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Abstract 

Temperature regulation in buildings can be tricky and expensive. A common problem when 

heating buildings is that an unnecessary amount of energy is supplied. This waste of energy 

is often caused by a faulty regulation system. This thesis presents a machine learning ap-

proach, using time series data, to predict the energy supply needed to keep the inside tem-

perature at around 21 degrees Celsius. The machine learning models LSTM, Ensemble 

LSTM, AT-LSTM, ARIMA, and XGBoost were used for this project. The validation 

showed that the ensemble LSTM model gave the most accurate predictions with the Mean 

Absolute Error of 22486.79 (Wh) and Symmetric Mean Absolute Percentage Error of 5.41 

% and was the model used for comparison with the current system. From the performance 

of the different models, the conclusion is that machine learning can be a useful tool to pre-

dict the energy supply. But on the other hand, there exist other complex factors that need to 

be given more attention to, to evaluate the model in a better way.  
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Sammanfattning 

Temperaturreglering i byggnader kan vara knepigt och dyrt. Ett vanligt problem vid upp-

värmning av byggnader är att det tillförs onödigt mycket energi. Detta energispill orsakas 

oftast av ett felaktigt regleringssystem. Denna rapport studerar möjligheten att, med hjälp 

av tidsseriedata, kunna träna olika maskininlärningmodeller för att förutsäga den energitill-

försel som behövs för att hålla inomhustemperaturen runt 21 grader Celsius. Maskininlär-

ningsmodellerna LSTM, Ensemble LSTM, AT-LSTM, ARIMA och XGBoost användes för 

detta projekt. Valideringen visade att ensemble LSTM-modellen gav den mest exakta förut-

sägelserna med Mean Absolute Error på 22486.79 (Wh) och Symmetric Mean Absolute 

Percentage Error på 5.41% och var modellen som användes för att jämföra med det befint-

liga systemet. Från modellernas prestation är slutsatsen att maskininlärning kan vara ett an-

vändbart verktyg för att förutsäga energitillförseln. Men å andra sidan finns det andra kom-

plexa faktorer som bör tas hänsyn till så att modellen kan evalueras på ett bättre sätt. 
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1  |  INTRODUCTION 

1 Introduction 

Heating and cooling systems in buildings have long been regulated manually and are now 

up for a change where an automated regulation is the desired form. Inside temperature is an 

important topic all over the world, some countries may need better cooling systems and oth-

ers may need better heating systems to have a good inside environment where people can 

feel comfortable.     

 

Most buildings have some sort of temperature regulation that a supervisor can digitally reg-

ulate. This temperature regulation is majorly based on the outdoor temperature and indoor 

temperature. For the indoor temperature, the influencing factors could be, for instance, the 

number of people inside the building, because the temperature inside will automatically be 

a little higher due to the heat emitted from human body. To heat or cool down a building, 

energy is needed, especially in warmer and colder environment. In Sweden a lot of time is 

spent inside buildings, we live and work in buildings and 40% of Sweden's energy usage is 

needed to make this possible [1]. Even though the transitions of energy to the indoor cli-

mate and power in the outlets are digitally managed in most of the buildings, the operations 

are often faulty and could be made more efficient.  

 

IQuest is a company that has designed a sensor that collects data regarding the indoor tem-

perature, outdoor temperature, and the energy supplied to regulate the temperature, from 

companies that they collaborate with. The data they have collected which is in a time series 

manner shows that the indoor temperature in most cases exceeds 21 degrees Celsius and 

sometimes is below 21 degrees Celsius. In the cases where the temperature exceeds the 21-

degree boundary, there is both an energy wastage and a loss in capital for the energy sup-

plier.   

1.1 Problem 

In the beginning, IQuest collected this data so the collaborating companies, by analyzing 

the data, could manually regulate the energy fed into the buildings or in other words de-

crease/increase the inside temperature based on what the data tells them. Since they have 

valuable data for analyzing and correcting faulty operations, IQuest intends to develop a 
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machine learning model that can predict the energy needed for the heating system to keep 

the inside temperature around 21 degrees, based on the future temperature outside, the tem-

perature inside, and other influencing factors. With a model like this, the regulation would 

be efficiently automated, and the energy wastage would be minimized. 

1.2 Goal of the project 

The goal of this thesis project is to evaluate different machine learning models that can 

mimic the regulation system in use and then use the most generalized model to predict the 

energy supply needed to acquire an inside temperature of 21 degrees Celsius. 

 

This goal can be broken down into several steps: 

• Analyze the time series data. 

• Find a suitable machine learning model for time series forecasting. 

• Compare and evaluate the models. 

• Compare the best model with the existing system. 

1.3 Limitations 

The architecture of the building and the average number of people that are commonly in-

side was information not available, and due to that reason, it wasn't possible to analyze the 

building as profoundly as desired. When predicting the energy supply, for optimal indoor 

temperature, it is important to consider the size and the average amount of people spending 

time in those rooms. Since that data was not available for this project they won't be taken 

into account when predicting, but the influence of some indirect factors is embedded in the 

total energy feature. Furthermore, if the rooms vary in size, the rooms should be divided 

into clusters to get a more precise prediction. Due to the time frame of the project, availa-

bility and scope the building will be clustered as one big zone. 
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2 Theory and Background  

This chapter will introduce time series analysis, time series forecasting, and the five ma-

chine learning models candidates for this thesis.   

2.1 Time Series 

The dataset that is observed and stored in chronological order is called a time series. The 

key to this kind of dataset is that the time is the index, which could be observations every 

year, month, day, hours, seconds, etc. The time interval between the observations is often 

equal [2]. 

2.1.1 Time series data - Characteristics  

The primary question when having time series data is how the future values can be pre-

dicted based on the past. The time series data is called univariate when the value that is be-

ing observed is a single variable whereas it is called multivariate when there are multiple 

variables that are being observed [2].  

 

Time series data can be analyzed and characterized in multiple ways. Some important char-

acteristics of time series are trend, seasonality, and cyclical [2].  A trend exists when a long-

term increase or decrease is seen in the dataset, it is called an increasing trend or decreasing 

trend. When the time series data is influenced by seasonal factors such as summer, it is said 

that there is seasonal patterns. Seasonality is of fixed and known frequency. In cases where 

the data display rises and falls that do not have a fixed frequency, a cycle has occurred [3]. 

 

The time series data is called stationary when its distribution does not change over time, the 

data has no trend and deterministic seasonal changes [2].  

2.1.2 Time series analysis - Approaches   

Analyzing the dataset from a statistical approach where characteristics such as trend and 

seasonality are analyzed is called time series analysis [2]. Time series analysis (TSA) con-

sists of both descriptive analysis, summarizing characteristics of a dataset, and exploratory 

analysis, which analyzes patterns, trends, and relationships between variables [2]. 
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Data cleaning, feature engineering, and training a machine learning model are part of TSA 

but are not considered strict TSA steps because these steps are common for all types of 

analysis. The steps that are crucial for TSA and considered as central, are understanding the 

variables, uncovering relationships between variables, and identifying trend and seasonality 

[2].  

 

Understanding a univariate variable includes the following, inspecting the mean, variance, 

and plotting the distribution. Standard deviation is a measurement of how much each value 

deviates from the mean, giving a good understanding of how spread the data is. To get the 

standard deviation of sample data the standard error (SE) can be used. The confidence inter-

val, whose value indicates how good an estimate is, can be calculated using the help of SE 

[2].  

 

With multivariate variables, the correlation between the variables should be investigated. 

Importantly the variables should not have any collinearity and feature leakage [2]. The 

trend, seasonality, cyclic variations, and stationarity are characteristics that can be analyzed 

using both a graphical approach and a mathematical approach. Seasonality and trend can be 

estimated using the formula presented in formula 1, where k is the degree of the polynomial 

and b is the coefficients being sought [2]. 

 

        (1) 

 

 

To test for stationarity, in time series, both plotting and statistical approaches can be used. 

A common statistical method to test for stationarity is the augmented Dickey–Fuller test, 

which will return a p-value. A p-value below 5% (0,05) indicates that the time series is sta-

tionary [2]. 
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2.1.3 Time series forecasting 

Forecasting is the process when a machine learning model is trained with the time series 

data and used to predict future values. Based on collected data and analysis, a suitable 

model/models are used [4]. 

2.2 Recurrent Neural Network 

Recurrent neural networks (RNN) were introduced around the 1980s when the Hopfield 

network was invented. The significant difference between RNN and the normal feed-

forward network is in the hidden states [5]. RNN can make different predictions by tak-

ing into account previously seen data, this is done by temporarily storing information about 

previous outcomes [6]. Figure 2.1 gives a simple representation of the RNN structure. 

 
 
 
 

 

 

 

 

 

Figure 2.1: Simple example of RNN structure that uses its output from the hidden layer again as input 
[5]. 

RNN faces some difficulties regarding forgetting previous important information due to 

vanishing gradient descent and exploding gradient descent. Vanishing- and exploding gra-

dient descent occurs in the neural network training process and commonly occurs when the 

length of the processing time series increases [7]. The weights and biases are updated dur-

ing the training process using a backpropagation algorithm. When this operation is done for 

multiple time steps with the same set of parameters, the value of the derivative can become 

too large (exploding gradient descent) or too small (vanishing gradient descent). Since that 
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value is used to update the parameters, a large value can result in undefined weights and bi-

ases and a small value can result in no significant update, and thus no learning [5]. The 

LSTM solves both the vanishing- and exploding gradient descent problem. 

2.3 LSTM 

In 1997 an advanced RNN model called long short-term memory (LSTM) was proposed by 

Hochreiter and Schmidhuber [5]. 

2.3.1 LSTM - Background 

LSTM is a type of recurrent neural network that works well with multiple deep learning 

tasks such as handwriting recognition and generation, speech synthesis, language modeling 

and translation, and analysis of audio and video [8]. The reason why LSTM stands out in 

these areas is because it can choose how much of the previously seen data will be reflected 

in the output, this makes LSTM a good option for predicting time series problems. LSTM 

neural network was developed to solve the vanishing- and exploding gradient problem that 

RNN faces. To make this happen the LSTM neural network uses three gates to select what 

information should be stored, updated, or deleted [6]. These gates will be properly intro-

duced below. 

2.3.2 LSTM architecture  

The LSTM neural network architecture consists of memory units. The memory units are the 

middle layer of the neural network, Figure 2.2 shows a detailed image of the memory unit 

in the hidden layers.  
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Figure 2.2: An overview of ANN architecture with LSTM where the memory units in the 

middle layer are presented [6]. 

 

A memory unit contains three gates (an input gate, a forget gate, and an output gate), a 

memory cell, and an input. The structure of one single memory unit is presented in Figure 

2.3   

 

 
Figure 2.3: One LSTM memory unit with three gates and the memory cell, the figure also 

shows the activation functions as symbols and the path (calculations) they take [6].  

 

The memory cell works like a long-term memory and holds all important previous infor-

mation. The forget gate specifies what percentage of the long-term memory should remain 

in the memory cell, this can be calculated by using a sigmoid activation function that will 

give a result between 0 and 1. The input and the recurrent input will each be multiplied by 

some weight, get summed up, and then added with a bias. This will work as a parameter for 
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the sigmoid activation function. The output of the sigmoid activation function will then be 

multiplied by the long-term memory [6].  

The input gate will calculate what percentage of the input will be added to the memory cell 

with the help of the sigmoid activation function and the tanh activation function. As in the 

previous process in the forget gate the input and the recurrent input will each be multiplied 

by a weight, get summed up, and then add a bias. This number will serve as a parameter for 

the tanh activation function. The tanh activation function gives a result between -1 and 1, 

this result represents how much of the input has the potential to be summed to the long-

term memory and is called potential long-term memory. How much of the potential long-

term memory will be added to the long-term memory is decided with the help of the sig-

moid function as in the forget gate. The output of the sigmoid activation function will then 

be summed to the long-term memory [6].   

The output gate is similar to the input gate, both processes use both the tanh activation 

function and the sigmoid activation function. The long-term memory will be used as a pa-

rameter for the tanh activation function, and the output will be the potential output. The sig-

moid activation function, with the help of the input and the recurrent input, will give what 

percentage of the potential output will be the output. The output will then be recurred to the 

memory unit and the whole process will be done again with a new input and new calculated 

recurrent input [6]. 

2.4 Attention Mechanism 

The attention mechanism in deep learning helps a model to focus on the relevant input fea-

tures when making predictions. By focusing on the relevant features and ignoring others the 

models become more efficient and accurate. The basic procedure of the attention mecha-

nism is that, at each time step, it attends every hidden state of all encoder nodes and deter-

mines the most relevant information [9].  

 

The attention mechanism consists of query, keys, values, and output which are all vectors. 

The mechanism works such that it maps a query and a set of key-value pairs to an output. 

With each value, a corresponding weight is calculated using a function compatible with the 

query and corresponding key. The weighted sum of values becomes the output [10].  
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There are several types of attention functions such as additive attention, dot-product atten-

tion, and scaled dot-product attention [10].  All three functions are similar with minute 

changes in calculations.  For simplicity and due to high similarities only the scaled dot-

product attention will be explained deeply.  

 

The computation works as follows: dot product is executed between all queries with the 

corresponding keys, and the result is then divided with the square root of the dimension of 

the queries (or key, both have the same dimension). Following that the softmax activation 

function is applied to obtain the weights for the values and lastly the value vector is multi-

plied by the weights. The formula for the scaled dot product is presented in formula 2. The 

dot product is almost identical to the scaled dot - product except for the scaling whereas, for 

the additive attention, the difference lies in the compatibility function [10]. 

 

   (2) 

2.5 AT - LSTM 

An attention-based LSTM is as the name conveys a model that uses both the attention 

model and the LSTM deep learning model. This model was proposed for time series in a 

research paper by Xun Liang, Aakas Zhiyuli, Shusen Zhang, Rui Xu, and Bo Wu [11] and a 

simplified representation of the full process is presented in Figure 2.4.  
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Figure 2.4: An overview of the AT - LSTM process [11]. What the figure conveys is that 

before the LSTM model gets the input the attention assigns different weights to each input 

variable so the LSTM model can focus more on them. 

 

The attention model takes the time series data as its input, and using the mechanism of at-

tention the independent values with higher influence on the target value can get higher 

weights associated with them. The output is then fed into the LSTM model to make a pre-

diction. AT - LSTMs core concept is to adaptively select relevant input features and, in that 

way, improve the accuracy [11].   

2.6 Ensemble Learning 

Ensemble learning is when you use multiple learning algorithms and take each into account 

when making a prediction. Some examples of ensemble learning are Bagging, Boosting, 

and Stacking.  

Stacking consists of multiple learning algorithms and a meta-learner. This meta-learner will 

take as input the output of the learning algorithms and learn from them all. Bagging will 

predict with the help of voting; all the learning algorithms will then go through a vote 

where those with the same prediction will accumulate votes. The prediction with the most 

votes will be used. Boosting will put more attention on weak learners and try to optimize 

them, by doing this the models will perform better overall [12].  

2.6.1 Gradient Boosting  

Gradient boosting is a technique that is used for minimizing the prediction error. The whole 

idea with gradient boosting is to provide greater emphasis to learners that have worse per-

formances. When using gradient boosting the next model will be trained with the error of 
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the previous model, this will lead to an ensemble of models. To predict on new instances, it 

is needed to sum all the predictions made from each of the models [13].  

2.6.2 XGBoost 

XGBoost stands for Extreme Gradient Boosting and is an open-source machine learning li-

brary. XGBoost builds upon supervised machine learning, decision trees, ensemble learn-

ing, and gradient boosting. This machine learning framework is scalable, can build trees in 

parallel, use memory efficiently and process big amounts of data at high speed. The reason 

why XGBoost is scalable is because it uses out-of-core computation. XGBoost can be used 

for both regression and classification problems due to it being an ensemble learner. To reg-

ulate overfitting it uses Regularized objective, shrinkage, and column sub-sampling. The 

regularized objective also helps the model to be as simple as possible, this is done by penal-

izing the model if it gets too complex. Column sub-sampling makes the computation of the 

parallel algorithm faster, this is done by making nodes communicate less data between each 

other and in that way reduce the communication overhead [14]. 

2.7 ARIMA  

ARIMA (Autoregressive Integrated Moving Average) is a very popular time series fore-

casting model that consists of three main components, AR (Autoregressive), I (Integrated), 

and MA (Moving Average) [15][16]. 

2.7.1 ACF and PACF 

Correlation is an indicator that describes the relationship between two different variables 

whereas autocorrelation describes the relationship of a variable with its previous values 

called lags [15]. 

 

ACF which stands for auto-correlation function is a method that can be used to find both 

the direct and indirect effect of values in previous time lags. PACF (Partial Auto-Correla-

tion Function) on the other hand is used to find only the direct effect of values in previous 

time lags [16]. 
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2.7.2 Autoregressive 

The autoregressive model predicts the future value of the target variable (y) using a linear 

combination of previous values of y as shown in formula 3. The amount of previous y val-

ues, lags, that are going to be used is denoted with the letter p, AR(p). AR (2), for instance, 

indicates that the lag is two, so y(t-1) and y(t-2) will be used to predict y(t) [3] [15].   

 

The value of p for the AR model can be chosen using the ACF and PACF methods. Gener-

ally, the PACF method is preferred over ACF for AR since it measures the direct correla-

tion between the current and past value, which is exactly what AR takes into account [16]. 

 

 

(3) 

  

The last term εt is called white noise [3], also called the error term which plays a key part 

when it comes to the moving average model. 

2.7.3 Moving Average  

The Moving Average model also uses past values but instead of using past values of y, it 

uses the past errors as a linear combination as presented in formula 4. Lags of MA are de-

noted with a q, MA(q) [15].  

 

For the lags same as for AR the method ACF and PACF can be used but the ACF is pre-

ferred here since the MA model uses the error term of past y values so analyzing the direct 

and indirect effect can be efficient [14].  

 

(4) 
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2.7.4 Integrated 

Integrating is the process where a nonstationary series is converted to stationary. There are 

several methods for making a series stationary, a very popular method is called differenc-

ing. Most of the time the differencing will happen multiple times to make the series station-

ary. The number of times a series is differenced to make it stationary is denoted with a d, 

I(d) [3]. 

 

2.8 Related Work 
In a study by Jui-Sheng Chou [17] single models, ensemble models and hybrid models were 

used to forecast the energy consumption using time series data collected from a residential 

building. For single models, SARIMA, ANN, SVM, LR, Classiffication & Regression tree 

(C&R tree) were used. Thereafter for the ensemble models the following was used, SVR + 

LR and bagging ANN. Lastly there was two hybrid models, SARIMA-MetaFa-LSSVR and 

SARIMA-PSO-LSSVR. All these models were evaluated using five different metrics, 

namely, R, RMSE (kWh), MAE (kWh), MAPE (%), MaxAE (kWh). It was shown that the 

hybrid model SARIMA-MetaFa-LSSVR was the most accurate model for the forecasting 

using the collected data. The RMSE, was 0.164 (scaled result) for the SARIMA-MetaFa-

LSSVR model.  

In another study by S. Nazir [18] forecasting energy consumption with time series data of 

home electricity was performed using different multistep LSTM models. In this study the 

vanilla LSTM, Bidirectional LSTM, Stacked LSTM and Convolutional LSTM were used, 

and the evaluation metric was RMSE. The models were evaluated using data from four dif-

ferent households. The result showed that the Convolutional LSTM model achieved overall 

high predictive accuracy and was also less computationally heavy. The RMSE achieved for 

the Convolutional LSTM was 23202. 

2.8.1 Relevance of related work 

The related work focused mainly on studies related to forecasting energy supply and the dif-

ferent types of models utilized. It is important to note that there is not a lot of difference in 

time series forecasting for energy supply and other types of time series data. The focus has 
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been to study and use models that has been proven to be effective in time series forecasting 

in general. 
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3 Methodology 

This chapter will cover the chosen methods, procedures, frameworks, and architectures 

used to analyze the time series data and to construct different machine learning models. 

The methods used in this thesis were:  

1. Preprocess the data. 

2. Build ML models. 

3. Evaluate models. 

Feature engineering is essential for the performance of machine learning models. Without a 

proper preprocess, the models will not be able to find patterns and make accurate predic-

tions. The models were built with proper parameters and then trained. The evaluation 

method was to make tests and observations. Due to that our thesis goal is to evaluate ML 

models, the method used was the implementation method and for evaluation, tests and ob-

servations were done. 

3.1 Tools and Frameworks  

The programming language used for this project was Python. The chosen coding environ-

ment is Jupyter due to its favorable visualization strengths. PyCharm is also used for stor-

ing reusable methods like merge dataset, and clean_df, which are methods used by several 

Jupyter files. Frameworks used are pandas, NumPy, seaborn, sklearn, Keras, xgboost, and 

normaltest.  

3.2 Preprocessing 

Most of the work went into preprocessing, both general preprocessing and TSA-based pre-

processing [2]. This coming section will cover the whole preprocessing process divided into 

three main areas. 
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3.2.1 Data 

The data in hand was in four separate CSV files, where each file contained information on 

one measurement feature. The measurements were of: 

 

• Indoor temperature 

• Outdoor temperature  

• District heating (Wh) 

• Heat pump (Wh) 

 

The indoor temperature consisted of measurement for each room in the building while the 

outdoor temperature was the measured temperature near the area where the building is situ-

ated. District heating and heat pump consisted of the measured amount of energy supplied 

to heat the building but from different sources as the name indicates. There was a prepro-

cessing done for each separate feature and then another preprocessing was performed after 

merging all the features to one dataframe.  
 

The idea behind preprocessing them separately was mainly because it would have been ex-

tremely complicated to merge them due to their heterogeneity. At the same time the data 

was in a format that wasn't easily comprehensible, so merging all together would have com-

plicated the analysis and preprocess. A simple representation of the dataset is presented in 

Figure 3.1. 

 
Figure 3.1: Simple representation of the four CSV files and their structure. The indoor temp 

CSV is simplified a lot, it had multiple columns each representing the indoor temperature of 

one room. 

3.2.2 Cleaning and Feature Engineering - Separate features 

Data cleaning, feature engineering, and a limited amount of TSA analysis were done for 

each CSV file consisting of four different measurements. All four CSV files were read as a 

dataframe using pandas. 
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To be able to comprehend the data, the time column for all four features which was in Unix 

timestamp was converted to datetime, which made it both interpretable and easier to plot. 

After that, a common cleaning step for all four features was to convert the time series data 

to some predetermined standard. The initial problem faced with the data was that the meas-

urements were of different time intervals. To make a clear example, the heat pump data was 

initially measured every hour but in the later days that changed to every minute. Whereas 

the outdoor temperature was measured every five minutes. There was heterogeneity both 

within the same feature and between features. Making a good decision regarding what time 

interval to use was a crucial step when merging, it is important that each row has values 

that represent that exact time and nothing else.  

 

For the indoor feature, as mentioned, the structure was a bit different, so the process of 

shifting them to the right rows was executed. Since no clustering had to be done an average 

of the temperature from all rooms was taken as the indoor temperature. The heating pump 

and the district heating meter on the other hand were a bit different. The sum of these two at 

a particular time is the total energy supplied to heat the building. However, the sensor col-

lects the data in a slightly different manner than explained right now, every time the sensor 

collects data it increments with the amount of energy supplied. That means the difference 

(delta time) between the energy supplied in the previous hour with the amount it is in now 

(present) is the total amount of energy supplied for that hour.  

 

The step of differencing each row from the other to get the energy supplied had to be done 

after a time interval for the features had been chosen. The complication of choosing an in-

terval was that, if the minute interval is chosen all four dataframes must go through some 

kind of imputation since a lot of the measurements aren't measured in that interval. On the 

other hand, if hourly intervals are chosen, data would be lost since only the data point for 

each hour is needed and the rest will be thrown away. For the ten-minute interval, both situ-

ations will occur, the data in an hourly manner will be imputed whereas the ones in every 

minute and every fifth minute will be thrown away. All three scenarios were analyzed and 

tested using simple models and the chosen time interval will be presented in the result sec-

tion. Figure 3.2 gives a simple overview of how the dataset looked after cleaning. 
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Figure 3.2: A simple representation of the four CSV files after all common cleaning step 

was performed. 
 

Before merging, some univariate feature engineering procedures were done. The basic pro-

cedure of checking the mean, variance, and standard deviation, and following that, scatter 

plots and histograms were plotted. With the separate features, finding outliers was a main 

goal so that less cleaning and more analyzing could be performed after merging. Apart from 

outliers, missing dates could be found using plotting methods. There were up to two months 

of missing data, specifically for the indoor temp. Having the energy supplied for those 

months is useless if the indoor temperature does not exist, the same implies for all other 

features too. The method used for solving will be discussed in the merging section. To ex-

plore the behaviors of the features, trend, and seasonality were checked. Since the data is 

based on temperature and energy, there should be a clear sign of trend and seasonality. 

3.2.3 Merging 

After thorough cleaning and analysis for the separate features, the next process was to 

merge the data to get one dataframe with independent variables (X) and the target variable 

(y) as presented in Figure 3.3.   

 



 
 
 
 

19  |  METHODOLOGY 

The merging has to be done with respect to the index, which is the datetime. Since there 

was some datetime missing, a merge based on the index will mean a throwaway of data in 

places where some features are missing but other features are available. Throwing away 

data was not sustainable because the time series data received originally was already very 

small, approximately one and a half years’ worth of data.  

 
Figure 3.3: The simple structure of the merged dataset.  

 

The method chosen was to make an imputation and since the dataset was very close to two 

years the decision was to expand the data to two years. Before making the expansion and 

imputation some extra independent features were added. The only independent features 

originally at hand were the indoor and outdoor temperatures. The reason to add extra fea-

tures was that using two features was not enough, even though they play a major role in de-

ciding the amount of energy supplied. The other independent features that were added were 

time periods. The features that were chosen were the hour, day, month, weekday, and sea-

son. Since machine learning models cannot handle any text-based inputs, all these features 

were so-called one-hot encoded and received their numerical representation. The target col-

umn called total energy was also added which was the sum of district heating and heat 

pump. Figure 3.4 shows a simple representation of the merged dataset.  
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Figure 3.4: The final merged dataset with additional features. 

 

With the dataframe ready with all the needed features, it was expanded using pandas with a 

specified interval of date and with the frequency of an hour. The approach that was taken 

was to fill in the missing months with the previous/following years data. The decision of 

using the previous or following came down to availability. However, the reason that the 

data was not of full two years, some datetime couldn't be filled using neither the previous 

nor the following, for that the method from pandas called forwardfill (ffill) was used. The 

imputation could confidently be performed using the techniques above since the values 

aren't random, they have close relationships with each other on both hourly and daily basis 

but also depending on the season. 

3.2.4 Feature Engineering and TSA - Merged data 

The merged data has the actual valuable information, and it was possible to analyze the re-

lationship between variables. Since the univariate analysis is performed, uncovering the re-

lationship was the first objective. To get a good insight on the correlation between variables 

and specifically between the independent variables and the target variable a correlation ma-

trix was used. With the dataframe a simple correlation table can be created using pandas 

built-in function, but to get a clearer view of how correlated each feature is the seaborn li-

brary was used to make a heatmap. The seaborn heatmap was then plotted using matplotlib, 
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specifically using the pyplot package. Discovering the relationship was useful to check the 

correlation between the target variable and the independent variables and to check for any 

collinearity between the independent variables. 

 

Because the total energy variable was derived using the sum of two existing features, which 

already were cleaned, no further cleaning was necessary. Using pyplot and pandas describe 

method the mean, and standard deviation were rechecked [2]. A histogram plot was made 

to give a good view of the distribution of the energy supply and the frequency. 

 

The three important steps when it comes to TSA are to identify the trend, seasonality, and 

stationarity [1]. Checking for stationarity was specifically important since one of the mod-

els planned to use was ARIMA, which performs optimally when data that is stationary [3]. 

To identify the trend and seasonality the polyfit method from numpy was used. Using a fit 

function with the X and y feature and a specified degree makes it possible to generate the 

trend and seasonality as showed in Figure 3.5 [2].   
 

 
Figure 3.5: Methods for creating trend and seasonality [2]. Both methods use the function 

fit for finding season and trend.  
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A test for stationarity was done using the augmented Dickey-Fuller [2] and for this test the 

stattools from the package statsmodels.tsa were used. The return of the p-value decides if 

the time series data is stationary.  

 

Most of the analyzing methods were performed by plotting different types of figures, with 

different time intervals. Simple histograms and scatter plots present a simple overview of 

the time series data and help detect evident outliers, an example can be seen in Figure 3.6.  
 

 
                  

Figure 3.6: A scatter plot combined with a histogram. 

 

To get to learn more about the behavior of the data under different time intervals the sea-

born boxplot method was used. Utilizing the boxplot method and with all the period fea-

tures that were added, five boxplots were plotted. The y-axis of the boxplot is the total en-

ergy, and the x-axis is the different period features. To know how the period features vary 

and how correlated they are to the total energy this boxplot method was used. Although the 

correlation matrix gives a good interpretation with values and color gradient, using the box-

plot, as seen in Figure 3.7, had the advantage of showing patterns that were even more com-

prehensible. 
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Figure 3.7: An example of a boxplot for the total energy supplies each month. 

3.2.5 Preparing the time series data for training 

The time series data has to be handled a bit differently compared to a normal dataset. That 

applies specifically when splitting the data, the method of splitting was different for differ-

ent areas of use. 

 

X_train, X_test, y_train, y_test, split with different ratios were performed using the 

train_test_split method from sklearn. Train test split shuffles the data by default and this is 

not optimal for time series because the data needs to be sequential to be able to predict the 

future, therefore the shuffle was deactivated. 

 

This simple split approach was performed to quickly get an overview of how the models 

perform so that an unnecessary amount of time was not wasted on tuning a model that per-

forms very weakly. Thereafter to build and train the model another splitting approach was 

taken, which was, the train test validate method, the same train_test_split function from 

sklearn was used but this time the split was performed twice. A third splitting approach was 

also used, which was for cross-validation and will be described in a later section. 

 

The independent values are near the range of -15 to 40 C but the range for the target varia-

ble is between 10000 to 800000 so to overcome the problem the minmaxscaler from sklearn 

preprocessing was used. Testing showed that only scaling the target variable was effective, 

so only the total energy column was scaled. The minmaxscaler scales the value between 

zero and one. 
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3.3 ML - Models 

In this section, the models used for forecasting and how they were constructed will be intro-

duced. The final cleaned and merged data was divided into input data (X) and output data 

(y). The input data consists of indoor temperature, outdoor temperature, season, month, 

weekday, day, and hour. The output data is the total energy supplied. The models explained 

below will use all or some of the data to make predictions.  

3.3.1 ARIMA - Building and Training 

Only the target variable will be used to train the ARIMA model, and the lags will decide 

how many y values from the past to consider [3,15,16]. Verifying that the data is stationary 

was completed at preprocessing.  

 

Before training the model, firstly the number of lags for the AR and the MA had to be de-

cided, for that the auto_arima method from the pmdarima library was imported. The 

auto_arima method taking the target variable performs a stepwise search to minimize the 

AIC. Stepwise search to minimize AIC refers to the process of selecting optimal parameters 

for the ARIMA model based on the data in hand. Generating a low AIC value relies on 

finding the right value of lags for the AR, I, and MA. The generated (p,d,q) values were 

used to build the ARIMA model [3,15,16]. Before building the ARIMA model the target 

data was simply split using the iloc method from pandas. The splitting was performed with 

different ratios so that it was possible to evaluate the models abilities to perform on differ-

ent sizes.  

 

Building the ARIMA model was accomplished using the statsmodels library, and the p,d,q 

value received from the auto_arima method was fed in as the order parameter for the 

model. For assurance, a simple trial and error based method was also performed where 

some random p,d,q values, close to the values generated from the auto_arima, was chosen 

to test the models performance.  
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The model was fitted using default parameters and the metrics used for evaluating the 

model were Mean Absolute Error and Symmetric Mean Absolute Percentage Error. Alt-

hough metrics values can be very descriptive, simple plotting with matplotlib was also per-

formed to compare the result visually.  

3.3.2 LSTM - Building and Training 

As mentioned in section 3.2.5, the train test split method from sklearn was used to split the 

data into train and test. For all the LSTM models two types of approaches were used to cre-

ate the train and test data. Both approaches utilized the train test split method but one of the 

approaches had one extra step.  
 

The first approach had two steps, the first step was the simple train test split which gener-

ates the X_train, X_test, y_train, y_test, and the next step was to use the TimeSeriesGenera-

tor from the Keras library were the splitted data was converted into a train generator and 

test generator. The procedure of creating train and test generators is presented in Figure 3.8. 
 

 
Figure 3.8: The code for creating the train and test generator with a specified length and 

batch size. 

 

TimeSeriesGenerator (TSG) is specifically designed for time series data and the key char-

acteristic is that it will generate lags based on the length parameter. Using TSG has the ad-

vantage of finding temporal dependencies and has a good training efficiency since it gener-

ates overlapping sequences which provides more training samples. A length of three means 
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that X [1,2,3] will be used to predict the y[4]. The difference compared to the ARIMAs ap-

proach of lags is that the LSTM will use the independent feature (X) instead of the target 

(y). When using this lag approach one key feature from the X will be missing, which is the 

outdoor temperature at that hour. To deal with this, a new column called next_out-

door_temp was created. The Figure 3.9 presents a simple overview of how TSG works. 

 
Figure 3.9: A simple representation of how the TimeSeriesGenerator divides the data into lags.  The 
first three columns are used to predict the fourth target value. Note, that the column Next_Out-
door_Temp uses the value from the coming row of Outdoor_Temp.  

The second approach was to simply split the data into X_train, X_test, y_train, and y_test. 

Since the LSTM requires the shape to be 3d the X_train and X_test was converted to 3d 

shape. For the TimeSeriesGenerator the X feature is not converted into a 3d shape because 
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the TimeSeriesGenrator does it automatically. Both these two approaches of splitting were 

used for the training to see if the models perform any differently. 
 

After a simple training with a basic construction was executed the train test validate method 

was used along with hyperparameter tuning to test different values for the number of neu-

rons, learning rate, activation, and dropout rate. The hyperparameter tuning and train test 

validate method helped to build the most accurate model and to properly validate them. The 

chosen parameters are presented in Figure 3.10. 

 

Figure 3.10: The parameters and values used for hyperparameter tuning. 

 

The LSTM model was constructed based on the result from the hyperparameter tuning and 

with some trial-and-error approach.  

3.3.3 Ensemble LSTM - Building and Training 

For the ensemble LSTM, five models with the exact same construction as for the simple 

LSTM were trained and the average of their prediction was used as the predicted value. 

Pseudocode of how the ensemble LSTM was build is presented in Figure 3.11. The idea be-

hind this approach was to utilize the fact that different initial conditions on the five different 

models could lead to better predictions. This model was also trained with two different ap-

proaches as mentioned in the previous section. 
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Figure 3.11: Pseudocode for building the ensemble LSTM. 

3.3.4 AT-LSTM - Building and Training 

The AT-LSTM model was constructed due to its proven success in time series forecasting 

and for the attention, the scaled dot product attention was implemented [11][10]. The model 

consisted of two main building blocks, the attention mechanism, and the LSTM. The scaled 

dot product attention is intended to give higher weights to independent variables that have a 

higher influence on the target [11]. Using the input shape of the time series data, the query, 

key, and value was created with the help of the Dense layer from keras library. The relu ac-

tivation function was used with a specified unit size. Following that the scaled dot product 

was executed [10].  The LSTM model was built with the same parameters and layers as the 

previous LSTM models and was trained only with the simple train and test, using no lags.  
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3.3.5 XGBoost - Building and Training 

The train test split method used for the XGBoost model divided the train and test data into 

equal amounts. 

 

Hyperparameter tuning was made with the sklearn method GridSearchCV. The parameters 

analyzed were eta, gamma, max_depth, alpha, min_child_weight, and lambda. Eta is used 

to prevent overfitting and can be a value between 0 - 1. Gamma regulates how many splits 

the tree will make. Alpha and lambda specify how conservative the model will be. The 

min_child_weight parameter specifies the minimum number of samples that each child 

node needs to have. With the help of X_train and y_train the best value for each parameter 

was found.  

 

The model was built with the help of XGBoost method XGBRegressor with all the hyper-

tuned parameters among others like n_estimators, early_stopping_rounds, and learn-

ing_rate. The model was then trained using X_train and y_train. The loss function used was 

Root Mean Squared Error (RMSE) and the metric functions were Mean Absolute Error 

(MAE) and Symmetric Mean Absolute Percentage Error (SMAPE). The predictions from 

XGBoost were then compared with the actual data and visualized with plots.  

3.3.6 Evaluation  

The validation methods used were cross-validation, plotting and the metrics Mean Absolute 

Error (MAE) and Symmetric Mean Absolute Percentage Error (SMAPE).  

 

Using MAE, and SMAPE was efficient when trying to improve the model since a lower 

score indicates a better model. So, each time new layers or neurons were added the focus 

was to see if the MAE, and SMAPE improves and as well as compare those values with the 

other models. In some cases, the metric MAE is not very effective to judge the models per-

formances. In those cases, SMAPE was the metric utilized. 

 

The first method used to evaluate how well the predictions were, was using a simple plot of 

the prediction and the actual values. Because the model is intended to predict on an hourly 

basis it is important to get a closer view rather than only checking the whole test dataset. 
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For that, multiple plots in an interval of 24 hours were made to see how well it performs. 

To get a better understanding of the models performances each season must be evaluated 

separately. To accomplish that, cross-validation was used. 

 

Dividing the data into multiple folds of train and test, was done with the help of the method 

TimeSeriesSplit from sklearn. This method takes into account that data in time series format 

should not be able to predict past values using future values, which is why it preserves its 

original sequence. The TimeSeriesSplit for the first fold splits the data into a train and test 

and then for the next fold uses both the train and test from the first fold as train and shifts to 

new test data and so on. Figure 3.12 shows a TimeSeriesSplit with five folds. Using this ap-

proach, the model was validated for all four seasons. Those predictions accompanied by the 

actual values were then plotted for a better understanding of the performance and each fold 

was also validated using SMAPE and MAE.  
 

 
Figure 3.12: A representation of cross-validation using TimeSeriesSplit with five folds.  

 

To evaluate the best model further evaluation was performed. The evaluation consisted of 

the model predicting the energy supply needed to achieve the indoor temperature of 21 de-

grees Celsius. Using one-year data, the original indoor temperature values were replaced 

with 21 and then used by the model to predict. With the prediction and the original data, a 

simple plot was used to get a visual comparison.  
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3.4 REST- API 

A REST- API was built using the Flask library to simplify the process for external devices 

and applications to predict using the trained models. Saving the neural network models was 

done using the inbuilt save function whereas the XGBoost was saved using pickle. Two ap-

proaches were used to get the outdoor temperature, the first one lets the client specify the 

outdoor temperature and the second one fetches data from SMHI (Sveriges Meteorologiska 

och Hydrologiska Institut). To get the outdoor temperature for the area where the building 

is located, the coordinates for the nearest station in that area will be specified when fetching 

the data from the SMHI API. Three different API calls were made for the models, first one 

predicts the energy supply needed for a specific hour, the next one predicts the energy sup-

ply needed for each hour for a full day, and the last one predicts the energy supply for each 

hour for a whole week. Figure 3.13 below presents a simple overview of the architecture.   

 

 
Figure 3.13: Architecture of the REST-API. 
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4 Results 

This chapter presents the result of the project. The time interval result is presented in sec-

tion 4.1. In section 4.2 the result of the correlation analysis is presented. Sections 4.3 to 4.7 

presents the performance of the different models. Lastly, 4.8 presents the best model pre-

diction using 21 degrees Celsius.    

4.1 Time Interval 

The achieved results are from section 3.2.2. The decision to utilize hours as the time inter-

val was due to the complications imputation gave and the poor performance of models us-

ing other time intervals. The number of rows with a value zero in the total energy column 

made the models using one-minute intervals and ten-minute intervals perform poorly. An-

other reason to use hours was that the building's energy system changes per hour.     

4.2 Correlation and Boxplot 

The achieved results are from section 3.2.4. The seaborn heatmap in Figure 4.1 below 

shows the correlation between the variables.  

 

 
Figure 4.1: Correlation matrix, showing the correlation between target variable and inde-

pendent variables. 
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Variables Day, Weekday, Hour, and Month had similar correlations with total energy, they 

all correlated close to zero. A correlation with value zero means there exists no relationship 

between the variables and therefore are unrelated, the Day attribute had the worst correla-

tion (-0.028). district_heating and heatpump_heating had a strong positive correlation with 

total energy, 0.95 respectively 0.54. A positive correlation means that both variables change 

in the same direction. Variables outdoor_temp, indoor_temp, and season (in that order) had 

a strong negative correlation with total energy. This means that variables change in the op-

posite direction, when one variable increases the other decreases. The attributes were fur-

ther analyzed with boxplotting. The boxplot in Figure 4.2 represents the average energy 

supplied every day. The y-axis is the Total energy (Wh), and the x-axis is the days in a 

month.   

 
Figure 4.2: Boxplot showing energy supply per day. 

This boxplot shows that the energy supplied per day follows no rhythm and is therefore of 

no use. Due to this factor, the Day variable is not included in the models inputs. 

 

The final input features for all models were: 

• Outdoor Temperature 

• Indoor Temperature 

• Hour 

• Month 

• Weekday 

• Season 
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4.3 ARIMA 

The Auto ARIMA method gave the p,d,q values of  2,1,4. This result means that the data is 

nonstationary and needs differentiation. That result opposes the result from the augmented 

Dickey-Fuller test which gave a p-value of 0.0019 which indicated stationarity. Plotting 

methods also indicated stationarity. An ARIMA model using p,d,q values 2,1,4 which was 

generated from the auto_arima was built and further some other values near 2,1,4 were also 

tested as a trial and error method. The figure below shows the performance of an ARIMA 

model using 2,1,4 as lags, predicted values (blue line) compared to the actual values (or-

ange line).   

 
Figure 4.3: ARIMA performance compared with actual values. The y-axis is the Total En-

ergy (Wh) and x-axis is the datetime. 

 

The mean absolute error and symmetric mean absolute error are presented in Table 4.1.  
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Table 4.1: MAE and SMAPE value for ARIMA. 

 

4.4 LSTM 

The results from hyperparameter tuning using a set of chosen parameters shown in section 

3.4.2 Figure 3.12 gave rise to a LSTM model with the structure shown in Figure 4.4.  

 

 
Figure 4.4: The construction of the LSTM model using Tensorflow. The architecture con-

sists of three LSTM layers with 64 neurons and following each layer there is a correspond-

ing LeakyReLU layer with an alpha of 0.5. There is also a dropout layer with a drop rate of 

0.1 and lastly the one output layer with one neuron. The best optimizer based on the results 

from hyperparameter tuning was Adam. 

 

A train test split with a ratio of 90-10 using the TimeSeriesGenerator (TSG) with a length 

of three was the first LSTM model trained. Note that in this approach, due to lags, there is 

an extra input feature called next_outdoor_temp that has been added as mentioned in sec-

tion 3.4.2. The result of the LSTM models performance using TSG is presented in Table 

4.2. 

 

Table 4.2: MAE and SMAPE value for LSTM using TSG. 
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Figure 4.5 shows a plot of the model's prediction compared with the actual value for the 

whole test dataset. 

 

  

Figure 4.5: This is the plot result of the LSTM using TSG where the blue lines represent 

the prediction and orange lines represent the actual value. 

 

Without using lags, only using the corresponding independent feature to predict its corre-

sponding target value was the second approach as described in section 3.4.2. The perfor-

mance of this approach using the LSTM model is presented in Table 4.3 

 

Table 4.3: MAE and SMAPE value for LSTM using simple split.

 
Figure 4.6 shows a plot of the model's prediction compared with the actual value for the 

whole test dataset. 
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Figure 4.6: Simple split LSTM prediction compared with actual values. 

 

The cross-validation method with five folds for the TSG approach yielded the result pre-

sented in Table 4.4 

 

Table 4.4: MAE and SMAPE using TSG for each fold and the average is presented in the 

table. 
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The cross-validation method with five folds for the simple split approach yielded the result 

presented in Table 4.5 

 

Table 4.5: MAE and SMAPE using the simple split approach for each fold and the average 

is presented in the table. 

 

 

4.5 Ensemble LSTM 

The result of Ensemble LSTM using the TSG is presented in Table 4.6. 

 

Table 4.6: MAE and SMAPE value for ensemble LSTM using TSG. 

 
Its corresponding plot is presented in Figure 4.7. 
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Figure 4.7: The prediction of Ensemble LSTM, with TSG, compared with the actual val-

ues.  

 

The result for the simple 3d shaped train & test is presented in Table 4.7 and its correspond-

ing plot in Figure 4.8. 

 

Table 4.7: MAE and SMAPE value for ensemble LSTM using simple split.
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Figure 4.8: The prediction of Ensemble LSTM, with simple split, compared with the actual 

values. 

 

Lastly the result for both approaches using cross-validation yielded the result presented in 

the Table 4.8 and Table 4.9. 

 

Table 4.8: The cross-validation result for ensemble LSTM using TSG. MAE and SMAPE 

for each fold and the average is presented. 

 
 



 
 
 
 
42  | RESULTS 

Table 4.9: The cross-validation result for ensemble LSTM using simple split. MAE and 

SMAPE for each fold and the average is presented. 

 

4.6 AT-LSTM 

The hyperparameter tuning results for the model AT-LSTM was using 64 neurons, 0.2 

dropout rate, activation='relu', and optimizer='adam'. Attention-LSTM gave accurate pre-

dictions close to the actual values. The graph below shows the model's predictions com-

pared with the actual values when using no lags. 
 

 



 
 
 
 

43  |  RESULTS 

Figure 4.9: The blue line is the AT-LSTM prediction, and the orange line is the actual val-

ues. 

 

The MAE and SMAPE for this model can be viewed in the Table 4.10 down below.  

 

Table 4.10: MAE and SMAPE value for AT- LSTM using simple split. 

 
The outcome of the cross-validation method is presented in Table 4.11. The average of all 

folds is calculated for a better understanding of the overall performance.  

 

Table 4.11: The cross-validation result for AT-LSTM using simple split. MAE and SMAPE 

for each fold and the average is presented. 

 

4.7 XGBoost 

Hypertuning of the XGBoost model gave the result:  
{'alpha': 0.05, 
 'eta': 0.05, 
 'gamma': 0, 
 'max_depth': 1, 
 'min_child_weight': 0, 
 'reg_lambda': 0.05} 

 

These parameters were used to train the model. The graph below shows the result of the 

model's predictions compared with the actual values. 
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Figure 4.10: The XGBoost performance. The blue line is the XGBoost performance, and 

the orange line is the actual values. 

 

Table 4.12 down below demonstrates the MAE and SMAPE for the model.  

 

Table 4.12: MAE and SMAPE value for Xgboost. 

 
The MAE and SMAPE for the different folds in cross-validation are presented in Table 

4.13. The average of all folds is calculated for a better understanding of the overall perfor-

mance.  
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Table 4.13: The cross-validation result for XGboost using simple split. MAE and SMAPE 

for each fold and the average is presented. 

 

 

4.8 Prediction with 21 degrees C 

The Figure 4.11 presents the ensemble model prediction compared with the original data 

obtained from the company. The data used for the prediction is the original data with the 

modification of the indoor temperature to 21 degrees Celsius. 

 

 
Figure 4.11: The prediction of the ensemble model using an inside temperature of 21 de-

grees compared with actual values. This figure shows data from a full year. 
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5 Analysis and Discussion  

This chapter presents the analysis of the results achieved in chapter 4. The analysis will 

begin with interpreting the variables correlation and then move forward to analyzing the 

ML models performances and evaluation techniques. Lastly, alternative methodologies will 

be presented.  

5.1 Interpreting variable correlation  

By plotting and using heat maps it was possible to get a better understanding of the data. It 

was no surprise that variables district_heating and heatpump_heating had such a high corre-

lation with total_energy. Outdoor_temp, indoor_temp, and season had a very high negative 

correlation with total_energy, this result was expected. When temperature decreases the en-

ergy supply grows to accelerate the heating of the building and when temperature increases 

less energy is needed for heating.  

 

The variables Day, Weekday, and Hour gave results very close to zero, and after plotting 

these variables with respect to the energy supplied the result made more sense. The energy 

supplied does not have major changes for these intervals. Figure 4.2 in section 4.2 presents 

the energy supplied for each day. The daily change is not immense and results in low im-

portance for the models predictions. For that reason, the Day attribute was removed from 

the models training data.   

 

The Weekday attribute was chosen because we analyzed an office building. The mindset 

was to find patterns in the data due to no employees working on weekends. Figure 5.1 pre-

sents the energy supplied for each weekday.  
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Figure 5.1: The energy supply per weekday. 
 

As shown above, the energy supplied is usually higher on weekdays compared to week-

ends. The 50 percent which is the colored box and the median which is indicated with a line 

are very similar for both workdays and weekdays. This can be due to people on workdays 

contributing to heating the building and can also be data from the summer. Whereas for the 

rest 25 percent of the data which is above the colored box a clear difference can be seen be-

tween weekdays and workdays. Therefore, the Weekday attribute was included in the train-

ing data.    

 

The variable Hour was intended to find patterns of energy supplied during non-working 

hours. Figure 5.2 presents the energy supplied for each hour.  

 

 
Figure 5.2: The energy supply per hour. 
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The plot shows that the energy supply goes slightly up around 6 o'clock and then down 

again around 18 - 19. This was the pattern we were searching for using the variable Hour 

and that is why we chose to include it in the training data even though it has a low correla-

tion with total energy.  

 

5.2 Performance of the machine learning models  

First of all, for the ARIMA model, the metrics and the plot convey that the model did not 

perform well. There can be several reasons for this, firstly the dataset, two years of data 

probably is not enough for an ARIMA model to perform well. The second reason is that us-

ing only the previous y value, maybe is not enough for solving this problem. There are a lot 

of other factors which are not taken into consideration such as the outdoor temperature. It is 

important to note that the value of energy supply has those influencing factors such as out-

door temperature baked into itself but having them as inputs will give them a higher focus 

which is missing with the ARIMA model. In conclusion the ARIMA model was not suita-

ble for the dataset in hand. For that reason, there was no additional hyperparameter tuning 

or cross-validation executed for this model. 

 

The XGBoost was somewhat unique, it performed better when the train data was less. The 

result of XGBoost presented in the result section is a 90-10 split and this was done so that 

the models can be compared with the same test data. But the XGBoost performs best for a 

split of 50-50. A positive aspect is that the XGBoost can perform better than the rest of the 

models using less data. The Same 50-50 approach was performed with the rest of the mod-

els and they were not able to perform equally well.  

 

For the LSTM and ensemble model two approaches were performed. Both performed 

equally well but it was possible to see that the simple way of splitting by not using any lags 

performed slightly better for both the models. This can be seen by comparing the result be-

tween the models from both train test splits of 90-10 and the average result from cross-vali-

dation. For this case using a simple way of splitting was more efficient than using TSG.  
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The main reason for choosing TSG apart from that it is mainly designed for time series, was 

the advantage of overlapping sequences which was believed to be helpful since the data in 

hand was very small. Even though the TSG approach didn't perform that poorly, the simple 

way of splitting gave a slightly better result for this problem. But it doesn't mean that the 

TSG will be ignored, if future research is performed in this field, for example, if more da-

taset is collected in the future and new training is executed, both approaches will be tested. 

TSG has its advantages when it comes to finding temporal dependencies and when having a 

large dataset since it may not be practical to use the entire sequence as input. 
 

Moving forward, of the three LSTM models when comparing the result regardless of the 

approach chosen, there is a clear indication both from the MAE, SMAPE, and from the 

plotting that the ensemble LSTM is the model that performs best among them. 

 

The most anticipated model AT-LSTM was the least-performing model among these three. 

As mentioned in section 2.6 the main property of the attention is to give higher weights to 

the variables with higher influence on the target and it is very clear from the metrics and the 

plot that the model failed to achieve that. Comparing the result from AT-LSTM with simple 

LSTM it is evident that the LSTM using equal weights to all input values overperformed 

the AT-LSTM. The most probable reason for this is that the attention focused on the wrong 

variables and gave them higher weights, this hypothesis is considered the most probable 

case since it performed worse than the simple LSTM. Why the attention could have focused 

on the wrong variables could have been that it was fed with a very small amount of data 

and due to that it failed to recognize the actual contributing variables and maybe saw some 

short-term factors of some variables and decided to give such variables higher weights.  

 

Both the LSTM and ensemble LSTM performed well but the ensemble model was one step 

ahead, overall, it was off with 1% less and has an MAE difference of 2000-3000 on average 

(this includes both train test split train and cross-validation). The strength of the ensemble 

LSTM is that it is built upon the LSTM construction that performed decently well and 

when having multiple of them with different initial conditions they can capture different 

perspectives and sources of variation in the data. This leads to improved generalization, and 
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robustness and also reduces the risk of overfitting to specific patterns in the training data. It 

is noticeable from the result that the ensemble managed to succeed with that.  

 

In summary, the result shows that the ensemble LSTM performs best. The plot shows how 

well the ensemble model predicts compared to the actual and according to SMAPE the 

model is off with 5.41% (simple split approach) and for cross-validation it is 16.53%. This 

is the best score achieved among all the models. 

5.3 Ensemble-LSTM for 21 degrees C 

Ensemble LSTM proved to be the most efficient model and was, therefore, further evalu-

ated to analyze the generalization of the model and how suitable it is to achieve the goal. 

The model was trained on a dataset where the indoor temperature was in the range of 19-26, 

but the model will mainly be used to predict the energy supply needed to get 21 degrees. 

The result of the estimation of how well the model has generalized can be seen in Figure 

4.11, section 4.8. It can be noted that the energy prediction is slightly lower than the origi-

nal which seems logical since more than 30 percent of the original dataset contains an in-

door temperature over 22 degrees. This is a good indication that the model considers the in-

door temperature when predicting, but a much deeper analysis must be performed. Further 

investigation with the help of plotting could have been done, such as comparing the temper-

ature movements with the predicted energy supply to see if the model predicts lower when 

it should.  

 

A more precise way of evaluating the predictions is by either making a simulation or using 

the model in practice. The problem is that knowing with certainty that the predicted amount 

will lead to 21 degrees is impossible if not tested.   

5.4 Interpreting the Performance 

MAE is a very good metric to get a value-based representation of how much the average er-

ror is. For example, for the ensemble LSTM with a simple split, the MAE was around 22 

000, which indicates that the model would predict with an average error of that value. This 

gives a good understanding of how well the model performs when taking into consideration 

that the values in most cases exceed 200 000. Being off with 22 000 is very decent and can 
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of course be improved. The SMAPE is similar but is used to give a percentual representa-

tion and this can give a quicker understanding of the performance since it directly says in 

percentage how off the model's prediction is whereas for the MAE some self-analysis has to 

be made. But interpreting the metrics is not as straightforward and at the same time they 

might not be the best way to evaluate in this case. 

 

Throughout the previous section the word “best”, and ”poor” has been mentioned for per-

formance but it is a very vague way of expressing the models performances. Continuing 

with the previous example, having an ensemble model with MAE 22 000, it is important to 

note that when comparing each predicted value with the actual there will be instances 

where the error exceeds or subceeds the MAE. The point that is tried to be conveyed is that 

those hours where the prediction is way off are not visible in the metrics and can, if de-

ployed in the real world, be very problematic. It was for this reason a simple plotting 

method was chosen, the figures presented in the result section are of the whole test dataset 

but when the plot was analyzed multiple plots, each with 24 intervals, were made. But that 

was a very tedious approach, plotting test data split into 24-hour intervals is a lot of plots 

and at the same time hard to manually analyze.  

 

Lastly, cross-validation as mentioned in section 3.4.4 was to test the model on different da-

tasets and specifically how the model performs during different seasons. It was possible to 

get a good overview of how the model performed during different seasons both using the 

metrics and plots. Using the cross-validation it was possible to note that all the LSTM mod-

els performed worst for the folds two and five, and these two folds were the winter season. 

There were two restrictions faced with the cross-validation, the first one was the size of the 

dataset and the second one was the metric SMAPE.  

 

When predicting on some test folds the test data was unseen, it is understandable that the 

test data should be previously unseen but, in this case, it was trained on data during the win-

ter season and predicted for the spring. This applies only for the two first folds because 

from fold three and onwards the model had seen a full year. The SMAPE was a good metric 

to get a percentage representation, but it had one drawback, it was sensitive to zero values. 
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Our dataset had zero values mainly during summer seasons, in most hours no energy is sup-

plied for heating the building. The SMAPE was contradicting the MAE in folds three and 

four (summer season) and it was mainly for the reason of zero values. 

 

Overall, by using two metrics, cross-validation and plotting for evaluation, it was possible 

to be as diversified as possible so that the evaluation for the model is not dependent on one 

method and can be as good as possible from different perspectives. 
 

5.5 Alternate Methodology  

The alternative methodologies mentioned below lead to further investigation and discus-

sion. 

5.5.1 Building Architecture  

As mentioned in Chapter 3 data about the room sizes was not available. If this data was 

provided a method called clustering would be a good approach for dealing with this prob-

lem. By putting rooms, with similar sizes, into clusters the rooms would not be treated 

equally. A room with 80 m2 needs more energy supply than a room of 20 m2. Rooms often 

have different sizes, and the project would have been more realistic if the model would 

have taken this into account. 

5.5.2 Metric for Evaluation 

The metrics chosen were mean absolute error and symmetric mean absolute percentage er-

ror, these were the most suitable for our five models. It happens though that these metrics 

sometimes contradict each other and give us an uncertain result. A third metric would be a 

good solution, but it wasn't found. 

5.5.3 Alternate ensemble model 

As mentioned above in section 5.2 the ensemble model was the most accurate model. A 

sixth model that consists of both XGBoost and LSTM could be tried. The XGBoost predic-

tions could be used as extra input for the LSTM models and in that way help the LSTM to 
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predict more accurately. Alternatively using an ensemble approach where each model is re-

sponsible for predicting the energy supply for one season could be tried. Using such a 

model can improve the accuracy since the model is focused on only one season. 

 

5.6 Projects impact on economy, social, ethics, and environment  
By using a ML model that make accurate energy supply predictions instead of hiring con-

sultants to regulate it manually will make an economic impact on the company in charge for 

the energy supply. The company will no longer need to pay unnecessary salaries and can 

focus on further improvements. Looking from an environmental point of view a well work-

ing ML model will make more accurate predictions than a human and by that contributing 

to less spill of energy. The change of energy regulation will have no impact on a social as-

pect as no person will get in hand with it.  

 

From an ethical aspect using ML models can be both good and bad. Some employees may 

lose their job and can be seen as bad but on the other hand less energy will be wasted, and 

less damage will be made on the greenhouse effect. If those two consequences get com-

pared to each other, the use of a ML model makes more good than bad. 
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6 Conclusions 

This thesis has evaluated five machine learning models that predict the energy supply 

needed to regulate the inside temperature of smart buildings. The first goal was to analyze 

the time series data, and this was successfully done using feature engineering and TSA, but 

there's room for improvement. Of those models, ARIMA was not suitable for this problem. 

Both the ensemble LSTM model and the XGBoost model gave promising results. The com-

parison of the models showed that the ensemble LSTM, using the simple way of splitting, 

was the most precise one with an MAE of 22486.79 and SMAPE of 5.41 %. A limited com-

parison between the current system and the ensemble LSTM was performed.  

 

Three out of four goals were accomplished as expected. Comparing the ensemble LSTM 

with the current system needs further analysis, this could not be done due to it being too 

time intensive for the scope of the project.  

 

In conclusion, machine learning can be useful for predicting the energy supply in smart 

buildings but needs a proper evaluation before deployment.  

6.1 Future work 

In the process of analyzing the data, there were data points that was suspected to be outliers 

but could not with certainty remove them. With an expert in the field, these suspicions 

could be confirmed and removed. By removing the outliers, the model will be more gener-

alized.    
 

One problem constantly repeated throughout the report was that the dataset was too small. 

That could have been an affecting factor as to why models such as ARIMA and AT-LSTM 

performed as poorly as they did. In the future when more data is available the models per-

formances can change.  
 

A better evaluation technique is needed to determine if the trained model can actually re-

place the current system. For that a simulation could be done, the important aspect of the 
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simulation is to be able to confirm, with high precision, that the model's prediction leads to 

an indoor temperature of 21 degrees Celsius. 
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