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Abstract

Cloud computing is a growing industry. More and more companies are
moving away from on-premise infrastructure. Instead, the choice is often
to build their systems based on cloud services. This growth in the industry
has brought with it new needs and consequently, new solutions. There have
never existed as many different cloud providers and services offered by these
providers. One of the newer paradigms in this industry is the serverless
approach.

The problem of this thesis is that there is a lack of research into how Azure’s
serverless Function-as-a-Service offering compare to their more traditional
Infrastructure-as-a-Service one. Therefore, the purpose of this work is
to compare the two with regards to their performance, cost, and required
developer effort. The goal is to provide a comparison that can help software
professionals in choosing an appropriate cloud solution for their application.
Additionally, it aims to contribute to the increased knowledge of modern
serverless solutions while providing a basis for future research.

A qualitative method supported by measurements is used. The two
cloud solutions are compared with regards to their performance, cost and
developer effort. This is done by implementing and deploying equivalent
Representational State Transfer applications with the two Azure offerings. The
two implementations are stress-tested to measure their performance, and their
incurred costs are compared. Additionally, the effort involved in developing
the two solutions is compared by studying the amount of time required to
deploy them, and the amount of code needed for them.

The results show that the serverless Function-as-a-Service solution performed
worse under the types of high loads used in the study. The incurred costs for the
performed tests were higher for the serverless option, while the developer effort
involved was lower. Additionally, further testing showed that the performance
of the Function-as-a-Service solution was highly dependent on the concept of
cold starts.

Keywords
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Sammanfattning

Molnbaserade tjanster dr en viaxande industri. Fler och fler foretag ror sig bort
frin att ha sin infrastruktur i egna lokaler. Istéllet viljer manga att bygga sina
system med molntjdnster. Denna tillvdxt inom industrin har fort med sig nya
behov och med det nya losningar. Det har aldrig tidigare existerat lika manga
molnleverantorer och molntjinster. En ny paradigm inom denna industri dr det
serverlosa tillvagagingssiittet.

Problemet som denna uppsats dmnar att angripa dr att det finns en brist pa
forskning som jamfor Azures serverlosa Function-as-a-Service tjdnst med
deras mer traditionella Infrastructure-as-a-Service tjanst. Syftet med detta
arbete dr dirfor att jaimfora dessa tvd med avseende pd deras prestanda,
kostnad och noddvindig utvecklaranstringning. Maélet &r att tillhandahilla
en jimforelse som kan hjilpa arbetare inom mjukvaruindustrin att vélja en
passande molnlosning for deras behov. Utover det &mnar detta arbete att bidra
till en 6kad kunskap kring moderna serverlosa tjdnster, samt att tillhandahalla
en bas for framtida forskning.

En kvalitativ metod understddd av métningar anvinds. De tvd tjdnsterna
jamfors med avseende péd deras prestanda, kostnad och nodvindig utveckla-
ranstringing. Detta utfors genom att implementera och driftsétta likvirdiga
Representational State Transfer-applikationer med de tvd tjinsterna fran
Azure. Implementationerna stresstestas for att midta deras prestanda, och
kostnaden for detta jamfors. Utdver det jamfors den anstringing som kridvdes
av utvecklarna for att utveckla de tva Iosningarna, detta genom att studera tiden
som behovdes for att driftsdtta dem och hur mycket kod som erfordrades.

Resultaten visar att den serverlosa Function-as-a-Service tjdnsten presterade
samre for den typ av belastning som anvindes. Kostnaden for de utférda
testerna var hogre for den serverlosa tjansten, medan den nodvindiga
utvecklaranstringningen var ligre. Utover detta visade ytterliggare testning
att prestandan for Function-as-a-Service tjdnsten till stor del paverkas av
kallstarter.

Nyckelord

Serverlos, Datormoln, Belastningstestning, Azure, REST
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Chapter 1

Introduction

There is a well-known phenomenon in the tech industry, that of buzzwords.
These are words or phrases that become fashionable for a period of time. The
term cloud computing can definitely be categorized as such a phrase. Cloud
computing is not only a trendy word. Today, it is widely used by companies
around the globe for hosting web-based servers, databases and other services
(Gartner, n.d.).

A cloud server is like a computer that lives on the internet instead of being
physically located on the premises. It’s managed by a company that takes care
of all the technical details, such as fixing it when it breaks and making sure
it’s always available. You can use the cloud server to store your files and run
programs, and you can access it from anywhere with an internet connection.

1.1 Background

Cloud computing is a broad subject, encompassing many different types of
services. Which service to choose for a particular purpose is not always
obvious. Many times, similar results can be produced with several of them.
The difference between them often lies in how a solution using them is
structured, how it can be scaled, how much it costs, and to what extent its
infrastructure needs to be managed (IBM, n.d.).

Serverless computing is the newest model in cloud computing, providing a way
for developers to create applications without handling the physical or virtual
infrastructure of systems. Instead, this is managed by the cloud provider and
the developer can focus on the functionality of the program (Chowhan, 2018).
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A serverless approach comes with certain aspects that need to be considered.
The pricing model is different, employing pay-per-use billing instead of paying
for the provisioned infrastructure. The performance guarantees from the
providers are not the same as for their other services (Sbarski, Cui, & Nair,
2022). What this means in practice for someone using these services is not
always clear, and there is a lack of up-to-date information regarding this.

Function-as-a-service (FaaS) is a type of serverless cloud service, allowing
a customer to pay for the execution of functions without managing the
underlying infrastructure (Chowhan, 2018). Infrastructure-as-a-service (IaaS)
is a more traditional type of cloud service where the customer gets access to
the hardware, often using Virtual Machines (VMs) (IBM, n.d.).

1.2 Problem

The problem that this thesis aims to address is the lack of comparative studies
regarding FaaS offerings and [aaS ones.

1.3 Purpose

The purpose of this thesis is to compare a FaaS offering with a laaS one with
regards to their performance, cost and developer experience. This comparative
study is conducted on Azure’s cloud services.

1.4 Goal

The goal of this thesis is to help software professionals in choosing a cloud
service for their applications as well as contribute to the increased knowledge
of modern FaaS solutions while providing a basis for future research.

1.5 Research Methodology

In order to conduct a comparison between the FaaS and [aaS cloud solutions
we needed in-depth knowledge within the cloud computing field. Therefore
an extensive literature study was performed in order to gain the required
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knowledge. With the use of the knowledge gained from the literature study,
a comparative study was performed. This comparative study could be
categorized as a qualitative study supported by measurements.

1.6 Target Audience

The main target audience for this thesis is anyone looking for current
information about modern cloud solutions, both within the industry and
academia. In the industry, the thesis can serve as a guidance in choosing an
appropriate cloud solution. In the academic world, the thesis can serve an
educational purpose both within the subject of cloud solutions, and how they
can be systematically evaluated with regards to their performance and pricing.

1.7 Scope and limitations

The thesis aims to investigate the qualities of serverless solutions and compare
them to other cloud services. To limit the scope of the investigation, some
restrictions have been put in place.

* There are several cloud providers that offer serverless solutions. Here,
the choice has been made to limit the investigation to Azure’s services.

* To be able to compare the two solutions, an application was developed
and deployed using both of them. This application’s functionality is not
the focus of this investigation and was therefore kept simple.

* Security within cloud computing is a broad subject, and serverless
solutions bring many new and unique challenges (Marin, Perino, & Di
Pietro, 2022). This thesis does not deal with the security implications
of the different solutions.

1.8 Benefits, Ethics and Sustainability

Cloud solutions bring sustainability questions into focus. Due to cloud
operators being able to host multiple smaller virtual servers on a single
physical server the operational cost for both the user and the provider is
reduced. This can promote a sustainable economic development for the users,
as the costs can be more tailored to the user’s specific needs.
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The costs of using cloud services can also be foreseeable and therefore easier
to plan for. The serverless approach can further promote this aspect as the
billing is pay-per-use (Tim & Rana, 2022). Cloud services also means that the
number of required physical servers is reduced, compared to if all users had
their own physical server on premise (Chowhan, 2018). Less usage of physical
servers in general leads to less electricity usage and in turn less pollution.

1.9

Thesis Outline

The thesis’ chapters are structured as follows:

Chapter 2: The cloud and its architecture: Extended background where
relevant concepts are explained.

Chapter 3: Research methodology: Strategy and outline of the method
used in the investigation.

Chapter 4: Practical steps: A review of the practical steps taken to
complete the study.

Chapter 5: Results: The results of the investigation are presented.

Chapter 6: Analysis and discussion: Analysis and discussion of the
results and methods of the thesis.

Chapter 7: Conclusions and future work: Conclusions drawn from the
result of the study as well as proposals for future work.
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Chapter 2

The cloud and its architecture

This chapter presents the background knowledge needed to follow the rest of
the thesis. First is Section 2.1, which gives an overview of the contents of this
chapter. The main part of the chapter starts of with Section 2.2, which presents
information on different architectures and how they have evolved. Following
this is Section 2.3, which presents information on servers. Both the traditional
on-premise servers and cloud servers are discussed, and their differences are
highlighted. The overview of servers are followed by Section 2.4. It presents
an overview of two cloud services, highlighting their differences. The chapter
is concluded with a short presentation of related work, found in Section 2.5.

2.1 Overview

The practice of cloud computing has become increasingly popular during
the 21st century. Along with the growing popularity, new services and
functionality have been added for customers to employ. The most recent
service, FaaS, has quickly become a popular alternative to older services.

There are many different companies offering cloud services to customers.
These companies are known as cloud providers. The three biggest providers
are Amazon Web Services (AWS), Google Cloud Platform (GCP), and Azure
(Dahal & Prasai, 2022). They all have their own versions of popular cloud
services, such as IaaS and FaaS.

For many years in the tech industry, there has been a push towards
decomposing applications into smaller and more manageable parts. Many
developers are familiar with the architectural approach of microservices,
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designed to split the whole system into loosely coupled services. The newest
step beyond the microservice architecture is the serverless approach. Calling
the serverless approach serverless is in itself a misnomer, since it is dependent
on a server to function. While the approach is still using servers to run,
the management of these servers are abstracted away from the developer
(Chowhan, 2018).

The concept of a server has also evolved throughout the years. Until recently,
the term server was clear in its meaning, a physical computer serving content
to other computers, either through a local network or the internet. After the
rise of cloud computing, the term has become more ambiguous in its meaning.
Now, the term could also mean a digital cloud server only accessed through
the internet.

A cloud server can be used for many different purposes, all requiring different
functionality. Therefore, there exists many available services that make use
of cloud servers. The service that most resembles a physical server, laaS, is
commonly considered the first cloud service. It is designed to let developers
rent physical servers hosted by cloud providers, and access the rented server
through an internet connection. Another available service is the more recent
serverless alternative, FaaS, abstracting the server management from the
developer.

2.2 Architectural background

This section discusses the architectural background needed to understand
the evolution of the serverless approach. It starts with an overview of the
traditional monolithic architecture in Section 2.2.1. The following Section,
2.2.2, deals with the microservices architecture, and how it answers some of
the issues of the monolith. In the final Section, 2.2.3, the serverless approach
is presented.

2.2.1 Monolith

The traditional approach when building a software program is to construct it as
one unified unit, a monolith (Newman, 2021). Figure 2.1 shows an example of
amonolithic web application. It consists of a client-side browser view, a server
and a database. The server handles requests from the client, performs business
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Client - = Server - TDatabase

Figure 2.1: A web application with a monolithic architecture. Inspired by
Roberts, 2018

logic and communicates with the database. This works well for certain use-
cases, such as small programs that are not widely used. The deployment and
scaling of such an application is straightforward (Newman, 2021).

When the system grows, either in its scope or usage, some issues can
arise. Usually, a server application of a larger monolith contains many parts
performing different tasks, henceforth known as services. Examples of these
services could be an authentication service, a payment service and so on.
The load on these services are often not distributed in a uniform manner, for
example the authentication service may experience high traffic and need to
be scaled up, while the payment service does not. As the server application
consists of a single codebase, scaling a single service involves scaling the
entire application, which can be highly inefficient (Kaplunovich, 2019).

Additionally, as new services are added and developers join the project,
the complexity of it grows. With this, it can become harder to add new
functionality, and to test isolated parts of it. It can also increase build time,
negatively affecting the developer experience (Newman, 2021).

2.2.2 Microservices

The microservices architectural pattern is a newer approach to building
software that recently has risen in popularity (Kaplunovich, 2019). Its main
idea is to develop the application as a group of services that communicate with
each other through message passing. The services are to be independently
releasable, meaning that they can be changed and deployed without having
to deploy any other services. Additionally, the services are modeled around
business domains (Newman, 2021).

Figure 2.2 shows an example of a web application built with a microservices
approach, consisting of two services. It illustrates another common pattern
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— Server 1 «—»| Database

1

— Server 2 «—»| Database

2

Figure 2.2: A web application with a microservices architecture. Inspired by
Newman, 2021

in the microservices approach, that the services own their state in the form of
their own database that only the service in question has access to (Newman,
2021). As there exists several possible destinations for an incoming request, a
gateway is often used which routes it to the correct service.

This approach answers some of the issues of the monolithic one. Deploying
the services separately enables them to be scaled separately. If one service
is experiencing an increase in traffic, additional instances of that service can
be deployed. The division of systems into smaller parts makes them more
manageable. This can enable separate teams to work with one service without
affecting others, assuming they are built in a loosely coupled manner. The
modularity of the system also makes it easier to add new functionality. As
long as it fits within the system’s message passing scheme, adding it can often
be done without impacting the rest of the system (Newman, 2021).

The microservices approach does bring some new challenges. While the
management of the infrastructure, be it on-premise or in the cloud, is
straightforward for a monolith, the same can not be said for a microservices
application. As each service is deployed separately, it requires its own
infrastructure that needs to be configured and maintained (Newman, 2021).

2.2.3 Serverless

The serverless approach to building software is a more recent approach. Views
differ on whether it is a distinct architectural pattern or a modern way to
implement the microservices pattern. Here, it is treated as its own architecture.
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The term is a misnomer, since serverless applications still depend on servers
to run, but the handling of them is abstracted away from the developers
(Chowhan, 2018).

According to Sbarski, Cui, and Nair, 2022, a serverless offering needs to
fulfill two requirements. First, it is to be consumed as a utility service.
This means that access to it only happens through a well-defined Application
Programming Interface (API), while the underlying infrastructure is hidden.
Second, it is to only incur a cost when used, meaning there is no cost for just
having it deployed.

A serverless system is often constructed from several different serverless
offerings serving various purposes (Roberts, 2018). One example is serverless
databases, such as Amazon’s DynamoDB (AWS, n.d.). However the most
common offerings are the various serverless function offerings, known as
FaaS, which are further explained in Section 2.4.2.

Figure 2.3 shows an example of how the previously mentioned web application
could be structured if it was built in a serverless manner using serverless
functions. The difference from the microservices approach lies in the
composition of the services, instead of being deployed as units to their own
servers, they are further divided into granular functions and deployed as these
units through the provider.

This approach can help solve the issues introduced by the microservices
approach. As the cloud infrastructure is handled by the provider, orchestrating
it is not a concern of the developer. The advantages that came with the
microservices approach regarding modularity and extensibility are still present
as the system is divided into manageable parts.

2.2.4 Representational state transfer

Today, Representational State Transfer (REST) is the de facto standard for
offering a service on the web. It is a loosely defined architectural style for
constructing APIs, and is often used to grant access to a set of resources
(Neumann, Laranjeiro, & Bernardino, 2021). In a traditional client-server
architecture, it can facilitate the retrieval and manipulation of server resources
by a client through requests to said server. Its prevalence in the industry makes
it a good basis for building applications for testing purposes.
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»| Database
‘@ 1
e
‘—’

T

Figure 2.3: A web application with a serverless architecture. Inspired by
Roberts, 2018

The standard contains some constraints which are to be followed if the system
is to be referred to as RESTful. The first one is that all the resources or data
elements are identified by global and unique addresses or identifiers within
the system. This is usually achieved through the use of Uniform Resource
Identifiers (URIs) (Pautasso, Wilde, & Alarcén, 2014).

Following this, the state of a resource is to be retrievable through a
representation of it. In modern REST APIs, these representations are usually
in the JavaScript Object Notation (JSON) format (Neumann, Laranjeiro, &
Bernardino, 2021). The representations are also used for manipulating the
state of a resource, for example by altering it with the intended changes and
sending the updated version in a request (Pautasso, Wilde, & Alarcén, 2014).

Additionally, the messages being sent are to be self-descriptive. One common
way to achieve this is through the use of the Hypertext Transfer Protocol
(HTTP) for communication. The requests use the HTTP methods (GET, PUT,
POST, DELETE, among others), where the semantics are clear in terms of
their effect on the resource. The responses use HTTP status codes to convey
the status of the request (Pautasso, Wilde, & Alarcén, 2014).

The final constraint declares that a RESTful system should use Hypermedia as
the engine of application state which means that representations should include
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references to related resources, enabling decentralized resource discovery. In
practice, this constraint is not widely implemented and many systems claim to
be RESTful without satisfying it (Pautasso, Wilde, & Alarcén, 2014).

2.3 Servers

This section details the features of a traditional on-premise server in Section
2.3.1. Section 2.3.2 contains information about cloud servers. In Section 2.3.3,
the two are contrasted and compared.

2.3.1 On-premise servers

Servers have evolved a great deal since they were first introduced, from the
large data centers needed for a single computer to the modern server racks
capable of performing a multitude of different tasks at once. More recently,
servers have been split into two categories, one of them being on-premise and
the other cloud servers. On-premise servers, commonly “on-prem”, refers to
the private data centers located at companies’ own facilities, where they also
maintain the data centers themselves (HPE, n.d.).

2.3.2 Cloud servers

Cloud servers is a term most commonly referring to the “public” cloud, where
computation resources are rented from cloud providers. The rented resources
are also shared by multiple companies or individuals who all use them on a
as needed basis (HPE, n.d.). The concept of cloud servers has existed since
the mid-1990s, although its popularity has increased greatly during the 2010s
(Kranz, Hanelt, & Kolbe, 2016). As a result of this popularity shift, the
functionality and usage of servers has changed greatly during the last 10-20
years.

2.3.3 Differences

At its core, a cloud server is infrastructure being rented out by a provider
and accessed through the internet (HPE, n.d.). But there still exist some
fundamental differences. First, the pricing structure is different. When
implementing an on-premise server, one has to pay for the hardware, the
maintenance and upkeep of the hardware, licenses and power consumption.
Leading to a high initial cost and a moderate recurring cost. For cloud servers,
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there exist many different payment plans. Some employ a fixed monthly cost
corresponding to the scale of cloud infrastructure rented, others incur a cost
depending on expended computing resources. Common to them all is a low
initial cost and a high recurring cost (Team Cleo, n.d.).

Second, the two approaches differ greatly when it comes to their scaling
capabilities. There are two approaches when scaling a system, horizontal
and vertical scaling. Horizontal scaling means adding additional machines,
whereas vertical scaling means adding more power to the existing ones
(Millnert & Eker, 2020). Scaling an on-premise solution with either of the
approaches requires new hardware to be bought. This brings with it the risks
of over- and under-provisioning of infrastructure, which can be costly.

Cloud solutions however, do not suffer from these issues, as the hardware is
owned by the provider. Horizontal scaling of a cloud solution can be achieved
by renting more infrastructure, while vertical scaling can be done by renting
more powerful infrastructure. Both of these are achieved by expanding the
existing cloud service plan, and can be done in a granular way, so as to avoid
renting the wrong amount (Fisher, 2018). Nowadays, the cloud providers also
offer the ability to grow or shrink the provisioned infrastructure resources
dynamically to adapt to workload changes, which is called elasticity (Galante
& de Bona, 2012). This can make sure that only the required resources are
being paid for at any given time.

Third, the maintenance of the two approaches also differ. Regardless of
which approach the customer is using, the configuration of operating systems,
communication and security has to be partly handled by the customer. While
both approaches include the same elements of maintenance, the difference lies
in who the responsibility falls on. Maintenance of the on-premise servers must
be handled by the company who owns them. This means that the company has
to have someone comfortable and educated in maintenance of servers, or hire
a third party to handle it (Team Cleo, n.d.).

The cloud solution shines in comparison. The maintenance of cloud servers
is handled by the owner of the underlying physical servers, the cloud provider.
The customer renting the cloud server can focus their efforts elsewhere. As
the provider tends to own a large amount of servers, they probability that they
have encountered any particular problem before is high. Therefore, they are
often better equipped to handle any potential issues.
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2.4 Cloud services

In this section, different aspects of two cloud services are discussed. Section
2.4.1 and 2.4.2 presents the two different cloud solutions [aaS and FaaS
respectively. The section is concluded with a discussion of the cloud solutions’
differences in Section 2.4.3.

2.4.1 Infrastructure-as-a-Service

IaaS is often considered the original cloud service. It is a way for customers to
rent infrastructure through the cloud. Customers get to provision and configure
the infrastructure in a manner similar to that of an on-premise server. The
difference is that the cloud provider manages, hosts and maintains the servers.
The laaS user only accesses the infrastructure through an internet connection
(IBM, n.d.). Users can often choose between using an unshared physical server
or a VM hosted on shared hardware.

2.4.2 Function-as-a-Service

FaaS is the newest of the cloud services and is already widely available through
many providers. FaaS is an event driven solution that allows customers to run
code without having to provision and manage a server. FaaS being event driven
means that your code, rather than running all the time, only runs as a response
to an event configurable by the user. Consequently, your code only runs when
it is needed. As a customer, you only pay for the time your functions run
(Chowhan, 2018).

The scaling of your application is also handled by the provider, if you need
to execute your function many times in parallel, the provisioner scales up the
infrastructure in order to perform just that. The containers that are created to
run your code is ephemeral, meaning that they are automatically destroyed as
soon as the function is finished executing.

Deploying your code is also different, since there is no server that you need to
update with your new code. Instead, the provider handles the code you upload
and makes sure that the newest code is used in following event triggers.

An important concept regarding FaaS solutions is that of cold starts. The
ephemeral nature of the containers that run the code can lead to not enough
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active containers existing when the code is to be executed. Initializing these
containers adds latency to the execution time of your functions (Chowhan,
2018). Figure 2.4 illustrates this concept, showing the steps that need to be
completed before the code can run during a cold start.

2.4.3 Differences

While both [aaS and FaaS are cloud solutions, they differ in many ways. One
big difference lies in the amount and type of code that is required from the
developer. Using laaS, the code required is the same as if you deployed the
program on your own server. This differs greatly from FaaS, in which the code
required is limited to the specific functions of the program. Using FaaS means
that many parts of coding needed for a full architecture can be ignored, such
as organizational and architectural code.

Another difference lies in the scaling of the services. While both approaches
can be used as a microservice application, the FaaS solution requires no
different actions from the developer. Creating a microservice application
with [aaS requires separate provisioning and scaling of infrastructure for the
separate services. As the provisioning is abstracted away from the customer
with FaaS, this can instead be handled by the cloud provider.
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There is also a difference in the billing of the two approaches. laaS has a
pricing model based on usage and capacity, often meaning a monthly or hourly
cost for provisioning the VMs or servers. In contrast, the FaaS solution follows
a pay-per-use model. This means that the customer pays for the number of
function invocations and execution time (Azure, n.d.-c; Google, n.d.-b).

2.5 Related work

Cloud computing is a popular subject and there exists multiple previous works
that this thesis builds upon. This section presents those works and explains
how they influenced our thesis.

Jddskeldinen, 2019 measures the performance and scalability of three Azure
services. The first one is a traditional [aaS deployment service. The
second one is a Platform-as-a-service (PaaS) service. Here, the application
is deployed to an environment managed by Azure, letting them handle the
scaling and upkeep of the infrastructure. The third one is the retired Azure
Service Fabric Mesh service, where containerized applications were deployed
in a serverless manner, not based on FaaS.

Malla and Christensen, 2019 performs a comparison between FaaS and laaS
with the basis of High Performance Computing (HPC). This comparison is
performed on GCP’s versions of the cloud solutions, Cloud Functions and
Compute Engine. The comparison measures performance and cost for the two
approaches with a sample HPC workload.

Villamizar et al., 2016 performs a case study where different deployment
methods available through AWS are compared with regards to their
infrastructure cost. It compares a monolith deployed through an laaS
solution, a microservices application deployed through an IaaS solution, and
a microservices application deployed using FaaS. Although the study includes
a performance comparison, it is not the focus of it. Instead, the performance
measurements are used to get an even basis for the cost comparison.

From these previous research papers, some inspiration was taken for the
work in this thesis. The way the measurements were done in Jadskeldinen,
2019, by deploying REST APIs to each service and running several different
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load tests, inspired the layout of the performance analysis done in this thesis.
The usage of both FaaS and IaaS for the comparison in Malla and Christensen,
2019 is what inspired us to compare those two approaches.
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Chapter 3

Research Methodology

This chapter presents the research methodology used for this thesis. Section
3.1 contains an overview of the strategy that was adopted. Section 3.2
introduces the phases of the conducted research. In Section 3.3, the method
used for the thesis work is explained. Section 3.4 presents the different
instruments used during our research. The sampling method of the research
is explained in Section 3.5. In Section 3.6, the validity threats of the research
are presented. Section 3.7 contains a discussion of the ethical requirements for
this thesis. The chapter is concluded with Section 3.8 introducing the problems
and experiences encountered during the thesis work.

3.1 Research Strategy

The research area that this thesis addresses is both vast and quickly evolving.
Due to the fast changes in the area, many papers regarding the subject become
less relevant just a few years after being published. To provide a research result
that could be as long lasting as possible, while still carrying out the research
within the given time frame a good research method had to be chosen.

The chosen research method is shown in Figure 3.1. Our strategy consisted
of five different components: (1) research phases, (2) research methods,
(3) research instruments, (4) sampling, (5) validity threats, and (6) ethical
requirements. These components are all discussed further in other sections
of this chapter.
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Figure 3.1: Overview of the research strategy used for this thesis

3.2 Research Phases

This section presents the phases of the work of this thesis. Figure 3.2 shows
how the thesis work was divided into four phases. Section 3.2.1 outlines the
literature study phase. Section 3.2.2 deals with the creation of the model used
in our comparison. In Section 3.2.3, the phase where the applications were
developed and deployed is presented. Finally, in Section 3.2.4, the phase where
the applications were compared is presented.

Literature study

PN

Creation of comparison

model

Development and
deployment of
applications and
performance tests

Comparison of the
appliations

Time

Figure 3.2: Overview of the research phases of this thesis
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3.2.1 Literature study

The literature study phase was conducted in conjunction with the formulation
of this thesis’ problem. Entering this phase, a basic idea of what was to be
investigated existed, but it was not complete. There were two main goals
of this phase. The first one was to find and examine the relevant research
that had previously been done within the field of cloud computing in general,
and serverless computing in particular. The second one was to get a better
understanding of the relevant technical aspects of the field. Both goals were
targeted simultaneously, but they are presented as distinct parts for clarity.

To achieve the first goal, established research databases were consulted. These
were mainly IEEE Xplore and Google Scholar. The databases were queried
with relevant keywords including, but not limited to, the following: serverless,
serverless computing, serverless comparison, serverless load test, serverless
cost, Function-as-a-Service, FaaS, FaaS comparison, FaaS load test, FaaS
cost, Azure Functions, Azure Functions comparison, Azure Functions load
test, cloud computing, cloud comparison, developer experience, developer
experience cloud, developer experience serverless. A large amount of
previous research was found, some of it close to the idea of this thesis’ research
question (Jadskeldinen, 2019; Malla & Christensen, 2019; Villamizar et al.,
2016). From this, the problem of the thesis could be formulated.

During the search for related research, some sources with a more general
content were also identified. Three of these were referenced frequently in
existing research, so the choice was made to focus on these to achieve the
second goal of this phase (Chowhan, 2018; Roberts, 2018; Sbarski, Cui, &
Nair, 2022). By reading the relevant parts of these, a good understanding of
the technical aspects underlying this thesis was gained.

This phase did not end at this stage. As can be seen in 3.2, it continued
with a decreasing intensity throughout the whole work of the thesis. Some
research was consulted frequently during the creation of the comparison model
(Villamizar et al., 2016), and some during the design and deployment of the
applications that were to be compared (Chowhan, 2018).
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3.2.2 Creation of comparison model

This phase consisted of the creation of the model that was to be used to perform
the comparison of this thesis. During the previous literature study phase, the
problem that served as the basis of the thesis had been formulated. The goal of
this phase was to construct a comparison model that could be used to tackle this
problem. It had been decided that three main aspects of the cloud solutions
were to be included in the comparison. These were performance, cost and
developer effort. What follows is an outline of how these three aspects were
handled while creating the model. A more detailed description of exactly what
criteria were included for each aspect in the model can be found in Section 3.4.

The inclusion of the performance aspect was integral to the structure of
both the comparison model and the applications being compared. It is what
motivated the use of a load testing tool during the execution of the comparison.
As there existed previous research that measured the performance of cloud
solutions, inspiration could be taken from these sources when creating our
model (Jaaskeldinen, 2019; Villamizar et al., 2016). Although the concept of
performance is vast, the literature study indicated that most of the previous
research focused on the same established criteria. Therefore, this thesis also
incorporates these criteria in its comparison model.

As the concept of cost is broad, a decision had to be made regarding what
it entailed in the context of this thesis. The choice was made to focus on
the monetary cost of the cloud solutions. As the pricing model of the two
solutions differed greatly, an effort was made to create criteria that took this
into account. Existing research was consulted to get an idea of how this could
be done, and inspiration was drawn especially from Villamizar et al., 2016.

The subject of developer experience can be hard to define, as it includes
several different broad concepts. Fagerholm and Miinch, 2012 characterizes
it as consisting of three aspects: the experience regarding the development
infrastructure, the experienced feelings regarding one’s work, and the
experiences around the value of one’s own contributions. Here, the focus was
on a small subset of the first aspect, henceforth called developer effort. The
goal was to create measurable criteria that could represent this aspect, without
becoming too subjective. During the literature study, previous research
measuring this could not be found. Therefore, the criteria are based on some of
the aspects that cloud providers claim are advantages of serverless solutions.
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3.2.3 Development and deployment of applications
and performance tests

This phase of the thesis work involved creating the two applications needed to
perform the comparison as well as deploying them to the cloud services. The
first part of the phase consisted of formulating the requirements and designing
the applications. The applications needed to provide us with enough data
during testing to perform our comparison. The performance tests were to
subject the applications to varying amounts of traffic, and provide the data
needed for the comparative criteria.

The second part consisted of implementing the designed applications and
performance tests. Using the design, our previous programming knowledge,
and relevant documentation, we could create both the programs and the
performance tests for our purpose.

The next part of this phase was to deploy the two applications to their
respective cloud services. As mentioned in earlier chapters, we needed one
application for each of the two cloud services. The applications were to include
the same functionality. As the applications needed to be deployed through [aaS
and FaaS respectively, they needed to include parts of code specific to those
services. Because of this, the programs could not be identical in their entirety,
but instead only their base functionality was to be identical.

A more in depth discussion of the practical steps taken to develop the two
applications, as well as the performance tests, can be found in Chapter 4.

3.2.4 Comparison of applications

The goal of this phase was to apply the created comparison model to the
applications created in the previous phase. This model could then be used
to gather data about the applications and allow conclusions to be drawn.
As mentioned in Section 3.2.2 the comparison consisted of three major
aspects, performance, cost and developer effort. The main part of this stage
was therefore the execution of performance tests. When the tests had been
executed, the results relevant to the comparison model had to be produced.
This part included cost calculations and analysis, as well as evaluating the
time spent and amount of code written. This part of the phase is explained
further in Section 4.4.
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After the comparison was performed, the gathered data on performance, cost
and developer effort was used to draw conclusions and to analyze similarities
and differences between the two solutions. The conclusions and discussions
about gathered data can be found in Chapter 6 and 7.

3.3 Research methods

This section presents the research methods chosen for this thesis. In Section
3.3.1 the type of research is discussed and motivated. And in Section 3.3.2 the
type of the study is introduced.

3.3.1 AQualitative or quantitative research

In order to accurately answer this thesis’ research question, the research type
had to be chosen. For this thesis, the type chosen was a qualitative study with
support from measurements. Choosing the right approach was decided by
analyzing the nature of our thesis’ problem and the main characteristics of the
qualitative and quantitative approaches.

A qualitative approach entails gaining understanding of reasons and motiva-
tions for questions. Additionally, the samples used in qualitative research are
often small and a representation of specific cases (Bhandari, 2020b). These
two characteristics described our research well, since we worked with and
compared two specific situations. We were also trying to understand the
reasons behind our results, to determine why one cloud solution is better than
another.

The quantitative approach also has characteristics that could be found in our
research, mainly working with numerical data and measurements. However,
our research could not be classified as quantitative research since one of
the main characteristics of the quantitative approach is a large sample size
of data, which is also often randomly sampled (Bhandari, 2020a). These
characteristics did not apply to our research, which used only two specific
samples for gathering data.
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3.3.2 Comparative study

Performing a comparative study involves contrasting two or more phenomena
of interest in order to identify their similarities and differences. The goal of a
comparative study is to gain a better understanding of the phenomena under
investigation, and to help make informed judgements about their advantages
and disadvantages (Miri & Dehdashti Shahrokh, 2019). The purpose of this
thesis was to compare two cloud offerings from Azure, focusing on their price,
performance, and developer effort. One of the goals was to help software
professionals make an informed decision about these cloud solutions.

A comparative study has some inherent advantages, one of them being the
ability to gain understanding of a phenomenon by juxtaposing it with a more
familiar one (Miri & Dehdashti Shahrokh, 2019). The phenomena that were
compared in this thesis was a well understood cloud solution, [aaS, and a
less familiar one, FaaS. The contrasting of these two provided a context for
understanding the FaaS solution, as it could be studied in relation to the [aaS
one.

The choice of method brought with it some possible disadvantages as well.
First, a comparative study can be vulnerable to bias if the differences between
the two phenomena are not controlled for. Additionally, the transferability of a
comparative study can be low as the things being compared are often specific
in their nature (Miri & Dehdashti Shahrokh, 2019). These threats and how
they were met are discussed further in Section 3.6 and 6.4.

3.4 Research instruments

This section discusses instruments used for the performed research. Section
3.4.1 briefly presents the documentation and software instruments used. And
Section 3.4.2 introduces the comparative criteria used for our comparison.

3.4.1 Software instruments and documentation

In order to conduct this research, some software instruments had to be
employed. The main one was the software used for the performance tests,
k6. It is a load testing tool aimed at developers wanting to test their
applications under different loads. k6 allows the developer to write test scripts
in JavaScript. The tests scripts can be configured to produce different loads
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and output reports. The tests can then be executed using k6 command-line
interface. k6 allows the tests to be run both locally and through their own
cloud configuration. In this study, the tests were executed locally from one
computer. By varying the number of virtual users in the test scripts, loads that
mimicked traffic of real users could be produced locally.

Additionally, the developed and deployed applications can also be considered
software instruments. Executing the k6 tests on them produced usage data and
statistics through the cloud provider, Azure. These metrics were used for the
comparison.

The research also included using documentation regarding the two cloud
services. This was both general documentation to aid us in developing our
applications, as well as pricing documentation to enable us to calculate the
monetary cost of the cloud solutions. All documentation for the cloud services
could be found on their respective websites.

3.4.2 Comparative criteria

As mentioned in Section 3.2.2 our comparative criteria were based on three
major aspects. These were, performance, cost and developer effort. The
aspects were further divided into comparative criteria to easily measure the
desired aspects, shown in Figure 3.3. Section 3.4.2.1, 3.4.2.2 and 3.4.2.3
discusses these aspects further.

3.4.2.1 Performance

The aspect performance was divided into two smaller criteria, average
response time and error percentage. The average response time criteria
measured the response time of our applications using the load testing software
mentioned earlier. This was done because a program subjected to many
requests may experience high response times, this time can be a good
measurement of its performance. The expected outcome of this criteria was
that the IaaS solution would show higher response times when subjected to
high loads, whereas the FaaS solution would show a more even distribution
with small deviations because of cold starts.

The other criteria for performance, error percentage, measured how many of
the requests sent to our programs resulted in error responses. This data was
also gathered using the load testing tool and documented with its statistics.



Research Methodology | 25

Comparative Criteria

Performance Cost Developer effort
Response time Incurred cost for Number of Code
the performance lines

Error percentage | tests
Time to deploy

Figure 3.3: Overview of the comparative criteria

This criteria was also a good way to measure performance since, just like the
response time, a program under high load might encounter errors when pushed
beyond its limits. Here we also expected that [aaS would exhibit a higher error
percentage when pushed to its limit while FaaS would barely result in any
errors.

3.4.2.2 Cost

The next main aspect to measure was cost, which in our case was defined as
the cost for performing our load tests. This criteria measured the total cost for
our tests, performed on our deployed cloud applications. This measurement
only showed the financial cost of each of the cloud solutions in our specific
situation. Our experiment resulted in the applications only being deployed
on the cloud services for a short period of time, while being subjected to a
high load during the performed tests. Therefore, the expected measurements
of these solutions were that the [aaS application would result in lower costs
than the FaaS application. This was expected since the [aaS application would
only result in costs during the short duration of being deployed. In contrast,
the FaaS solution would be billed for our usage of the function, which with the
high load would result in a higher cost.
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3.4.2.3 Developer effort

Our last main aspect was developer effort. This consisted of measuring
the number of code lines and the time to deploy. These criteria were both
some way to measure how easy the cloud solution was to work with. The
first criterion for developer effort was the number of code lines needed for
each application. This criterion was highly dependent on the context of this
study, both regarding the author’s previous experience and the developed
applications’ structure. This criterion was a good measurement of developer
effort since an application needing more code lines could lead to ineffective
use of the developer’s time. Since the [aaS solution would have to include
boilerplate code for the architecture of the server, the expected measurements
of this criterion was that the laaS would have a considerably higher number of
code lines.

The second criterion for developer effort was time to deploy. Here, we
measured the time it took for us to fully deploy our two applications to
the cloud services. This measurement included the steps configuration,
provisioning and deployment. Our expected outcome of this criterion was that
the application for FaaS had a faster deployment time since the configuration
and provisioning steps with FaaS are basically nonexistent.

3.5 Sampling

The sampling method of a study describes the process that lead to a certain
sample of a larger population being included in it. In the case of a qualitative
study, these often consist of human respondents (Taherdoost, 2016). This
study did not include any such respondents. Here, the sampling method was
concerned with the choice of the phenomena included in the comparative
study, that is the cloud services.

First, the sampling of this study was non-probabilistic, as the cloud services
were not chosen in a random manner from the entire population of available
services. Instead, there existed a motivation for the inclusion of them. This
included the choice of provider, and in turn services offered through this
provider. Therefore we chose to use purposive sampling as our sampling
method.
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Purposive sampling is a method where certain elements of a population are
chosen to be included for a reason. The researcher uses their own judgement
when deciding on what to include in the sample. The basis is often the
belief that important information can only be obtained from these choices
(Taherdoost, 2016).

For this study, the first sampling choice that had to be made was which cloud
provider to use. Azure was chosen, and the reason for this was the problem that
had been identified, that there was a lack of comparative studies on Azure’s
serverless offerings.

The second sampling choice was concerned with what type of services to
compare. As the focus of the study was to be serverless computing, a decision
had to be made regarding which serverless offering to use. FaaS was chosen as
it was the most widely used serverless option. One advantage of a comparative
study is the ability to elucidate a less familiar concept by juxtaposing it with a
more well known one (Miri & Dehdashti Shahrokh, 2019). As the decision had
been made to perform a comparative study, a more familiar second member
was to be chosen to compare with FaaS. [aaS was chosen as it was the most
conventional alternative. It closely resembles the usage of an on-premise
server, while also being the option furthest removed from the concept of
serverless computing.

3.6 Validity

The validity of qualitative research can be assessed by focusing on four criteria.
These are: credibility, transferability, dependability and confirmability (Guba,
1981). Here we present the potential threats to our thesis work, and in Section
6.4 how we combated the threats is discussed.

* Credibility: The concept of credibility corresponds to the concept of
internal validity in quantitative research. It deals with the consistency of
the findings with reality, that is how well the findings coincide with and
describe what is actually the case (Shenton, 2004). The low complexity
of the applications in this study made this a possible threat to the validity,
as an application in a real-life scenario is often more complex.

» Transferability: The transferability of qualitative research findings
refers to its ability to be applied generally, that is if the results can be
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transferred from its own context to a different one (Guba, 1981). This
thesis’ comparative study was specific in its nature as it dealt with two
distinct cloud solutions from one provider. Therefore, a threat to the
study’s transferability had to be considered.

» Dependability: For qualitative research, the dependability corresponds
to the concept of reliability in quantitative work, which is the degree to
which it could be repeated while achieving the same results. Due to the
nature of qualitative research, this is often hard to attain, and the focus
is often instead on just being able to repeat it (Guba, 1981).

» Confirmability: The concept of confirmability in qualitative research
corresponds to the objectivity of quantitative research (Shenton, 2004).
It is concerned with the researcher’s inherent bias not affecting the
findings and the conclusions drawn from them. The subjective nature of
some of the criteria of the comparison model led to this being a possible
threat to the validity of this study.

3.7 Ethical requirements

The ethical requirements of a qualitative study often concern the handling
of respondents by focusing on principles such as informed consent,
confidentiality, and beneficence (Kang & Hwang, 2021). As the study of this
thesis did not involve any respondents, these principles were not applicable
here. Instead, the ethical requirements of this study were concentrated on the
way the data was gathered, utilized, and presented.

The first principle that was adhered to was that of data access. This principle
states that the data used for making claims should be accessible to the reader
(Lupia & Elman, 2014). In this thesis, this was achieved by including the data
gathered during the comparison in an appendix.

The second principle followed is called production transparency. To adhere to
it, researchers should include a full account of how data was gathered (Lupia
& Elman, 2014). This was done by including a full account of steps taken to
produce the data in Chapter 4. Additionally, the source code of applications
was included in Appendix A.2 to help enable the reproduction of them.
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Finally, the principle of analytic transparency was followed. It demands that
it should be clearly explained how the claims being made are linked to the
underlying data (Lupia & Elman, 2014). This was done by clearly referencing
the data while discussing the results in Chapter 6.

Together, these principles ensured the integrity of the study and its data. By
including the data, how it was gathered, and what it was used for, the risk of it
being manipulated or misrepresented was lowered.

3.8 Experience gained

During the conduction of the thesis work, a problem surfaced which prevented
us from continuing with the research as planned. At the start of the research,
the plan was to use AWS as the cloud provider. All preparations had been made
and applications had been successfully deployed to the cloud. But during the
testing of our applications, it was discovered that there was a hidden limit
regarding the scaling of the FaaS application.

The AWS Lambda deployment that we had started for our FaaS application
included a limit on how many functions could be executed concurrently. While
we could send more requests than the limit allowed, the Lambda app responded
with errors to these requests instead of waiting to handle them. The structure of
our tests did not handle this problem well and this resulted in the data gathered
being a false representation of the cloud solutions’ performance.

To combat the limits on the FaaS application with Amazon as provider, it was
decided to instead conduct our research on a different provider, Azure. This
was a planned measure in case something prevented us from working with
AWS. All designs and requirements were kept the same, the only change was
to deploy our applications to Azure’s cloud services instead of Amazon’s.
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Chapter 4

Practical steps

In this chapter the steps conducted while constructing the applications and
tests are described. It also details how the tests were run on the applications.
In Section 4.1, an overview of the practical steps is given. Section 4.2
describes the process of developing the applications. Following this, Section
4.3 explains how the performance tests were constructed. Finally, Section 4.4
details the process of gathering data from the applications and tests.

4.1 Overview

The research had several practical steps that had to be completed. There
were three main stages of this, which covered the practical work needed for
the third and fourth phases described in Section 3.2. The first one consisted
of creating the applications that were to be tested. The second part was to
construct the performance tests that were to test the applications. The final
part comprised executing these tests, and collecting the data needed for the
comparative criteria of the study. Figure 4.1 gives an overview of these stages
and their constituent parts. The two earlier stages had to be completed before
the final one could be initiated.

The development of the applications and the performance tests were similar
in their process. Both began with a requirement specification, followed by a
design phase. With the design done, the implementation could be completed.
As the applications were to be cloud applications, a final deployment phase
was needed for that stage.
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Figure 4.1: Overview of the practical steps

The data collection stage could be started when the applications and the
performance tests were finished. By running the implemented performance
tests on the deployed applications, the data needed for the results of this study
could be collected.

4.2 Applications

This section presents the development of the applications used in this study.
In Section 4.2.1, the requirements on the applications are described. Section
4.2.2 outlines the design of the applications and Section 4.2.3 explains the
specific implementation of the application code. The section is concluded
with Section 4.2.4 detailing the deployment process for the applications.

4.2.1 Requirement specification

This section presents the requirement specification that was written before
the applications were built. Section 4.2.1.1 presents the purpose of the
applications. In Section 4.2.1.2, the dependencies of the applications
are explained. Section 4.2.1.3 details the functional requirements of the
applications.

4.2.1.1 Purpose

This is a requirement specification for the two applications developed for
this study. They are to be simple REST applications. The first one is to be
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developed and deployed through a laaS solution, the second one through a
FaaS one. The applications have one specific purpose, to serve as the basis
for the tests performed in this study. The applications will be exposed to
high loads of traffic, and the resulting data will serve as the basis for the
performance and cost criteria of the comparison model. The development
and implementation of the applications themselves will provide data for the
developer effort criteria.

4.2.1.2 Dependencies

The applications are dependent on software during their development and
execution. Most of the dependencies are common for the two applications,
these are the following: Node.js 18, Visual Studio Code, ESLint, Prettier

Both applications use Node.js as their JavaScript runtime. Visual Studio
Code is used as an Integrated Development Environment (IDE). ESLint and
Prettier are used to enforce a common coding style for the two applications.
Additionally, there exists some individual dependencies. For the laaS
application, this is: Express 4.18.2

Express is used as a framework for routing and binding HTTP methods in
the TaaS application. For the FaaS application, the individual dependency is:
Azure Functions

The Azure Functions extension for Visual Studio Code is used during the
development of the FaaS application.
4.2.1.3 Functional requirements

The functional requirements are identical for both of the applications. Figure
4.2 shows a sequence diagram of the desired functionality. The client in
the figure could be any HTTP client, such as a browser. Full requirement
specification can be found in Appendix A.1. The application should:

* listen for HTTP requests.

* invoke a function, getUsers (), when a HTTP GET request to a
certain endpoint is received.

 produce a response that includes a JSON array of user objects.
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Figure 4.2: Sequence diagram illustrating the functionality of the applications

4.2.2 Design

The user objects were constructed with the goal of mimicking how a user
resource could look in a production environment. It contained five fields,
id, firstName, lastName, age and role. The array consisted of twenty
of these objects. These were generated with an online tool, found at
https://generatedata.com/. The content of this array was not significant to this
study, but the size of it could influence the results.

A REST application is often used to give access to a certain resource. In a
real-world setting, this resource is usually contained in a database (Neumann,
Laranjeiro, & Bernardino, 2021). The choice was made to not include a
database in the applications of this study. The main reason was that the
goal of the study was to compare the deployment methods in their most
basic form. Including a database would introduce the risk of the performance
measurements being obfuscated by the time needed to communicate with the
database. Instead, the resource, the array of user objects, was initialized in
each function invocation and returned as such.
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Figure 4.3: The file structure of the IaaS application

4.2.3 Implementation

This section presents the steps taken during the deployment of the two
applications. Section 4.2.3.1 outlines the process of implementing the [aaS
application. In Section 4.2.3.2, the implementation of the FaaS application is
explained.

4.2.3.1 Infrastructure-as-a-Service

The application that was deployed to the laaS service followed a monolithic
structure. This meant that the entire program was kept in one codebase, and
deployed as a single unit. As was explained in Section 3.4, the chosen runtime
environment was Node. It is possible to create a RESTful API using only the
built-in functionality of Node, but often a framework is used. Express is the
most commonly used framework for building REST APIs in Node (Mozilla,
2023), and was therefore chosen for this application as well.

Express is an unopinionated framework regarding the structure of projects
(Mozilla, 2023). As the number of lines of code was a criterion of the
comparison model, the chosen structure mattered for the results of the study.
Therefore, inspiration was taken from the examples provided by Express
(Express, n.d.). Figure 4.3 shows the file structure of the application.

When creating a REST application with Express, certain parts need to
be included. First, the application has to be configured and started
so that it can accept incoming HTTP requests. Here, this was done
in the server. js and app/index. js files. Second, the functions
that are to be invoked when requests arrive have to be declared. The
function of this application was declared in the app/controller. js file.
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Finally, the functions need to be explicitly bound to a certain endpoint and
HTTP method, done in the app/routes. js file. The code for the entire
program is included in Appendix A.2.1.

4.2.3.2 Function-as-a-Service

The application that was deployed to FaaS was not created as a contained unit
to be run on its own. Instead, the structure was highly dependent on the chosen
cloud provider, Azure. The entire code base comprised an Azure Function
App, which allows a user to group Azure Functions for easier management.

The process of creating the application closely resembled the process outlined
in Azure’s official documentation (Azure, 2023a). As the laaS application
had already been created before this, the approach taken was to use parts
of it when constructing the FaaS one. Using Visual Studio Code and the
accompanying Azure Functions extension, a template Azure Function App
project was created.

Using the Azure Functions extension, a new function was created. When doing
this, two files were generated. The first one, function. json, contained
the configuration for the specific function. It was altered to mimic the [aaS
functionality. This included the trigger type, a HTTP request in this case,
and the HTTP method that was to invoke the function. It was also possible
to configure the authentication needed to invoke the function, in this case
it was left open to anyone. The second file, index. js, contained the
actual function. This code was similar to the controller function of the IaaS
application.

4.2.4 Deployment

This section presents the procedure for deployment of the two created
applications. Section 4.2.4.1 discusses the deployment of the [aaS application,
and Section 4.2.4.2 the FaaS application.

4.2.4.1 Infrastructure-as-a-Service

The first stage of deploying the laaS application was to provision the VM
from the provider. This was done through Azure’s portal page for their cloud
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Figure 4.4: Picture of some of the chosen options for the laaS instance

services. Here we chose the relevant cloud service for us, and then configured
the settings for this service. In our case the service we needed was called
Virtual Machines.

Multiple options for different aspects of the VM could be configured. In our
case, most of these options were left on their default values, for example Linux
as the operating system. Some of the options were however changed to fit
our needs. First, the region in which the VM should be located was changed
to North Europe. Second, the size of the system was changed. The chosen
option was Standard D2s v3 with 2 virtual cpus and 8 GiB in memory. Figure
4.4 shows a summary of the options chosen, including the size of the VM.
When the VM had been created, a few packages had to be installed before
the application could be run on it. During the configuration of the machine
a Secure Shell (SSH) key was created, which could then be used together
with an SSH client to access the VM and download needed packages for our
application.

First, we had to install the runtime environment used for our application, Node
18, on the VM. In order to transfer our application files to the VM we installed
the gir package on the machine. This allowed us to easily fetch all application
files by cloning the files from our git repository. Second, when our application
was downloaded on the VM, we also had to make sure that the port used for
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incoming requests in our application was open for communication on the VM.
Therefore a new network rule had to be created using Azure’s cloud portal in
order to allow traffic to our application.

When the port had been opened the configuration was done. The application
could be initialized and run in the deployed setting just like during local
development. With the application started on the VM, it was open for
communication over the internet.

4.2.4.2 Function-as-a-Service

The first part of deploying the FaaS application was to create and configure the
Function App. This process closely resembled the one explained in Azure’s
documentation and was done solely with the use of Visual Studio Code and its
extensions (Azure, 2023a).

When creating the Function App, overarching options for the entire project
were selected. Some of these were important to maintain parity with the
deployed laaS application. The runtime stack was selected as Node 18, which
was the latest version with long term support. The operating system was
chosen as Linux and the location was set to North Europe. Finally, the hosting
plan was set as Consumption. This hosting plan is Azure’s fully serverless
option for their functions. With it, the scaling is automatic as load increases
and the billing is pay-per-use.

With the Function App created, the next step was to publish the function that
existed locally to the deployed application. With the Azure extensions, the
newly created Function App was reachable through Visual Studio code. The
deployment of the function consisted of selecting the Deploy option of the local
function, and specifying within which Function App it was to be deployed.

When a Function App is deployed, a base Uniform Resource Locator (URL) is
created through Azure. Deploying functions triggered by HTTP requests to it
will make them accessible on a certain path of this URL, which is the base URL
followed by /api/{functionName}. Navigating to this address with a
browser or performing a GET request in some other manner will invoke the
deployed function.
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4.3 Performance tests

This section presents the development of the performance tests performed in
this study. In Section 4.3.1, the requirements on the performance tests are
described. Section 4.3.2 outlines the design of the test cases and Section 4.3.3
explains the specific implementation of the test scripts.

4.3.1 Requirement specification

This section presents the requirement specification that was written before the
performance tests were created. Section 4.3.1.1 presents the purpose of the
performance tests. In Section 4.3.1.2, the dependencies of the performance
tests are explained. Section 4.3.1.3 and Section 4.3.1.4 details the functional
and non-functional requirements respectively.

4.3.1.1 Purpose

This is a requirement specification for the performance tests to be used in this
study. The purpose of these tests are to measure the performance of the two
applications. The resulting data is used for the performance and cost criteria
of the comparison model.

4.3.1.2 Dependencies

The performance tests are dependent on software during their development
and execution, these dependencies are: k6 and Visual Studio Code.

k6 is the framework used for developing and executing the performance tests.
It allows for test scripts to be written in JavaScript. Visual Studio Code is used
as the IDE during development.

4.3.1.3 Functional requirements

There are functional requirements on the performance tests. Full requirement
specification can be found in Appendix A.1. The tests are to:

* measure the performance of REST applications by sending multiple
concurrent HTTP requests to them.

* test the performance at different load levels by varying the number of
concurrent requests.
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 only send HTTP GET requests.
* check the HTTP status code of the returned response.

* result in detailed reports.

4.3.1.4 Non-functional requirements

There are also a few non-functional requirements on the performance tests.
The tests are to:

* be executed locally, not in a distributed manner.

* all be executed from the same computer.

4.3.2 Design

In order to gather data regarding the performance of the two applications, a few
test cases had to be created. Early on we had realized that the load tests had
to be carefully designed before actually performing them. The main reason
being that a small mistake in different quantities could result in us incurring
unnecessary costs for the FaaS implementation.

In our tests we needed to access the GET endpoint of the applications and
subsequently check the status code of the responses. In order to gather
information on how the applications performed under heavy load, we had to
be able to send multiple requests to the endpoint at the same time. This we
could achieve by using the load testing tool k6.

One of the functional requirements of the performance tests was to test the
performance at at different load levels by varying the number of requests. To
do this, several test cases were designed. It was decided that one of the cases
was to use a load level that matched the limits of the IaaS solution, and one test
case was to exceed these limits. Furthermore, two test cases were designed to
use load levels below the limits. The exact load levels were decided after the
deployment of the applications, as some initial testing was needed before that.

4.3.3 Implementation

The performance tests were performed using a load testing tool called k6,
which included functionality for testing the performance of applications under



Practical steps | 41

heavy load by writing programmatic test scripts in JavaScript. K6 allowed the
user to specify options for running test scripts. The options used in our tests
were the number of virtual users that should be created and used to execute
our scripts, and the number of total iterations to be run.

K6 handled the majority of the settings and configuration, and all the user
needed to do was to code the function where the tests themselves were
performed. All configuration of input options and output format was optional.

The code for the test cases consists of three parts, the input options, the
main test function and the handleSummary function specifying the output
format. In our case the main test function only consisted of a call to our REST
endpoint and a check of the status code of the response. The options specified
controlled the number of virtual users created and used to simultaneously
run the main function, as well as the number of total iterations of the
function performed for the load test. In our case, the number of virtual users
corresponded to the number of concurrent HT'TP GET requests that were to
be sent to the application. The only difference in the other test cases were the
option values, virtual users and iterations. The full code for all tests can be
found in Appendix A.3.

As described in Section 4.3.2, four test cases with varying load levels were
to be implemented. By performing some smaller tests on the deployed [aaS
application, an approximate breakpoint where it produced errors was found.
This was done by fully implementing the tests without deciding on the load
levels. The tests were then executed, starting with a low load level. This
was then successively incremented until the application started producing
errors. This load level was used as one of the test cases, the other ones were
implemented according to the desired load levels.
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Finally, the number of virtual users for the different load levels that were
decided upon were the following: 1000, 5000, 10000 and 15000. The number
of iterations used in the tests were decided to be five times the number of
virtual users. This was chosen mainly to ensure that the duration of the tests
were long enough.

4.4 Data Collection

In this section, the process of gathering the data for the criteria of the
comparison model is explained. Section 4.4.1 details how the performance
data was collected. The following section, 4.4.2, describes how the criteria
relating to the monetary cost were handled. Finally, Section 4.4.3 explains the
way in which the data of the development experience criteria was attained.

4.4.1 Performance

Running the tests explained in Section 4.3.2 produced extensive reports of
the results. First, a readable summary was presented in the command line
interface where the tests were executed. Additionally, our tests produced a
more extensive report in a less readable format. These reports are included in
JSON form in Appendix B.

Initially, the tests were run sequentially starting with the one with the lowest
load. For both the [aaS and the FaaS applications, this was performed during
the same day. As cold starts are a commonly quoted issue with FaaS solutions
(Chowhan, 2018), the decision was made to run the FaaS tests a second time.
The goal of this second test run was to get performance measurements of the
FaaS application when it was experiencing the full effect of cold starts. This
time, the test runs were separated by an hour. Azure states that they deallocate
resources of their serverless functions after roughly 20 minutes of inactivity
(Colby Tresness, 2018). An hour was chosen as the period of separation so
that we could be sure that this had occurred.

From the reports, the measurements relevant to this study had to be extracted.
There were two criteria pertaining to performance in our comparison model,
the average time a request took, and the percentage of the requests that failed.
The first one corresponded to the average iteration_duration measurement
from the k6 reports. The second one was taken from the checks measurement.
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To summarize, data was collected for two criteria regarding performance,
response time and error percentage. This data was gathered from three
complete performance tests consisting of four test cases each. One test was
performed for the [aaS application and two for the FaaS application.

4.4.2 Cost

The cost criteria of the comparison was defined as the total cost of running our
performance tests on the two services. Both of the two services had a type of
pay-as-you-go billing policy, although some differences were present. For the
[aaS solution, the billing was decided by a hourly cost for running the instance.
Meanwhile, the FaaS solution’s pricing was decided by the number of function
calls, the time spent executing them, and the memory allocated to it during its
execution.

Using the metrics available to us through Azure’s portal, we could gather data
regarding the consumption of our applications. For the IaaS application, the
cost management service page showed the total cost for running our instance
since the start, as well as the cost for each day of running our instance. Using
the daily cost view, we could extract the cost data for the day that we performed
the tests on, since we manually started and stopped our instance before and
after the tests were performed. The documented hourly cost for the instance
size chosen by us could also be found on a Azure instance pricing page (Azure,
n.d.-b). This documented hourly cost was then cross referenced with the cost
gathered from the cost management view.

To gather the cost of running the tests on the FaaS application, the total number
of function executions and the function execution units were extracted from
the metrics page. A function execution unit is the time it takes to execute a
function, multiplied by the memory that is allocated to it. With the chosen pay-
per-use consumption plan, the number of function executions were multiplied
with a certain rate to get the first part of the price. The second one was obtained
by multiplying the consumed function execution units with a different rate
(Azure, n.d.-a). The total price for the user would then be the sum of these
two parts.

For the Azure Functions service, there existed a free tier. With this, users get a
monthly grant of a number of free function calls and function execution units
before the normal billing costs apply. In these cost calculations, this free tier
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was disregarded and all costs were calculated as if these grants did not exist.
As two rounds of tests were run on the FaaS application, it was decided to also
split the incurred costs between the two tests to make the comparison with the
[aaS solution more accurate.

In summary, cost data was gathered for one criteria, the total cost for the load
tests. This was gathered for the three load tests conducted for the performance
criteria, using the cost management pages for the two cloud services to check
the costs. The end results were three measurements, one for each of the
conducted load tests.

4.4.3 Developer effort

The data for the developer effort criteria was gathered by measuring the time to
deploy, and the number of code lines for each of the applications. The time to
deploy was defined as the time between having the application fully coded,
to being fully deployed and ready to be tested. These time measurements
were therefore extracted by measuring the active time spent between these
two situations. In our case, both deployment phases could be finished in
one continuous work session, meaning the data could be gathered without
interruption.

To accurately compare these two applications, we used the code formatters
Prettier and ESLint for parity between the code of them. By creating a Prettier
configuration file that was identical for both applications, formatting rules
could be enforced. This included attributes such as the maximum line length
and the tab width. For ESLint there existed pre-defined style guides that
could be imported. The choice was made to use Google’s style guide for
this project (Google, n.d.-a). By declaring this in the configuration file of
the ESLint plugin, this style was enforced throughout the applications. These
configuration files are included in Appendix A.4.

Additionally, some choices were made regarding what parts of the code to
include in the results. It was decided that empty lines and the lines initializing
the JSON data were to be ignored. Only the lines that we had written ourselves
were included. This excluded the files that were automatically generated
by frameworks and providers. For the [aaS application this included four
JavaScript files, and for the FaaS application this included only the function
declaration.
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To summarize, data for two criteria was gathered regarding developer effort,
time to deploy and number of code lines. The data regarding the time to deploy
was gathered from the active time spent deploying the applications. And the
data regarding the code lines was gathered from the created files for the two
different applications. The end results were two measurements for each of the
cloud solutions, one for each of the criteria.
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Chapter 5

Results

In this chapter, the results of the comparative study are presented. Section
5.1 contains the results regarding the performance aspect. In Section 5.2, the
results of the cost analysis are presented. Following this, in Section 5.3 the
results pertaining to the developer effort are shown.

5.1 Performance

The performance results consisted of two criteria, the average response time
as well as the percentage of failed requests. As mentioned in Section 4.3.3 the
research results were gathered from four separate test cases all with differing
load level on the applications. Table 5.1 shows the performance results for
the laaS solution. For the first test case, the average response time was fast,
and all the requests were successful. The next test raised the response time
significantly. The third test, which was designed to produce a load on the limits
of what the laaS solution could handle, did not lead to any failed requests but
it did increase the response times notably. Finally, the last test did lead to a
small amount of failed requests while further increasing the response times.

Table 5.1: Performance results for IaaS test

Load level (VUs) | Average response time (ms) | Failed requests (%)

1000 163 0
5000 722 0
10000 2120 0

15000 3620 2.78
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The second test performed was on the FaaS solution. The results from this
test are contained in Table 5.2. This test was run without any consideration
of the concept of cold starts. Notably, all the requests were successful for all
load levels. The average response time increased significantly between the test
cases, reaching as high as 12.8 seconds for the final one.

Table 5.2: Performance results for FaaS test

Load level (VUs) | Average response time (ms) | Failed requests (%)
1000 960 0
5000 459 0
10000 7960 0
15000 12800 0

Finally a third test was performed, this also on the FaaS solution. During this
test the concept of cold starts was considered and the execution of the test
cases was adapted to it. The full procedure for running this test was explained
in Section 4.4.1. The results from this third test can be found in Table 5.3. The
lowest load did not result in any failed requests, but it did come with a high
response time. The following test increased the response time significantly,
while also causing a significant number of requests to fail. The final two tests
both lead to similar response times, reaching more than 21 seconds. They both
lead to a high amount of failed requests, especially the last one which had more
than 36% of them fail.

Table 5.3: Performance results for FaaS test with cold starts

Load level (VUs) | Average response time (ms) | Failed requests (%o)
1000 6230 0

5000 14 800 8.88

10000 21200 14.8

15000 21600 36.1

5.2 Cost

The cost results consisted of one measurement for each of the three performed
tests. These measurements represented the total incurred monetary cost for
running each of the tests. As was explained in Section 4.4.2, the process of
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producing these measurements differed between the [aaS and FaaS solutions.
For the [aaS solution, the incurred monetary cost could be directly extracted
from Azure’s metrics. This was not the case for the FaaS tests, where some
calculations had to be made. Table 5.4 contains the usage data that could be
extracted from Azure’s metrics and used to calculate the resulting cost.

Table 5.4: Usage data for the tests

Test | Function executions | Function execution units (GB-s)
FaaS (1st test) 155000 91109
FaaS (2nd test) 118 349 67812

From Azure’s documentation, the rates corresponding to the usage data could
be found. These were $0.000016/GB-s for the function execution units and
$0.20 per million function executions (Azure, n.d.-a). For the first test the
cost for the function executions was 155000 * 0.20/1000000 = $0.031, for the
function execution units it was 91109 0.000016 = $1,458. The resulting cost
was the sum of these two, that is $0.031 + $1,458 = $1.49. For the second
test, the cost for the function executions was 118349 0.20/1000000 = $0.024
and for the function execution units it was 67812 % 0.000016 = $1, 085. This
lead to the resulting cost being $0.024 + $1,085 = $1.11.

Table 5.5 shows the cost of running our tests for both the [aaS and FaaS
solution. The table shows that the cost of the [aaS solution ended up being
a few times lower than the FaaS ones. The two tests performed on the FaaS
solution also differed in cost, where the test adapted to cold starts resulted in
a lower cost than the other.

Table 5.5: Cost results for the performed tests

Test | Cost ($)
TaaS 0.45
FaaS (1st test) 1.49

FaaS (2nd test) 1.11



50 | Results

5.3 Developer effort

The results concerning the developer effort consisted of two measured criteria,
the time it took to deploy the solutions and the lines of code that were needed.
Table 5.6 contains the results for these two criteria. The lines of code were
lower for the FaaS solution, being able to achieve the desired functionality
with five lines. For the [aaS solution, twenty lines of code were used for the
same functionality. The time it took to get the finished local version of the
IaaS solution fully deployed was 120 minutes. For the FaaS solution, this time
was 10 minutes.

Table 5.6: Developer effort results

Type of service | Lines of code | Time to deploy (min)
laaS 20 120
FaaS 5) 10
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Chapter 6

Analysis and discussion

In this chapter, the results presented in Chapter 5 are analyzed and discussed.
In Sections 6.1, 6.2 and 6.3 the performance, cost and developer effort results
are discussed and analyzed respectively. The chapter ends with Section 6.4
presenting how we combated the validity threats and analyzing the validity of
our results.

6.1 Performance

The results for the performance measurements clearly show that the [aaS
solution had shorter average response times for all the tests. This was contrary
to our expectations that the FaaS would respond quicker. For the first round
of tests of the FaaS solution, presented in Table 5.2, the average response time
reached above ten seconds for the highest load. These tests were run without
taking the concept of cold starts into consideration. Some initial trial tests
had already been performed on the application before the actual testing took
place. This meant that the first test with a low load level was not performed
on an application which had had its resources completely deallocated. The
following tests were run sequentially, so the resources from the previous test
were still allocated when a new one was performed. Consequently, the results
in Table 5.2 show the results for an active application that is subjected to a
steadily increasing load.

The second round of tests of the FaaS application were constructed to
maximize the effects of cold starts. This was done by making sure that the
application was in an idle state before every individual test. The results in
Table 5.3 show a dramatic increase in response times compared to the previous
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round of tests. A common scenario which is affected by cold starts is a sudden
spike in function calls, which can lead to noticeable overhead in their execution
time (Chowhan, 2018). The high response times of this third test indicate that
this is what occurred.

Regarding the amount of failed requests, the [aaS application only showed
these for the highest load level. This was contrary to what our initial testing
had showed, where the previous level had produced failed requests as well.
Cloud services tend to show a varying performance, with daily fluctuations
being common (Iosup, Yigitbasi, & Epema, 2011). It is possible that this
deviation was caused by such a variation.

For the FaaS application, the first test did not produce any failed requests. This
result illustrates one of the fundamental differences between the two solutions,
their scalability. As the [aaS solution reached its limits for the higher load
tests, it would need to be scaled to accommodate more traffic. Scaling it could
be done in a horizontal manner, by adding more VMs, or in a vertical one,
by increasing the capacity of the existing machine. Both of these lead to a
step wise scaling pattern where the capacity of the application increases in
discrete stages (Chowhan, 2018). As the FaaS can scale in a granular way, on
a per-function-execution basis, a limit is not reached when the load is increased
gradually.

The second test on the FaaS solution produced a high amount of failed requests.
When Azure scales their functions up, it is done by adding more running
instances of the Function Application. This is handled by a scale controller.
There exists an upper limit on how quickly this can happen, the new instance
rate (Azure, 2023b). It is probable that the load pattern of the second test
brought the application to this limit, as each test demanded that it scaled from
an idle state to the desired load. This limit on the scalability of the FaaS
application was not something that had been predicted by us. The result shows
that the hands-oft approach for scaling a serverless solution can bring other
issues, as the manner in which it is scaled and the limitations on it are, to a
greater extent, controlled by the provider.

The results concerning the performance of the two solutions show that the
[aaS one had a faster response time for all the test cases. This resembles
the findings of Malla and Christensen, 2019, which also found that an [aaS
solution could be up to 1.65 times faster than a FaaS one. The workload used
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in that study differs greatly from the one used here, focusing on a smaller
amount of concurrent requests with more demanding computations. With this,
the effects of cold starts for the FaaS solution are more prominent in this study,
as many more containers needed to be initialized in a short amount of time.
This was the case for both of the tests performed on the FaaS application, but
the effect was understandably higher in the second one.

6.2 Cost

While inspecting the cost results, presented in Table 5.5, we can clearly deduce
that the [aaS solution had a significantly lower cost than the FaaS solution
of around three times as much. While a FaaS solution often is considered
the cheaper solution between these two, with the high loads the applications
experienced during our tests the fact that the actual cost of the solutions is as
presented is not surprising. The [aaS pricing entails paying a set price per
day of running an instance, contrasted by the FaaS solution requiring payment
depending on the number of requests and execution time of your functions.
This means that the load on the [aaS application has no effects on the resulting
costs while the FaaS application’s cost increases depending on the load.

The hypothesis regarding this criteria, presented in Section 3.4.2.2, was also
consistent with the results gathered from our tests. The main reason why the
outcome was predictable was that the situations of the tests were, from the
cost perspective, favorable for the [aaS solution. This is because the tests were
performed during a short time, meaning a minimal uptime for the instances,
in turn resulting in low costs for the [aaS solution. The tests also meant that
the applications were bombarded with many requests resulting in the FaaS
solution increasing in price.

The second test of the FaaS solution lead to a lower cost than the first one. This
further highlights one of the key differences between the two applications, that
one only pays for the actual function executions for a FaaS deployment. As
the second test produced many failed requests, these never reached the stage
where they invoked the function and therefore never incurred a charge for the
user.

The results concerning the costs of the two solutions show that the [aaS
solution had a cost of less than half of the FaaS solution. These findings do not
correspond to the results of previous research, Malla and Christensen, 2019;



54| Analysis and discussion

Villamizar et al., 2016, which both found that the FaaS solution had a lower
cost than the IaaS solution. The reason for the deviation of our results could be
that the test performed by us included many requests. This resulting in many
function invocations for the FaaS solution. As mentioned earlier, this meant
that the cost of the FaaS solution increased for each function invocation and
the time spent executing that function, while the cost of the [aaS stayed the
same regardless of the number of requests.

6.3 Developer effort

The results regarding the developer effort for the two solutions, presented in
Section 5.3, clearly show that the FaaS solution is a better candidate in this
aspect. The table shows us that the [aaS application had four times as many
lines of code than the FaaS application, which matches with our hypothesis
discussed in Section 3.4.2.3. The fact that the FaaS application is so much
shorter is not surprising when the main part of the application is automatically
generated configuration files, which we did not count for the lines of code
criteria. Also, the laaS application includes a lot of boilerplate code required
for the application to be complete, which is especially apparent when the
functionality of the application is as simple as ours was.

The second criteria for developer effort, time to deploy, also shows that FaaS
had a more than ten times shorter time to deploy. That the [aaS application
would result in a longer time to deploy was expected by us and apparent in our
hypothesis as well, also presented in Section 3.4.2.3. But the difference was
not expected to be on this scale, rather we were expecting the [aaS application
to take a few times longer than the FaaS application, not as much as ten times.

During the deployment of the [aaS application, time had to be spent on many
stages of deployment such as configuration, SSH key handling, dependency
installation, network configuration, and more. This led to the deployment
taking much longer than we anticipated. In contrast the deployment of the
FaaS application was much simpler, only including two steps, creating the
function application and deploying the functions to it. The fact that the FaaS
solution had plugins available for the IDE used during development, Visual
Studio Code, also resulted in an easier and quicker deployment process.
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It is important to consider that the results for both criteria in this category
are highly specific to the context of this study. First, the number of lines
of code was greatly influenced by the specific structure and functionality of
the applications. Second, the time it took to deploy the applications was
dependent on the previous experience of us as developers. Finally, the concept
of developer experience is broad, and this study only focused on a small part
of it, which we named developer effort (Fagerholm & Miinch, 2012). They
can not be used to draw far-reaching conclusions about the general developer
experience of the two offerings. What they can do is provide insight into how
the experience was like for us, as novices in the field of cloud computing, when
working with them.

6.4 Validity analysis

In this section, the validity threats and how they were met, is analyzed. It
covers the threats presented in Section 3.6 by first dealing with the credibility
in Section 6.4.1. Following this, the transferability is analyzed in Section 6.4.2.
In the next one, Section 6.4.3, the dependability is handled. Finally, in Section
6.4.4, the confirmability of the research is considered.

6.4.1 Credibility

The research of this thesis aimed to attain a high level of credibility by using
three strategies. First, the methods used to attain the underlying data and the
metrics of the data were based on previous research. This was especially true
for the performance data, which was attained through the use of a widely used
tool. The metrics of the developer effort aspect were an exception to this, as
previous research that measured this could not be found. The credibility of the
conclusions drawn from these measurements were therefore lower.

Second, a thorough description of the phenomenon being studied was
included. Section 3.2.2 and 3.4.2 contains clear definitions of what the
concepts of performance, cost and developer effort meant in the context of
this thesis.

Finally, the results of the comparative study were compared to results from
similar previous research in Sections 6.1, 6.2 and 6.3. A high consistency
with previous research gave the results of this study a higher credibility.



56 | Analysis and discussion

6.4.2 Transferability

To combat the threat to the study’s transferability, a strategy mentioned by
Guba, 1981 was employed, to develop a thick description of the context.
In Chapter 4 the applications, deployments and load tests were explained in
detail. With this, a reader could get a clear understanding of the context and
make judgements about the fittingness with other contexts. Additionally, the
choice was made to use the established REST paradigm for the applications
of the study to increase the transferability of the results.

6.4.3 Dependability

In the case of this thesis, some of the phenomena that were studied were
changing due to factors outside of our control, such as the cloud services
performance varying due to the time of day. Factors like this were mitigated
by performing the tests with this in mind. Additionally, the subjective nature
of some of the criteria in the comparison contributed to a lower repeatability.

Two strategies mentioned by Shenton, 2004 were employed to increase the
dependability. First, the research design and implementation were thoroughly
described in Chapter 3. Second, the operational detail of the gathering of
data was clearly explained in Section 4.4. Together, these steps enabled the
research to be repeated in a similar manner, although not necessarily with the
same results.

6.4.4 Confirmability

Guba, 1981 mentions several strategies that can be employed to ensure a high
confirmability, two of these were used in this thesis’ study.

The first one was to include reflective commentary by revealing the
predispositions that lead to what results were gathered. Section 3.4.2 included
the motivations for the criteria of the comparative study and what was expected
from them. In Chapter 6, the preliminary theories were included, even in the
case where the results did not support them.

Second, an attempt was made to include an audit trail. This was done by
including all the gathered performance data in Appendix B, and Chapter 6
included clear explanations of how this data led to the conclusions that were
drawn.
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Chapter 7

Conclusions and Future work

Cloud computing is a collection of services used by many companies and
individuals today, and with the extensive usage of cloud computing comes
many considerations of what type of service to use. These complicated
decisions require comparisons of the different types of cloud services but
the problem is that we lack up to date comparisons of FaaS and traditional
[aaS solutions. The purpose of this thesis is therefore to provide such a
comparison of Azure’s cloud solutions. While the goal of this thesis is to
provide information for future cloud choices and research. To achieve this
goal an extensive literature study was conducted, as well as measurements of
the cloud options’ performance, cost and developer effort. The result of this
thesis is a comparison of Azure’s FaaS and [aaS implementations.

7.1 Conclusions

The practical part of the research began with a literature study. Previous
research was consulted and used as a basis for deciding how the thesis’
comparison was to be performed. Three factors of the existing research served
as a motivation for this investigation. First, most of it was several years old,
in a field that moves quickly. The performance and pricing of the cloud
services change rapidly. Second, most of it focused on other solutions than
the serverless options. Finally, in a field where the choice of cloud provider is
so important, no previous comparisons of Azure’s serverless option with their
traditional IaaS one could be found. Therefore it could be concluded early in
the investigation that the main problem was the lack of up-to-date comparisons
of Azure’s serverless FaaS solution to their [aaS one.
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The comparison dealt with three main aspects of the solutions, their
performance, cost, and the developer effort required to develop them. By
subjecting the solutions to heavy loads, and measuring their response time
and fault rate, their performance could be established. The cost aspect was
analyzed by looking at the incurred monetary costs for the solutions, while
executing the performance tests. The developer effort involved with the two
options was compared by looking at the amount of code needed to achieve the
desired functionality, and the time it took to deploy them. The conclusion was
drawn that this approach could be used to achieve the purpose of comparing
the serverless solution to the [aaS one.

The results concerning the performance of the two solutions showed that the
IaaS one performed better. It resulted in significantly lower response times for
each test case. The amount of failed requests was also low for the [aaS one,
only appearing for the highest load level. This highlighted one key difference
between the two services, the scalability of the FaaS one. As the amount of
concurrent requests became high enough, the IaaS solution reached its limit
while the FaaS one could scale up and handle the high load.

The high response times of the FaaS solution during the first test highlighted
a different aspect of its scalability. Although all of the incoming requests
could be fulfilled, it took a long time. It was theorized that this was due to the
concept of cold starts. When the application was subjected to a high number
of concurrent requests, new function containers needed to be initialized. The
rate at which this could happen seemed to be a limiting factor.

To further investigate this, a second test was performed on the FaaS
application. It was designed to maximize this effect by letting the application
reach an idle state between each test case. The results of the second test
lead to even higher response times and many failed requests. It showed that
although the FaaS had the ability to automatically scale up, this ability was
limited. When subjected to high enough load levels, it was not able to scale
up sufficiently fast.

The results relating to the monetary cost of the two cloud services showed that
the [aaS one was cheaper. Both tests performed on the FaaS solution incurred
a higher cost than it. The fact that the cost of running the two tests on the
FaaS application were different, highlighted the pay-per-use pricing model of
it. Only the executed function calls lead to a monetary cost. The failed requests
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of the second test, that did not invoke the function, had no associated cost. The
cost of running the tests on the [aaS application did not depend on the number
of requests, only on the time it was deployed. The traffic generated with the
performance tests consisted of a high amount of requests, arriving during a
short time period. It could be concluded that the pricing model of the IaaS
service was favourable for this type of traffic.

The results highlighting the developer effort of the two cloud services showed
that the FaaS solution produced significantly lower values than the [aaS
one, both for number of code lines and time to deploy. One of the main
reasons for investigating this criteria was the alleged benefits of the serverless
solutions. Looking at the results gathered from our study we can conclude
that these claims held true. The authors of this study had no prior experience
working with serverless cloud solutions, and even then the development and
deployment procedures were easy to follow and perform. It is however
important to remember that the results regarding developer effort are highly
specific to the context of this study, meaning that they are hard to generalize
and transfer to other contexts.

The purpose of this study was to compare Azure’s FaaS offering with their
laaS one, focusing on their performance, cost and developer effort. This was
achieved, as the produced results covered all of these aspects. The main goal
of this thesis was to help software professionals in choosing a cloud service.
This goal was achieved by analyzing the results and formulating the following
guidelines:

* For the types of traffic used in this study, Azure’s FaaS offering can not
be recommended above their [aaS one if the response times are of value.

* For applications with a short deployment window and a high amount of
traffic, Azure’s [aaS option is cheaper and therefore recommended.

* The comparatively low effort involved with developing a FaaS
application through Azure is an advantage. If these aspects are valued,
the FaaS solution is highly recommended.

7.2 Future work

Even though the comparison performed in this thesis can be used as indication
of how cloud services compare to each other, there are still many things that
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warrant future work. Most of the limitations placed upon this thesis can
be further researched in future work. The results of the comparative study
performed in this thesis is limited to one cloud provider, Azure, and limited
to two of their cloud offerings, laaS and FaaS. This is one part that can
warrant future work concerned with different cloud providers and different
cloud offerings.

The programs created for the comparative study is another part that can be
further researched. The programs was limited in their functionality and only
represented one type of workload. This could be built upon in other research,
where more advanced programs could be used. Different workloads could be
used for more in-depth testing of the implementations of the cloud provider’s
services.

The performed comparative study only concerns itself with three aspects of
the cloud solutions, performance, cost and developer effort. There are many
more aspects of the cloud services that can be explored and evaluated. One
of the biggest being the security of the cloud solutions, which can greatly
affect the choice of cloud services in the industry. Another aspect that can
be explored are the effects on the performance of the cloud services when they
are accessed from different parts of the globe, testing how well the solutions
can be distributed across larger areas.
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Appendix A

Requirements and Code

This appendix includes the requirements and code for the developed
applications, performance tests and configuration files.

A.1 Requirement specifications

This section includes the requirement specifications for the applications and
the performance tests.

Requirement 1: Fetch users
Actor: The user of the application
Description:
The user can send a request to the endpoint to fetch user objects
Scenario Requirements:
¢ None
Scenario:
1. User sends GET request to application endpoint
Scenario Sequel:
2. The user sees the following:
a. The users information returned as a JSON object
b. An error message on the web site and JS5ON object

Figure A.1: Requirement specification for the applications



w
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Requirement 1: Execution of performance tests
Actor: The developer of the applications
Description:
The tests shall measure performance of applications under differing amounts of
concurrent GET requests
Scenario Requirements:

¢ An application and endpoint to test
Scenario:

1. Developer executes tests

2. Tests are executed by sending concurrent GET requests to endpoint

3. Tests check response codes of requests
Scenario Sequel:

4 The tests produces the following:

a. A summary of results returned as plaintext and A JSON file with full
resulis of the test

Figure A.2: Requirement specification for the performance tests

A.2 Application code

This section includes the code for the two created applications.

A.2.1 Infrastructure-as-a-service code
This section includes the code for the [aaS application.

Listing A.1: Code from server. js

const app = require('./app');
const PORT = process.env.PORT || 5001;

app.listen (PORT, () => {
console.log( Server is running on port S$S{PORT} ) ;
)

Listing A.2: Code from app/index. js

const express = require('express');
const app = express();
const routes = require('./routes');

app.use (express.json()) ;
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app.use (routes) ;

module.exports = app;

Listing A.3: Code from app/controller. js

w

w

o)

const getUsers = (req, res) => {
const data = [

{

id: '1"',
firstName: 'Kevyn',
lastName: 'Freeman',
age: '49",
role: 'Media Relations',
I
/*

19 additional user resources of the same format
are included here.
*/

1

res.send (data) ;
bi

module.exports = { getUsers };

Listing A.4: Code from app/routes. js

const express = require('express');
const router = express.Router();
const { getUsers } = require('./controller');

router.get ('/user', getUsers);

module.exports = router;

A.2.2 Function-as-a-service code

This section includes the code for the FaaS application.
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Listing A.5: Code from the getUsers () function

module.exports = async function (context, req) {
2 const data = [

{

w

4 id: '1"',

s firstName: 'Kevyn',

6 lastName: 'Freeman',

7 age: '49'"',

8 role: 'Media Relations',
9 b

10 /*

1 19 additional user resources of the same format
12 are included here.

13 */

14 1;

15

16 context.res = {

17 body: JSON.stringify (data),

18 };

19},'

A.3 Performance tests

This section includes the code for the performance tests. The only difference
between the test for IaaS and FaaS is the url accessed in the http.get ()
function, therefore only one of each test case has been included.

Listing A.6: Code from low. js

import http from 'k6/http';
import { check, sleep } from 'ko6';

[~

import { textSummary } from
'https://Jjslib.k6.i0o/k6-summary/0.0.2/index.js';

w

I

export const options = {
7 vus: 1000,
8 iterations: 5000,

=)

9 discardResponseBodies: true,

0| };
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export default function () {
const res = http.get (/*URL*/) ;
sleep(l);
check (res, {
'status was 200': (r) => r.status == 200,
b

export function handleSummary (data) {

return {
stdout: textSummary (data,

{ indent: ' ', enableColors: true }),
'summary—-low. json': JSON.stringify (data),

bi

Listing A.7: Code frommid. js

import http from 'k6/http';

import { check, sleep } from 'ko';

import { textSummary } from
'https://Jjslib.k6.io/k6-summary/0.0.2/index.js';

export const options = {
vus: 5000,
iterations: 25000,
discardResponseBodies: true,
i

export default function () {
const res = http.get (/*URL*/) ;
sleep(l);
check (res, {
'status was 200': (r) => r.status == 200,

1)

export function handleSummary (data) |
return {




22

23

24

25

26

[N

w

IS

=)

21

22

23

24

25

26

[N

w

I

70| Appendix A: Requirements and Code

stdout: textSummary (data,
{ indent: ' ', enableColors: true }),
'summary-mid. json': JSON.stringify (data),

bi

Listing A.8: Code from high. js

import
import
import
'"https

export
vus:

http from 'ké6/http';

{ check, sleep } from 'k6';

{ textSummary } from
://Jslib.k6.io/k6-summary/0.0.2/index.js"';

const options = {
10000,

iterations: 50000,
discardResponseBodies: true,

b

export default function () {
const res = http.get (/*URL*/) ;
sleep(l);
check (res, {
'status was 200': (r) => r.status == 200,
}) i
}
export function handleSummary (data) {
return {
stdout: textSummary (data,
{ indent: ' ', enableColors: true }),

'summary-high. json': JSON.stringify (data),

bi

Listing A.9: Code from extreme. js

import
import
import
"https

http from 'ké6/http';

{ check, sleep } from 'k6';

{ textSummary } from
://Jslib.k6.io/k6-summary/0.0.2/index.js';
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export const options = {
vus: 15000,
iterations: 75000,
discardResponseBodies: true,

}i

export default function () {
const res = http.get (/*URL*/);

sleep (1) ;
check (res, {
'status was 200': (r) => r.status == 200,

P

export function handleSummary (data) |
return {
stdout: textSummary (data,
{ indent: ' ', enableColors: true }),
'summary-extreme. json': JSON.stringify (data),

}i

A.4 Configuration files

This section includes the configuration code for the code formatters.

A.4.1 ESLint configuration

Listing A.10: Code from .eslintrc. js

module.exports = {
env: {
commonjs: true,
es6: true,
node: true,
b

extends: [
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}i

'plugin:node/recommended’,

'eslint—config-prettier'

'eslint:recommended’',
'google'

1

parserOptions: {
ecmaVersion: 2020,

b

rules: {},

!

.prettierrc.

cjs

Listing A.11: Code from
module.exports = {
trailingComma: 'all',

b

tabWidth: 2,

semi: true,
singleQuote: true,
printwidth: 100,
bracketSpacing: true,
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Appendix B
JSON reports

This appendix includes the JSON reports from the performed performance
tests. Each of the listings represents one test case.

B.1 Infrastructure-as-a-service

This section includes the JSON reports for the test performed on the [aaS
application.

Listing B.1: Report from summary-low. json

"root_group”: {
"groups”: [],
"checks”: |
{
"name” : "status was 200",
"path”: "::status was 200",

"id”: "1461660757a913d4fb82ac4c5el1009de”,
"passes”: 5000,
"fails”: O

1,

"name”: "',

//pathu L

"id”: "d41d8cd98£00b204e9800998ect8427e”
by

"options”: {
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"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
— "p(90)", "p(95)"],
"summaryTimeUnit”: "",
"noColor”: false
b
"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,
— "testRunDurationMs”: 6093.8253 1},
"metrics”: {
"data_sent” : {
"type”: "counter”,
"contains”: "data”,
"values”: { "count”: 445000, "rate”: 73024
— .73866456264 }
b
"checks”: {
"contains”: "default”,
"values”: { "rate”: 1, "passes”: 5000, "fails”: O
— },
"type”: "rate”
b
"http_reqg blocked”: {
"vvalues” @ {
"p(90)": 89.6286,
"p(95)": 99.964535,
"avg”: 18.503060059999996,
"min”: O,
"med” : O,
"max": 135.5765
I
"type”: "trend”,
"contains”: "time”
b
"vus_max”: |
"type”: "gauge”,
"contains”: "default”,
"values”: { "value”: 1000, "min”: 1000, "max”: 100
— 0 }
b
"http_reqg _failed”: {
"type”: "rate”,
"contains”: "default”,
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"values”: { "rate”: 0, "passes”: 0, "fails”: 5000
— }
I
"http_reqg waiting”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"avg”: 140.36816729999953,
"min”: 53.1853,
"med”: 80.7299,
"max": 516.4187,
"p(90)”: 387.8138300000006,
"p(95)": 479.67321000000015

I
"http_reqg_receiving”: {
"sralues” @ |
"p(90)": 0O,
"p(95)”: 0.5201150000000001,
"avg”: 0.05705918000000005,
"min": O,
"med” : 0O,
"max”: 1.2735
I
"type”: "trend”,
"contains”: "time”
b
"iterations”: {
"type”: "counter”,
"contains”: "default”,
"svvalues” : { "count”: 5000, "rate”: 820
— .5026816242993 }
I
"http_reqg_tls_handshaking”: {
"type”: "trend”,
"contains”: "time”,
"values”: { "med”: 0, "max”: 0, "p(90)": O,
— "p(95)": 0, "avg”: 0, "min”: 0 }
b
"http_req duration{expected_response:true}”: {
"contains”: "time”,

"sralues” @ |
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"min”: 53.1853,
"med” : 80.78545,
"max"”: 516.8827,

"p(90)": 387.8674900000008,
"p(95)": 479.67321000000015,

"avg”: 140.4825427399994
b
"type”: "trend”
b
"http_reqg_sending”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"avg”: 0.05731626,

"min”: O,
"med” : O,
"max": 4.3367,
"p(90)": 0,

"p(95)": 0.5181

b
"http_reqgs”: {
"type”: "counter”,
"contains”: "default”,
"sralues”: { "count”: 5000,
— .5026816242993 }
b
"http_reqg _connecting”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"min”: O,
"med” : 0O,
"max”: 124.7499,
"p(90)7: 89.3796,
"p(95)": 99.8007,
"avg”: 18.44318145999999

} !

"iteration_duration”: {
"contains”: "time”,
"sralues” @ |

"rate” :

820
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"min”: 1054.4327,
"med”: 1085.5115,
"max": 1642.0851,
"p(90)": 1478.31917,
"p(95)": 1572.3136100000002,
"avg”: 1163.4842260800033
I
"type”: "trend”
b
"http_reqg duration”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"max": 516.8827,
"p(90)": 387.8674900000008,
"p(95)": 479.67321000000015,
"avg”: 140.4825427399994,
"min”: 53.1853,
"med”: 80.78545

I
"srus” s |
"type”: "gauge”,
"contains”: "default”,
"sralues”: { "max”: 1000, "wvalue”: 813, "min”: 813
— }
I
"data_received”: {
"type”: "counter”,
"contains”: "data”,
"svvalues” : { "count”: 9925000, "rate”: 1628697
— .823024234 }

Listing B.2: Report from summary-mid. json

"metrics”: {
"http_reqg blocked”: {
Iltypell . Iltrendll’
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"contains”: "time”,
"sralues” @ |
"min": O,
"med” : 0O,
"max": 3155.441,
"p(90)": 295.2844,
"p(95)": 415.591,
"avg”: 87.21730280800013

I
"data_sent”: {
"type”: "counter”,
"contains”: "data’”,
"svvalues” : { "rate”: 232673.36848231437, "count”:
— 225000 }
b
"data_received”: {
"type”: "counter”,
"contains”: "data”,
"values”: { "count”: 49625000, "rate”: 5189400
— .409408921 }
I
"http_reqg waiting”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"p(95)": 2100.9078,
"avg”: 630.9935573679952,
"min”: 239.1769,
"med”: 451.7557,
"max"”: 5653.034,
"p(90)": 998.5320200000002

o
"http_reqg _tls_handshaking”: {

"type”: "trend”,
"contains”: "time”,
"values”: { "avg”: 0, "min”: 0, "med”: 0, "max”:
— , "p(90)7": 0, "p(95)": 0 }
I
"http_req_sending”: {
"contains”: "time”,
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"values”: {
"avg”: 0.09411943999999943,
"min": O,
"med” : 0O,
"max": 28.009,
"p(90)": O,
"p(95)”: 0.9984
I
"type”: "trend”
b
"http_req receiving”: {
"contains”: "time”,

"sralues” @ |
"avg”: 0.04499121999999989,
"min”: 0O,
"med” : O,
"max”: 3.0013,
"p(90)": 0O,

"p(95)": 0.5065
I
"type”: "trend”
I
"iteration_duration”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"min”: 1298.3158,
"med”: 1457.4780500000002,
"max": 7075.9589,
"p(90)": 2389.055330000001,
"p(95)": 3430.6613,
"avg”: 1721.727530547958

t

"VUS" . {
Iltypell . ”gauge",
"contains”: "default”,

"svvalues” : { "value”: 2965, "min”:

o

"http_reqgs”: {
"type”: "counter”,
"contains”: "default”,

0,

"max” :

5000
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"values”: { "count”: 25000, "rate”: 2614
— .30751103724 }
I
"iterations”: {
"type”: "counter”,
"contains”: "default”,
"svvalues” : { "count”: 25000, "rate”: 2614
— .30751103724 }
b
"srus_max”: |
"type”: "gauge”,
"contains”: "default”,
"values”: { "value”: 5000, "min”: 4182, "max”: 500
— 0 }
I
"http_req_duration”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"med”: 451.76545,
"max"”: 5653.034,
"Pp(90)": 998.5320200000002,
"Pp(95)": 2100.9314999999997,
"avg”: 631.132668027992,
"min”: 246.1862

b
"http_reqg _failed”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "rate”: 0, "passes”: 0, "fails”: 25000
—  }
I
"http_req_connecting”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"p(90)": 294.8,
"p(95)": 415.29263,
"avg”: 87.12672747200014,
"min”: O,
"med” : O,
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"max”: 3104.6131

H
"http_req duration{expected_response:true}”: {

"type”: "trend”,

"contains”: "time”,

"sralues” @ |
"avg”: 631.132668027992,
"min”: 246.1862,
"med”: 451.76545,
"max": 5653.034,
"p(90)": 998.5320200000002,
"p(95)": 2100.9314999999997

s

"checks”: {
thpe!l: IlrateH’
"contains”: "default”,

"values”: { "rate”: 1, "passes”: 25000, "fails”: O
—  }
}
b
"root_group”: |
"name” : """,

"path”: ",
"id": "d41d8cd98£f00b204e9800998ecf8427e”,
"groups”: [],
"checks”: [
{
"name” : "status was 200",
"path”: "::status was 200",
"id"”: "1461660757a913d4fb82ac4c5e1009de”,
"passes”: 25000,
"fails”: O

}!
"Toptions”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
< "p(90)", "p(95)"],
mnn

"summaryTimeUnit”:
"noColor”: false
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¥
"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,

— "testRunDurationMs”: 9562.7618 }

Listing B.3: Report from summary-high. json

"root_group”: {
"checks”: |
{
"passes”: 50000,
"fails”: O,
"name” : "status was 200",
"path”: "::status was 200”7,
"id”: "1461660757a913d4fb82ac4c5e1009de”

I
"name” :
"path”: """,
"id": "d41d8cd98£f00b204e9800998ecf8427e”,
"groups”: []

I

"options”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,

— "p(90)", "p(95)"1],

m"n
I

"n
I

"summaryTimeUnit” :
"noColor”: false

by

"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,

— "testRunDurationMs”: 17547.929 1},
"metrics”: {
"data_received”: {
"sralues” @ { "count”: 99250000, "rate”: 5655938
— .08819263 1},
"type”: "counter”,
"contains”: "data”
I
"http_req connecting”: {
"type”: "trend”,
"contains”: "time”,

"vvalues” @ {
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"max": 15109.214¢6,

"p(90)7": 510.6856,

"p(95)": 1439.9875649999997,
"avg”: 233.5562314479987,
"min”: O,

"med”: 0

b
"http_reqg_failed”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "fails”: 50000, "rate”: 0, "passes”: 0
—  }
b
"iterations”: {
"type”: "counter”,
"contains”: "default”,
"values”: { "rate”: 2849.339087250695, "count”: 50
— 000 }
I
"vus” @ |
"type”: "gauge”,
"contains”: "default”,
"vvalues”: { "min”: 0, "max”: 10000, "wvalue”: 1298
— }
b
"iteration_duration”: {
"type”: "trend”,
"contains”: "time”,
"values”: |
"p(90)": 3544.7563299999997,
"p(95)": 16142.145189999974,
"avg”: 3122.1618649599714,
"min”: 1507.6385,
"med”: 1660.1537,
"max": 16973.1723

H

"http_reqg duration{expected_response:true}”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
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"max”: 15433.3075,
"p(90)”: 2078.8187,
"p(95)": 13486.369065,
"avg”: 1885.4504456559973,
"min”: 342.1129,

"med” : 650.6042

I
"http_reqg_waiting”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"avg”: 1884.9894708059937,
"min”: 341.1161,
"med”: 650.5754,
"max”: 15433.2551,
"p(90)": 2077.8430399999997,
"Pp(95)": 13486.369065

b
"http_reqg blocked”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"max”: 15109.214¢6,
"p(90)": 513.6863,
"p(95)": 1440.2071699999988,
"avg”: 233.6996455359989,
"min”: O,
"med”: 0

I
"data_sent”: {
"type”: "counter”,
"contains”: "data”,
"sralues” : { "count”: 4450000, "rate”: 253591
— .17876531184 }
b
"srus_max”: |
"type”: "gauge”,
"contains”: "default”,
"values”: { "value”: 10000, "min”: 4157, "max”:
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— 000 }

I
"http_reqgs”: {
"contains”: "default”,

"values”: { "count”: 50000, "rate”: 2849

— .339087250695 1},
"type”: "counter”
b
"http_reqg_sending”: {
"type”: "trend”,
"contains”: "time”,
"values”: |
"avg”: 0.41714854000000073,
"min”: O,

"med"” : O,
"max": 268.0342,
r/p(9o)n: O,

"p(95)": 0.9994

s
"http_reqg_tls_handshaking”: {

"contains”: "time”,

"values”: { "avg”: 0, "min”: 0, "med”:

— , "p(90)": 0, "p(95)": 0 1},
"type”: "trend”
b
"checks”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "passes”: 50000, "fails”:
—  }
I
"http_req duration”: {
"contains”: "time”,
"sralues” @ |
"p(90)”: 2078.8187,
"p(95)": 13486.369065,
"avg”: 1885.4504456559973,
"min": 342.1129,
"med”: 650.6042,
"max": 15433.3075

i

0, "max":

0, "rate”:

1
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"type”: "trend”
b
"http_req _receiving”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"avg”: 0.0438263099999999,

"min”: O,
"med” : O,
"max": 4.0002,
"p(90)": 0O,

"p(95)": 0.5065

Listing B.4: Report from summary-extreme. json

"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,
— "testRunDurationMs”: 62133.8654 1},
"metrics”: {
"srus_max” @ |
"values”: { "min”: 4095, "max”: 15000, "wvalue”: 15
— 000 1},
"type”: "gauge”,
"contains”: "default”
b
"checks”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "rate”: 0.97224, "passes”: 72918,
— "fails”: 2082 }
I
"data_sent”: {
"values”: { "count”: 6551023, "rate”: 105434
— .01666428434 1},
"type”: "counter”,
"contains”: "data”
I
"http_reqgs”: {
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"type”: "counter”,

"contains”: "default”,

"svvalues” : { "count”: 75000, "rate”: 1207
— .071208545799 }

b
"http_reqg_sending”: {

"contains”: "time”,
"values” : |
"max”: 37.0087,
"p(90)": O,

"p(95)": 0.5394,
"avg”: 0.08330681199999987,
"min"”: O,
"med”: O
b
"type”: "trend”
b
"http_req receiving”: {
"contains”: "time”,
"sralues” @ |
"avg”: 0.04076331733333355,

"min”: O,

"med” : O,
"max”: 4.9991,
Ilp(90)II: O,

"p(95)": 0.5049

b
"type”: "trend”

I
"iterations”: {
"type”: "counter”,
"contains”: "default”,
"values”: { "count”: 75000, "rate”: 1207
— .071208545799 }
I
"http_req connecting”: {
"type”: "trend”,
"contains”: "time”,
"values”: |
"avg”: 317.2866820413354,
"min”: O,
"med”: 0O,
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"max”: 15213.2045,
"p(90)": 645.4086,
"p(95)": 1576.6838500000015

b
"data_received”: {
"contains”: "data”,
"vvalues”: { "count”: 144742230, "rate”:
— .3799161864 1},
"type”: "counter”
I
"http_req blocked”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"min”: O,
"med” : O,
"max": 15213.2045,
"P(90)": 646.2619300000007,
"p(95)": 1577.1833450000004,
"avg”: 317.3651776533357

b
"iteration_duration”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"max”: 61197.416,
"p(90)”: 5872.8919,
"p(95)": 21927.156925000003,
"avg”: 4622.157962073321,
"min”: 1196.2001,
"med”: 2404.4231499999996

i

2329522

"http_req duration{expected_response:true}”: {

"type”: "trend”,

"contains”: "time”,

"sralues” @ |
"max": 29981.84,
"p(90)": 2491.8648600000006,
"P(95)": 13924.772224999999,



"avg”: 2461.2217018774713,
"min”: 194.1971,
"med”: 1391.6203500000001

b
"http_req_failed”:
Iltypeﬂ .

{

"rate”,

"default”,
"fails”: 72918,
2082 }

"contains” :

{

— "passes”:

"sralues” @

o
"sus” |
thpe!l : ”gauge",
"default”,

589,

"contains” :

"values”: { "value”: m

b
"http_reqg_tls_handshaking”:
"trend”,
"contains”:
"sralues” @ |
— "p(90)":

{
Iltypell .
"t ime” ,

"med” :
0

"min” :
0,

0,
Ilp(95)H:
b

"http_reqg waiting”: {

"type”: "trend”,
"contains”: "time”,
"values”: {
"avg”: 2896.212860426673,
"min": O,
"med”: 1390.3688,
"max"”: 59662.5722,
"p(90)": 2527.1993,
"p(95)": 17215.9394

b
"http_req_duration”:
"trend”,
"contains”:
{
"max": 59663.5743,
"p(90)": 2527.207540000001
"P(95)": 17215.9394,
2896.3369305560254,

{
"type”:
"time”,
"values” :

14 avgll .
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"rate”: 0.02776,

in”: 0, "max”: 15000 }
0, "max": O,

, " an" : 0 }

!
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"min”: 0,
"med” : 1390.3869

by

"root_group”: {
"name” : """,
"path”: "",
"id”: "d41d8cd98£00b204e9800998ecf8427e”,
"groups”: [],
"checks”: |
{
"name” : "status was 200",
"path”: "::status was 200",

"id": "1461660757a913d4fb82ac4c5e1009de”,

"passes”: 72918,
"fails”: 2082

}I
"options”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
> "p(90)", "p(95)"],
""!

"summaryTimeUnit” :
"noColor”: false

B.2 Function-as-a-service first test

This section includes the JSON reports for the first test performed on the FaaS
application.

Listing B.5: Report from summary—-low. json

"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,
— "testRunDurationMs”: 10720.1865 1},

"metrics”: {
"http_req failed”: {
I!typell : Ilrate!I,

"contains”: "default”,
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"values”: { "passes”: 0, "fails”: 5000, "rate”: O
— }
I
"http_reqgs”: {
"values”: { "count”: 5000, "rate”: 466
— .40979613554293 1},
"type”: "counter”,
"contains”: "default”
b
"http_reqg _tls_handshaking”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"Tavg”: 127.08198816000021,
"min”: 0O,
"med” : O,
"max"”: 920.6003,
"p(90)”: 571.46721,
"p(95)”: 731.9477800000002

b
"data_received”: {
"type”: "counter”,
"contains”: "data”,
"sralues” : { "count”: 16220685, "rate”: 1513097
— .276805772 }
b
"http_reqg_sending”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"min”: O,

"med”: 0,
"max”: 19.2526,
"p(90)": 0,

"p(95)": 0.7377850000000051,
"avg”: 0.11336897999999983

} !

"srus” s |
"type”: "gauge”,
"contains”: "default”,



92| Appendix B: JSON reports

"values”:
— }
I
"checks”: {
"values”:
— },
"type”:

"contains” :

} !
"data_sent”
"values” :
%
"type”:

n

"contains” :

H
"vus_max” :
"sralues” @
— 0 }
"type”:

"contains” :

I

{ "value”: 547, "min”: 547, "max”: 1000

{ "rate”: 1, "passes”: 5000, "fails”: O

”rate”,

"default”

: {

{ "count”: 1109000, "rate”: 103449

.69278286342 1},

counter”,
n dataﬂ

{

{ "value”: "min”: 1000, "max”: 100

1000,

!

n gauge " ,

"default”

"http_req connecting”: {

I!typell .

"sralues” @

up(95)n:

n avg—!l :
"min” :
"med” :

"max" :

r/p(9o)n:

b

"trend”,

"contains”:

Ttime”,
{

134.4036,
25.75818146000001,
0,

0,
1072.1544,
114.6592

"http_req _duration{expected_response:true}”: {

"type”: "trend”,
"contains”: "time”,
"values”: {
"min”: 122.612,
"med”: 729.2302,
"max": 2134.1172,
"p(90)": 1247.2387700000002,

up(95)n:

1407.7396350000001,
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"avg”: 786.7311432599987

I
"http_reg waiting”: {
"contains”: "time”,
"sralues” @ |
"med”: 726.4905,
"max": 2134.1172,
"p(90)": 1243.0506800000003,
"p(95)": 1401.5792450000001,
"avg”: 783.3184245399988,
"min”: 122.612
b
"type”: "trend”
I
"http_req_receiving”: {
"contains”: "time”,
"vvalues” @ |
"avg”: 3.2993497400000007,
"min”: O,
"med”: O,
max”: 190.5748,
"p(90)”: 9.169960000000003,
"p(95)": 15.864950000000004
b
"type”: "trend”
b
"http_reqg duration”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"p(95)": 1407.7396350000001,
"avg”: 786.7311432599987,
"min”: 122.612,
"med”: 729.2302,
"max"”: 2134.1172,
"p(90)": 1247.2387700000002

t

"iteration_duration”: {
"type”: "trend”,
"contains”: "time”,
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"values”: {
"p(95)": 3316.2812,
"avg”: 1960.455812779994,
"min”: 1129.4309,
"med”: 1749.61295,
"max”: 4142.0479,
"p(90)7": 3021.78902

b
"iterations”: {
"svalues” : { "count”: 5000, "rate”: 466
— .40979613554293 1},
"type”: "counter”,
"contains”: "default”
I
"http_req blocked”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"avg”: 169.50883707999975,
"min": O,
"med”: 0O,
"max”: 1303.0391,
"p(90)": 801.8560800000008,
"p(95)": 944.2359200000001

b
"root_group”: {
"path”: """,
7id": "d41d8cd98£00b204e9800998ecf8427e",
"groups”: [],
"checks”: |
{
"fails”: O,
"name” : "status was 200",
"path”: "::status was 200",
"id": "1461660757a913d4fb82ac4c5e1009de”,
"passes”: 5000

1,

4 name 14 . "n
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}!
"Toptions”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
— "p(90)", "p(95)"7],
""!

"summaryTimeUnit”:
"noColor”: false

Listing B.6: Report from summary-mid. json

"root_group”: {
"groups”: [],
"checks”: |
{
"id": "1461660757a913d4fb82ac4c5e1009de”,
"passes”: 25000,
"fails”: O,
"name” : "status was 200",
"path”: "::status was 200"
}
1
"name” : """,
"path”: """,

"id”: 7d41d8cd98£f00b204e9800998ecf8427e”

I
"options”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
< "p(90)", "p(95)"],
"summaryTimeUnit”: "",
"noColor”: false
I
"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,

— "testRunDurationMs”: 30162.0013 1},

"metrics”: {
"http_reqgs”: {
"type”: "counter”,
"contains”: "default”,

"svalues” @ { "count”: 25000, "rate”: 828
— .8574670938696 }
}
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"checks”: |
thpell .
"contains”:

Trate’ ,
"sralues” : { "rate”:
s }
H
"data_sent”: {
Iltypell .
"contains” :

"counter”,
"data”,
"sralues” @ { "count”:
— .58620142026 }
b
"iteration_duration”:
"trend”,

"contains” :

"type”:

"time”,

"values”: |
"p(90)":
"p(95) "

1, "passes”:

"default”,

25000, "fails”:

5545000, "rate”: 183840

{

7849.175690000003,
9456.181449999998,

"avg”: 5588.025128936025,

"min”: 1556.4811,
5393.17705,

max”: 14250.42

I
"http_req receiving”:
"type”: "trend”,

"contains”: "time”,
"srtalues” @ |
"p(95) "

"Tavg”:
"min”: O,
"med” : O,
"max": 315.1398,
"p(90)":

H

"srus” A
thpell .
"contains” :

n g—auge 14 ,

"vvalues” @ { "value”:

b

{

20.362689999999994,
4.000139684000021,

11.213410000000076

"default”,

42, "min”: 0, "max”: 5000 }

"http_req _duration{expected_response:true}”: {

0
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"values”: {
"avg”: 3874.7407081079914,
"min”: 553.1214,
"med”: 4023.5836,
"max": 8885.7618,
"p(90)": 5208.236130000001,
"p(95)": 5517.816445
I
"type”: "trend”,
"contains”: "time”
b
"http_reqg connecting”: {
"type”: "trend”,
"contains”: "time”,
"values”: |
"p(95)": 437.04913,
"avg”: 76.07368014800005,
"min”: 0O,
"med” : O,
"max"”: 3908.8349,
"p(90)": 320.3707

b
"http_reqg blocked”: {
"contains”: "time”,
"values”: {
"min”: O,
"med” : O,
"max": 7511.5783,
"Pp(90)": 3645.681630000001,
"p(95)": 4303.92373,
"avg”: 709.8268970400012
b
"type”: "trend”
I
"http_reqg tls_handshaking”: {
"contains”: "time”,
"sralues” @ |
"avg”: 625.8205384999999,
"min”: 0O,
"med” : O,
"max"”: 7143.7628,
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"p(90)": 3124.724450000005¢0,
"p(95)7: 3824.402025
I
"type”: "trend”
b
"http_req_failed”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "rate”: 0, "passes”: 0, "fails”: 25000
—  }
I
"http_reqg duration”: {
"type”: "trend”,
"contains”: "time”,
"vvalues” @ {
"p(90)”: 5208.236130000001,
"p(95)": 5517.816445,
"avg”: 3874.7407081079914,
"min”: 553.1214,
"med”: 4023.5836,
"max": 8885.7618

b
"vus_max”: |
"type”: "gauge”,
"contains”: "default”,
"values”: { "value”: 5000, "min”: 4902, "max”": 500
— 0 }
I
"data_received”: {
"type”: "counter”,
"contains”: "data”,
"values”: { "count”: 81098455, "rate”: 2688762
— .3998610466 }
b
"http_reqg waiting”: {
"type”: "trend”,
"contains”: "time”,
"values”: |
"min”: 552.658,
"med”: 4018.90885,
"max"”: 8884.6794,
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"p(90)": 5205.214840000001,
"p(95)”: 5515.036405,
"avg”: 3870.169297728028

b
"http_reqg_sending”: {
"type”: "trend”,

"contains”: "time”,
"values” : |

"avg”: 0.5712706959999989,

"min”: O,

"med” : O,

"max"”: 83.5399,

"p(90)": 0.9914,

"p(95)”: 3.6553

I
"iterations”: {
"type”: "counter’”,
"contains”: "default”,
"svvalues” : { "count”: 25000, "rate”: 828
— .8574670938696 }

Listing B.7: Report from summary-high. json

"root_group”: {
"groups”: [],
"checks”: |
{

"name” : "status was 200",
"path”: "::status was 200",
"id": "1461660757a913d4fb82ac4c5e1009de”,
"passes”: 50000,
"fails”: O

1,

. 7"
"name” : """,
Ilpathll : n II’
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"id": "d41d8cd98£00b204e9800998ect8427e”

I
"options”: {
"summaryTrendStats”: ["avg”, "min”,
= "p(90)", "p(95)"],
"summaryTimeUnit”: "",
"noColor”: false

b

Ilmedll , ”maX” ,

"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,

— "testRunDurationMs”: 48500.0885 1},

"metrics”: {
"srus” i |
"contains”: "default”,

"sralues” @ { "value”: 200, "min”: O,

—
"type”: "gauge”
by
"http_reqgs”: {
"type”: "counter”,
"contains”: "default”,

"values”: { "count”: 50000, "rate”:

— .925953877383 }
b
"iteration_duration”: {
"type”: "trend”,
"contains”: "time”,
"values” : |
"avg”: 8958.709428105909,
"min”: 1654.0299,
"med”: 8486.665649999999,
"max”: 25095.0167,
"p(90)": 13099.022099999998,
"Pp(95)": 15991.933489999992

by
"http_reqg waiting”: {
"values”: {

"avg”: 6642.9558768919815,
"min”: 644.7198,
"med”: 7005.00695,
"max”: 17678.0705,
"p(90)": 8607.7685,

"max”: 10000

1030
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"p(95)": 8989.769465
I
"type”: "trend”,
"contains”: "time”
b
"srus_max”: |
"type”: "gauge”,
"contains”: "default”,
"svvalues” @ { "value”: 10000, "min”: 4776, "max”: 10
— 000 }
I
"checks”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "rate”: 1, "passes”: 50000, "fails”: O
— }
b
"http_reqg sending”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"p(90)": 0.9995,
"p(95)": 3.068349999999952,
"avg”: 0.4952737179999956,
"min”: O,
"med” : O,
"max"”: 39.3392

I
"http_req receiving”: {
"type”: "trend”,
"contains”: "time”,
"vvalues” @ {
"p(95)": 18.905839999999987,
"avg”: 3.648183946000002,
"min”: O,
"med” : O,
"max”: 834.73009,
"p(90)7": 8.99

b
"http_req_failed”: {
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thpell : ”rate”,
"contains”: "default”,

"values”: { "rate”: 0, "passes”: 0, "fails”: 50000

—  }
b
"http_req_tls_handshaking”: {
"type”: "trend”,
"contains”: "time”,
"values” : |
"p(90)": 4436.211219999999,
"P(95)": 6394.673144999999,
"avg”: 993.0642930740025,
"min”: O,
"med” : O,
"max": 12713.3075

by
"http_req connecting”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"max"”: 15106.4563,
"P(90)": 666.2860099999999,
"p(95)": 2413.0297549999977,
"avg”: 309.3775218579995,
"min”: O,
"med”: 0

I
"data_received”: {
"type”: "counter”,
"contains”: "data”,
"values”: { "count”: 162202393, "rate”: 3344373
— .134494384 }
b
"iterations”: {
"contains”: "default”,
"vvalues” : { "count”: 50000, "rate”: 1030
— .925953877383 1},
"type”: "counter”
b
"http_req_duration”: {
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"type”: "trend”,

"contains”: "time”,

"sralues” @ |
"med”: 7008.6891,
"max": 17678.9518,
"Pp(90)": 8612.13736,
"p(95)": 8995.08048,
"avg”: 6647.0993345559855,
"min”: 651.4214

b

"http_reqg_duration{expected_response

"type”: "trend”,

"contains”: "time”,

"values”: |
"max"”: 17678.9518,
"p(90)": 8612.13736,
"p(95)": 8995.08048,
"avg”: 6647.0993345559855,
"min”: 651.4214,
"med”: 7008.6891

iy

"http_reqg blocked”: {

"sralues” @

Ilp(90)II:
r/p(95)//:

"Tavg”:
"min” :
"med” :
"max"” :
} !
"type”:

b

"data_sent”

"contains”:

"sralues” :
(N
Iltypell .

{
6886.973019999999,
8210.805934999998,

1308.2230632439944,

0,

0,

15391.4889

"trend”,
"contains”:

n t ime 14

: {
"data” ,

{ "count”: 11090000,

.3765700036 1},
"counter”

"rate” :

ttruel}l”: |

228659
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Listing B.8: Report from summary-extreme. json

"root_group”: {
"name” : "7,
"path”: "",
"id”: "d41d8cd98f00b204e9800998ecf8427e”,
"groups”: [],
"checks”: |
{
"name” : "status was 200",
"path”: " ::status was 200",
"id": "1461660757a913d4fb82ac4c5e1009de”,
"passes”: 75000,
"fails”: O

]
b
"options”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
< "p(90)", "p(95)"],
"summaryTimeUnit”: """,
"noColor”: false
I
"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,
— "testRunDurationMs”: 74364.8665 1},

"metrics”: {
"iterations”: {
"type”: "counter”,
"contains”: "default”,

"svvalues” : { "count”: 75000, "rate”: 1008
— .5407737536918 }

b
"http_reqg duration”: {

"type”: "trend”,
"contains”: "time”,
"values” : |

"avg”: 10431.003687946655,
"min”: 902.0804,
"med”: 11135.5738,



Appendix B: JSON reports | 105

"max”: 19249.3024,
"p(90)”: 14009.72365,
"o(95)": 14872.63292

b
"srus” |
"type”: "gauge”,
"contains”: "default”,
"values”: { "value”: 39, "min”: 0, "max”: 15000 }
b
"srus_max” @ |
"type”: "gauge”,
"contains”: "default”,
"svalues” @ { "value”: 15000, "min”: 4420, "max”: 15
— 000 }
b
"http_req_duration{expected_response:true}”: {
"contains”: "time”,
"values”: {
"p(95)": 14872.63292,
"avg”: 10431.003687946655,
"min”: 902.0804,
"med”: 11135.5738,
"max": 19249.3024,
"p(90)": 14009.72365
I
"type”: "trend”
b
"http_req receiving”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"Tavg”: 3.7990345093333326,
"min”: O,
"med” : O,
"max": 544.7778,
"p(90)": 9.0547,
"p(95)7": 19.349405

}
"data_received”: {
"svvalues” : { "count”: 243296439, "rate”: 3271658
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— .3845410384 1},
"type”: "counter”,
"contains”: "data”

I
"http_reqg blocked”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"max": 33346.7815,
"p(90)": 12696.352000000003,
"p(95)": 13689.240355,
"avg"”: 2352.709745714659,
"min”: O,
"med” : O

i

"iteration_duration”: {

"type”: "trend”,

"contains”: "time”,

"sralues” @ |
"avg”: 13787.192940438692,
"min”: 1904.2482,
"med”: 13257.98765,
"max”: 49944.,7998,
"p(90)": 19760.62324000001,
"p(95)": 24909.140295

I
"checks”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "rate”: 1, "passes”: 75000,
—  }
b
"data_sent”: {
"type”: "counter”,
"contains”: "data”,
"values”: { "rate”: 223694.34361856885,
— 6635000 }
I
"http_reqg _tls_handshaking”: {
"type”: "trend”,

"fails”:

"count” :
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"contains”: "time”,
"sralues” @ |
"P(90)": 8054.17485,
"P(95)": 10270.062275,
"avg”: 1626.794902075999,
"min"”: O,
"med” : 0O,
"max": 31864.6095

I
"http_req connecting”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ {
"min”: 0O,
"med” : O,
"max": 15911.2243,
"p(90)”: 1382.4961,
"p(95)": 6024.064080000003,
"avg”: 716.757614048004

b
"http_reqg _sending”: {
"sralues” @ |
"med” : 0O,
"max": 46.0673,
"p(90)7: 1.0006,
"p(95)7: 3.9989,
"avg”: 0.567867719999997,
"min”: O
b
"type”: "trend”,
"contains”: "time”
b
"http_req_failed”: {
"type”: "rate”,
"contains”: "default”,

"values”: { "passes”: 0, "fails”: 75000, "rate”:

— 1}
}
"http_reqgs”: {
"svvalues” : { "count”: 75000, "rate”: 1008

0
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— .5407737536918 1},
"type”: "counter”,
"contains”: "default”

I

"http_reqg waiting”: {
"type”: "trend”,
"contains”: "time”,
"values”: {

"p(90)": 14004.83583,

"p(95)": 14867.68577,

"avg”: 10426.636785717255,

"min”: 895.8309,

"med”: 11130.538250000001,

"max": 19249.3024

B.3 Function-as-a-service second test

This section includes the JSON reports for the second test performed on the
FaaS application, focused on the effects of cold starts.

Listing B.9: Report from summary—-low-cs. json

"options”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
> "p(90)", "p(95)"],
"summaryTimeUnit”: "",
"noColor”: false
I
"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,
~— "testRunDurationMs”: 38005.9903 1},
"metrics”: {
"srus_max” @ {
"type”: "gauge”,
"contains”: "default”,
"values”: { "min”: 1000, "max”: 1000, "wvalue”: 100
— 0 }

i
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"http_req failed”: {

thpe!l .

"contains” :

"sralues” @
s }
H

"srus” o |

"contains” :

"sralues” @
thpe!l .
b

”rate”,

"default”,

{ "rate”: 0, "passes”: 0, "fails”: 5000

"default”,

{ "value”: 32, "min”: 32, "max”: 1000 1},

n gauge 4

"iterations”: {

thpe!l .

"contains” :

"values” :
—

b
"http_regs”
"type”:
"contains
"values” :
C%

b

"counter”,

"default”,

{ "count”: 5000, "rate”: 131

.55820860165824 }

: {

"counter”,

" .

"default”,

{ "count”: 5000, "rate”: 131

.55820860165824 }

"iteration_duration”: {

"contains” :

"values” :
n avg—!l :
"min” :
"med” :

"max" :

r/p(9o)//:
//p(95)n:

b
I!type” .

n

b

"time”,

{
7228.33648000003,
1433.7879,
5383.89595,
22115.5299,
14785.201440000006,
17801.432

trend”

"http_req receiving”: {

n

Iltypell .

"contains”:

"sralues” @
n avgﬂ -
"min” :

"med” :

trend”,
"time”,

{
3.5025612000000046,
0,

0,
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"max”: 186.3514,
"p(90)7": 9.449290000000001,
"p(95)7": 17.037025000000003

b
"http_req _duration{expected_response:true}”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"max”: 20100.7539,
"p(90)"”: 13026.138710000001,
"p(95)”: 15788.269820000001,
"avg”: 6014.108323380006,
"min”: 429.5608,
"med”: 4363.4167

by
"http_req blocked”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"med”: 0O,
"max": 1233.1412,
"p(90)": 1011.9250000000002,
"p(95)": 1047.849335,
"avg”: 208.79735558000027,
"min”: O

I
"http_req_connecting”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"p(90)": 129.71833,
"p(95)": 151.3786,
"avg”: 26.735437420000025,
"min”: O,
"med” : O,
"max": 238.6006

b
"data_sent”: {



Appendix B: JSON reports | 111

"type”: "counter”,
"contains”: "data’”,
"svvalues”: { "count”: 1109000, "rate”: 29179
— .6106678478 }
b
"http_req_duration”: {
"type”: "trend”,
"contains”: "time”,
"values” : |
"min”: 429.5608,
"med”: 4363.4167,
"max": 20100.7539,
"Pp(90)”: 13026.138710000001,
"P(95)": 15788.269820000001,
"avg”: 6014.108323380006

I
"http_reqg tls_handshaking”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"max": 1010.2132,
"p(90)": 800.4747,
"p(95)": 815.6917,
"avg”: 162.8805984799998,
"min”: 0O,
"med”: 0

b
"checks”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "rate”: 1, "passes”: 5000, "fails”: O
— }
b
"data_received”: {
"type”: "counter’”,
"contains”: "data”,
"svvalues”: { "count”: 16209050, "rate”: 426486
— .71622694173 }
b
"http_reqg_sending”: {
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"contains”: "time”,

"sralues” @ |
"avg”: 0.12210992000000004,
"min”: O,

"med” : O,
"max"”: 25.5194,
"p(90)": 0O,
"p(95)”: 0.9819

b
"type”: "trend”
I
"http_reqg waiting”: {
"type”: "trend”,
"contains”: "time”,
"vvalues” @ {
"p(90)": 13025.53357,
"p(95)": 15787.939315000003,
"avg”: 6010.483652260008,
"min”: 429.5608,
"med”: 4360.9462,
"max": 20096.7541

I
"root_group”: {
"name” : "",
"path”: "7,
"id”: "d41d8cd98f00b204e9800998ecf8427e",
"groups”: [],
"checks”: [
{
"id”: "1461660757a913d4fb82ac4c5e1009de”,
"passes”: 5000,
"fails”: O,
"name” : "status was 200",
"path”: "::status was 200"

Listing B.10: Report from summary-mid-cs. json
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"root_group”: {
"name” : """,
"path”: """,
"id": "d41d8cd98£f00b204e9800998ecf8427e”,
"groups”: [],
"checks”: [
{
"name” : "status was 200",
"path”: "::status was 200",
"id": "1461660757a913d4fb82ac4c5e1009de”,
"passes”: 22781,
"fails”: 2219

b
"options”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
— "p(90)", "p(95)"1],
"summaryTimeUnit”: ",
"noColor”: false
b
"state”: { "isStdOutTTY”: true, "isStdErrTTY”: true,
— "testRunDurationMs”: 84535.9198 1},
"metrics”: {
"iteration_duration”: {
"type”: "trend”,
"contains”: "time”,
"vvalues” @ |
"min”: 1065.0831,
"med”: 13260.114¢6,
"max": 53185.534,
"p(90)": 40872.28198,
"p(95)": 41459.534799999994,
"avg”: 15767.499265775998

b
"http_reqg_tls_handshaking”: {
"type”: "trend”,
"contains”: "time”,
"values”: |
"max": 6906.9068,
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"p(90)"”: 3880.4081000000006,
"p(95)": 4391.707625,

"avg”: 768.2713301720024,
"min”: O,

"med”: O

I
"http_reqg receiving”: {
"type”: "trend”,
"contains”: "time”,
"svvalues” @ |
"med” : O,
"max": 341.7664,
"p(90)": 8.504420000000001,
"P(95)": 16.022739999999995,
"avg"”: 3.2749226359999932,

"min”: O

I
"iterations”: {
"contains”: "default”,
"values”: { "count”: 25000, "rate”: 295
— .73227639974175 1},
"type”: "counter”
I
"http_reqg waiting”: {
"type”: "trend”,
"contains”: "time”,
"vvalues” @ |
"p(95)7": 35321.0508,
"avg”: 13891.682027011966,
"min”: 60.7449,
"med”: 12109.277750000001,
"max"”: 46974.3225,
"p(90)7": 35071.03296

I
"http_req blocked”: {
"contains”: "time”,
"sralues” @ |
"p(95)": 5096.7343,
"avg”: 867.2968929080005,



14 3 " .

min
"med” :
"max" :

Ilp(go)H:

Iy
thpe!l .

n

b
"data_sent”
n t ype " : "

"contains” :

"sralues” @
—

i
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0,

0,
7233.4191,
4382.59838

trend”

:
counter”,
"data” ,

{ "count”:

.41890546272 }

"http_req duration”: {

Iltypeﬂ .

"contains”:
"sralues” :

14 avgll .

"min” :
"med” :

"max" :

//p(go)n:
”p(95)":

b

"trend”,

"time”,

{
13895.424437935875,
62.5355,
12114.31175,
46981.8792,
35072.19472000001
35322.0514

"http_req connecting”: {

"type”: "trend”,
"contains”: "time”,
"vvalues” @ |
"med” : O,
"max": 697.7022,
"p(90)"”: 354.1587400000023
"p(95)": 488.033805,
"avg”: 74.95804263200006,
"min”: O

b

"http_reqgs”: {

Iltypeﬂ .

"contains” :
"svalues” :
.73227639974175 }

s

"counter”,

"default”,

{ "count”: 25000,

5545000,

"rate” :

!

!

"rate” :

65593

295
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b

"vus_max” @ |
thpell : ”gauge",
"contains”: "default”,

"values”: { "value”: 5000, "min”: 5000, "max”:

— 0 }
I
"http_reqg _failed”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "rate”: 0.08876, "passes”: 2219,
— "fails”: 22781 }
b
"vus” @ {
"type”: "gauge”,
"contains”: "default”,
"values” : { "value”: 158, "min”: 158, "max":
— }
I
"http_req_duration{expected_response:true}”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"p(90)7": 17690.0294,
"p(95)7: 30281.0625,
"avg"”: 11877.448480387111,
"min”: 62.5355,
"med”: 11382.6418,
"max": 46981.8792

b
"data_received”: {
"values”: { "count”: 80180562, "rate”: 948479
— .2049308252 1},
"type”: "counter”,
"contains”: "data”
I
"http_req _sending”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"p(90)": 0.6914100000000024,

500

5000
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"p(95)": 2.046559999999962¢0,
"avg”: 0.4674882879999962,
"min": O,

"med” : O,

"max": 36.8756

I
"checks”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "passes”: 22781, "fails”: 2219,
— "rate”: 0.91124 }

Listing B.11: Report from summary-high-cs. json

"metrics”: {
"checks”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "rate”: 0.8522, "passes”: 42610,
— "fails”: 7390 }
b
"srus_max” @ |
"type”: "gauge”,
"contains”: "default”,
"svvalues” : { "value”: 10000, "min”: 5287, "max”: 10
— 000 }
b
"http_req_receiving”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"p(90)": 8.01676999999999¢6,
"P(95)": 16.02746499999999¢,
"avg”: 3.1523863639999776,
"min”: O,
"med” : O,
"max": 902.0161
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} !

"iterations”: {
"type”: "counter”,
"contains”: "default”,

"values”: { "count”: 50000, "rate”:

— .1630983911739 }
I
"vus” i |
"type”: "gauge”,
"contains”: "default”,

"values”: { "min”: 0, "max”: 10000,

b

"http_req failed”: {
Iltypell . n ratell
"contains”: "default”,

"values”: { "rate”: 0.1478, "passes”:

— "fails”: 42610 }
I
"data_sent”: {
"type”: "counter”,
"contains”: "data”,
"values”: { "count”: 11221520,
— .73863717052 1}
}

"http_reqg duration{expected_response:true}”:

"type”: "trend”,

"contains”: "time”,

"vvalues” @ |
"avg”: 17191.217868068492,
"min”: 64.236,
"med”: 17275.06855,
"max": 56029.3063,
"p(90)": 34100.05332,
"p(95)": 42355.268124999995

I
"http_reqg waiting”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"avg”: 19942.40207738391,

"rate”:

386

"sralue” :

7390,

86666

{

85

}



14 3 " .
.

min
"med” :

"max"” :

up(go)n:
//p(95)//:

b

"iteration_
"contains”:

"values” :
n avgll .
"min” :
"med” :

"max"” :

//p(9o)n:
r/p(95)//:

i
Iltypeﬂ .
b
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64.0495,
20453.60735,
56318.1569,
35793.02469,
42179.86781999999

duration”: |
"time”,

{
22223.051389623473,
1068.1265,
21682.415¢,
61079.3384,
43803.32307,
45602.928765000004

"trend”

"data_received”: {

Iltypeﬂ . n

"contains” :

"svalues” :
— 603
b

counter”,

"data”,
{ "rate”:

98919 1}

1238802.870792698¢,

"http_req connecting”: {

thpe" .

"sralues” @

/Ip(95) II:

n avg!l :
"min” :
"med” :

"max" :

!Ip(90)II:

b
"http_reqgs”
n t ype " . n

"contains” :

"svalues” :
—

"trend”,

"contains” :

"time”,

{
2243.999899999998,

267.27414026399805,

0,

0,

4091.2539,

651.25324

:{
counter”,
"default”,

{ "count”: 50000, "rate”: 386

.1630983911739 }

"count” :

1



120 | Appendix B: JSON reports

I
"http_req _sending”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"med” : O,
"max”: 102.0284,
"p(90)": 0.5943599999999977,
"p(95)": 2.0005,
"avg”: 0.6145548659999986,

"min”: 0O

b
"http_reqg _tls_handshaking”: {
"values”: {
"min”: O,
"med” : O,
"max": 12386.4498,
"p(90)": 4289.26061,
"p(95)": 5948.804739999998,
"avg”: 983.7220015520023
b
"type”: "trend”,
"contains”: "time”
I
"http_req_duration”: {
"type”: "trend”,
"contains”: "time”,
"vvalues” @ |
"med”: 20458.3538,
"max”: 56318.1569,
"p(90)": 35794.3694,
"p(95)": 42182.57002,
"avg”: 19946.169018613906,
"min”: 64.236

I
"http_reqg_blocked”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"avg”: 1271.9864004400051,



Appendix B: JSON reports | 121

"min”: O,

"med” : O,

"max"”: 12984.9255,

"P(90)": 6426.418249999999,

"p(95)": 8171.33927

b
"root_group”: {
"path”: """,
"id”: "d41d8cd98£f00b204e9800998ecf8427e”,
"groups”: [],
"checks”: |
{
"path”: "::status was 200",
"id": "1461660757a913d4fb82ac4c5e1009de”,
"passes”: 42610,
"fails”: 7390,
"name” : "status was 200"

1
"name” : """
b
"Toptions”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
— "p(90)", "p(95)"],
"summaryTimeUnit”: "",
"noColor”: false
b
"state”: { "1isStdOutTTY”: true, "isStdErrTTY”: true,
— "testRunDurationMs”: 129478.9694 }

Listing B.12: Report from summary-extreme-cs. json

"Toptions”: {
"summaryTrendStats”: ["avg”, "min”, "med”, "max”,
— "p(90)", "p(95)"],
"summaryTimeUnit”: """,
"noColor”: false

i
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"state”: { "testRunDurationMs”: 131943.4724,
— "isStdOutTTY”: true, "isStdErrTTY”: true },
"metrics”: {
"http_reqg blocked”: {
"contains”: "time”,
"sralues” @ |
"avg”: 2138.7075253893227,
"min”: O,
"med” : O,
"max”: 15973.0723,
"p(90)"”: 11755.882580000001,
"p(95)": 12732.0112
I
"type”: "trend”
I
"vus_max” : |
"type”: "gauge”,
"contains”: "default”,
"values”: { "value”: 15000, "min”: 5771, "max
— 000 }
b
"http_reqg receiving”: {
"values”: {
"max”: 655.3063,
"p(90)": 6.5188,
"p(95)": 13.212400000000029,
"avg"”: 2.4422041080000074,
"min": O,
"med” : 0
b
"type”: "trend”,
"contains”: "time”
I
"http_req_tls_handshaking”: {
"type”: "trend”,
"contains”: "time”,
"values”: {
"avg”: 1554.8014949679962,
"min": O,
"med” : 0O,
"max": 14712.8259,
"p(90)": 7824.288870000017,

n .

15
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"p(95)": 10634.73118

I
"http_reqg waiting”: {
"type”: "trend”,
"contains”: "time”,
"sralues” @ |
"med”: 22862.12385,
"max”: 60005.8953,
"p(90)": 39018.2799,
"p(95)": 44870.95601500005,
"avg”: 19465.382570942806,

"min”: O

I
"http_reqg_duration”: {
"contains”: "time”,
"vvalues” @ |
"avg”: 19468.26747831079,
"min”: O,
"med”: 22862.12385,
"max": 60005.8953,
"p(90)": 39025.83376,
"p(95)": 44885.44857000001
I
"type”: "trend”
b
"data_received”: {
"contains”: "data”,
"values”: { "count”: 208103337, "rate”: 1577215
— .8577812298 1},
"type”: "counter”
I
"iterations”: {
"type”: "counter”,
"contains”: "default”,
"values”: { "count”: 75000, "rate”: 568
— .4252402622079 }
b
"http_req duration{expected_response:true}”: {
"contains”: "time”,
"sralues” @ |
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"med”: 24494.5585,
"max": 59992.5854,
"p(90)": 39902.41676999999¢,
"p(95)": 43925.3683,
"avg": 21497.857275753828,
"min”: 69.1057
b
"type”: "trend”
b
"http_reqg _connecting”: {
"svvalues” @ |
"med” : O,
"max”: 15352.9349,
"p(90)7: 1316.17695,
"Pp(95)": 3060.839045000006,
"avg”: 576.8669205973348,
"min”: O
b
"type”: "trend”,
"contains”: "time”
I
"checks”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "fails”: 27042, "rate”: 0.63944,
< "passes”: 47958 }
b
"http_reqg_sending”: {
"contains”: "time”,
"values”: |
"p(90)": 0.6399500000000203,
"p(95)": 2.0069,
"avg”: 0.4427032600000003,
"min”: O,
"med” : O,
"max": 58.8432
b
"type”: "trend”
I
"srus” i |
"type”: "gauge”,
"contains”: "default”,
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"values”: { "value”: 59, "min”: 0, "max”: 15000 }
I
"http_reqgs”: {
"type”: "counter”,
"contains”: "default”,
"svalues”: { "rate”: 568.4252402622079, "count”: 75
— 000 }
b
"http_reqg_failed”: {
"type”: "rate”,
"contains”: "default”,
"values”: { "rate”: 0.36056, "passes”: 27042,
— "fails”: 47958 }
b
"iteration duration”: {
"type”: "trend”,
"contains”: "time”,
"vvalues” @ |
"min”: 1000.9921,
"med”: 25127.9883,
"max"”: 61098.7345,
"p(90)": 47785.477750000005,
"p(95)": 50092.22874500001,
"avg”: 22617.240952045442

b
"data_sent”: {
"type”: "counter”,
"contains”: "data”,
"values”: { "count”: 14897900, "rate”: 112911
— .23182536464 }

b
"root_group”: {
"name” : """,
"path”: """,
"id": "d41d8cd98£00b204e9800998ecf8427e”,
"groups”: [],
"checks”: |
{

"name” : "status was 200",
"path”: "::status was 200",
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"id”: "1461660757a913d4fb82ac4cb5e1009de”,
"passes”: 47958,
"fails”: 27042
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