimal beam
directions (beam alignment) is necessary. The lengthy period
to achieve the beam alignment (hundreds of milliseconds
to seconds [2]) results in a high cell search time or BS
discovery time in mmWave systems. As reported in [3], the
BS discovery time which is the time required to search the
target BS when the handover command is received by the
UE is about 200 ms. Moreover, to improve the capacity and
coverage the density of the BSs is usually high in mmWave
systems [1]. Hence, conventional handover methods based on
instantaneous received signal power can cause unnecessarily
frequent handovers and a ping-pong effect. This leads to a
severe drop in service reliability. Therefore, fast BS discovery
(finding target BS in the handover process), and efficient
handover execution techniques, will be required to use the
full promise of mmWave cellular networks.

The spatial mmWave channel can be approximated by a
few dominant paths, where each path can be defined with
its angle of departure (AoD), angle of arrival (AoA) and
gain [4]. Hence, one can only estimate these path parameters
instead of a large dimensional channel matrix [5], [6]. The
process of identifying the dominant paths is called beam
training. However, due to the dynamic environment, frequent
beam training may cause high overhead1. Temporal correlation
of spatial mmWave channel can be employed to accelerate
the beam training process by tracking the variation of the
dominant path directions [6].

A. Related Work

To address the link failure and throughput degradation in
a dynamic environment, the multi-connectivity technique has
been vastly analyzed in literature [7], [8]. In this technique, the
UE keeps its connection to multiple BSs (either at mmWave
band or sub-6 GHz band). However, power consumption,
synchronization and the need for frequent tracking are the
main challenges. In the 3GPP standard (release 16) two
handover techniques are introduced to improve the link robust-
ness during mobility: dual active protocol stack (DAPS), and
conditional handover (CHO) [9]. In the DAPS, the connection
to the current serving BS is maintained until the connection
to the target BS is fully established. In the CHO, the UE is
configured with multiple target BSs. During the handover, the
UE can select one of the configured BSs as the target BS
during the RRC reconfiguration message. Although CHO can
decrease the handover failure probability, it may increase the
handover latency if the UE asks for multiple handovers during
a single RRC reconfiguration [7].

Applying machine learning as the main decision-maker tool
to make the optimal handover decision and choose the target
BS has been also studied in the literature [10], [11]. The
authors in [10] proposed a reinforcement learning (RL) based
handover policy to reduce the number of handovers while
keeping the quality of service in heterogeneous networks.
In [11] an intelligent handover method based on choosing
the backup solution for each serving link to maximize the
aggregate rate along a trajectory has been proposed.

1Overhead depends on the training time compared with the changes in the
environment.



In terms of beam tracking, authors in [12] applied the
correlation of spatial mmWave channel in adjacent locations
and proposed the beam steering method based on searching
over a small angular space in the vicinity of the previously
known valid beams. The authors in [6] applied machine
learning to the tracking procedure to extract useful information
from the history of AoD tracking.

All the aforementioned works only take handover or beam
tracking issues into account. Additionally, they do not study
the impact of selecting beam tracking and handover on the
achieved throughput of the UE along its trajectory and instead
focus on the achieved rate as the primary performance metric.

B. Our Contributions

In this paper, we develop a novel joint handover and beam
tracking algorithm in a mmWave network under mobility. The
algorithm aims to associate the UEs to BSs that maximize
the sum achieved throughput along the trajectory and ensure
the achieved throughput in each location of the trajectory
is higher than a pre-defined threshold. The user association
process is defined as the process of determining whether a user
is associated with a particular BS before data transmissions
commence. In the case of handover, the UE is associated with a
new BS, whereas in the case of beam tracking, the UE remains
associated with the serving BS from the previous time slot. The
main contributions of our paper are summarized as below:

• System Modeling: We model the user association prob-
lem as a non-convex optimization problem. Unlike the
existing works in the literature, we consider achieved
throughput as the main performance metric to measure
the effect of handover or beam tracking on the UEs’
quality of service.

• Learning-based Solution: The objective function in our
proposed user association problem highly depends on the
user association mechanism. We utilize the reinforcement
learning (RL) algorithm to approximate the solution to
this problem. The aim is to decide whether to run a beam
tracking algorithm or a handover algorithm.

• Joint Handover and Beam Tracking Algorithm: In the
case of a handover decision, the target BS will be
recognized as the output of the RL algorithm. In the
case of beam tracking, the search space will be defined
based on our proposed tracking algorithm by searching
the directions in the small spatial neighbourhood of the
previously selected optimal directions.

• Empirical Evaluation: We apply ray tracing with a
real building data map as the input. The results show
the effectiveness of our proposed method in achieving
throughput along trajectories and decreasing the number
of handovers.

The rest of the paper is organized as follows. We introduce
the system model and problem formulation in Section II. In
Section III, we propose our method. We present the numerical
results in Section IV and, conclude our work in Section V.

Notations: Throughout the paper, vectors and scalars are
shown by bold lower-case (x) and non-bold (x) letters, respec-

tively. The conjugate transpose of a vector x is represented by
xH . We define set [M ] := {1, 2, ..,M} for any integer M . The
indicator function 1{·} equals to one if the constraint inside
{·} is satisfied.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, first, we introduce the mmWave channel
model. Then, we present the user association problem formu-
lation.

We consider a downlink communication with |B| mmWave
BSs, where each is equipped with NBS antennas, communi-
cating with a single antenna mobile UE. We consider analog
beamforming with a single RF chain. We assume all BSs
allocate equal resources to their serving UEs. The channel
between BS j ∈ B and its serving UE during time slot i is
[13]:

hj =

L∑
ℓ=1

hℓa
H(ϕℓ, θℓ), (1)

where L is the number of available paths. Each path ℓ has
complex gain hℓ (include path-loss) and horizontal ϕℓ and
vertical θℓ, AoD. Due to the notation simplicity, we drop the
index j and i from the channel parameters. The array response
vector is a(.) where its exact expression depends on the array
geometry and possible hardware impairments. The signal-to-
noise ratio (SNR) in time slot i is

SNR(i)
j =

p|hH
j fj |2

σ2
, (2)

where σ2 is the noise power, p is the transmit power, fj ∈ CNBS

is the beamforming vector of BS j.
We define variable x

(i)
j ∈ {0, 1} for j ∈ B as an association

indicator in time slot i, where is equal 1 if UE is associated to
the BS j and 0 otherwise. Hence, the achieved rate per second
per hertz in time slot i is

R(i) = x
(i)
jS

log2(1 + SNR(i)
jS
) =

∑
j∈B

x
(i)
j log2(1 + SNR(i)

j ),

where jS is the index of the serving BS of the UE during time
slot i. Here, we assume each UE is served by only one BS.

We define the achievable throughput per hertz of the UE by
multiplying its rate by the data transmission time as

Γ(i) = (1−
τ
(i)
b

τc
)R(i), (3)

where, τ (i)b is the beam training duration which may have a
different value in each time slot i, and τc is the duration of
the time slot that is a fixed value for all time slots, see Fig. 1.

A. Beam Training and Beam Tracking

As depicted in Fig. 1a, when the UE is connected to a
BS j ∈ B, initial beam training is performed by sending
pilots over all combination of the beam directions in the
codebook during τb. Based. on the UE’s feedback of the
received signal strength (or estimated SNR), the best beam pair
directions are selected. Then, the BS and the UE would use this
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Fig. 1: τc is the time slot duration. τb is (a) the initial beam
training duration when the UE is associated with the new
BS (handover case), (b) the beam tacking duration when the
serving BS is the same for the consecutive slots.

direction (ϕℓ⋆ , θℓ⋆ ) during the data transmission phase. The
beamforming vector, f is chosen to maximize the achievable
rate of the UE. Due to the monotonicity of the logarithm
function, this is equivalent to maximising the SNR term in
(2). Hence

f∗j = arg max
fj∈F

|hH
j fj |2 (4)

where F is the beamforming codebook that contains all
the feasible beamforming vectors. The n-th element of the
codebook F is defined as f(n) = a(ϕn, θn), where (ϕn, θn)
are steering angles and a(.) is the array response vector.

When the BS continues serving the same UE in a consecu-
tive time slot, only searching the neighbouring beam directions
of the main directions can be sufficient to maintain the link
quality. This process is called beam tracking. As shown in
Fig. 1b, the duration of τb is much smaller than the initial
beam training duration.

B. Problem Formulation

The UE association depends on the channel quality between
the BS and the UE. Due to UE mobility or temporary
blockage, the channel quality changes and consequently the
UE association. Based on the UEs’ velocity, we determine how
quickly the channel quality can change and predict the time
at which the current UE association needs to be updated. We
define TA seconds as the frequency of updating the association.
Hence, we need to make the decision every TA whether to run
the handover execution or beam tracking procedure if SNR is
lower than the pre-defined SNR threshold (SNRthr). Note that
we can have an on-demand reactive handover at any time slot
if the link toward the serving BS fails abruptly. However, with
a proper choice of TA, the frequency of those reactive events
could be very small. We define the duration of the trajectory
as M and consider the discrete time index i to describe the
association update at each interval.

The goal is to maximize the aggregate throughput of the UE
along the trajectory while ensuring the achieved throughput in
each time slot i is higher than a predefined threshold. To this
end, we define functions F1 and F2 as

• F1 is the averaged throughput along the trajectory as

F1 =

M∑
i=1

E
[
Γ(i)

]
,

where the expectation is with respect to the randomness
of channel fading and the blockage, M is the duration of
the trajectory, and Γ(i) is defined in (3).

• F2 is the expected number of time slots whose throughput
is lower than the threshold (Γthr).

F2 = E

[
M∑
i=1

1
{
Γ(i) ≤ Γthr

}]
=

M∑
i=1

Pr
{
Γ(i) ≤ Γthr

}
.

We formulate the user association at time slot i ∈ [M ]

as an optimization problem which involves finding the x
(i)
j

corresponding to the association indicator as

max
{x(i)

j }i,j

F1 − λF2 (5a)

s.t.
∑
j∈B

x
(i)
j = 1,∀, i ∈ [M ] (5b)

x
(i)
j ∈ {0, 1}, ∀j ∈ B, i ∈ [M ] (5c)

where λ is a large constant controlling the importance of F2.
Constraint (5b) guarantees that each UE is served by one BS.

The optimization problem (5) is nonlinear. Solving this
optimization problem requires estimating the expectation value
in F1 and F2 which requires running many realizations.
Moreover, the impact of choosing the x

(i)
j (the target BSs

in the handover case or choosing beam tracking procedure)
propagates in time and can affect the UEs’ performance in
the next time slots. Therefore, we need to consider the long-
term benefits of selecting association indicators besides their
immediate effects on the UEs’ performance. Furthermore, In
order to select the target BSs, we need to model or predict the
UEs’ performance in the next time slots, which can add more
complexity to the network due to the mobility of the UE and
obstacles in mmWave networks. These motivate us to utilize
the RL to approximate the solution of (5).

III. PROPOSED METHOD

We transform the problem (5) to an RL problem in which
the objective function is turned into a reward function, and
the constraints are transformed into the feasible state and
action spaces. In the following, first, we start with defining
the Markov decision process, and then we will describe our
joint handover and beam tracking algorithm.

A. Markov Decision Process Formulation

RL problems are formulated based on the idea of the
Markov decision process (MDP), which is the agent’s interac-
tion with different states of the environment to maximize the
expected long-term reward. The agent is the main decision-
maker who can sit on the edge cloud. All BSs are connected
to the agent. Now, we define different elements of an MDP.



1) State Space: The state space describes the environ-
ment by which the agent is interacting through different
actions. We define the state at time slot i as s(i) =
(ℓ(i)), j

(i)
S ,SNR(i), I(i)) ∈ S, where ℓ(i) is the location index

of the UE along the trajectory 2, j(i)S is the index of the serving
BS, SNR(i) is the SNR value of the UE with serving BS j

(i)
S

in time slot i. I(i) ∈ {0, 1} is the beam tracking activation
indicator. I(i) = 1 means the i-th time slot is the tracking slot
for the UE.

2) Action Space: The action space includes all possible
actions that can be taken by the agent. The action can change
the state of the environment from the current state to the target
state. In our problem, a(i) ∈ A = {0, 1, 2, ..., [|B|]} is the
decision regarding beam tracking (a(i) = 0) or choosing the
index of new serving BS in the case of handover decision
(a(i) ∈ [|B|]). In other words, if a(i) ̸= 0 means the handover
decision is made and the value of a(i) shows the target BS.
Hence, the action is to specify a serving BS for the UE along
its trajectory.

3) Policy: A policy π(.) maps the state of the environment
to the action of the agent. In our case, π is a function from S
to A, i.e., π : S → {0, 1, ..., [|B|]}

4) Rewards: The agent obtains the reward after taking an
action a(i) when current state is s(i) and moves to next state
s(i+1). Here we define reward r(s(i), a(i), s(i+1)) as

r(s(i), a(i), s(i+1)) = Γ(i) − λ1
{
Γ(i) ≤ Γthr

}
, (6)

where Γ(i) is defined in (3).
5) State-action value: The function Qπ(s, a) is the long-

term reward and is defined as the expected summation of
discounted reward in the future for the action a ∈ A that
agent takes in state s under policy π. The RL algorithm aims
to choose the optimal policy π⋆ in each state s that maximizes
the Qπ(s, a). With discount factor η ∈ [0, 1], we have

Qπ(s, a) = E

{∑
i

ηir(s(i), s(i), s(i+1))

}
,

where the expectation is over the transition probabilities. In
our problem, transition probabilities model the SNR variations
due to the randomness of the channel fading and blockage.
We assume mobility information including the UEs’ current
location and its trajectory is known3. Therefore, the transition
to the next location is deterministic.

The optimal policy in state s ∈ S is found by

π⋆(s) = arg max
a∈A

Qπ(s, a). (7)

Due to the continuous and large number of state spaces, we
apply deep Q-learning (DQL) [14] to solve (7). In DQL, the
state-action value function is estimated by the deep neural
network function approximators.

2Note that, we discretize the location of the UE along the trajectory. Hence,
every location dimension (x, y) a trajectory with length M is mapped to a
location index ℓ(i) ∈ [M ].

3Note that the location information can be easily fed back through lower-
frequency links.

B. Joint Handover and Beam Tracking Algorithm

Algorithm 1 describes our proposed joint handover and
beam tracking algorithm along a trajectory with duration M .
If the current association cannot offer the required SNR level,
the decision regarding handover or beam track is made based
on a(i) as the output of the RL algorithm. In the case of the
handover decision, the value of a(i) represents the target BS.

The beam tracking algorithm based on small spatial mea-
surement in time slot i is shown in Algorithm 2. In slot i, the
algorithm starts by using the main beam of the same serving
BS in the previous time slot i− 1. If the SNR value is lower
than the threshold, then starts a small spatial measurement over
the AoD direction of the main beam. To quantify the size of the
spatial neighbourhood, we define ∆ϕ and ∆θ as the maximum
absolute horizontal and vertical deviation from the main AoD
direction. We define δϕ and δθ as the measurement resolution
in horizontal and vertical, respectively. Inspired by [15], the
spatial neighbourhood N surrounding the main AoD direction
can be expressed using the horizontal neighbourhood Nϕ and
vertical neighbourhood Nθ as

Nϕ(∆ϕ, δϕ) =

{
i.δϕ : i ∈

[
−
⌊
∆ϕ

δϕ

⌋
,

⌊
∆ϕ

δϕ

⌋]}
(8)

Nθ(∆θ, δθ) =

{
j.δθ : j ∈

[
−
⌊
∆θ

δθ

⌋
,

⌊
∆θ

δθ

⌋]}
(9)

where ⌊.⌋ is the floor operation. The complete neighbourhood
is the Cartesian product of the horizontal and vertical neigh-
bourhoods as

N (∆ϕ,∆θ, δϕ, δθ) = Nϕ(∆ϕ, δϕ)×Nθ(∆θ, δθ)

= {(ϕ, θ) : ϕ ∈ Nϕ(∆ϕ, δϕ), θ ∈ Nθ(∆θ, δθ)} (10)

The spatial neighborhoods T (i) in time slot i surrounding the
main AoD directions (ϕ

(i−1)
ℓ⋆ , θ

(i−1)
ℓ⋆ ) in previous time slot is

T (i) = (ϕ
(i−1)
ℓ⋆ , θ

(i−1)
ℓ⋆ , ) +N (∆ϕ,∆θ, δϕ, δθ). (11)

Now given the main AoD direction, we need to find the
transmit direction from neighbourhoods T (i) that offers the
SNR threshold. We represent the sorted direction pairs as
[T (i)]I , where I is the sorted indices. It means the directions
in [T (i)]I increase in distance from the main AoD direction.
Starting from the main AoD direction, the SNR of each trans-
mit direction in [T (i)]I is measured until a beam pair meets
the required SNR level. Afterwards, no further measurements
are required. If no direction meets the threshold, the entire
(∆ϕ,∆θ)-neighbourhood is measured to find the beam pairs
that offer the SNR threshold.

Note that in the worse scenario, if the selected target BS
based on our proposed algorithm cannot offer the required
SNR level due to very sudden blockage, the conventional
handover methods based on searching over the candidate BSs
in UEs vicinity can be applied. However, as shown in the
numerical results, such extreme case is rare.



Algorithm 1 Joint handover and beam tracking
Input: Trajectory with duration M

1: Initialization: for i = 1 set j(1)S =1
2: for i ∈ 1, ...,M do
3: if SNR(i)

jS
< SNRthr then

4: Choose the optimal action a(i) based on current
s(i).

5: if a(i) ̸= 0 then. ▷ handover execution
6: Set j(i)S = a(i) and run the initial beam training

process and compute the achieved throughput Γ(i) as (3).
7: else
8: Run Algorithm 2 and compute Γ(i).
9: end if

10: end if
11: end for
Output: Γ(i)

Algorithm 2 Beam tracking in time slot i at the BS j

Input: [T (i)]I , SNRthr, duration of each beam pair testing (β),
cnt(i) = 0.

1: for (ϕ, θ) ∈ [T ]I do
2: Set f (i)j = a(ϕ, θ).
3: Measure SNR(i)

j as (2).
4: Set cnt(i) = cnt(i) + 1. ▷ number of beam pair

testing
5: if SNR(i)

j >= SNRthr then
6: (ϕ

(i)
ℓ⋆ , θ

(i)
ℓ⋆ ) = (ϕBS, θBS)

7: τ
(i)
b = β.cnt(i)

8: break;
9: end if

10: end for
compute the achieved throughput Γ(i) as (3)

IV. NUMERICAL RESULTS

We evaluate the performance of the proposed method in an
urban environment using the ray tracing tool in the MATLAB
toolbox. The output of the ray tracing tool is the L available
paths between a BS and a UE in a specific location. The ray
tracing maintains the spatial consistency of mmWave channels.
As depicted in Fig. 2, we extracted the building map of Kista
in Stockholm city, Sweden and used it as the input data for
the ray tracing simulation. In our scenario, we assumed the
building material is brick and the terrain material is concrete.
We also add some random obstacles in the street with different
heights (1 m and 3 m) and widths (2 m and 4 m) as the human
bodies and various vehicles. These temporary obstacles are
distributed randomly in the street with density 10−2 per m2.
The material loss and the location of the temporary obstacles
are chosen randomly in each realization of the channel. The
BSs are located on the wall of buildings. The location of the
BSs is chosen randomly while covering the entire trajectory.
The BSs’ height is 6 m. We consider a pedestrian mobility

Fig. 2: Simulation area in Kista, Stockholm. The yellow line
shows the trajectory. Stars show the location of the BSs.

model with a speed of 1 m/s. We consider the different lengths
of the trajectories as 100TA, 200TA, 300TA, 400TA, 500TA.
The main simulation parameters are listed in Table I.

In the simulation, we consider the SNRthr = 2 dB and the
throughput threshold Γthr = 1 bit/Hz. The value of τc is 10ms.
In the case of handover, we fix the initial beam training dura-
tion as τb =

1
3τc. In the case of beam tracking, τb is not fixed

and equals the size of measuring neighbourhood multiplied
by the duration of each beam pair testing (β = 10 µs). We
compare the performance of our proposed method with two
baselines. To have a fair comparison, we choose two baselines
in which the target BS for the handover is pre-determined.
Hence, we do not take into account the discovery time of
finding the target BS in the baselines. Just like in our method,
the handover is triggered if SNR < SNRthr.
As Baseline 1 we consider the multi-connectivity method
[8]. We implement a scenario where the UE maintains its
connection with a nearby BS as a backup solution while
being connected to the serving BS and once it experiences the
blockage of the serving link, starts connecting to the backup
solution. As Baseline 2 we select the learning-based handover
in [11]. The method shows very good performance in maxi-
mizing the achieved rate along the trajectory. In this baseline,
the target BS during the handover process is determined by a
learning algorithm. Although the target BSs are selected based
on the long-term effect on the achieved rate, still can cause
frequent handovers and throughput degradation.

First, we fix the number of BSs to 10 (see Fig. 2). We
consider 104 different channel realization as the input of the
RL algorithm. After getting the optimal policy, we test it
over real-time measurements and report the average of the
performance over 500 channel realizations. Fig. 3 shows the
average number of locations with unmet throughput thresholds
along the trajectory with different lengths and Fig. 4 shows the
average number of handovers needed. In comparison to the
other two baselines, our method provides better throughput
results by selecting to perform either beam tracking or a
handover. Furthermore, we note that the two baselines have
a higher number of handovers than our method due to only
considering the handover solution. Hence, by considering the
joint handover and beam tracking problem our method pro-
vides better-achieved throughput while decreasing the number
of handovers. Fig. 5 shows the average aggregate achieved



Table I: Simulation parameters.

Parameters Values in Simulations
BS transmit power 10 dBm
Noise power level σ2=-174 dBm/Hz
Signal bandwidth 100 MHz

BS antenna 8× 8 uniform planar array [11]
Time interval duration TA = 1s

Neighborhood size (∆ϕ,∆θ) = (10◦, 10◦)
Measurement resolution (δϕ, δθ) = (5◦, 5◦)

Discount factor η = 0.99
λ 100
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Fig. 3: The average number of locations with unmet through-
put threshold for different lengths of the trajectory.

throughput along the trajectory with length 300 m for different
numbers of BSs. By increasing the number of BSs the number
of the locations satisfying the Γthr also increases hence the
aggregate throughput along the trajectory increases. Even with
a small number of BSs, our method outperforms baselines
in aggregate throughput along the trajectory by determining
whether to use a handover or beam tracking solution.

We consider 10000 iterations during the training in our
method and Baseline 2. With the training machine MacBook
Pro 2020 M1 with a memory of 16 GB, each iteration takes
about 15 seconds. Note that the absolute value of the training
time per iteration depends on the running machine.

V. CONCLUSIONS

In this work, we proposed and studied a learning-based joint
handover and beam tracking method in a mobile mmWave
network. The aim of our algorithm is to maximize the aggre-
gate throughput of the UE along a trajectory and ensure the
achieved throughput in each location is higher than the thresh-
old. Our evaluation results showed that by making an optimal
decision regarding handover execution or beam tracking, our
method provides high achievable throughput and reduces the
number of handovers. Considering different mobility models
and studying the effect of neighbouring size can be valuable
future work.
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