

Degree Programme in Computer Engineering

First Cycle 15 credits

Securing Data in a Cloud
Environment: Access Control,
Encryption, and Immutability

Säkerhetshantering av data som överförs genom molnbaserade tjänster:

åtkomstkontroll, kryptering och omutlighet

Ahmad Al Khateeb

Abdulrazzaq Summaq

STOCKHOLM, SVERIGE 2023

Securing Data in a Cloud
Environment: Access Control,
Encryption, and Immutability

Säkerhetshantering av data som överförs genom

molnbaserade tjänster: åtkomstkontroll, kryptering och

omutlighet

Ahmad Al Khateeb
Abdulrazzaq Summaq

Bachelor Thesis in
Computer Science, 15 hp

Supervisor at KTH: Reine Bergström
Examiner: Ibrahim Orhan
TRITA-CBH-GRU-2023:088

KTH
Royal Institute of Technology
141 52 Huddinge, Sweden

Sammanfattning

Mängden av data och utvecklingen av banbrytande teknologier som idag används av alla

samhällsbärande organisationer ökar drastiskt. I samma takt ökar dataintrång, cyberattacker

och dess förödande konsekvenser samt antalet personer och organisationer som utgör

potentiella offer för sådana typer av attacker. Detta ställer högre krav på säkerheten när det

gäller att skydda data mot cyberattacker, men även att kontrollera åtkomsten till data som

autentiserade användare vill komma åt. Rapporten fokuserar på att studera hur data säkras i

GitLab-baserade molnsystem. Syftet med detta arbete är att ge svar på frågeställningar som

till exempel att lova säker åtkomst och skydd för data från obehörig åtkomst och ändringar.

Arbetet bakom detta projekt inkluderade undersökning av tekniker som används inom

accesskontroll, datakryptering och data-omutlighet. Studien resulterade i en implementation

som möjliggör att hämta signerade ändringar (Commits) från GitLab, verifiera användaridentiteten

och åtkomstbehörighet, hantera dataåtkomst samt presentera resultaten. Resultaten av detta

examensarbete demonstrerar effektiviteten av den implementerade säkerhetsteknikerna i att

skydda data och kontrollera access.

Nyckelord
Access Control, Authorization, Keycloak, GPG Keys, Encryption, GitLab, Version Control,

Neo4j, Data Security.

Abstract

The amount of data and the development of new technologies used by all society-critical

organizations are increasing dramatically. In parallel, data breaches, cyber-attacks, and their

devastating consequences are also on the rise, as well as the number of individuals and

organizations that are potential targets for such attacks. This places higher demands on

security in terms of protecting data against cyber-attacks and controlling access to data that

authenticated users want to access. The paper focuses on studying concepts of secure data

practices in a GitLab-based cloud environment. The objective is to give answers to questions

such as how to ensure the guarantee of secure data and protect it from unauthorized access

and changes. The work behind this thesis includes exploring techniques for access control,

data encryption, and data immutability. The study is followed by an implementation project

that includes fetching code from GitLab verifying user identity and access control, managing

data access, and displaying the results. The results of the thesis demonstrate the effectiveness

of the implemented security measures in protecting data and controlling access.

Keywords
Access Control, Authorization, Keycloak, GPG Keys, Encryption, GitLab, Version Control,

Neo4j, Data Security.

Acknowledgements

This is a bachelor’s thesis done by two students in the last year of the Bachelor of Science in

Computer Engineering at the Royal Institute of Technology KTH. This paper is a result of

the thesis project within the field of computer engineering at KTH, the Royal Institute of

Technology.

We would like to express our deepest gratitude to our supervisor Reine Bergström for his

guidance, support, and expertise throughout our thesis project. We are grateful for his

insightful feedback and constructive criticism which have consistently pushed us to strive for

excellence. His mentorship and encouragement have inspired us to surpass our expectations.

Table of Contents

1 Introduction .. 1

1.1 Problem Description .. 1

1.2 Goals .. 2

1.3 Boundaries and Delimitations ... 3

1.4 Method ... 3

1.5 The Authors’ Contribution to the Thesis... 3

2 Theory and Background ... 5

2.1 Zero Trust ... 5

2.2 Encryption ... 6

2.2.1 Quantum Computers and Today’s Cryptography ... 8

2.3 Access Control ... 9

2.3.1 Access Control Technologies ... 10

2.3.2 Identity and access management (IAM)... 11

2.4 Immutability ... 12

2.5 Database Access Control ... 13

2.5.1 Neo4j .. 13

2.6 Security Threats .. 15

2.6.1 Session Hijacking ... 15

2.6.2 Remote Code Execution .. 15

2.7 Related Works... 15

2.7.1 Securing Sensitive Data in the Cloud, using Zero Trust Principles 15

2.7.2 Designing and implementing a private cloud for student and faculty 16

3 Method and Results .. 19

3.1 Method ... 19

3.1.1 Requirements From the Faculty .. 19

3.2 System Architecture .. 20

3.2.1 Architecture Overview .. 20

3.3 GitLab ... 21

3.3.1 Encryption in GitLab, GPG Keys ... 22

3.3.2 GitLab Instance Setup .. 23

3.4 Basic Security .. 24

3.4.1 Security Measures ... 24

3.4.2 Implementation .. 25

3.5 Architecture Implementation .. 26

3.5.1 Reserving Environment Variable Names .. 26

3.5.2 Cloud Setup ... 26

3.6 Securing Application Data ... 27

3.6.1 Getting the commit ... 27

3.6.2 Validating Signed Commit .. 28

3.6.3 Database User ... 29

3.6.4 Graph Privileges... 29

3.6.5 Temporary Database User ... 29

3.6.6 Deployment ... 30

3.7 Result .. 30

4 Analysis and Discussion ... 33

4.1 Sustainability Impacts ... 34

4.1.1 Social Impact ... 34

4.1.2 Economic Impact ... 34

4.1.3 Environmental Impact ... 34

4.1.4 Ethical aspect .. 35

5 Conclusion ... 37

5.1 Goal Evaluation ... 37

5.2 Future Work .. 38

Bibliography ... 41

 1 | INTRODUCTION

1 Introduction

With the increasing amount of data being generated and stored by organizations, data security

has become a critical concern. Data breaches and cyber-attacks can have significant consequences,

including financial losses, reputational damage, and legal liabilities. In addition to these data

breaches, in the modern world we live in there are other risks that may be caused by users

who have access to a system, but who are not allowed to access data in that system. Thus, it

is essential to ensure that data is secured against unauthorized access and modification,

especially when large amounts of data are increasingly stored and managed remotely in

cloud-based servers. To mitigate these risks, organizations must implement robust data

security measures to protect their data from unauthorized access.

The report is organized in the following structure: The Theory and Background chapter

provides a theoretical foundation for understanding concepts of Access Control, encryption,

and data immutability and how they can be applied to secure data. It also provides an

overview of technologies used in this project, such as GitLab and a graph database (Neo4j)

and their respective functionalities. The Method and Result chapter presents best practices

and methods for securing data in a GitLab environment, starting from those technologies

introduced in the theory and background chapter, and giving an overview of implementing

approaches used during the thesis process. The Analysis and Discussion chapter evaluates

the implementation results and assesses the effectiveness of the implemented security

measures and access control mechanisms. Finally, the Conclusion chapter addresses the

initial questions and problem introduced in the beginning, it also summarizes the findings of

this research.

1.1 Problem Description
Today, cloud-based solutions like GitLab are increasingly being used in modern enterprises

to manage code and software development projects. The adoption of cloud-based platforms,

however, prompts questions regarding to what extent the data kept on these platforms are

secure. Companies are required to make sure that their data is protected from illegal access

and modification.

GitLab is a popular tool for managing software development projects. It offers features such

as version control, code review and continuous integration and delivery. However, with the

increasing use of GitLab for development projects, data security has become a major concern.

The platform requires strict data access control to prevent unauthorized access to sensitive

data, such as source code and project files, but also data from external sources that GitLab

projects try to access.

The KTH Royal Institute of Technology in Flemingsberg has an ongoing project of

developing its GitLab-based cloud system, which enables uploading, downloading, and

executing of software programs. These programs may need, when running, to access sensitive

data from a separate data source. This places great demands on the security of the system.

There is a need to investigate the strategies and tactics for protecting data in a cloud

environment powered by GitLab-based systems.

2 | INTRODUCTION

The main problem addressed in this thesis is how to secure data in a GitLab environment.

Specifically, the thesis aims to investigate the best practices for access control, encryption,

and immutability to protect data from unauthorized access. The thesis will also examine how

to ensure data integrity and immutability so that data cannot be accessed or changed without

authorization.

The thesis will address the following research questions:

1. How can access control be implemented to prevent unauthorized access to data?

2. What are the different methods of data encryption, and which is most effective in a

GitLab environment?

3. How can data integrity and immutability be ensured in a Cloud environment?

4. How can data be protected during execution and display, and what security measures

should be put in place?

5. How fetching data and controlling data access should be handled in terms of using

the Neo4j database.

This project also seeks to address the answer of what techniques of access control are

used in GitLab-based cloud environments, where applications developed in GitLab

may have access and execute on data fetched from external databases (which e.g.

could be graph database Neo4j).

The answers to these research questions will provide insights into the best practices for

securing data used in a GitLab environment. The thesis aims to develop a proof of concept

that demonstrates how to implement these practices in a real-world environment. The

implementation results will provide insights into the effectiveness of the implemented

security measures and access control mechanisms. Moreover, the thesis aims to contribute to

the field of data security by providing practical and theoretical insights into how to secure

data in a GitLab environment.

1.2 Goals
The main goal of this thesis is to investigate different technologies used for securing data,

such as access control, data encryption, and data immutability. Another goal of this project

is to study how such technologies can be implemented in a GitLab-based cloud environment,

and how different types of databases, especially graph databases, should be taken into

concern when implementing these security approaches. The more specific goals that this

study aims to achieve are:

1. Provide an analysis of different methods of protecting data, such as access control,

encryption, and data immutability.

2. Identify best practices for securing data in a GitLab environment.

3. Identify controlling data access using Neo4j.

4. Develop a software solution that:

a. Demonstrates the implementation of these techniques in a GitLab environment.

b. Enables secure access to the system.

c. Ensures that data is not modified by unauthorized users.

 3 | INTRODUCTION

The research will provide insights into best practices for securing data in a GitLab environment,

which will benefit organizations using GitLab for their development project, as well as

organizations having data in cloud storage systems. In addition, the study will provide

recommendations on how to ensure data protection and access control in a secure manner,

which can be used as a guide for other similar projects.

1.3 Boundaries and Delimitations
This is a Bachelor’s thesis that extends over approximately 10 weeks, where part of the time

is spent on gathering relevant scientific facts as well as delving deeper into previous work

that has been done in the same area. Considering the period that the implementation work

will be taking place, there will not be a space for large-scale work in all mentioned areas.

Additionally, some of the techniques that will be used in the implementation are going to be

dependent on the choice of other technologies in the same system that other student groups

are investigating in parallel with this project.

1.4 Method
The method and the approach used in this thesis include a combination of a literature study

as well as software development. The literature study includes investigating existing literature about

data protection, access control, encryption, and data immutability. This will provide a theoretical

framework to understand different methods and best practices used for data security.

The approach of the implementation includes developing software that shows how to secure

data and protect it from unauthorized access. The methodology also includes an analysis of

the implementation results, by examining how well the implementation meets the security

and access control objectives.

1.5 The Authors’ Contribution to the Thesis
The investigation, analysis, and conclusions contained in this report are the result of the

authors’ work on this thesis. The authors’ research, which was carried out in partnership with

the selected faculty at the KTH Royal Institute of Technology, will serve as the foundation

for the system’s design and implementation proposal.

The research method used in this thesis provides a theoretical and practical understanding of

how to secure data in a GitLab environment. The literature study will provide a theoretical

foundation for understanding the best practices and methods for securing data, while the

software development will provide a practical demonstration of how to implement these

practices in a real-world environment. The analysis of the implementation results will provide

insights into the effectiveness of the implemented security measures and access control

mechanisms.

Abdulrazzaq Summaq focused mostly on developing the server application that would

represent the cloud solution, that would host all features needed to fulfil the project goals.

Ahmad Al Khateeb tested the integrability of the different chosen technologies that were

planned to be used in the server application.

4 | INTRODUCTION

 5 | THEORY AND BACKGROUND

2 Theory and Background

Data security is an essential aspect of information technology and is becoming increasingly

important as more data is generated and stored by organizations. Data security involves

protecting data from unauthorized access, modification, and destruction. The study behind

this thesis includes important aspects to take into concern when developing a secure computer

system, aspects such as Zero Trust, encryption, access control, and immutability. This chapter

will cover all three concepts in a manner related to self-managed GitLab environments,

including the definition of theoretical concepts related to this thesis as well as previous work

in the area. Other technologies such as Neo4j are also introduced in this chapter. Finally in

the chapter, some of the security threats that many organizations are facing today are

highlighted.

2.1 Zero Trust
The expansion of the internet, globalization, and the shift to cloud computing has caused a

need for adapting security measures that meet those security threats coming with the new

technologies. The traditional perimeter-based security that is based on implicit trust for users

in systems has, in many cases, proven limited and vulnerable when it comes to remote work

and the use of third-party applications. Thomas Yacob [12] introduced the concept of Zero

Trust in his paper as an alternative approach, emphasizing the importance of validation rather

than blind trust towards the system users.

The author describes Zero Trust as a cybersecurity paradigm shift, from perimeter-based

security, and that focuses on securing resources rather than network segments, considering

all users and devices as potential threats [12]. The core Zero Trust principles [12] are introduced

as the following:

1. Ensure all resources are accessed securely, regardless of location:

Any data traffic passing through resources must be authorized, inspected, and secure,

including encryption for traffic directed through untrusted networks.

2. Adopt the least privilege strategy and strictly enforce access control:

Access to restricted resources is not granted, reducing vulnerabilities by limiting user

access to necessary resources.

3. Inspect and log all traffic:

Verification is emphasized, restricting user access to necessary resources, and

verifying their actions.

By focusing on securing individual resources rather than relying on perimeter-based roles,

Zero Trust provides a higher level of protection and its popularity is increasing [12]. It

ensures that all resources are accessed securely, regardless of the user’s location, and enforces

a least privileges strategy, giving access only to “right” resources. On the other hand, there

are some drawbacks to using Zero Trust’s least privileges strategy, such as the complexity

appearing during the migration process from traditional perimeter-based security, where

detailed information about assets, actors and processes needs to be carefully planned.

Moreover, there is a potential impact on user experience and productivity since users need to

go through additional authentication and verification steps.

6 | THEORY AND BACKGROUND

2.2 Encryption
Encryption is the process of converting data into a secure form that can only be accessed with

a decrypting key. Encryption is used to protect data during transmission and storage. There

are two main types of encryption: symmetric encryption and asymmetric encryption. Symmetric

encryption uses the same key for encryption and decryption. Asymmetric encryption uses a

public key for encryption and a private key for decryption. In this chapter, cryptography

technologies used in Keycloak are presented.

The advancement of technology and networks has made safe communication and protection

against attacks a significant concern. In the early days of the Internet, organizations stored

their data within the enterprise perimeter, which was highly fortified, making it difficult for

attackers to breach [3]. However, technology advancements have made it possible to access

data outside the perimeter, leading to the development of the de-parameterization concept by

Jon Measham and the Jericho Forum Commandments. Paul Simmonds later designed the

concept of de-parameterization without a tightened perimeter, which led to the renewed Zero

Trust model. The Zero Trust model was first introduced by Forrester Research’ analyst John

Kindervag [3].

The Zero Trust cybersecurity paradigm, introduced in 2.1, emphasizes protecting resources

by not implicitly granting trust and frequently evaluating access [12]. Legacy Privileged

Access Management (PAM) systems were designed to work for systems and resources inside

an enterprise network, but with the rise of cloud computing [3], PAM faces challenges. An

attacker can easily compromise the entire system by gaining access to the network through

social engineering, a trusted user's negligence, or innocence. Despite spending an estimated

$137 billion on security technologies in 2019, many organizations experience data breaches.

Zero Trust aims to protect people, property, and infrastructure from potential threats to

enterprise or organization data. This paper [3] provides a detailed summary of Zero Trust, its

evolution, its status, and how it reshapes the future trust landscape.

Furthermore, the authors of [3] present a model that assumes that no interface can be trusted

and that all network traffic is untrusted. The Zero Trust model uses multiple authentication

steps, including multi-factor authentication, to verify a user's identity. Network segmentation,

using a network segmentation gateway (SG) and Microcore and Perimeter (MCAP), is

important to the Zero Trust model. The Data Acquisition Network (DAN) is used to log all

network traffic, and strict access control policies are implemented as well. Additionally, the

article [3] defines a theory regarding Zero Trust that recognizes all data sources and computational

services as resources, secures communication regardless of network location, grants access

to resources only on a session basis, and monitors the integrity and security of the enterprise.

Another important aspect of Zero Trust is that it periodically verifies the authenticity and authority

of devices, applications, and users to provide maximum security for protected personal

information. The authors in [2] propose a Zero Trust model for cloud computing with

practical experimentation, which enforces strict access control and maintains logs of all

activities within the network. The architecture in [2] consists of a client, proxy server,

authentication and authorization server, access control, and application, all of which are

implemented within the Kubernetes container platform. The authentication and authorization

server acts as a mediator between the proxy server and the application and continually checks

for certificates to ensure no compromised user enters the system. The access control uses a

 7 | THEORY AND BACKGROUND

hybrid of Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC)

to provide specific access authority to clients within an organization [2].

According to [2], the authors describe the architecture for user authentication and access

control, using various tools and services, such as Ubuntu, OpenID Connect, Kubernetes,

Docker, Keycloak, React, Nginx, Squid proxy, and Mozilla Firefox. The system uses control

groups, Docker CE, XACML, RBAC, OpenID Connect, and SSO for authentication and

authorization. It also uses logging and algorithmic flow to ensure Zero Trust [2].

There are different types of cyber-attacks, including infection-based attacks, explosion

attacks, probe attacks, cheating attacks, traverse attacks, and concurrency attacks. The text

also provides examples of how to defend against each type of attack, such as using Zero Trust

to create a secure perimeter and applying health monitoring within Kubernetes to defend

against explosion attacks. To defend against traverse attacks, the authentication service tracks

every logged-in user activity and suspends any user who changes their IP address or header

agent more than twice. The proxy server is equipped to handle concurrency attacks by

dropping rapid packets with flood drop thresholds [2].

Furthermore, the authors in [2] discuss securing assets at various layers of the Open System

Interconnect (OSI) model. The Application Layer emphasizes multifactor authentication

(MFA) with a combination of username, password, and One Time Password (OTP). The

Presentation Layer encrypts data using sophisticated encryption algorithms and implements

a combination of Role-Based Access Control (RBAC) and Attribute-Based Access Control

(ABAC) for access control. The Session Layer maintains secure connections and terminates

sessions if there are any discrepancies. The Transport Layer is secured by disabling any open

ports and using proxy servers, while the Network Layer uses Calico to define network

policies. The Data Link Layer and Physical Layer are secured through redundant power

supplies, NIC cards, and Ethernet cables to ensure immediate availability during a failure.

Some of the advantages of implementing a Zero Trust Architecture (ZTA) in an organization

include strong user authentication and access policies, data segmentation, reduced vulnerability,

data protection, and security orchestration. However, there are some disadvantages as well

coming with the ZTA, such as the tedious effort and time-consuming nature of implementing

ZTA, versatile management of dynamic users, managing multiple devices, complex

application management, and meticulous data security [2]. More about other encryption

technologies are introduced in 2.5.1.

Additionally, since many of today’s computer systems and platforms are increasingly

concerned about protecting data in multiple layers, built-in encryption techniques and having

support for them have become a must. Some of these encryption techniques are SSH keys,

GPG keys which are, from previous relevant work [12], recommended to be used, and X.509

certificates. All of these cryptographical models are supported by a huge number of platforms

such as GitLab, which will be introduced and discussed in 3.4. However, research and

development of new encryption techniques will have to go faster, as some of the current

encryption techniques can be threatened by smarter devices, such as quantum computers.

8 | THEORY AND BACKGROUND

2.2.1 Quantum Computers and Today’s Cryptography
Quantum computers are a new type of computer that uses quantum technology, which

eventually can be a risk for today’s cryptography [3]. Indeed, running quantum computers

has not yet been realized, but researchers have suggested that there will be a reality in the

near future. While quantum computers could, in theory, break current public-key cryptography,

such as RSA and DSA, other cryptographic systems, such as hash-based cryptography, code-

based cryptography, lattice-based cryptography, multivariate-quadratic-equations

cryptography, and secret-key cryptography, are believed to resist quantum attacks.

Quantum computers will have a different impact on cryptography depending on the

cryptography technologies used to encrypt data. Traditional public-key systems such as RSA

rely on mathematical problems that are solvable on classical computers. Quantum computing

can break these mathematical problems, rendering traditional public-key systems useless.

However, there are examples of public-key signature and encryption systems that would be

difficult to break, even for a cryptanalyst armed with a quantum computer, where i.e. larger

key sizes are required, making them less efficient than traditional public-key systems like

RSA. On the other hand, there is still a need for post-quantum cryptography [3].

Some of the public-key signature systems used to encrypt and decrypt data are a hash-based

public-key signature system and a code-based public-key encryption system [3]. Both of

these systems are examples of public-key cryptography, where different keys are used for

encryption and decryption, or generation and verification. The encryption or signature

generation key is public, while the decryption or verification key is kept secret. In the first

system, matrix multiplication is used for encryption. The receiver generates a public key,

which is a matrix with coefficients, that can be used to encrypt messages. To decrypt the

ciphertext, the receiver uses a “hidden Goppa code” structure to undo the matrix multiplication

in a reasonable amount of time [3]. In the second system, multivariate-quadratic polynomials

are used for signature generation. The signer generates a public key, which is a sequence of

polynomials with coefficients, that can be used to verify signatures. To generate a signature,

the signer finds roots of a secret low-degree univariate polynomial over a field. The secret

polynomial is chosen to have a certain structure, which makes it possible for the signer to

solve equations in a suitable amount of time. Both systems rely on the difficulty of certain

mathematical problems, such as syndrome-decoding or solving multivariate quadratic

equations, to provide security. In both cases, the security of the system is based on the fact

that the problems are believed to be hard for an eventual attacker to solve.

 9 | THEORY AND BACKGROUND

2.3 Access Control
Access control involves defining who can access data and what actions a legitimate user is

allowed to perform [11]. In other words, access control sets limits on what an authenticated

user can do, or what a program that an authenticated user executes in a computer system is

allowed to do. With this definition, access control aims to prevent activities carried out by an

authorized user in a computer system, which in one way or another could harm the security

of the computer system. This is done with a reference monitor that, by using an authorization

database, checks if a user has permission to do a specific action, as described in Figure 2.1.

The system has also an auditing feature that records important activities done by users or

programs.

Figure 2.1 shows a general picture of how access control could be implemented in a computer

system. Access control is usually only one of the other important services of the security

system, whereas the other services, such as authentication and encryption, together with

access control techniques constitute the security unit in the system [11]. As it is shown in

Figure 2.1, access control comes after the authentication filter. Moreover, the resource data

might be encrypted, and the audition feature logs every single action taken by the user, so

that all these services together constitute the security system.

Access control is typically implemented using access control models such as Access Control

Lists (ACL), role-based access control (RBAC), and attribute-based access control (ABAC),

or other modern techniques such as Keycloak, that will be introduced later in this chapter.

But first, 2.3.1 will introduce Access Control List, and then it introduces the RBAC, which

is a widely used access control model that assigns roles to users and specifies what actions

each role can perform. ABAC is a more flexible access control model that uses attributes to

define access policies [11]. Furthermore, the chapter will talk about the idea behind IAM and

Keycloak as a service of it.

Figure 2.1. Access Control Architecture

10 | THEORY AND BACKGROUND

2.3.1 Access Control Technologies

2.3.1.1 Access Control Lists (ACL)
ACLs are a predetermined set of permissions that can be assigned to a specific user or group

for read/write access to a specific resource, file, or repository. The file owner manages file

access permissions by the creation of access control lists [19]. An access control list is a table

containing usernames and the permissions assigned to each user on a single resource. For

instance, a user might own a file on a GitLab environment managed by an access control

system, and the user decides that he/she wants other users to access his/her file. The user

might, through the ACL-management system, give another user the ability to edit the file,

and a large group of users the ability to only read that file. Each of these decisions would

require an entry on an access control list.

An example of an ACL management system is NTFS implemented by Windows. Some of

the permissions that NTFS allows users to assign to other users on a file or a folder are:

• Full Control, which gives users full authority over a resource including all actions that

can be performed on the resource.

• Read permission allows users to view the contents of the file.

• Read & execute permission enabling users to execute applications and executable

programs.

• Write permission that allows users to create files and modify their contents.

• Modify permission that makes it possible for users to, beyond Write permission, delete

files (it also includes Read & execute permissions).

This will help in streamlining the process to give administrators a faster way to give a group

or user the right permission for their level of authority.

2.3.1.2 Role-based access control
Role-based access control (RBAC) is a data security model that assigns user permissions

based on the roles they have been given. The role is defined as a job function with certain

semantics relating to the authority given to the user [1]. RBAC makes security administration

less complicated and enables organizations to examine user permissions. The RBAC

reference model in ANSI/INCITS 359-2004 defines four model components: Core RBAC,

Hierarchical RBAC, Static Separation of Duty Relations, and Dynamic Separation of Duty

Relations. The core RBAC is essential when implementing RBAC in any type of system and

defines the required elements and relations in the RBAC system.

In the RBAC model, a process is defined as the image of an executable program, while an

object represents the data queried by a user or a device connected to the system [1]. RBAC’s

management of processes and objects is dependent on the specific system in which it is being

implemented. For instance, in a file system, RBAC may regulate operations such as read,

write, and execute, while in a database management system, it may oversee operations like

insert, delete, append, and update.

The core definition of RBAC, according to [1], is the assignment of roles and permissions to

each user having a role in the system. As a result, many-to-many relationships between

individual users and permissions are made by roles. Furthermore, sessions map a user to a

subset of roles that the user has been given. The arrangement of this many-to-many

 11 | THEORY AND BACKGROUND

relationship between role-user and role permission provides flexible assignment of

permissions to users and roles. This provides users with only the necessary access to

resources, thus preventing unauthorized access and minimizing the privilege of users.

Central to the RBAC model is role hierarchies, which help illustrate how a specific chain of

hierarchies with authority is considered in an organization [1]. Hierarchies in RBAC are

represented by inheritance relations between roles. For instance, a user with role r1 has all

privileges (or permissions) assigned to both r1 and r2 if role r1 inherits r2. Additionally, RBAC

includes a separation of duty relations, which aims to make sure that failures inside an

organization are solely brought about by individual collaboration and to reduce the risk of

collusion by assigning individuals with different skills to separate tasks.

However, RBAC has been criticized for being difficult to set up an initial role structure and

for being inflexible to rapidly change domains. Attribute-based access control ABAC may

offer a solution by using attributes and rules to replace or supplement RBAC. RBAC

simplifies access control by assigning roles with permissions, which can be structured

hierarchically to support efficiency. RBAC also supports separation-of-duty requirements.

The RBAC standard has been revised several times and a revision is underway to extend its

usefulness to more domains, particularly distributed applications [1].

2.3.2 Identity and access management (IAM)
Identity and access management (IAM) is a management tool policy that helps manage the

users on the system and provides the right access to the environment [7]. This ensures security

in the system and provides users with one interface of authentication so they can prove their

identity and navigate through the different services in the environment without proving their

identity multiple times.

Several IAM tools help in providing a centralized way to manage user permissions across

various systems, such tools are Keycloak, Okta and more [7].

2.3.2.1 Keycloak
Keycloak is a very popular Identity and access management tool that is used to enhance the

user experience for all roles of the system. Keycloak uses the access control methods

mentioned in 2.1. It is built on a set of administrative UIs and a RESTful API to allow you

to create permissions for your protected resources and scopes, associate those permissions

with authorization policies, and enforce authorization decisions in your applications and

services.

Resource servers (applications or services that serve protected resources) typically rely on

information to determine whether access to a protected resource should be granted [6]. That

information is typically obtained from a security token, which is typically sent as a bearer

token with each request to the server for RESTful-based resource servers. When a web

application relies on a session to authenticate users, that information is typically saved in the

user's session and retrieved from there for each request.

12 | THEORY AND BACKGROUND

There are many features to an Identity and access management tool like Keycloak. According

to the research of D.N. Divyabharathi and Nagaraj G. Cholli [20], there are many features

and the ones relevant to security are as below:

1. OpenID Connect Support

2. CORS Support

These features that Keycloak helps us establish a secure system in an IaaS (Infrastructure as

a System, a cloud computing service that provides essential computing, storage and networking

resources). According to the Keycloak documentation [6], Keycloak allows users to create

different types of permissions such as resource-based permissions, scope based-permissions

and policies that define conditions that must be met before any access is given to that user.

2.3.2.2 Okta and Other IAM Tools
There are not as many IAM tools that are as popular as Keycloak but one that comes up is

Okta. Okta is a paid identity management tool that has gained popularity with many big

companies that offer their software as a service [5].

2.4 Immutability
Data immutability is one of the most important things when implementing security in a

system. That is because of multiple types of security threats facing organizations today, such

as malicious insiders and human errors. For organizations, it’s essential having secure data

backups to guarantee data immutability, even if the ideal approach to secure data is to limit

users' access to data as much as possible. It is the property of data that prevents it from being

changed once it has been created. Immutability ensures that data remains unchanged and can

be trusted. It can be implemented using cryptographic hash functions that generate a unique

hash for each data object. Any change to the data object will result in a different hash,

indicating that the data has been tampered with.

There are different levels of data immutability. For instance, immutable data may include

uneditable data that even system administrators do not have permission to edit. It may also

include that some data sets can be modified by users with specific privileges via an API.

However, even when data is exposed to attacks or tampering, the backups will guarantee that

the data is secure. When developing systems that handle sensitive data, it is important to

identify data to be immutable and the privileges needed to be able to edit mutable data sets.

GitLab uses PostgresSQL as the DBMS. To guarantee data immutability, it needs to be

ensured that the data that PostgresSQL contains should only be accessed via GitLab. This

means that even users with administration privileges should not have direct access to the

database, but they need to access the data through GitLab. This provides the ability to

redefine the permissions given to a specific user.

Postgres provides another permission that can be defined via GitLab configurations. There

are two approaches to redefining immutability in GitLab. The first one is reconfiguring the

PostgresSQL server included with Omnibus GitLab, and the other one is using an external

PostgresSQL server.

 13 | THEORY AND BACKGROUND

2.5 Database Access Control
This section will introduce access control mechanisms used in graph databases, such as

Neo4j. But first, let us define what a graph database is. Unlike traditional databases such as

relational or file-based databases that store data in tables or documents, graph databases

consist of nodes representing the data and relationships between these nodes [10]. Nodes,

representing entities in the graph databases, are tagged with labels that correspond to table

names in relational databases and properties, which are key-value pairs corresponding to a

column value belonging to a row key. Moreover, the labels can also contain metadata for

specific nodes. The relationship between two nodes represents the relationship between these

entities' nodes, where one of them is the start node and the other is the end node. Relationships

may also have properties, and the direction that it provides makes it efficient to navigate

through the nodes. The most popular graph database used today is Neo4j, which will be

introduced in the next section.

2.5.1 Neo4j
Neo4j is a graph database that is optimized for storing and querying connected data. It is an

open-source, NoSQL, and native graph database, which means that data is structured in a

genuine graph model, even at the storage level, and not only providing a graph abstraction.

The fact that Neo4j is a native graph database, compared to other traditional none-graph

databases, makes it a flexible and efficient database to use for managing relationships

between data entities and handling complex connections between data nodes [10]. Neo4j

provides a query language called Cypher, which is a declarative query language equivalent

to SQL languages in other database systems. Cypher enables developers to query the database

using graph patterns and specify patterns of nodes and relationships in the graph.

Utilizing a comprehensive security model, Neo4j provides flexibility and customizable

access control handled and maintained within a dedicated database in the system known as

the system database, where all actions on the administrative level are directed to and

performed [14]. The access control technology used in Neo4j’s system database enforces

Role-based access control, which was introduced in 2.1.1.2. In addition to RBAC, Neo4j uses

privileges to optimize access control, customize already existing roles and create new roles,

and define what access rights a user is assigned [13].

14 | THEORY AND BACKGROUND

Figure 2.2 shows the hierarchical structure between different privileges used in Neo4j. These

privileges are assigned to defined roles in the system. However, Neo4j makes it possible to

customize each role’s privileges and define new roles with needed privileges.

Neo4j controls the user’s permissions to graph elements by using the allowlist (GRANT) and

denylist (DENY) mechanism [13]. These lists are used to determine whether a user has the

right to access the data element, and if they have, what privileges they are given (for instance

read privilege or write privilege).

Cypher, used in Neo4j, makes it possible to create new roles and assign needed privileges to

these roles. Moreover, it is possible to modify the already built-in roles by adding or revoking

privileges on these [13]. The built-in roles and privileges that Neo4j provides are:

1. The Public role: users with this role have access to the default database and are

allowed to execute functions and other actions. Unlike other roles, the Public role

cannot be revoked, but it can be modified though.

2. The reader role: users with this role are only allowed to read graph elements, but the

system database (the administration database)

3. The editor role: users with this role are allowed to read and write on graph elements,

but the system database. They are not allowed to create new labels or relationship

types.

4. The publisher role: users with this role have the same rights as the editor role, but also

can create new labels or relationship types.

5. The architect role: users with this role have the same rights as the publisher, but also

can manage indexes and constraints.

6. The admin role: users with this role can do any administrative work, with all that it

means from database management to set roles and privileges.

Figure 2.2. The hierarchy between different graph privileges, inspired by figures in [13]

 15 | THEORY AND BACKGROUND

2.6 Security Threats
Many security threats should be accounted for when developing a complex system that will

be used in production even if the system is on a private network. Such threats are already

mitigated in the cloud technologies available today.

2.6.1 Session Hijacking
Session hijacking is when a logged-in user's session cookie gets infiltrated, and then used in

the attacker’s browser to impersonate the user that originally had the token. This may lead to

catastrophic consequences if not dealt with caution [8].

Sessions can be compromised in several different ways; one would be intercepting network

packets which will be inherently solved by enforcing a VPN to access the network, or by

malware that will search for active session tokens [8].

To ensure a session token cannot be compromised or taken advantage of once it has been

compromised there has to be stricter rules on how long the token lives and the IPs and client

info the session token is connected to [8].

2.6.2 Remote Code Execution
Remote code execution exploits are one of the most dangerous attacks a system can suffer.

(RCE for short) is usually done by finding a way to upload a malicious script to the system

and making an operative system user execute that script [9].

The best way to avoid RCE exploit attacks is to keep all software updated, but sometimes

that would be hard for infrastructures to do without running into dependency issues. To avoid

this, all ways to upload files should be checked and the files uploaded would be run through

a security check before being let through to a stage where they could be executable [9].

2.7 Related Works

2.7.1 Securing Sensitive Data in the Cloud, using Zero Trust Principles
Yacob discusses in his thesis [12] the implementation of a secure system for handling

sensitive data in a Zero Trust environment. He criticizes the traditional security systems’

structure and addresses the need for minimizing trust and treating all network traffic as a

potential security threat, emphasizing the importance of strict access control and

authentication. The solution, chosen by Yacob to implement the security system, includes the

use of GPG (GNU Privacy Guard) keys for signing and verifying commits in a GitLab

repository, along with an identity provider such as Keycloak for user authentication. These

key components, according to Yacob [12], are recommended to use for future work when

there is a need to protect and control access to data, particularly focusing on applying the

Zero Trust approach to the build/execute side of the process. This is done by customizing

separate instances of Keycloak and improving the authentication and authorization process.

Alternative methods and providers for implementing Zero Trust principles were examined in

the research [12], such as Cloudflare Access and VPN with MFA (Multi-Factor Authentication).

Moreover, the self-hosting approach was compared to utilizing a third-party provider of Zero

Trust environment from an economic aspect, considering different types of costs and

maintenance expenses. Yacob, in his thesis report, takes other sustainable aspects into

16 | THEORY AND BACKGROUND

concern, highlighting the benefits of Zero Trust security in protecting sensitive information,

preventing data breaches, and following conventional ethical regulations [12].

2.7.2 Designing and implementing a private cloud for student and faculty
Le Fevre and Karlsson [4] did research focusing on the design and implementation of a

private cloud hosting system. The authors [4] discuss various aspects of cloud platforms, to

understand security in a cloud environment, create a practical and secure infrastructure-as-a-

service (IaaS) platform, and find best practices for implementing security measures and

approaches. Security is addressed in the research [4] as a critical aspect when developing or

working on these kinds of cloud systems.

By choosing CloudStack as a cloud platform to use in their proposed system, the authors [4]

highlight the benefits of using the built-in security features provided by CloudStack, such as

virtual firewalls, VPNs, and VLAN isolation. These security measures, according to the

research [4], contributed to creating a secure implementation of the CloudStack platform.

Furthermore, secure communication is recommended to be used to ensure that data is secure

and not tampered with, and the use of TLS to implement this type of secure communication

[4].

 17 | THEORY AND BACKGROUND

18 | THEORY AND BACKGROUND

 19 | METHOD AND RESULTS

3 Method and Results

First, in this chapter, all methods used to complete the project and to fulfil the goals defined

in 1.2 are presented in a simplified manner, to make it possible for future developers to

achieve the same result by following the steps mentioned below. Furthermore, this chapter

introduces the literature study done behind this thesis, including previous work in the same

domain.

3.1 Method
The choice of the solutions presented in this chapter was based on a thorough review of

existing literature as well as related works in the field, that have been reviewed throughout

the implementation process.

With all the research that has been done, it was decided to implement a customised control

model that controls the access to the data that the applications built by the GitLab users have

access to. The research done on Access Control was vital in designing the model for the data

access control in the database part of the infrastructure. Some of the other technologies that

already were decided by the faculty are GitLab and Neo4j, and section 3.1.1 will introduce

these requirements in detail.

The research is done on Identity and Access Management (IAM) tools like Keycloak

provides the architecture with a source of identification for the users that are logged in to the

system. According to Yacob [12], Keycloak in similar systems as the one this thesis aims to

develop is used to provide users with an interface to manage their data access and

deployments. Furthermore, Keycloak also provides configurations that can be customised to

increase the strictness of the system on the authorization. Applying Identity and Access

Management (IAM) in the proposed system provides an effective approach to managing the

system’s users and their roles. Such an approach makes similar systems centralized, solid,

and secure [7].

The research done on Identity Access Management providers such as Keycloak and Okta,

including the past work done by Yacob [12] has been vital to the system developed. For this

thesis project Keycloak is used for the popularity, extensive support, and security customization it

provides. Keycloak provided an essential part in the system where the Keycloak instance

could be used to log into GitLab and provide the cloud service with the identities of the user

to show the right interface and allow users to access the system with their privileges. Other

IAM tools do not have the same integration with GitLab and thus have a significantly harder

way to connect them.

3.1.1 Requirements From the Faculty
There was a requirement from the faculty to have a secure database service that is connected

to the GitLab Instance. The research done on GPG commit signing by Yacob [12] are vital

for the access control methods used in this work. It was decided to apply the model to specific

user access control to enable the system to adapt to specific access control needs for each

GitLab user depending on their privileges on the repository. The commit verification GitLab

offers, allows the system to take the user information from GitLab only when the code

changes are authorised, then the system provides credentials from the Neo4J database service

to the user to access the data related to the repository these changes were made to.

20 | METHOD AND RESULTS

These security requirements required the system to be built upon a cloud where the users can

manage their deployments and the data access the users and their repository contributors have

to the application data.

To enforce strict control over data access, Neo4j was chosen, which is a graph database

management system (DBMS). Neo4j provides a flexible and powerful platform, that helps

manage access control in the GitLab-based cloud environment. It makes it possible for system

administrators to define access rules, user roles, and permissions. Neo4j was one of three

options to integrate with the system, whereas the other two alternatives were relational

database (MySQL) and document database (in the form of files). Since the faculty showed

the most interest in the graph database (Neo4j), it was chosen.

3.2 System Architecture
Software development-wise, the thesis aims to implement a proof of concept for securing

data using GitLab and Neo4j. The implementation followed an agile software development

process, with iterative cycles of development, testing, and deployment.

For the implementation, JavaScript programming language was used as well as relevant

libraries, such as GitLab API and Neo4j database. The implementation includes the following

key components:

1. Fetching code from GitLab: The implementation involves fetching code from a

GitLab repository and verifying the user’s identity and access control.

2. Managing data access: The implementation will involve managing data access and

ensuring that only authorized users can access the data. This will be done by

implementing access control mechanisms such as role-based access control.

3.2.1 Architecture Overview
Figure 3.1 shows the architecture of the proposed system that was implemented with the

security improvements. It is important to provide a secure database for GitLab users to deploy

their applications to.

Figure 3.1 Abstract System Architecture

 21 | METHOD AND RESULTS

3.2.1.1 Fetching Commits’ Signatures
The cloud service fetches new commits from the selected Gitlab repository and verifies that

the commit has been signed, if so, it will continue with the rest of the deployment process.

3.2.1.2 Verified Commits
Verified commits then have their images pushed to the container registry and then the cloud

proceeds to connect the signed signatures author to a database user and provide the credentials

using temporary environment variables.

3.3 GitLab
GitLab is an open-source tool for managing software development projects. It provides

features such as version control, code review, and continuous integration and delivery [4]. In

this section, the security features provided on GitLab platforms are introduced to build a clear

picture of how unauthorized access is handled. In addition, the security tools used in each

stage of the feature development workflow in GitLab are described.

GitLab has been one of the revolutionary platforms for CI/CD solutions, Continuous

integration, continuous delivery, and continuous deployment, simplifying the process of

merging work from different teams into a unified product. CI/CD establishes a centralized

work repository as well as ensures automation of integration and continuous testing [16]. The

CI/CD pipelines in GitLab provide a chain of actions making the DevOps process and

software application delivery more efficient and secure. Some of the stages of the DevOps

CI/CD pipeline are source code repository, building an executable iteration of a product

(often containerization), testing the repository, validating the caused behaviour, and

deploying an executable instance of the application.

Furthermore, applications built in GitLab are examined for potential security vulnerabilities,

using different tools in different stages of the application development lifecycle [15]. GitLab

offers access control mechanisms that enable organizations to control who can access their

data and what actions they can perform [15].

22 | METHOD AND RESULTS

Figure 2.3 shows the GitLab application security tools performed at each stage of the feature

development workflow. The commit action takes place when code in a repository will be

updated, trigging some scanning and testing tools before performing the commit [15]. The

scanning and testing tools shown in Figure 2.3 can be customized by enabling or disabling

them, making the validation process flexible and customizable.

In addition, GitLab provides a set of REST APIs making it possible for developers to integrate

GitLab projects with other platforms [15]. Some of the REST APIs’ usages are used to verify

a user’s authenticity, list projects and their status, get metadata about repositories, and much

other information. More about how features in GitLab can be utilized is introduced later in

Method Chapter, 3.4.

3.3.1 Encryption in GitLab, GPG Keys
The OpenPGP email encryption standard is used by GPG (GNU Privacy Guard) Keys to

encrypt and sign messages and other data. The GPG key pairs have a public key and a

corresponding private key, where the public key is used for encryption and to verify digital

signatures, and the private key is kept secret and used for decrypting messages and signing

data [18]. In GitLab, GPG keys play an important role in improving the security of GitLab

by enabling users to verify their authenticated commits. GPG keys make it possible for

developers to sign their commits on their repository with their private key, adding a digital

signature that can be verified by other users. This approach ensures that commits originated

from a trusted source, obstructing unauthorized modifications to the source code, and guaranteeing

the integrity of the project or the repository. In other words, once a commit is signed with a

GPG key, it becomes tamper evident.

Figure 3.2. The stage of the feature development workflow, and GitLab application security tools performed on each
stage. Inspired by [15].

 23 | METHOD AND RESULTS

GitLab allows users to add new and associate, update, and disable locally generated GPG

keys. Moreover, GitLab provides public APIs to verify the authenticity of users’ signed

commits [18]. It is also possible to get a user’s public GPG key that is provided with the

user’s username. Generating GPG keys and associating them in GitLab is not complicated.

However, some obstacles may appear when verifying the signed commits. Table 3.1 shows

the common failures appearing during the verification process and how they can be fixed.

Table 3.1 Fix verification problems with signed commits. Inspired by [18].

GitLab provides an API that enables developers to access GitLab functionality programmatically.

The GitLab API enables developers to manage repositories, issues, merge requests, and other

GitLab features [4].

3.3.2 GitLab Instance Setup
GitLab instances can be set up in different ways, but the approach that was followed in this

project is pulling a GitLab image from Docker hub containing the GitLab instance. Another

approach could be to install a Kubernetes cluster that supports GitLab.

• Pull and run the GitLab instance:

o docker run --detach --hostname gitlab.example.com --publish 443:443 --publish 80:80

--publish 22:22 --name gitlab --restart always --volume "/$(pwd)/config:/etc/gitlab" -

-volume "/$(pwd)/logs:/var/log/gitlab" --volume "/$(pwd)/data:/var/opt/gitlab" --shm-

size 256m gitlab/gitlab-ee:latest

Value Description Possible fixes

UNVERIFIED The commit signature is not

valid.

Sign the commit with a valid

signature.

SAME_USR_DIFFERENT_EMAIL The GPG key used to sign the

commit does not contain the

committer email but does

contain a different valid email

for the committer.

Amend the commit to use an

email address that matches the

GPG key, or update the GPG key

to include the email address.

OTHER_USER The signature and GPG key

are valid, but the key belongs

to a different user than the

committer.

Amend the commit to use the

correct email address, or amend

the commit to use a GPG key

associated with your users.

UNVERIFIED_KEY The key associated with the

GPG signature has no verified

email address associated with
the committer.

Add and verify the email to your

GitLab profile, update the GPG

key to include the email address,
or amend the commit to use a

different committer email

address.

UNKNOWN_KEY The GPG key associated with

the GPG signature for this

commit is unknown to GitLab.

Add the GPG key to your GitLab

profile.

MULTIPLE_SIGNATURES Multiple GPG or x.509

signatures have been found for

the commit

Amend the commit to use only

one GPG or x.509 signature.

24 | METHOD AND RESULTS

• Change the default password (unknown) to root:

1. docker exec -it containerID bash

2. gitlab-rake "gitlab:password:reset[root]"

3. Insert your password.

Now, the GitLab instance is up and running, the next step is to log in with the username root

and the password that was chosen before.

• Getting the GitLab API Access Token:

1. Log in with the root user account.

2. From the avatar icon located on the very right on the top bar, select Preferences.

3. Click on the Access Tokens in the left sidebar.

4. Create the personal access token by inserting the Token name and selecting all scops

below.

5. Copy the generated token and paste it into the text field in Postman (Authorization -

> Type: Bearer Token).

6. Test this URL on the GET HTTP-request method: localhost/api/v4/projects/1 and you

will get the repository as a response.

3.4 Basic Security
Several important measures must be taken while securing the environment.

3.4.1 Security Measures

3.4.1.1 VPN Access
For a private implementation, it is viable to set a Firewall where a certain VPNs IP address

and network are allowed to access the system. This adds another layer of security on top of

the system that would.

3.4.1.2 Commit GPG Signatures
According to the previous work done by Thomas Yacob GPG Signatures provide proof of the

authenticity of commits that are pushed into the GitLab instance. These signatures can be

used by other processes in the infrastructure to know if the commit is authentic and thus use

that information from the API to allow for a higher privileged action later in the chain.

3.4.1.3 Two-Factor Authentication (TFA)
Two-factor authentication is a widely used security measure that requires clients to provide

additional form of identification. This is a measure that assures that if one of the factors is

compromised that there would still be another requirement to get full access to the account’s

privileges.

3.4.1.4 Securing The Pipeline
Gitlab allows for many security methods to add to their DevOps pipeline such that there

would be a manual pipeline that administrators must approve for them to continue and other

security measures in the Auto DevOps feature that GitLab provides.

 25 | METHOD AND RESULTS

3.4.2 Implementation

3.4.2.1 Enforcing Two-Factor Authentication on GitLab
To enforce TFA to all GitLab users just follow these steps through the admin user interface

on GitLab:

1. On the top bar, select Main menu > Admin.

2. On the left sidebar, select Settings > General (/admin/application settings/general).

3. Expand the Sign-in restrictions section.

4. Enable TFA and set the grace period to zero.

3.4.2.2 GPG Signing Setup
A previous work [12], done by Thomas Yacob, was used in the project to set up the GPG

(GNU Privacy Guard) Signing Keys. The GPG keys are used primarily to verify committed

changes on a GitLab repository and use the public key to verify commits signed with the

corresponding private key. That means that every single user in the system, with commit

permissions, requires a won unique GPG (public and private) key pair. Moreover, it is

important to know that the GPG keys are only used for the verification purpose, and not to

handle logging into GitLab.

Once a user is authenticated and verified, the process of GPG signing is initiated by creating

a private and public key pair [12]. To submit a commit on a GitLab repository, the user must

sign that commit using their private GPG key. The signature is created by a cryptographic

hash function that generates a unique value. After that, the server verifies the signature’s

authenticity using the user’s public GPG key. In case of the signature is valid, it proves that

the commit is legitimate and has not been altered. Consequently, GitLab will accept the

commit. “The private key signs the commit, the public key verifies the signature” (Yacob

[12]) resulting in that GPG key signing guarantees that once a specific authenticated user,

with the right permissions, make a commit in GitLab the data will never be tampered on.

Integrating GPG key signing with GitLab is done by following the steps below:

1. Install GPG locally.

2. Generate a GPG key pair.

3. Copy the public key.

4. From the avatar icon on the top bar, select Edit profile.

5. Click on the GPG Keys on the left bar.

6. Paste the public key in the text field with the Key title and click on Add key.

26 | METHOD AND RESULTS

3.5 Architecture Implementation

3.5.1 Reserving Environment Variable Names
To allow users to connect to a database provided, there must be environment variable

names that are reserved to allow the developer to easily use the database. This is used later

in the implementation to inject database credentials into the code.

Reserved Environment Variables:

GLC_NEO4J_URL

• URL of the server where it is hosted.

GLC_NEO4J_PORT

• PORT is used for the server.

GLC_NEO4J_USER

• Database user for the application to access the data.

GLC_NEO4J_PASSWORD

• Database user password.

GLC_ prefix, which stands for GitLab Cloud, is used to be unique and avoid clashing with

other reserved environment variables that users may choose to use.

3.5.2 Cloud Setup
The cloud backend server is set up with the JavaScript backend framework NodeJS with the

addition of Express which is a web framework to simplify sending and receiving data

through the web.

The most straightforward way of setting up an express server is to create the repository

directly on Gitlab like such:

1. Create a Gitlab account on gitlab.com.

2. Click on New Project.

3. Click on Create from template.

4. Fill in all the fields.

5. Clone the repository to your device.

In addition to this, some important information needs to be established before proceeding

that is needed throughout the cloud backend server:

1. The Gitlab instance’s root user’s access token as described at the end of section

3.4.1.

2. Registry URL.

3. Gitlab instance IP and port.

4. Neo4J IP, port, root credentials.

These should be stored securely in the project’s environment variables.

The Neo4J JavaScript driver is used in the cloud to allow queries to be sent to the neo4j

server and access user information to make the best decision later.

 27 | METHOD AND RESULTS

3.6 Securing Application Data
After all the architectural setup is done with the right security precautions it is time to

implement the system that will control the access to the Neo4J database that the Gitlab users

will have their applications built upon.

To summarise the Access Control system that was made here is an ordered list and then will

be followed by detail for all the steps:

1. Validate commit is signed by GPG using GitLab API

2. Check if the commit author has a database user in Neo4J. (If not then add the database

user)

3. Check if the User has privileges to access the data in the database connected to the

repository. (If not then add the privileges)

4. Check if there is already a temporary active user, if so, then delete it.

5. Create a temporary user with privileges only to the database that the repository is

connected to.

6. Send database user credentials with the deployment.

7. Remove user credentials from the docker-compose file.

3.6.1 Getting the commit

3.6.1.1 Request
var axios = require('axios');

axios.get(`https://localhost:80/api/v4/projects/${id}/repository/commits`, {

 headers: {

 'PRIVATE-TOKEN': `${token}`

 }

})..// Request Handling

Replace ${token} with the Access Token and ${id} with the project ID (Retrieved by

fetching the projects the user has)

28 | METHOD AND RESULTS

3.6.1.2 Returned Data Example
[{

 "id": "ed899a2f4b50b4370feeea94676502b42383c746",

 "short_id": "ed899a2f4b5",

 "title": "Replace sanitize with escape once",

 "author_name": "Example User",

 "author_email": "user@example.com",

 "authored_date": "2021-09-20T11:50:22.001+00:00",

 "committer_name": "Administrator",

 "committer_email": "admin@example.com",

 "committed_date": "2021-09-20T11:50:22.001+00:00",

 "created_at": "2021-09-20T11:50:22.001+00:00",

 "message": "Replace sanitize with escape once",

 "parent_ids": [

 "6104942438c14ec7bd21c6cd5bd995272b3faff6"

],

 "web_url": "https://gitlab.example.com/janedoe/gitlab-foss/-

/commit/ed899a2f4b50b4370feeea94676502b42383c746"

 }]

3.6.2 Validating Signed Commit
To take advantage of the GPG signing of the commits the Gitlab API is used to assure that

the latest commit in the repository is signed and verified.

3.6.2.1 Request Getting GPG signature of the latest commit:
var axios = require('axios');

axios.get(`https://localhost:80/api/v4/projects/${id}/repository/commits/${branch

}/signature`, {

 headers: {

 'PRIVATE-TOKEN': `${token}`

 }

})..// Request Handling

Replace ${token} with the Access Token, ${id} with the project ID (Retrieved by fetching

the projects the user has) and ${branch} with the branch name or tag.

3.6.2.2 Example Successful Response
{

 "signature_type": "PGP",

 "verification_status": "verified",

 "gpg_key_id": 1,

 "gpg_key_primary_keyid": "8254AAB3FBD54AC9",

 "gpg_key_user_name": "John Doe",

 "gpg_key_user_email": "johndoe@example.com",

 "gpg_key_subkey_id": null,

 "commit_source": "gitaly"

}

 29 | METHOD AND RESULTS

3.6.2.3 Validation
if (data.signature_type === “PGP” && data.verification_status === “verified”) {

 //Valid and continue

} else {

 //Invalid

}

3.6.3 Database User
Since only signed commits are allowed to be deployed the property “gpg_key_user_email”

from 3.6.2.2 is used to create a connection between the Gitlab user to the Neo4J database.

The user email is checked against the Neo4J database with the following query to the driver:

SHOW USER WHERE user=”<user_email>”

and if it doesn’t exist the following query should be done to add that user through the

javascript driver:
CREATE USER <user_email>

SET PASSWORD <generated password> CHANGE REQUIRED

SET STATUS ACTIVE

SET HOME DATABASE <repository_identifier>

The generated password should be sent securely to the user who is forced to change it after

logging in for the first time.

3.6.4 Graph Privileges
The privileges of the user against the connected repository application data are checked

with the following query:
SHOW USER PRIVILEGES WHERE user="<user_email>" AND graph="<repository_identifier>"

If there are no privileges for that user on the repository graph, then they are added to them

with the GRANT keyword.

3.6.5 Temporary Database User
Temporary database users in this implementation are essential to creating an isolated

environment for applications deployed to the cluster to have their database service.

CREATE USER “temp_<user_email>_<repository_identifier>”

SET PASSWORD <generated password> CHANGE NOT REQUIRED

SET STATUS ACTIVE

SET HOME DATABASE <repository_identifier>

The generated password is then used to be passed in the environment variables of the

deployment. The same permissions are granted that the original user account has to that

account.

30 | METHOD AND RESULTS

3.6.6 Deployment
For deployment, the temporary user is inserted into the docker-compose file under the

YML environment key, and the repository-built image is inserted into the compose file in

the following format:

image: <url_to_image_on_private_registry>

 environment:

- GLC_NEO4J_URL=<neo4j_url>

- GLC_NEO4J_PORT=<_port>

- GLC_NEO4J_USER=<temp_user>

- GLC_NEO4J_PASSWORD=<temp_user_password>

Directly after deployment as a security precaution, the YAML file is edited to remove

sensitive information.

3.7 Result
The result of this implementation is a deeply controlled system where the administrator

manages the security and data access methods for the users. Deep Security is implemented

in all sections of the architecture to ensure maximal control.

GPG signatures ensure that the commits originated from the commit author so that the

system can use that proven trust to then provide the deployment with the right data.

Communication between all the systems in the architecture is secured by having TLS

enabled on every system, this provides a safe tunnel for crucial data not to be exploited.

Temporary users are created with identical privileges to the signed commit author to ensure

the right access has been provided to the application. The temporary user does not include

access privileges to the other graph databases the author has access to, which is the main

reason the author’s database user is not used directly. That ensures that any code in the

repository that tries to access other databases is denied. After that, the GitLab is ready to

create an image of the repository and log it into a container registry. Before going on in the

process and building a container, the temporary database user credentials are stored in a

YAML file as environment variables, which are then attached to the image. If the container

is executing, the program, through the temporary user, can access the data. Once the container

is revoked, the new container is built, the temporary database user is removed from the

database and a new temporary database user is created.

In this implementation credentials used in the developed application’s drivers will receive

privilege errors when trying to access restricted data, and also privilege errors when trying to

interact with the data in some way for example when trying to do write actions on data that

is only accessible with read permissions.

The result has technically been controlling applications’ access to data, which means that the

system can handle users and assign permissions to them. This was done by integrating

different platforms with the cloud service application developed during the project thesis,

where users are verified in every single step of the process, which makes the system

compatible with the Zero Trust principles.

 31 | METHOD AND RESULTS

32 | METHOD AND RESULTS

 33 | ANALYSIS AND DISCUSSION

4 Analysis and Discussion

In this chapter, the analysis of the implementation results involves evaluating the effectiveness of

the implemented security measures and access control mechanisms. The analysis will also

involve measuring the security of the system, evaluating the performance of the system, and

assessing the usability of the system.

The implementation of a deeply controlled system discussed in this thesis provides users with

comprehensive management of security and data access methods. The goal was to maintain

maximum control and implement extensive security measures throughout the architecture.

The thesis emphasizes several key aspects that contribute to the achievement of this goal.

To begin, GPG signatures are used to validate the origin of commits, ensuring that they are

genuine and come from the designated commit author. The system then uses this trust to

provide the necessary data for the deployment. The system can maintain a high level of

integrity and trustworthiness in the codebase by implementing this verification mechanism.

Furthermore, Transport Layer Security (TLS) is used to secure communication between all

systems in the architecture. Enabling TLS on all systems creates secure tunnels for critical

data transmission, preventing potential exploitation and unauthorized access. This safeguarding

mechanism ensures that data remains confidential and intact while in transit.

To effectively manage user access privileges, temporary users with the same privileges as

the signed commit author are created. This method ensures that the application is granted the

necessary access rights. To reduce the risk of unauthorized access, the temporary user is

intentionally barred from accessing other graph databases. By enforcing this restriction, any

attempts by the repository's code to access other databases are denied, improving the overall

security posture of the system.

The implementation process involves creating an image of the repository and logging it in a

container registry using GitLab. Before proceeding with container building, the temporary

database user credentials are stored in a YAML file as environment variables, which are then

attached to the image. This enables the program, through the temporary user, to access the

required data while the container is executing. Once the container is revoked, the temporary

user is removed from the database, and a new temporary user is created for the next container.

The outcome of this implementation is a system that has gained control over applications'

access to data. Through the integration of various platforms with the developed cloud service

application, the system can effectively manage users and assign permissions to them. The

thesis highlights the verification of users at each step of the process, aligning the system with

the principles of Zero Trust. By adhering to these principles, the system establishes a robust

and secure foundation, enhancing the overall security and control of the application.

Alternative solutions would have helped achieve the same goals as the current solution has

already. GPG commit signatures in GitLab could have been alternated with either SSH

commit signing or X.509 certificate. Using X.509 certificates to sign commits requires more

resources for the project to implement and adds more complexity to the end user trying to

34 | ANALYSIS AND DISCUSSION

take advantage of the system. In a more ideal service, all these methods would be available

to the end user to allow for freedom of choice.

The model the thesis explored creating temporary users to access the application data. A

different model that would achieve the same goals but with less security strictness would be

to provide the deployment of the same database user credentials that the owner of the

repository has. This creates a less strict environment for the application and thus allows the

applications deployed on the infrastructure to access data the owner has access to, even

though the application built has no intended connection to them. This kind of model does

not allow for future development to provide dynamic credentials to different users.

Including the credentials in the docker-compose file of an application allows the credentials

to be injected into the deployment, the project goes further by removing the credentials

from the YAML file to avoid any intruders from accessing the data. Removing this step

would also suffice but then there must be assurance that there is not any possibility for

intruders to have access to the YAML file.

4.1 Sustainability Impacts
The Royal Institute of Technology KTH has regulations of sustainability goals within all

programmes [17]. Therefore, in this thesis, technologies and implementation approaches

have been considered from social, economic, and environmental perspectives. The impacts

that the implementation has can be significant, and they arise from the increased protection

of data, improved access control mechanisms, and the adoption of encryption techniques.

4.1.1 Social Impact
Implementing secure data practices enhances data privacy, protecting sensitive information

and personal data. This promotes trust between organizations and their users, which could be

patients, clients, or customers, as individuals feel more confident that their data is secure

from unauthorized access or breaches. Moreover, by implementing secure data practices,

organizations can effectively follow data protection regulations and standards such as GDPR

and HIPPA. This ensures that personal or sensitive data is handled suitably and legally, which

promotes ethical and responsible data management. Since the resulting project can be used

by government agencies or organizations handling information about a huge amount of

people, the security requirements do have a huge impact on individuals’ lives.

4.1.2 Economic Impact
Implementing secure data practices reduces the risk of data breaches and their associated

costs. Organizations can avoid financial losses due to potential litigation, reputation damage,

and other costs of remediation in the case of a data breach. In addition, showing an

engagement in data security can provide organizations with a competitive edge. Both clients

and customers more and more prioritize a high level of data protection and organizations that

can guarantee robust security measures are more attractive to clients and customers.

4.1.3 Environmental Impact
The efficient implementation of secure data practices can contribute to energy savings. By

optimizing data storage and access, organizations can reduce energy consumption related to

data processing and storage systems, leading to a smaller environmental footprint. Improved

security measures promote the transition to a paperless approach, reducing paper waste and

the associated environmental impact. Digital storage and secure data practices enable

 35 | ANALYSIS AND DISCUSSION

organizations to minimize reliance on physical documents, contributing to sustainability

efforts. This will align with the national and European sustainability goals.

4.1.4 Ethical aspect
Data engineers and system developers must always consider the ethical aspect of handling

data, especially in larger systems where large amounts of data about many people are stored

and processed. Ethics play an important role in secure data management, where privacy rights

are respected, and data confidentiality is ensured. By implementing reliable security

measures and access controls, organizations prove their engagement to protect individuals’

personal information and upholding ethical principles. In domains such as healthcare,

finance, and other sectors that deal with sensitive data, it is extra important to take the ethical

aspect into concern. The ethical aspect of secure data practices includes having transparency

about data handling practices, obtaining consent from users, and following standardized

ethical guidelines and regulations.

36 | ANALYSIS AND DISCUSSION

 37 | CONCLUSION

5 Conclusion

This bachelor’s thesis has explored and implemented secure data practices in a GitLab-based

cloud environment, addressing the problem of data security and access control. By investigating

access control, data encryption, and data immutability, this paper has made significant

contributions to knowledge development within the area of secure data management. The

thesis has also provided practical insights into the implementation of these techniques and

their integration with the GitLab platform. The goal of this report was to guarantee secure

data and protect it from unauthorized access and changes. This has been achieved by

exploring techniques for data encryption and access control in GitLab and studying how to

implement them using a Neo4j database. Furthermore, this paper has identified the importance of

cryptographic task-role-based access control, as well as the use of built-in encryption

techniques in Neo4j.

The implementation of the report's proposed solution includes fetching code from GitLab,

verifying identity and access control, managing data access, and displaying results. The

implementation is recommended to be implemented in a similar system, this can be done by

following the steps described in the Method and Results chapter. Furthermore, potential

continuous work can be done in this area to address new problem statements, such as the

integration of other databases with GitLab than Neo4j, the use of blockchain technology for

enhanced data security, the implementation of more advanced access control mechanisms, a

closer investigation of how the encryption can be more quantum computer resistant, and the

automation process of fetching code from GitLab, verify data access and permissions,

execute the code on that data, and view the result of the executing. These areas provide

opportunities for future research and development in secure data management. Moreover, the

project’s cloud service application could be done more user friendly.

5.1 Goal Evaluation
Following is a reminder of the goals that were presented before starting the thesis project:

1. Provide an analysis of different methods of protecting data, such as access control,

encryption, and data immutability.

2. Identify best practices for securing data in a Cloud environment.

3. Identify controlling data access using Neo4j.

4. Develop a software solution that:

a. Demonstrates the implementation of these techniques in a GitLab

environment.

b. Enables secure access to the system.

c. Ensures that data is not modified by unauthorized users.

There were several goals to achieve in this thesis such as investigating the different methods

to manage data and the user’s access to the data. Many users of Git repository services also

use these repositories for their security and Development Operations features, so it was

important to provide security for the data that is handled in such a cloud environment. The

work behind this thesis has concluded that controlling the database users and having a

connection between them and their counterparts on the GitLab instance was vital to have a

secure pipeline and provide a purpose for the GPG integration into the environment.

38 | CONCLUSION

The practices for securing a Gitlab environment were partially identified. Issues occurred

where there was an extensive number of configurations that improved the security of the

Gitlab instance, but the thesis project touched upon the essentials of that which will most

certainly provide confidence in the system.

To control the data access in Neo4J, the research done upon Access Control was used to

create a model to enforce strict access to the database with the access users used in the

deployments.

5.2 Future Work
Most of the thesis’ goals were accomplished, but for any work done on this model, it is

suggested to create a more unified system for a better experience given to the users of the

system. It is also encouraged to create a system where repository owners can define the access

for several developers on the same repository and create a way where the application will

support test environments with user credentials of lower privileged roles using the cloud.

 39 | CONCLUSION

40 | CONCLUSION

 41 | BIBLIOGRAPHY

Bibliography

[1] Role-Based Access Control [Internet]. American National Standard ANSI INCITS 359-

2004. [cited 24/03/2023]. Available from

https://profsandhu.com/journals/tissec/ANSI+INCITS+359-2004.pdf

[2] D’Silva D. Ambawade D. Building A Zero Trust Architecture Using Kubernetes

[Internet]. IEEE Xplore; [cited 02/05/2023]. Available from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9418203

[3] Bernstein D. Introduction to post-quantum cryptography [Internet]. Department of

Computer Science, University of Illinois at Chicago. Springer Link; [cited 03/05/2023].

Available from

http://www.pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocumen

t/9783540887010-c1.pdf

[4] Le Fevre P. Karlsson E. Designing and implementing a private cloud for student and

faculty software projects [Internet]. KTH Royal Institute of Technology; [cited

24/03/2023]. Available from https://kth.diva-

portal.org/smash/get/diva2:1666025/FULLTEXT01.pdf

[5] Bridgwater A. Okta Insists Identity ’Goes Beyond’ Passwords [Internet]. Forbes [cited

24/03/2023]. Available from

https://www.forbes.com/sites/adrianbridgwater/2018/05/23/okta-insists-identity-goes-

beyond-passwords/?sh=5516d8ce26b7

[6] Authorization Services Guide [Internet]. Keycloak Docs [cited 17/04/2023]. Available

from https://www.keycloak.org/docs/latest/authorization_services/

[7] What is Identity and Access Management (IAM)? [Internet]. OneLogin [cited

17/04/2023]. Available from https://www.onelogin.com/learn/iam

[9][8] KEYFACTOR. What is Session Hijacking and How Does it Work? [Internet].

KEYFACTOR; [cited 29/4/2023]. Available from https://www.keyfactor.com/blog/what-is-

session-hijacking-and-how-does-it-work/

[10] Remote code execution (RCE) [Internet]. Invicti; [cited 02/05/2023]. Available from

https://www.invicti.com/learn/remote-code-execution-rce/[9] invicti. Remote code

execution (RCE). https://www.invicti.com/learn/remote-code-execution-rce/

[10] What is a Graph Database? [Internet]. neo4j (Developer); [cited 17/04/2023].

Available from https://neo4j.com/developer/graph-database/

[11] Sandhu R. S. and Samarati P. Access Control: Principles and Practice [Internet]. IEEE

Xplore; [cited 23/04/2023]. Available from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=312842

https://profsandhu.com/journals/tissec/ANSI+INCITS+359-2004.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9418203
http://www.pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
http://www.pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
https://kth.diva-portal.org/smash/get/diva2:1666025/FULLTEXT01.pdf
https://kth.diva-portal.org/smash/get/diva2:1666025/FULLTEXT01.pdf
https://www.forbes.com/sites/adrianbridgwater/2018/05/23/okta-insists-identity-goes-beyond-passwords/?sh=5516d8ce26b7
https://www.forbes.com/sites/adrianbridgwater/2018/05/23/okta-insists-identity-goes-beyond-passwords/?sh=5516d8ce26b7
https://www.keycloak.org/docs/latest/authorization_services/
https://www.onelogin.com/learn/iam
https://www.keyfactor.com/blog/what-is-session-hijacking-and-how-does-it-work/
https://www.keyfactor.com/blog/what-is-session-hijacking-and-how-does-it-work/
https://www.invicti.com/learn/remote-code-execution-rce/
https://www.invicti.com/learn/remote-code-execution-rce/
https://neo4j.com/developer/graph-database/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=312842

42 | BIBLIOGRAPHY

[12] Yacob. T. Securing Sensitive Data in the Cloud: A New Era of Security Through Zero

Trust Principles [Internet]. KTH Royal Institute of Technology; [cited 22/03/2023].

Available from https://www.diva-

portal.org/smash/record.jsf?aq2=%5B%5B%5D%5D&c=1&af=%5B%5D&searchType=SI

MPLE&sortOrder2=title_sort_asc&query=Cloud+security+gitlab&language=sv&pid=diva

2%3A1739157&aq=%5B%5B%5D%5D&sf=all&aqe=%5B%5D&sortOrder=author_sort_

asc&onlyFullText=false&noOfRows=50&dswid=-5747

[13] Managing privileges [Internet]. Neo4j Docs; [cited 17/04/2023]. Available from

https://neo4j.com/docs/cypher-manual/current/administration/access-control/manage-

privileges/

[14] Access control [Internet]. Neo4j Docs; [cited 17/04/2023]. Available from

https://neo4j.com/docs/cypher-manual/current/administration/access-control/

[15] Application security [Internet]. GitLab Docs; [cited 23/04/2023]. Available from

https://docs.gitlab.com/ee/user/application_security/

[16] What is a CI/CD pipeline? GitLab [Internet]. GitLab Docs; [cited 24/04/2023].

Available from https://about.gitlab.com/topics/ci-cd/cicd-pipeline/

[17] KTH:s hållbarhetsmål inom utbildning. KTH The Royal Institute of Technology;

[cited 16/05/2023]. Available from https://www.kth.se/om/miljo-hallbar-

utveckling/utbildning-miljo-hallbar-utveckling/verktygslada/larande-for-

hallbar/outcomes/kth-s-hallbarhetsmal-inom-utbildning-1.612098

[18] Sign commits with GPG [Internet]. GitLab Docs; [cited 04/05/2023]. Available from

https://docs.gitlab.com/ee/user/project/repository/gpg_signed_commits/

[19] Qian J. Hinrichs S. Nahrstedt K. ACLA: A Framework for Access Control List (ACL),

Analysis and Optimization [Internet]. SpringerLink [cited 26/03/2023]. Available from

file:///C:/Users/alkha/Downloads/978-0-387-35413-2_18.pdf

[20] Divyabharathi D.N. Cholli N. G. A Review on Identity and Access Management

Server (KeyCloak) [Internet]. MEDEWELL PUBLICATIONS [cited 13/04/2023].

Available from A Review on Identity and Access Management Server (KeyCloak)

(docsdrive.com)

https://www.diva-portal.org/smash/record.jsf?aq2=%5B%5B%5D%5D&c=1&af=%5B%5D&searchType=SIMPLE&sortOrder2=title_sort_asc&query=Cloud+security+gitlab&language=sv&pid=diva2%3A1739157&aq=%5B%5B%5D%5D&sf=all&aqe=%5B%5D&sortOrder=author_sort_asc&onlyFullText=false&noOfRows=50&dswid=-5747
https://www.diva-portal.org/smash/record.jsf?aq2=%5B%5B%5D%5D&c=1&af=%5B%5D&searchType=SIMPLE&sortOrder2=title_sort_asc&query=Cloud+security+gitlab&language=sv&pid=diva2%3A1739157&aq=%5B%5B%5D%5D&sf=all&aqe=%5B%5D&sortOrder=author_sort_asc&onlyFullText=false&noOfRows=50&dswid=-5747
https://www.diva-portal.org/smash/record.jsf?aq2=%5B%5B%5D%5D&c=1&af=%5B%5D&searchType=SIMPLE&sortOrder2=title_sort_asc&query=Cloud+security+gitlab&language=sv&pid=diva2%3A1739157&aq=%5B%5B%5D%5D&sf=all&aqe=%5B%5D&sortOrder=author_sort_asc&onlyFullText=false&noOfRows=50&dswid=-5747
https://www.diva-portal.org/smash/record.jsf?aq2=%5B%5B%5D%5D&c=1&af=%5B%5D&searchType=SIMPLE&sortOrder2=title_sort_asc&query=Cloud+security+gitlab&language=sv&pid=diva2%3A1739157&aq=%5B%5B%5D%5D&sf=all&aqe=%5B%5D&sortOrder=author_sort_asc&onlyFullText=false&noOfRows=50&dswid=-5747
https://www.diva-portal.org/smash/record.jsf?aq2=%5B%5B%5D%5D&c=1&af=%5B%5D&searchType=SIMPLE&sortOrder2=title_sort_asc&query=Cloud+security+gitlab&language=sv&pid=diva2%3A1739157&aq=%5B%5B%5D%5D&sf=all&aqe=%5B%5D&sortOrder=author_sort_asc&onlyFullText=false&noOfRows=50&dswid=-5747
https://neo4j.com/docs/cypher-manual/current/administration/access-control/manage-privileges/
https://neo4j.com/docs/cypher-manual/current/administration/access-control/manage-privileges/
https://neo4j.com/docs/cypher-manual/current/administration/access-control/
https://docs.gitlab.com/ee/user/application_security/
https://about.gitlab.com/topics/ci-cd/cicd-pipeline/
https://www.kth.se/om/miljo-hallbar-utveckling/utbildning-miljo-hallbar-utveckling/verktygslada/larande-for-hallbar/outcomes/kth-s-hallbarhetsmal-inom-utbildning-1.612098
https://www.kth.se/om/miljo-hallbar-utveckling/utbildning-miljo-hallbar-utveckling/verktygslada/larande-for-hallbar/outcomes/kth-s-hallbarhetsmal-inom-utbildning-1.612098
https://www.kth.se/om/miljo-hallbar-utveckling/utbildning-miljo-hallbar-utveckling/verktygslada/larande-for-hallbar/outcomes/kth-s-hallbarhetsmal-inom-utbildning-1.612098
https://docs.gitlab.com/ee/user/project/repository/gpg_signed_commits/
file:///C:/Users/alkha/Downloads/978-0-387-35413-2_18.pdf
https://docsdrive.com/pdfs/medwelljournals/ijepe/2020/17-22.pdf
https://docsdrive.com/pdfs/medwelljournals/ijepe/2020/17-22.pdf

TRITA – CBH-GRU-2023:088

www.kth.se

