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Abstract 
Autoimmune diseases are complex, chronic, inflammatory conditions characterized by 
dysregulation of the immune system, resulting in inflammation and damage to various tissues, 
cells and organs. These diseases significantly impact individuals’ quality of life and often 
contribute to increased mortality risk in the presence of comorbidities. However, due to the 
diverse array of symptoms associated with different autoimmune diseases, accurate diagnosis, 
prognosis, and treatment evaluation pose significant challenges. Thus, there is a pressing need 
for the discovery of novel biomarkers.  

In this study, a comprehensive analysis of 944 plasma samples using the OlinkⓇ Explore 
platform was conducted, generating data on 1463 unique proteins. Based on the expression data, 
associated proteins were identified for six selected autoimmune diseases, namely multiple 
sclerosis, myositis, rheumatoid arthritis, systemic sclerosis, Sjögren’s syndrome, and systemic 
lupus erythematosus, as well as some of their defined subgroups. These are prospective 
biomarkers and have the potential to aid in early diagnosis, therapeutic intervention, subgroup 
identification, disease differentiation, and disease prognosis. Notably, some of these proteins 
have not been previously associated with the specific diseases in the existing literature, 
especially not in plasma samples, thereby offering intriguing new perspectives for biomarker 
development. However, it is of great importance to conduct robust validation studies in 
independent cohorts to confirm the outcomes of this study. 

In summary, our findings highlight the potential utility of these proteomic plasma biomarkers 
in improving the early detection, subgroup characterization, and disease differentiation of 
autoimmune diseases. The identification of these proteins will hopefully stimulate further 
investigation in the field of biomarker research and potential advancements in personalized 
medicine.  
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Sammanfattning 
Autoimmuna sjukdomar är en samling komplexa, kroniska, inflammatoriska sjukdomstillstånd 
som kännetecknas av dysreglering av immunsystemet, vilket resulterar i inflammation och 
skada av vävnader, celler och organ. Dessa sjukdomar har en betydande inverkan på individens 
livskvalitet och bidrar ofta till ökad dödsrisk där komorbiditeter föreligger. Emellertid medför 
den varierande symptombilden för olika autoimmuna sjukdomar betydande utmaningar för att 
uppnå noggrann diagnos, prognos och utvärdering av behandling. Det finns därför ett påtagligt 
behov av att upptäcka nya biomarkörer. 

I denna studie utfördes en omfattande analys av 944 plasmaprover med hjälp av OlinkⓇ 
Explore-plattformen, vilket genererade data för 1463 unika proteiner. Baserat på uttrycksdata 
identifierades proteiner förknippade med de sex utvalda autoimmuna sjukdomarna multipel 
skleros, myosit, reumatoid artrit, systemisk skleros, Sjögrens sjukdom och systemisk lupus 
erythematosus samt några av deras definierade subgrupper. Dessa potentiella biomarkörer 
kommer eventuellt att underlätta tidig diagnos, sjukdomsdifferentiering och prognos. Flertalet 
av dessa proteiner har ännu aldrig kopplats till de här specifika sjukdomarna i litteraturen, 
särskilt inte från plasmaprover, vilket ger spännande nya perspektiv för biomarkörsutveckling. 
Det är dock av största vikt att genomföra robusta valideringsstudier i oberoende kohorter. 

Sammanfattningsvis belyser våra resultat den potentiella brukbarheten hos dessa proteomiska 
plasmabiomarkörer för att förbättra tidig sjukdomsdetektering, karakterisering av subgrupper 
och sjukdomsdifferentiering att stimulera. Förhoppningsvis kan dessa resultat stimulera till 
vidare forskning inom området för biomarkörer och potentiella framsteg inom individbaserad 
medicin 
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Introduction 
This project is a collaborative effort between the Human Protein Atlas (HPA) and the 
Department of Rheumatology at the Karolinska Institute. In 2022, the HPA, launched the 
Human Disease Blood Atlas (HDBA), aiming to map out human plasma proteins associated 
with various diseases and facilitate biomarker discovery. The objective of this master’s thesis 
project is to contribute to the HDBA by pursuing an exploratory analysis of the plasma 
proteome in patients with autoimmune disease, with the goal of identifying new potential 
biomarkers that could be contribute to early diagnosis, disease prediction, prognosis and 
evaluation of clinical treatments.  

The definition of biomarkers varies, ranging from the European Medicines Agency’s (EMA) 
description as “A biological molecule found in blood, other body fluids, or tissues that can be 
used to follow body processes and disease in humans and animals” to the broader definition by 
the U.S. Food and Drug Administration (FDA) as “Characteristics that are objectively 
measured as indicators of health, disease, or a response to an exposure or intervention 
including therapeutic interventions.” (EMA, n.d.; FDA, 2022). An ideal biomarker should 
possess both diagnostic and prognostic value (Yang et al., 2022).  

Unfortunately, there is a significant lack of clinical biomarkers for autoimmune diseases. 
Although autoantibodies can be useful in certain cases, they often fall short in terms of 
robustness and relevance. Therefore, the identification of new biomarkers is crucial for 
improving diagnosis, enabling early intervention, and effectively managing autoimmune 
diseases, ultimately enhancing patients’ quality of life and reducing mortality risks. The 
discovery of biomarkers for autoimmune disorders is particularly significant for ensuring 
equitable patient care beyond the Western world, where resources may be limited and the 
current clinical techniques used for diagnosis are often expensive and inaccessible (Finckh et 
al., 2022). 

  



Master’s Thesis | Julia Asp 
 

 10 

Background 
1.1 Autoimmune diseases  
Autoimmune diseases are a complex group of disorders wherein the body’s innate and adaptive 
immune system attacks its own healthy tissue (Wang et al., 2015). One of the most significant 
genetic associations in autoimmune disease lies within the major histocompatibility complex 
(MHC), which, in humans, generates the gene product known as human leukocyte antigens 
(HLA). These cell surface proteins aid in distinguishing between self and non-self (Nordquist 
& Jamil, 2022). Despite the strong association, the MHC has not demonstrated predictive power 
for clinicians, indicating that disease activation involves more complex mechanisms than a 
monogenetic mutation. Although the root genetic cause of most autoimmune disorders remains 
elusive, research suggests that disease symptoms frequently arise from inadequate clonal 
deletion, promoting proliferation of autoreactive T- and B-cells. Furthermore, studies have 
indicated that autoimmune disease initiation often requires environmental triggers, such as 
increased adipose tissue, reduced D-vitamin levels, smoking, infections with various 
microorganisms (e.g., the Epstein-Barr virus), toxins, insufficient nutrition, stress, microbiota, 
xenobiotics, and exposure to certain implants. Notably, the occurrence of autoimmune disease 
disproportionately affects women, even though the extent of this disparity varies depending on 
the disease and sometimes specific subgroups. The underlying cause of this uneven distribution 
among sexes within autoimmune diseases remains unknown (Wang et al., 2015). 

The objective of this project is to analyze six selected autoimmune diseases, namely multiple 
sclerosis (MS) and five rheumatic disorders: myositis, rheumatoid arthritis (RA), scleroderma 
(Ssca), Sjögren’s syndrome (SS) and systemic lupus erythematosus (SLE). Rheumatic disease 
is an umbrella term encompassing over 100 distinct autoimmune conditions that affect joints, 
muscles, tendons, ligaments and bones, with the most common symptom being joint pain 
(Sangha, 2000). These conditions often exhibit similar immunological, laboratory, and clinical 
manifestations, posing challenges in their classification and accurate diagnosis. Patients may 
also experience overlapping diseases, symptoms or even progression into another rheumatic 
disorder. For instance, Raynaud’s phenomenon is a shared symptom among many rheumatic 
disorders as well as the presence of the autoantibodies to t-RNA synthetases in the sera of RA, 
Ssca and myositis patients. Antisynthetase-positive patients frequently present with interstitial 
lung disease (ILD) (Moutsopoulos, 2021).  

Diagnosing autoimmune disease, particularly MS and rheumatic disorders, presents a difficulty 
due to high inter- and intraindividual heterogeneity as well as overlapping clinical 
manifestations. The absence of pathognomonic clinical and paraclinical features has prompted 
the development of diagnostic criteria. In the case of rheumatic disorders, these criteria are 
referred to as the European League Against Rheumatism (EULAR)/American College of 
Rheumatology (ACR) classification criteria. The EULAR/ACR criteria enable differentiation 
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between healthy individuals and those with rheumatic diseases, also providing an indication of 
specific disease class. These criteria serve as valuable screening tools for early diagnosis; 
however, clinical tests are still necessary to confirm a diagnosis. Early diagnosis is crucial in 
all autoimmune diseases to prevent inflammatory episodes and mitigate permanent tissue 
damage (Singh et al., 2006). 

1.1.1 Multiple Sclerosis  
Multiple sclerosis is an incurable, chronic, inflammatory, demyelinating disease of the central 
nervous system (CNS) predominantly affecting women (75%) (Reich et al., 2018) and patients 
aged 20-40 years (Yamout et al., 2020). While the pathogenesis of MS shares certain traits with 
other non-CNS autoimmune diseases, the complete disease pathways remain unidentified. 
Researchers have observed the involvement of helper T-cells, cytotoxic T-cells and B-cells in 
MS lesions throughout the CNS. Another notable attribute of the disease is the activation of 
astrocytes and microglia in acute MS plaques, with the latter serving as a brain clean-up system 
for removing foreign or damaged substances. Immune response triggers in MS lead to chronic 
activation of microglia, resulting in white matter lesions (Reich et al., 2018).  

The diagnosis of MS is established using the McDonald criteria, a universally accepted set of 
guidelines. These criteria describe clinical, imaging, and laboratory indications which 
collectively determine whether a patient is MS-positive or probably MS-positive and assign 
them to specific subgroups. These subgroups include clinically isolated syndrome (CIS), 
relapsing-remitting MS (RRMS), secondary-progressive MS (SPMS), primary-progressive MS 
(PPMS) and progressive-relapsing MS (PRMS). Each subgroup represents different disease 
progression and severities. Currently, there is no single laboratory test that can definitively 
diagnose MS. Magnetic resonance imaging (MRI) is the most effective method for observing 
lesions and disease progression, however lesions can coincide with other diseases and MRI 
accessibility is limited geographically and economically in many parts of the world (Thompson 
et al., 2018).  

Early intervention with drugs that delay disease onset or progression has shown improved 
prognosis in MS (Simonsen et al., 2020). Individuals with MS have an 80% higher risk of 
mortality due to comorbidity compared to those without MS (Titcomb et al., 2022). The U.S. 
Food and Drug Administration (FDA) has approved immunomodulatory drugs for MS that 
target the immune system to counteract relapsing inflammatory episodes. These treatments 
dramatically improve survival rates and slow the progression of RRMS. One study even 
reported that 46% of patients showed no evidence of disease activity after one year, although 
only 8% of patients had sustained this condition after seven years. Rituximab has proven to be 
the most efficient therapy for MS which indicates and important contribution from B-cells in 
the disease mechanism. Currently, there is no established treatment for progressive MS 
(Baecher-Allan et al., 2018). 
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1.1.2 Myositis  
Idiopathic inflammatory myopathies (IIM), also known as myositis, are a group of rare, 
heterogeneous, chronic, inflammatory disorders affecting the skeletal muscles. These 
conditions are characterized by muscle weakness and inflammation. In many cases, IIMs can 
involve multiple organs such as the joints, skin, lungs, heart and gastrointestinal tract, which 
can impact disease progression and potentially have lethal consequences (Lundberg et al., 
2018). The onset of myositis is predominantly seen in females, occurring either in childhood or 
adulthood, with a mean age of onset at 57 years (Parker et al., 2022).   

Diagnosis is determined with the 2017 EULAR/ACR Classification Criteria for Adult and 
Juvenile IIMs and their Major Subgroups. These criteria include the evaluation of various 
factors such as age of onset, muscle weakness, skin manifestations, dysphagia, paraclinical 
measurements of antisynthetase autoantibodies and serum levels of creatine kinase, lactate 
dehydrogenase or aspartate aminotransferase, muscle biopsy attributes and other clinical 
features. The most common subgroups of IIMs include dermatomyositis (DM), polymyositis 
(PM) and inclusion body myositis (IBM) (Lundberg et al., 2017). IBM is the only type of 
myositis that is more prevalent in men than in women.  

Around 60% of IIM patients exhibit myositis-specific autoantibodies (MSAs), which are 
important for predicting organ involvement. Autoantibodies present in myositis and other 
diseases such as SLE, Ssca or Sjögren’s syndrome are instead referred to as myositis-associated 
autoantibodies (MAAs). Approximately 20-30% of IIM patients do not have any known 
autoantibodies and are classified as having seronegative IIM. Among the common MAAs is the 
antisynthetase autoantibody; patients displaying these antibodies are diagnosed with 
antisynthetase syndrome (ASyS). Current smoking is strongly associated with the development 
of ASyS (Lundberg et al., 2021), and in 90% of those patients, ILD is detected (Parker et al., 
2022). ILD is also found in up to 78% of IIM patients. Cardiovascular disease, ILD and 
malignancies are the primary causes of death in individuals with IIMs, with ten-year survival 
rates ranging from 20% to 90%. Immune-mediated necrotizing myopathy (IMNM) is a rare and 
more aggressive type of myositis. 

Early diagnosis and intervention are crucial for improving quality of life and mortality in 
myositis. However, no FDA-approved therapies currently exist due to the complexity of the 
disease and the lack of sufficient clinical evidence. Nonetheless, steroid hormones and 
immunosuppressants are commonly used in refractory cases of IIMS, although evidence for 
their efficacy is weak. Monoclonal antibodies, e.g., Rituximab, are being investigated as 
potential therapies for IIMs. (Lundberg et al., 2021). 
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1.1.3 Rheumatoid Arthritis  
Rheumatoid arthritis is a chronic inflammatory disease affecting the joints. Its symptoms 
include joint swelling, tenderness, stiffness, and pain, leading to the destruction of synovial 
joints. Consequently, individuals with RA experience debilitation and increased risk of 
premature death (Aletaha et al., 2010).  The disease progresses from an early stage characterized 
by early reactivity and limited adaptive immune responses to a systemic inflammation with 
elevated autoantibody levels and both innate and adaptive immune responses attacking tissues 
and causing permanent damage. An important distinction is that this pathological course 
primarily applies to seropositive RA, the most common form of the disease. RA can be divided 
into two major subgroups: seropositive and seronegative, based on the presence or absence of 
autoantibodies such as rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP 
or ACPA). Seropositive RA is defined by the presence of these autoantibodies and vice versa. 
Serological manifestations of seropositive RA can precede clinical manifestations by decades; 
however, the presence of autoantibodies does not always result in disease development (Deane 
& Holers, 2021). Seronegative RA differs from seropositive RA mainly in terms of prognosis 
(Aletaha et al., 2010). Most risk factors linked to seropositive RA, including smoking, heredity, 
toxins, and lifestyle choices, appear to have minimal to negligible effects on seronegative 
patients. Consequently, diagnosing and treating seronegative patients pose greater challenges 
(Pratt & Isaacs, 2014).  

Comorbidities in RA are associated with higher mortality rates compared to the general 
population. For instance, individuals with RA face a 50% increased risk of cardiovascular 
mortality. While the disease is more common in women than in men across all age groups, the 
sex discrepancy is more pronounced among younger patients (Finckh et al., 2022). Disease 
onset typically occurs between the ages of 30 and 50 (Köhler et al., 2019). The most significant 
mortality risks in RA are disease progression into ILD and renal complications (Finckh et al., 
2022).  

Early introduction of treatment plays a crucial role in decreasing the accrual of joint damage, 
minimizing disability, and improving clinical outcomes (Aletaha et al., 2010). The 
implementation of a treat-to-target strategy and early intervention has been successful in 
Western populations over the past two decades, resulting in reduced disability, pain, disease 
progression and overall disease activity. Despite this, there is a pressing need for even earlier 
detection and initiation of antirheumatic therapy to achieve remission in RA and to improve 
outcomes outside of the Western population (Finckh et al., 2022). Acute inflammatory flare-
ups are often managed with glucocorticoids, while disease-modifying antirheumatic drugs 
(DMARD), with methotrexate being the most common, are employed for long-term control of 
inflammation. The main objective is to alleviate pain, control inflammation and ultimately 
achieve remission (Köhler et al., 2019). In the case of seronegative RA, anti-tumor necrosis 
factor (TNF) therapy appears to have superior efficacy compared to seropositive RA (Pratt & 
Isaacs, 2014). 
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1.1.4 Scleroderma  
Scleroderma, also referred to as systemic sclerosis, is a rare inflammatory disease of the 
connective tissue that leads to long-term fibrosis of the skin and internal organs. The clinical 
manifestations and prognosis of Ssca vary, ranging from milder forms characterized by 
Raynaud’s phenomenon to aggressive cases with rapid disease progression and diffuse skin 
thickening due to progressive fibrosis of organs and tissues (Araújo et al., 2017). While Ssca is 
more prevalent in women, men tend to experience higher mortality rates and organ-related 
complications (Hughes et al., 2020). The majority of patients develop the disease between the 
ages of 40 and 50, although onset can occur earlier or later in life (Moinzadeh et al., 2020).  

Diagnosis of Ssca is based on the 2013 EULAR/ACR classification criteria for systemic 
sclerosis. These criteria evaluate several indicators, including skin thickening, swollen fingers, 
Raynaud’s syndrome, finger ulcers or scarring, enlarged capillaries, ILD and Ssca-specific 
autoantibodies for example the anti-centromere antibody (van den Hoogen et al., 2013). ILD is 
the leading cause of death in Ssca patients, with a prevalence of 30% and a 10-year mortality 
rate of up to 40% (Perelas et al., 2020). Treating Ssca poses challenges as it can affect multiple 
organ systems, requiring personalized medicine. Additionally, underlying diseases and 
therapeutic interventions can lead to complications. Therapeutic strategies include 
immunomodulatory treatments and vasodilators (Volkmann et al., 2022).  

Mortality rates in Ssca vary widely, with patient survival after initial diagnosis ranging from 3 
to 20 years. Poor survival rate is associated with more severe phenotypes displaying end-organ 
complications such as IDL and renal involvement (Moore & Steen, 2021). Scleroderma renal 
crisis affects 10-15% of patients and causes renal failure and severe hypertension. However, 
with intensive medical intervention, the incidence of death due to renal crisis has decreased in 
recent years (Chrabaszcz et al., 2020).  

1.1.5 Sjögren’s Syndrome  
Sjögren’s syndrome is a systemic autoimmune disease that manifests clinically as dry mouth 
and dry eyes, resulting from immune-mediated damage to the salivary and lacrimal glands. It 
is the second most prevalent systemic autoimmune disease, and in 15-30% of cases, SS overlaps 
with other autoimmune disorders (Hernández-Molina et al., 2015) leading to the classification 
of the disease into subgroups. Primary SS refers to cases where patients only exhibit Sjögren’s-
related symptoms, while secondary SS occurs when patients present both Sjögren’s symptoms 
and symptoms of another rheumatic disorder (Shiboski et al., 2017).  The disease predominantly 
affects women, with the mean age of onset being between 40 and 50 (Hernández-Molina et al., 
2015). In most cases SS symptoms impact quality of life negatively and have a severe effect on 
oral health. In severe cases, particularly when primary SS progresses to secondary SS with 
additional complications such as ILD or renal involvement, the autoimmune disease can 
become life-threatening (Zhan et al., 2023).  
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The diagnosis of primary SS relies on the 2016 EULAR/ACR classification criteria, which 
include five objective items: inflammation of the labial salivary glands and duration, positive 
anti-Sjögren’s-syndrome-related antigen A autoantibody (anti-SSA/Ro), ocular staining score, 
Schirmer’s test, and unstimulated salivary flow rate (Shiboski et al., 2017). Currently, treatment 
options are limited to symptom relief as there is no official cure for the disease. Autoantibodies 
have been detected in up to 66% of patients before symptom onset, suggesting a potential role 
in disease development. Therefore, a molecular-based classification of the disease is strongly 
desired (Jonsson, 2022). The traditional therapeutic strategy for SS involves the use of 
antirheumatic drugs, i.e., glucocorticoids, which have a disease-modifying effect and help 
alleviate inflammation. Ongoing research focuses on novel therapies, including biotherapeutic 
approaches that target and block inflammation-related receptors or neutralize antibodies. 
Additionally, immune inhibitors, such as BAFF receptor blockers, are used to manage disease 
symptoms, even though they lack pharmacological effects (Zhan et al., 2023).  

1.1.6 Systemic Lupus Erythematosus  
SLE is one of the most complex systemic autoimmune diseases due to the considerable 
heterogeneity of the clinical manifestations of the disease. It predominantly affects women 
(90%) (Bernatsky et al., 2006) between the ages of 15 and 45. This inflammatory disease can 
target multiple organs, including the skin, heart, lungs, joints, and kidneys, leading to varying 
symptoms that may come and go over time (NIH, 2022). Symptoms can range from skin rashes 
and alopecia to arthritic and neuropsychiatric manifestations, likely resulting from complex 
immune dysregulation (Lazar & Kahlenberg, 2023). The protean nature of the clinical 
presentation often overlaps with other diseases, further complicating its identification, 
definition, and diagnosis. The EULAR/ACR classification criteria for SLE are used to establish 
a diagnosis, incorporating various weighted classification items such as fever, leukopenia, 
thrombocytopenia, psychosis, alopecia, oral ulcers, acute pericarditis, joint involvement, 
proteinuria and specific autoantibodies among others antiphospholipid antibodies, antinuclear 
antibody (ANA) and anti-Sm antibodies (Aringer et al., 2019).  

SLE patients have a higher risk of mortality compared to the general population, with 
circulatory disease, renal disease, and malignancies, including hematological and lung cancers, 
being the main cause of death. Some studies indicate that male SLE patients have a higher 
mortality rate than female SLE patients (Bernatsky et al., 2006). On a positive note, the 
mortality rates associated with SLE significantly decreased, with the 15-year survival rate 
increasing from 50% in 1948 to 85-95% today (Dörner & Furie, 2019). Antimalarial therapy, 
particularly hydroxychloroquine (HCQ), is the most common treatment option for SLE. It aims 
to reduce risk of disease flares, improve life expectancy, decrease thrombosis risk, and 
minimize cutaneous and musculoskeletal manifestations. Glucocorticoids are also used to 
quickly control flare-ups, and antibody-based immunomodulatory treatments have recently 
gained FDA approval (Lazar & Kahlenberg, 2023).  
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1.2 The Plasma Proteome  
The human plasma proteome is the intersection of proteomics, medicine and the diagnostic 
industry. Plasma, which constitutes 55% of blood, is defined as the liquid component of blood 
containing salts, enzymes, other proteins and water. The remaining 45% consists of leukocytes 
and erythrocytes. The plasma proteome is unique in its inclusion of proteins not only related to 
blood function but also subsets of proteins derived from all other tissues in the body. Analyzing 
the plasma proteome poses significant challenges due to the plethora of albumin and the 
heterogeneity in size and abundance, particularly of glycoproteins (Anderson & Anderson, 
2002). However, advancements in techniques have made this task more feasible (Wik et al., 
2021). The dynamic range of proteins in plasma is immense, with differences in abundance 
spanning up to a factor of 1010. For instance, despite the substantial difference in abundance, 
albumin and interleukin 6 are commonly used as indicators of liver disease and inflammation 
or infection, respectively. Proteins found in plasma encompass secreted proteins from solid 
tissues, immunoglobulins, receptor ligands such as hormones and cytokines, temporary 
passenger proteins (e.g., lysosomal proteins), tissue leakage products resulting from damage or 
cell death, aberrant secretions from tumors or diseased tissue, and foreign proteins from 
infectious organisms, among others. 

The exploration of the human plasma proteome has gained momentum in the field of biomarker 
discovery, driven by the concept of pathological protein leakage into the bloodstream. 
Extensive efforts have been dedicated to mapping the complete plasma proteome, aiming to 
identify all proteins above the limit of detection (LOD). Among the proteins of interest are 
tissue leakage proteins and interleukins, which hold pathological significance in various 
diseases and inflammatory episodes. In comparison to other bodily fluids such as cerebrospinal 
fluid (CSF), saliva, or urine, plasma samples offer advantages in terms of invasiveness during 
sampling, ease of separation, analysis and practicality. However, it is important to note that not 
all proteins from these other fluids leak or secrete into the bloodstream, at least not above the 
LOD. 

Another challenge with plasma samples lies in the half-life of the proteins, from the point of 
first disease symptoms to their survival outside the body. Extended storage at -70 °C has been 
shown to effectively preserve the protein structures and activity. Factors such as drugs, 
medication, lifestyle choices and genetics significantly impact blood protein levels. The genetic 
noise alone can account for 12-95% of protein abundance variations, depending on the specific 
protein (Anderson & Anderson, 2002). Recent studies have confirmed the average variation per 
protein of approximately 61-62%. These studies integrate protein assays with genome-wide 
association studies (GWAS), with a specific focus on investigating and identifying protein 
quantitative trait loci (pQTLs). The identification of these pQTLs is expected to enhance our 
understanding of disease pathology and shed a light on proteins that are likely to exhibit higher 
prevalence in the plasma proteome (Kim et al., 2013).  
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1.3 Proximity Extension Assay  
The Proximity Extension Assay (PEA) is a multiplex immunoassay, provided by Olink 
Proteomics AB, that enables detection of low abundance proteins in biological samples. The 
fundamental principles of this technology involve antibodies that are linked to DNA-encoded 
tags, which then locate and bind to target proteins. When two matched probes bind to the same 
protein, the oligonucleotides hybridize and create an amplicon aided by DNA polymerase. The 
target sequences are subsequently amplified, detected, and quantified through PCR, generating 
a relative quantification output per protein from different samples. In 2021, Olink released the 
OlinkⓇ Explore platform, with 1463 validated proteins, which combines the PEA technology 
with Next Generation Sequencing (NGS), specifically Illumina sequencing, to automate and 
enhance the capacity for high-throughput screenings.  

When performing plasma protein analysis using PEA, sample sizes need to be in the range of a 
few microliters. Depending on the natural concentration of the target proteins in blood, the 
samples are diluted at four different dilution ratios (1:1, 1:10, 1:100, 1:1000). Subsequently, the 
samples are run in the four different dilution panels, each containing different proteins. This 
targeted approach enables a multiplex, high throughput process with high specificity, 
sensitivity, and minimal sample consumption (Wik et al., 2021). One technical challenge 
associated with PEA is the so-called hooking effect, which occurs when there is an excess of 
antigens relative to the antibody probes. This effect can falsely lower the intensity values 
detected, leading to the misconception of low protein abundance instead of very high abundance 
(Olink, 2016).  

1.4 Linear Regression Model  
Linear regression is a statistical modeling technique employed to analyze data, infer causality, 
and make quantitative predictions about future outcomes. The modeling can be achieved 
through simple linear regression or multiple linear regression, depending on the number of 
independent variables used to predict the dependent variable. The basic principle is to determine 
the coefficients for each independent variable that most accurately fit the data. These regression 
coefficients can be estimated with least squares, maximum likelihood, robust estimation, 
Bayesian approach or ridge regression, among many other methods. Linear regression is widely 
used in differential expression analysis due to its robust mathematical foundation, 
interpretability, and its role as a fundamental component in more advanced modeling 
techniques, in particular machine learning models (Su et al., 2012). An example of the 
incorporation of multiple linear regression models is the limma (Linear Models for Microarray 
and RNA-Seq Data) package in R. 

1.4.1 Limma 
BioConductor is an open-source R-based software, specifically developed for statistical 
genomics. Among the various software packages available in BioConductor, limma is a 



Master’s Thesis | Julia Asp 
 

 18 

versatile tool designed for gene expression analysis of array-based experiments, including 
microarrays, protein arrays, and polymerase chain reaction (PCR). Additionally, it can be 
applied to RNA-seq data and other high-throughput omics datasets.  To utilize the limma 
package, the data should be formatted as a matrix of expression values, where each row 
represents a feature (e.g., gene or protein) and each column corresponds to a sample. The 
statistical framework of limma is well-suited for large-scale differential expression studies and 
encompasses algorithms that facilitate information borrowing, quantitative weighting, variance 
modeling, and data pre-processing. Notably, it also incorporates robust statistical methods to 
handle datasets with small sample sizes. 

Limma adopts a feature-wise linear modeling approach, enabling analysis of complex 
experimental designs and flexible hypothesis testing. Moreover, it incorporates global 
variability analysis across the entire dataset by estimating hyperparameters that capture 
correlations between features and samples, as well as variability in sample quality. Correlation 
between samples is assessed similarly to a random effects model. Empirical Bayes methods are 
employed to facilitate information borrowing between features, with the ability to incorporate 
mean-variance trends, particularly important for gene expression data at lower intensities or 
abundances. The inclusion of quantitative weights throughout the statistical analysis allows for 
the correction of different factors such as sex and age, enhancing the modeling for global 
characteristics of the data and improving statistical power and accuracy. These weights can be 
either preset based on external information or estimated from the data itself. By avoiding ad 
hoc decisions, the use of weights increases the power to detect differentially expressed genes, 
providing a more robust and model-based approach. 

In limma, fitting the same linear model to each feature enables the borrowing of strength 
between features to moderate the residual variances. This approach leads to compromise 
between the feature-wise estimator and the global variability across all features, effectively 
increasing the effective degrees of freedom with which feature-wise variances are estimated. 
This is particularly advantageous in experiments with small sample sizes, as it enhances the 
reliability of statistical conclusions. Other statistical approaches in differential expression 
analysis often require splitting the data into smaller subsets, limiting the global analysis of the 
entire experiment. Furthermore, these techniques may lack the straightforwardness and 
reproducibility offered by limma. A distinctive feature of limma is its ability to handle 
variations in sample quality in a graduated manner through quantitative weights (Ritchie et al., 
2015). Comparisons with other common non-linear, non-weighted approaches, such as 
DESeq2, have shown that limma can provide more precise results by identifying a greater 
number of differentially expressed genes (Tong, 2021). Overall, limma is highly regarded in 
the field of gene expression due to its statistical rigor, user-friendly interface, and its ability to 
handle high- throughput datasets. However, it should be noted that limma does not support 
multinomial regression modeling, which requires alternative techniques, such as machine 
learning. 
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1.5 Machine Learning  
Machine learning (ML) is a field of computer science and artificial intelligence that focuses on 
enabling machines to learn without explicit programming. With the exponential growth of 
biological data in the field of omics, ML algorithms have gained significant traction in 
bioinformatics to extract knowledge from large and diverse datasets. ML techniques are 
primarily used for tasks such as feature selection, classification, clustering, and prediction of 
biological data. One of the key advantages of ML is its ability to uncover patterns and generate 
insights from heterogeneous datasets (Shastry & Sanjay, 2020).  

ML can be broadly categorized into supervised and unsupervised learning. Supervised learning 
relies on prelabeled data and is typically used for tasks such as diagnostics and classification. 
Common supervised learning models include linear regression, naive Bayes, logistic regression, 
decision trees, ensemble methods e.g., random forest, and super vector machines (SVM). In 
supervised learning, models are trained on a dataset, and their weights are adjusted iteratively 
until an appropriate fit is achieved. However, challenges such as overfitting and underfitting 
can arise. Overfitting occurs when the model learns the patterns and noise of the specific dataset 
too well, making it less effective in generalizing to unseen data. On the other hand, underfitting 
happens when the model is too simplistic to capture important relationships in the data (IBM, 
n.d.). Several techniques can mitigate these challenges, including data scaling, feature selection, 
bootstrapping, cross-validation, hyperparameter tuning specific to the chosen model 
(Pudjihartono et al. 2022).   

There are several methods available for evaluating the performance of a machine learning 
classification model. These metrics provide insights into the model’s ability to make accurate 
predictions. Some commonly used evaluation metrics include the receiver operating 
characteristic (ROC), the area under the curve (AUC), accuracy, precision, recall, and F1 score. 
The ROC plots illustrate the relationship between the true positive rate and the false positive 
rate. The AUC score represents the area under this curve and serves as a measure of the model’s 
overall performance. An AUC value, closer to 1, indicates better predictive ability. Accuracy 
is a metric that measures the proportion of the correct predictions made by the model out of all 
predictions. It provides an overall assessment of the model’s correctness. Precision evaluates 
the model’s ability to avoid false positives. It calculates the proportion of correctly predicted 
positive instances out of all instances predicted as positive. A high precision indicates a low 
rate of false positives. Recall, also known as sensitivity or true positive rate, measures the 
model’s ability to detect all positive instances. It calculates the proportion of correctly predicted 
positive instances out of all actual positive instances. A high recall indicates low false negatives. 
The F1 score combines precision and recall into a single metric. It is the harmonic mean of 
precision and recall, providing a balanced assessment of both measures. A high F1 score 
indicates better overall performance in terms of both precision and recall. Additionally, the 
macro F1 score calculates the arithmetic mean of all F1 scores for each class. This metric can 
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be useful when dealing with imbalanced datasets, where different classes have varying sample 
sizes (Gouette & Gaussier, 2005). 

1.5.1 GLMNet 
Glmnet is an R-based package for ML and stands for Generalized Linear Models (GLMs) with 
the Elastic Net (Net) penalty. This package provides fast algorithms for fitting GLMs with 
penalized maximum likelihood and regularization. In the presence of highly correlated 
predictors, lasso regression tends to select one predictor as important and discard the rest, while 
ridge regression shrinks the coefficients of correlated predictors towards each other. The elastic 
net penalty combines the two regression types allowing them to borrow strengths from each 
other and creating an embedded feature selection in the model (Friedman et al., 2010). The 
elastic net also permits tuning of the penalty term through the penalty parameters 𝛼 and 𝜆, which 
control the type (ridge (𝛼 = 0) or lasso (𝛼 = 1)) and amount of shrinkage, respectively. 
Furthermore, the tuning parameters 𝛼 and 𝜆 can be automatically chosen using built-in k-fold 
cross-validation in the model (Engebretsen & Bohlin, 2019).  

Glmnet is capable of handling large datasets efficiently, with short iteration and computation 
times. It includes models for regression, two-class logistic regression, and multinomial 
regression problems, enabling the fitting of generalized linear models to various response 
distributions, including Gaussian, binomial, multinomial, Poisson, etc. In other words, glmnet 
can generate both continuous and categorical output. The regularization provided by the 𝜆-
parameter helps prevent overfitting, making it well suited for large datasets (Friedman et al., 
2010). Glmnet also offers a user-friendly interface with built-in functions for visualization, 
extracting feature importance lists with importance scores, classification confusion matrices 
and other performance measures (Hastie et al., 2023). 

While logistic regression models are typically used for binomial classification, multinomial 
regression is employed for modeling categorical outcomes with more than two categories. In 
glmnet, multinomial regression generalizes the binomial logistic regression model to a multi-
logit model (Friedman et al., 2010).   
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Methodology 
2.1 Data Generation 
2.1.1 Sampling 
A total of 944 plasma samples were supplied by research groups at the Karolinska Institute, 
from the biobank at the Division of Rheumatology, Department of Medicine. The samples were 
collected from individuals at the date of first diagnosis over the course of a decade, and the 
diagnoses were assessed by experienced rheumatologists or neurologists (for MS). Table 1 
summarizes the distribution of samples among different diseases and subgroups. All RA 
samples were sourced from the EIRA study, while one third of the MS samples came from the 
EIMS study (EIRA Sweden, 2020; Andersen, 2012). Except for some EIMS samples, all other 
samples were collected at Karolinska University Hospital in EDTA tubes, separated from blood 
cells, and frozen within one hour or up to 6 days after initial sampling. A fraction of EIMS 
samples were collected at the local health centers and sent by regular mail to the biobank for 
further separation and storage. All samples have been stored at -80 °C. The majority of the 
samples came from individuals of northern European descent.  

Table 1. The distribution of samples per disease and subgroup. 
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2.1.2 Proximity Extension Assay 
In 2022, the 944 samples were sent to the Olink Explore Lab at SciLifeLab in Uppsala, where 
the OlinkⓇ Explore platform was run with 1463 unique protein assays. Three assays (TNF, IL6 
and CXCL8) were replicated in all four panels for control purposes. Olink provided a data file 
containing approximately 1.4 million log2-transformed intensity values, referred to as 
normalized protein expression (NPX) values, for all samples and proteins. These samples were 
a part of a larger study comprising a total of 10,000 samples that were normalized and bridged 
together. The 10,000 samples were run in four different batches over a period of 1,5 years. The 
autoimmune cohort was run in batch 3. 

2.1.3 Healthy Cohort Data 
A subset of the 10,000 samples came from the impaired glucose tolerance (IGT) cohort, a cross-
sectional study of healthy, diabetic and prediabetic individuals. The healthy subset of the IGT 
cohort was called the normal glucose tolerance (NGT) group. These individuals were randomly 
recruited from the Gothenburg area, Sweden, through the census registry. All individuals in this 
cohort were aged between 50 and 64 (Wu et al., 2020). The healthy cohort was run in batch 2. 

2.2 Data Preparation 
All NPX values flagged with QC-warnings were removed. Among the three replicated assays, 
the assay with the highest mean NPX value was retained for each protein. Additionally, based 
on earlier investigations from the research group, 480 highly correlated and highly variable 
proteins were excluded due to suspicion that the correlation was driven by technical parameters 
rather than biological factors.  

2.3 Differential Expression Analysis 
Differential expression analysis was performed using two different methods in R (version 
4.2.1). Initially, a normal distribution test, Shapiro-Wilk W-test (Shapiro & Wilk, 1965), was 
conducted, revealing a non-normal, skewed distribution for 90% of the data. Therefore, the non-
parametric Mann-Whitney U-test (MWU) (Mann & Whitney, 1947) was employed. 
Subsequently, the linear regression model package limma was used, incorporating weights to 
account for sex and age and adjust for these factors. Both MWU and limma analyses were 
performed in a bimodal manner, comparing each disease to the healthy cohort and then to all 
other rheumatic diseases within the autoimmune cohort, as illustrated in figure 1. The p-values, 
from both methods, were adjusted using Benjamini-Hochberg correction (Benjamini & 
Hochberg, 1995). For the subgroup analysis of myositis and RA, MWU and limma were 
applied, designating one subgroup as the case and the other subgroup as control. In the case of 
MS subgroups, one subgroup was considered the case, while the remaining three were grouped 
into a control group, similar to the inter-disease comparisons. 
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Figure 1. A schematic of the case and control categorization for limma and Mann-Whitney U-test. 

 

2.4 Machine Learning 
A machine learning model for disease classification was built using the glmnet engine in R and 
the tidymodels R package (version 1.0.0). The model was trained and evaluated on the 
autoimmune cohort data, with assays serving as features and the six disease groups as classes. 
The following parameters were adjusted for model optimization: seed setting, data splitting, 
feature scaling, feature selection, and class balancing. Model performance was evaluated by 
macro-F1 scores. The final model employed a 70/30 split of training and test data, with all 
features scaled using z-score normalization (Zhang et al., 2014). Feature selection and 
hyperparameter optimization was performed using built-in k-fold cross-validation with 5 folds, 
and ultimately, class balancing was not applied as it did not have any positive effect on the 
evaluation score.  

2.5 Protein Selection 
To identify potential plasma protein biomarkers with highest association to each disease, 
adjusted p-values from the MWU and limma differential expression analyses were combined 
with the importance scores from the machine learning model. Proteins with the lowest adjusted 
p-values and highest importance scores were considered to be the most relevant biomarker 
candidates in patients of a particular disease compared to all other autoimmune cohort patients 
and NGT cohort individuals. In the case of the subgroups, potential protein biomarkers were 
selected solely based on MWU and limma p-values.  
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Results 
The initial phase of the project involved exploring various aspects of the data. Figure 2, displays 
the distribution of sex and age, revealing a higher representation of younger age groups among 
the MS and SLE cohorts. It is also evident from the figure that the majority of the samples were 
from female patients, which aligns with the natural occurrence of the diseases. Additionally, 
PCA and UMAP plots were utilized to assess other data characteristics for all samples and 
proteins, as depicted in figure 2. These plots indicate a certain degree of heterogeneity in terms 
of sex differences and a clear separation among disease groups. This first observation suggested 
the presence of detectable expression differences related to disease groups. the first indication 
that there should be detectable expression differences related to disease group. Among the 
disease clusters in the PCA and UMAP plots, the most distinct separation was observed for MS, 
myositis and RA, while the remaining three diseases exhibited more overlapping patterns with 
each other. 

 
Figure 2. a) Boxplots of age distribution per disease group. b) Bar plot of the sex distribution within each disease 
group. c) UMAP plot of all samples and all proteins colored by disease group. d) UMAP plot of all samples and 
all proteins colored by sex. e) PCA plot of all samples and all proteins colored by disease group. f) PCA plot of 
all samples and all proteins colored by sex. 

The analysis methods used in this project were differential expression analysis (limma), non-
parametric testing (MWU), and machine learning (glmnet). Both MWU test and limma model 
successfully identified differentially expressed proteins. These two methods also exhibited a 
high correlation in terms of p-values in most cases, indicating consistent results. However, 
notable differences were observed when comparing the results obtained from different case and 
control combinations, likely attributable to the healthy data being a separate, distinct cohort and 
processed in a separate batch. These differences are illustrated with heatmaps in the subsequent 
sections. 

 

a) c) 

b) f) 

e) 

d) 
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The glmnet model gave high macro-F1 scores (0.85~0.9) after tuning the parameters. 
Nevertheless, it was discovered that the score did not consider the model’s tendency to select 
insignificant proteins as important features. To address this, feature scaling was implemented 
before training the model. Furthermore, the choice of k-fold cross-validation had a notable 
impact on the macro-F1 score, with five folds being determined as optimal in terms of 
computation time and predictive power. The data was split into 70% for training and 30% for 
testing, which yielded the best results for the model.  

Class balancing was experimented with by randomly sampling 100 samples from each disease 
group. This approach had a slight negative impact on the macro-F1 score and was therefore not 
included. Lastly, varying seed values during model training had mixed effects on the scores, 
suggesting that the randomization process had some influence on the results. Nevertheless, the 
macro-F1 scores consistently fell within the range of 0.83~0.91, indicating a relatively robust 
decision-making process by the model. It should be declared that further hyperparameter tuning 
was not explored, which could have potentially yielded more significant effects on the results.  

Scaling features had the most pronounced effect on the selection of proteins deemed important 
by the model. This can be attributed to the separate quantification and, in some cases, dilution 
of assays, resulting in a wide range of NPX values. Consequently, the model may make 
topological inferences that do not align with the actual data. The final model achieved an F1-
score of 0.8975622. In figure 3, the ROC curves per disease for the final model are displayed, 
along with the corresponding AUC scores. The macro-AUC score is 0.9983, and for MS and 
SLE, the AUC scores were 1, indicating excellent predictive ability of the model in these 
specific diseases. 

 

 
Figure 3. Displays the ROC-curves and corresponding AUC scores per disease class from the final glmnet model 
when run on the test data. Order of plots from top left: MS, myositis, RA, SLE, SS, Ssca. 
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The results for each disease and subgroup are described and illustrated as follows. Firstly, 
heatmaps are provided to visualize the performance of limma, MWU, and glmnet across 
different case-control combinations. Secondly, a volcano plot and boxplot are presented, 
depicting the results of the limma model when using the disease as the case and all other 
rheumatic diseases as controls. This particular case-control combination was considered the 
most reliable since all NPX values were obtained from the same cohort and batch. To ensure 
accuracy, the analysis of rheumatic disorders excluded the MS samples due to the clinical 
similarities of rheumatic diseases and the adherence to the same sampling pool. Thirdly, a 
lollipop plot and boxplot are included to showcase the most important classification features 
predicted by the glmnet model. These plots provide insights into the proteins that contribute 
significantly to the classification. Additionally, a table is added for each disease, summarizing 
the top ten proteins with the highest differential expression and importance scores.  

3.1 Multiple Sclerosis 
The MS cohort exhibited significant differences from the other autoimmune disease cohorts, 
and in most cases, showed a similar protein expression to the healthy cohort. The limma 
analysis, using MS as the case and the rheumatic disorders as controls, resulted in down-
regulation of most proteins. Conversely, when limma was run with the healthy cohort as the 
control, the MS cohort showed predominantly up-regulated proteins. Figure 4 illustrates the 
discrepancy between the results obtained from different case and control combinations. The 
results from limma and MWU analyses with rheumatic disorders as controls showed similar 
outcomes, while limma and MWU analyses with the healthy cohort as the control presented the 
opposite proteins as highly significant. 

 
Figure 4. A heatmap plot of the MS cohort showing some proteins on the x-axis and methods together with case-
control combination on the y-axis. The color scale represents the significance scoring by the method, either 
adjusted p-value or importance score, with 1 representing the highest significance. Limma/MWU disease: other 
rheumatic diseases were used as control. Limma/MWU healthy: the healthy cohort was used as control.  
 

The results from the differential expression analysis and machine learning are depicted in figure 
5. LTA4H emerged as the protein that stood out in both models, exhibiting significantly lower 
p-values and higher importance scores. The boxplots from the limma results in figure 5b) 
demonstrate that the most differentially expressed proteins were similar to the healthy cohort, 
indicating no significant differential expression. The finding aligns with the results observed in 
the heatmap shown in figure 4. The boxplots in figure 5d) reveal that the glmnet model 
successfully identified three proteins, namely OMG, EDIL3, and CTSV, which exhibited 
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consistent up- or downregulation compared to all other cohorts. OMG is a cell adhesion 
molecule involved in the myelination process in the CNS (HPA, n.d.). EDIL3, associated with 
promoting adhesion in epithelial cells and inhibiting the formation of vascular-like structures, 
has been found to be upregulated in various types of cancers. CTSV, a protease that may play 
a role in corneal physiology, has no specific mention in literature regarding MS (HPA, n.d.).  

 

 

Figure 5. a) Volcano plot of the resulting p-values and fold change when running limma for the MS cohort as case 
and the remaining diseases as control. b) Boxplots of the top ten most significantly differentially expressed proteins 
according to the limma analysis with NPX values on the y-axis and cohort names on the x-axis. c) Lollipop plot of 
the top, most important, features and their importance scores as assigned by the glmnet model. d) Boxplots of the 
top ten most important features assigned by the glmnet model. The MS cohort is shown in green. 

 

Table 2 presents the top ten proteins resulting from the limma and glmnet analyses, with two 
proteins, LTA4H and SIGLEC1, appearing in both analyses. These proteins were identified as 
downregulated. LTA4H has no mention in literature related to MS, while SIGLEC1 has been 
associated with MS, particularly the progressive type. Several studies have discussed SIGLEC1 
as a biomarker for active neuroinflammation in the brain when examining monocytes, although 
it has not been found to be upregulated in blood (Ostendorf et al., 2021). Among the remaining 
proteins, most have been discussed in the literature in relation to MS. Notable mentions include 
CXCL13, proposed biomarker in CSF (DiSano et al., 2020); TNFRSF14, associated with MS 
risk when downregulated (Torre-Fuentes et al., 2020); TIMP1, elevated in patients with MS 

a) 

d) c) 

b) 
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serum samples (Trentini et al., 2015); and CD74, upregulated in MS, and currently targeted by 
a monoclonal antibody in clinical trials (Haran et al., 2018). 

 

Table 2. Shows the top ten proteins picked by the differential expression (DE) model limma (with rheumatic disease 
as control group) and the machine learning (ML) model glmnet (using all disease groups). It also includes the full 
protein names and the number of proteins picked by both models. 

Rank DE (limma) Full protein name ML (glmnet) Full protein name 
1 LTA4H Leukotriene A4 hydrolase LTA4H Leukotriene A4 hydrolase 

2 CXCL13 C-X-C motif chemokine ligand 
13 OMG Oligodendrocyte myelin 

glycoprotein 

3 TNFRSF14 TNF receptor superfamily 
member 14 SIGLEC1 Sialic acid binding Ig like 

lectin 1 
4 CNDP1 Carnosine dipeptidase 1 C1QTNF1 C1q and TNF related 1 

5 TNFRSF1B TNF receptor superfamily 
member 1B CNDP1 Carnosine dipeptidase 1 

6 LGALS9 Galectin 9 KLK13 Kallikrein related peptidase 
13 

7 CXCL10 C-X-C motif chemokine ligand 
10 EDIL3 EGF like repeats and 

discoidin domains 3 

8 SIGLEC1 Sialic acid binding Ig like 
lectin 1 BMP4 Bone morphogenetic protein 4 

9 CD74 CD74 molecule CTSV Cathepsin V 

10 TIMP1 TIMP metallopeptidase 
inhibitor 1 PLAT Plasminogen activator, tissue 

type 
Overlap: 2 proteins 
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3.1.1 Multiple Sclerosis – Subgroups 
When examining the subgroups of MS, namely RRMS, SPMS and PPMS, there were minimal 
differences in the expression levels of proteins among these groups, as depicted in the volcano 
plots shown in figure 6. The PRMS subgroup exhibited a slightly higher number of proteins 
with significant upregulation; however, it is important to note that this subgroup consisted of 
only five samples, rendering these findings statistically insignificant. 

 

 
Figure 6. Volcano plots from limma results when using a) relapsing-remitting MS as case and other MS as control, 
b) secondary-progressive MS as case and other MS as control, c) primary-progressive MS as case and other MS 
as control, d) progressive-remitting MS as case and other MS as control.  

 

Figure 7. presents the boxplots of all the proteins that were identified as significantly up- or 
down-regulated. Many of these proteins have been mentioned in literature in relation to MS. 
For instance, RGMA has been demonstrated to be involved in the pathogenesis of MS in mouse 
models, although no specific subgroup mention was found (Zhang et al., 2022). TXNB has also 
been associated with MS and SLE in GWAS studies (Tajuddin et al., 2016).  

a) 

d) 

b) 

c) 
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Figure 7. Boxplots of the 9 differentially expressed protein from all four MS subgroup analyses, with NPX 
values on the y-axis and cohort or subgroup names on the x-axis. 
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3.2 Myositis 
In the myositis analysis, all three methods and both control combinations, exhibited relatively 
similar performance and ranking of the topmost important proteins. This is illustrated in the 
heatmap presented in figure 8 where there is a clustering occurring in two darker areas.  

 
Figure 8. A heatmap plot of the myositis cohort showing some proteins on the x-axis and methods together with 
case-control combination on the y-axis. The color scale represents the significance scoring by the method, either 
adjusted p-value or importance score, with 1 representing the highest significance. Limma/MWU disease: other 
rheumatic diseases were used as control. Limma/MWU healthy: the healthy cohort was used as control. 
 
 
The myositis analysis unveiled several highly differentially expressed proteins, as indicated by 
both their high p-values and large fold changes, as depicted in the volcano plot in figure 9a) 
Among the top ten proteins ranked by both models, HSPB6, CXCL10, KLK13, SEMA4C, and 
LTA4H were identified by both machine learning and differential expression analysis, as 
presented in table 3. 

HSPB6, a small heat shock protein, plays a regulatory role in muscle function. Its upregulation 
has been associated with cardio protection and angiogenesis following induced damage (HPA, 
n.d.). Moreover, HSPB6 has been linked to reactive oxygen species (ROS) homeostasis 
(Capitanio et al., 2015), which are generated during mitochondrial oxidative metabolism and 
can also be amplified as a cellular response to cytokines, bacterial invasion or xenobiotics. (Ray 
et al., 2012). Overexpression of this protein has been observed in various myopathies including 
the IIMs. (Merino-Jiménez et al., 2019)  
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Figure 9. a) Volcano plot of the resulting p-values and fold change when running limma for the myositis cohort 
as case and the remaining rheumatic diseases as control. b) Boxplots of the top ten most significantly differentially 
expressed proteins according to the limma analysis with NPX values on the y-axis and cohort names on the x-axis. 
c) Left: Lollipop plot of the top, most important, features and their importance scores as assigned by the glmnet 
model. d) Boxplots of the top ten most important features assigned by the glmnet model. The myositis cohort is 
shown in purple. 

 

CXCL10 is a pro-inflammatory cytokine, while KLK13 belongs to a subgroup of serine 
proteases that play various roles in the body and have been implicated in carcinogenesis. 
However, literature does not mention a direct relation between KLK13 and IIMs. SEMA4C is 
a cell surface protein involved in cell-cell signaling and muscle cell differentiation, whereas 
LTA4H catalyzes the conversion of LTA4 into a pro-inflammatory mediator leukotriene. 
LTA4H is recognized as a biomarker for chronic obstructive pulmonary disease (COPD) (HPA, 
n.d.) and has also been implicated in the pathogenesis of IIMs (Korotkova & Lundberg, 2014). 

The boxplots presented in figure 9 reveal several proteins with elongated plot profiles, 
indicating the presence of subgroups. However, these subgroups were not related to the pre-
assigned myositis subgroups in this study. The limma analysis further revealed the significantly 
upregulated proteins NOS1, MB, CA3, IDI2 and PHOSPHO1 that were not identified by 
glmnet in the final model. NOS1 has been shown to be upregulated in myositis (Tews & Goebel, 
1998), as has MB (Kagan, 1977).  

 

a) 

c) d) 

b) 
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Table 3. Shows the top ten proteins picked by the differential expression (DE) model limma (with rheumatic disease 
as control group) and the machine learning (ML) model glmnet (using all disease groups). It also includes the full 
protein names and the number of proteins picked by both models. 

Rank DE (limma) Full protein name ML (glmnet) Full protein name 
1 NOS1 Nitric oxide synthase 1 LTA4H Leukotriene A4 hydrolase 

2 MB Myoglobin CCN1 Cellular communication 
network factor 1 

3 HSPB6 Heat shock protein family B 
member 6 CXCL10 C-X-C motif chemokine ligand 

10 
4 CA3 Carbonic anhydrase 3 SEMA4C Semaphorin 4C 

5 CXCL10 C-X-C motif chemokine ligand 
10 HSPB6 Heat shock protein family B 

member 6 

6 IDI2 Isopentenyl-diphosphate delta 
isomerase 2 KLK13 Kallikrein related peptidase 

13 

7 PHOSPHO1 Phosphoethanolamine/ 
phosphocoline phosphatase 1 PBLD Phenazine biosynthesis like 

protein domain containing 

8 KLK13 Kallikrein related peptidase 
13 ADAM8 ADAM metallopeptidase 

domain 8 
9 SEMA4C Semaphorin 4C IL1RL2 Interleukin 1 receptor like 2 
10 LTA4H Leukotriene A4 hydrolase DSG2 Desmoglein 2 

Overlap: 5 proteins 

 

3.2.1 Myositis – Subgroups 
For the myositis subgroups a protein that really stood out was the SFTPD, a protein that 
contributes to the lung’s defence against toxins, microorganisms and organic antigens (HPA, 
n.d.) As shown in the volcano plot of figure 10, this protein was highly upregulated in patients 
with ASyS who often do develop ILD.  

 
Figure 10. Left: Volcano plot from the limma analysis of ASyS positive patients as case and ASyS negative patients 
as control. Right: Boxplots of the top ten protein with lowest p-value and highest fold change, with NPX values on 
the y-axis and cohort names on the x-axis. These plots show the healthy cohort, the myositis subgroups and the 
remaining disease cohorts as one called “Other dis”. 
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3.3 Rheumatoid Arthritis 
The analysis of the RA cohort using different observational combinations yielded consistent 
results, as demonstrated in figure 11. The darker clustering area in the bottom right of the figure 
shows strong agreement between the methods. 

 
Figure 11. A heatmap plot of the RA cohort showing some proteins on the x-axis and methods together with case-
control combination on the y-axis. The color scale represents the significance scoring by the method, either 
adjusted p-value or importance score, with 1 representing the highest significance. Limma/MWU disease: other 
rheumatic diseases were used as control. Limma/MWU healthy: the healthy cohort was used as control. 
 
Furthermore, the results from the limma analysis indicated high significance and fold change, 
as evidenced by the distinct boxplots displayed in figure 12b). Notably, four proteins, namely 
IL1B, OLR1, AZU1 and MMP8, suggested the presence of another type of subgrouping that is 
unrelated to the preassigned clinical subgroups of seropositive and seronegative RA.  
 

 
Figure 12. a) Volcano plot of the resulting p-values when running limma for the RA cohort as case and the 
remaining rheumatic diseases as control. b) Boxplots of the top ten most significantly differentially expressed 
proteins according to the limma analysis with NPX values on the y-axis and cohort names on the x-axis. c) Lollipop 
plot of the top, most important, features and their importance scores as assigned by the glmnet model. d) Boxplots 
of the top ten most important features assigned by the glmnet model. The RA cohort is shown in red. 

a) 

c) 

d) 

b) 
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Table 4 reveals an overlap of four proteins between the glmnet model and the limma model, 
namely ITGAM, CRTAC1, ADGRG2 and S100A12. In the next section, CRTAC1 is discussed 
as a protein that exhibits differential expression between seropositive and seronegative RA. 
However, it is worth noting that the CRTAC1 is also highly expressed in all RA patients 
compared to other disease groups. ITGAM, although not specifically mentioned in literature 
regarding RA, has been identified as a strong susceptibility gene for SLE. (Järvinen et al., 2010) 
ITGAM is an integrin involved in adhesive interactions with macrophages, granulocytes, and 
monocytes. ADGRG2 has no direct association with RA in the literature; it is an orphan receptor 
that appears to be involved in male fertility and has been linked to prostate cancer. S100A12, 
on the other hand, is a pro-inflammatory protein that plays a prominent role in regulating 
inflammatory response and immune system function. (HPA, n.d.) These proteins have been 
discussed in relation to RA for several decades (Foell et al., 2004). More recently, S100A12  
has been proposed as a blood biomarker for early diagnosis of RA (Wang et al., 2022)  

 

Table 4. Shows the top ten proteins picked by the differential expression (DE) model limma (with rheumatic disease 
as control group) and the machine learning (ML) model glmnet (using all disease groups). It also includes the full 
protein names and the number of proteins picked by both models. 

Rank DE (limma) Full protein name ML (glmnet) Full protein name 
1 IL1B Interleukin beta 1 IL6 Interleukin 6 
2 ITGAM Integrin subunit alpha M NTF3 Neurotrophin 3 

3 OLR1 Oxidized low density 
lipoprotein receptor 1 CES3 Carboxylesterase 3 

4 CSF3 Colony stimulating factor 3 CCL23 C-C motif chemokine ligand 
23 

5 CRTAC1 Cartilage acidic protein 1 CRTAC1 Cartilace acidic protein 1 

6 AZU1 Azurocidin 1 ADGRG2 Adhesion G protein-coupled 
receptor G2 

7 ADGRG2 Adhesion G protein-coupled 
receptor G2 S100A12 S100 calcium binding protein 

A12 
8 MMP8 Matrix metallopeptidase 8 ITGAM Integrin subunit alpha M 

9 CXCL1 C-X-C motif chemokine ligand 
1 SELPLG Selectin P ligand 

10 S100A12 S100 calcium binding protein 
A12 OSMR Oncostatin M receptor 

Overlap: 4 proteins 
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3.3.1 Rheumatoid Arthritis – Subgroups 
The RA subgroup analysis also revealed several significant proteins. However, the 
downregulated part of the volcano plot in figure 13 is particularly interesting, as these two 
proteins are upregulated in seronegative patients. This finding is noteworthy because there are 
currently no established biomarkers for seronegative patients.  

One of these proteins is NPPB, a cardiac hormone known for mediating cardio-renal 
homeostasis (HPA, n.d.) but with no reported association with rheumatoid arthritis or 
seronegative patients. On the other hand, recent research conducted in collaboration with the 
UK Biobank has highlighted the role of cartilage acidic protein 1 (CRTAC1). The study 
suggested that CRTAC is upregulated in the plasma of osteoarthritis patients and may serve as 
an indicator of future risk of joint replacement (Sturkarsdottir et al., 2022). Although 
osteoarthritis is a non-autoimmune form of arthritis, the similarity in CRTAC1 expression with 
the autoimmune seronegative type is intriguing. 

Another significant protein is PDCD1, a programmed cell death protein that is significantly 
associated with rheumatoid arthritis and other autoimmune conditions.  (Siwiec & Majdan, 
2015). Lastly, SERPINA9, a protease inhibitor, has no specific mention in literature regarding 
seropositive RA (HPA, n.d.). 

 
Figure 13. Left: Volcano plot from the limma analysis of seropositive patients as case and seronegative patients 
as control. Right: Boxplots of the top ten protein with lowest p-value and highest fold change, with NPX values 
on the y-axis and cohort names on the x-axis. These plots show the healthy cohort, the RA subgroups and the 
remaining disease cohorts as one called “Other dis”. 
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3.4 Scleroderma 
Figure 14 clearly demonstrates that all five modeling procedures consistently identified four 
proteins that are both significantly expressed and highly important for classification of 
scleroderma. This convergence of results highlights the robustness and relevance of these 
proteins as potential biomarkers for scleroderma. 

 
Figure 14. A heatmap plot of the Ssca cohort showing some proteins on the x-axis and methods together with case-
control combination on the y-axis. The color scale represents the significance scoring by the method, either 
adjusted p-value or importance score, with 1 representing the highest significance. Limma/MWU disease: other 
rheumatic diseases were used as control. Limma/MWU healthy: the healthy cohort was used as control. 
 
The distinct profiles observed in the boxplots of figure 15 further support the promise of these 
top scleroderma markers for biomarker discovery. Not only do these proteins exhibit high p-
values and fold change, but they also display highly distinct importance score profiles in 
machine learning, which is favorable for their potential use in classification.  

 
Figure 15. a) Volcano plot of the resulting p-values when running limma for the Ssca cohort as case and the 
remaining rheumatic diseases as control. b) Boxplots of the top ten most significantly differentially expressed 
proteins according to the limma analysis with NPX values on the y-axis and cohort names on the x-axis.. c) 
Lollipop plot of the top, most important, features and their importance scores as assigned by the glmnet model. d) 
Boxplots of the top ten most important features assigned by the glmnet model. The Ssca cohort is shown in blue. 

a) 

d) 
c) 

b) 
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The three proteins that are consistently identified by both limma and glmnet can be extracted 
from table 5: CA4, CD93 and KLK4. CA4 a carbonic anhydrase, plays a crucial role in the 
reversible hydration of carbon dioxide and is an FDA-approved drug target (HPA, n.d.). 
Previous studies have discussed the association of carbonic anhydrase II (CA2) with lung 
disease in systemic sclerosis patients, wherein autoantibodies against CA2 were detected 
(Alesandri et al., 2009).  CD93, a receptor for mannose-binding lectin and pulmonary surfactant 
protein A, has shown elevated levels in the serum of systemic sclerosis patients (Yanaba et al., 
2012). Although KLK4, a kallikrein-related peptidase, is not directly linked to scleroderma in 
the literature, it has been characterized as a cancer-associated gene. (HPA, n.d.)   

 

Table 5. Shows the top ten proteins picked by the differential expression (DE) model limma (with rheumatic disease 
as control group) and the machine learning (ML) model glmnet (using all disease groups). It also includes the full 
protein names and the number of proteins picked by both models. 

Rank DE (limma) Full protein name ML (glmnet) Full protein name 
1 CA4 Carbonic anhydrase 4 CA4 Carbonic anhydrase 4 
2 CD93 CD93 molecule KLK4 Kallikrein related peptidase 4 

3 KLK4 Kallikrein related peptidase 4 PDGFRA Platelet derived growth factor 
receptor alpha 

4 CCN3 Cellular communication 
network factor 3 CD93 CD93 molecule 

5 HSPG2 Heparan sulfate proteoglycan 
2 IGFBP6 Insulin like growth factor 

binding protein 6 

6 FAP Fibroblast activation protein 
alpha LDLR Low density lipoprotein 

receptor 

7 ROBO2 Roundabout guidance 
receptor 2 GFRA2 GDNF family receptor alpha 

2 
8 NTF3 Neutrophin 3 MSLN Mesothelin 

9 SCARF2 Scavenger receptor class F 
member 2 PLAT Plasminogen activator, tissue 

type 

10 MCAM Melanoma cell adhesion 
molecule LGALS7/7B Galectin 7/Galectin 7B 

Overlap: 3 proteins 
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3.5 Sjögren’s Syndrome 
The heatmap in figure 16 illustrates the overlap between the MWU and limma analyses in the 
same case-control combinations. Similarly to the MS cohort, the disease and healthy cohorts as 
controls give quite contrary outcomes. Glmnet appears to have favored similarly to MWU and 
limma using the disease cohort as control.  

 
Figure 16. A heatmap plot of the SS cohort showing proteins on the x-axis and methods together with case-control 
combination on the y-axis. The color scale represents the significance scoring by the method, either adjusted p-
value or importance score, with 1 representing the highest significance. Limma/MWU disease: other rheumatic 
diseases were used as control. Limma/MWU healthy: the healthy cohort was used as control. 

 

In figure 17, the linear regression and machine learning results are presented. The boxplots 
indicate that distinguishing SS from other diseases is challenging since the differences in 
expression are not prominently evident. Moreover, there are some extreme outliers in certain 
disease groups, which strongly influence the model’s selection of important assays. An example 
of this is TNF in the SS cohort. 
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Figure 17. a) Volcano plot of the resulting p-values when running limma for the SS cohort as case and the 
remaining rheumatic diseases as control. b) Boxplots of the top ten most significantly differentially expressed 
proteins according to the limma analysis with NPX values on the y-axis and cohort names on the x-axis. c) Lollipop 
plot of the top, most important, features and their importance scores as assigned by the glmnet model. d) Boxplots 
of the top ten most important features assigned by the glmnet model. The SS cohort is shown in orange. 

 

Table 6 clearly demonstrates that three of the most important classifying features remained the 
same as in the limma top ten selection. Both models identified LTA4H as a significant protein. 
However, it is difficult to ascertain from the boxplots in figure 17 whether LTA4H is genuinely 
downregulated in SS or if the remaining diseases exhibit a strong upregulation, as it does not 
appear to be downregulated relative to the MS cohort and the healthy cohort. Similarly, the 
protein CNDP1 presents a similar challenge. 

Among the notable mentions in the top ten results, BMP4, a growth factor known to be involved 
in SS and explored as a therapeutic target (Hu et al., 2020), stands out. Additionally, the von 
Willebrand factor, a plasma glycoprotein and a well-known marker for vascular damage, has 
been linked to SS and other rheumatic disorders when patients exhibit renal involvement and 
comorbidities (Yada et al., 2020). However, in this thesis project, it is unexpectedly 
downregulated, contrary to previous findings. 

 

 

a) 

d) 
c) 

b) 
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Table 6. Shows the top ten proteins picked by the differential expression (DE) model limma (with rheumatic disease 
as control group) and the machine learning (ML) model glmnet (using all disease groups). It also includes the full 
protein names and the number of proteins picked by both models. 

Rank DE (limma) Full protein name ML (glmnet) Full protein name 
1 LTA4H Leukotriene A4 hydrolase LAG3 Lymphocyte activating 3 
2 BMP4 Bone morphogenetic protein 4 LTA4H Leukotriene A4 hydrolase 
3 ITM2A Integral membrane protein 2A IDS Iduronate 2-sulfatase 
4 CNDP1 Carnosine dipeptidase 1 BMP4 Bone morphogenetic protein 4 

5 VAT1 Vesicle mediated amine 
transport 1 IL34 Interleukin 34 

6 CCN1 Cellular communication 
network factor 1 GFRA2 GNDF family receptor alpha 

2 
7 CES3 Carboxylesterase 3 KLK8 Kallikrein related peptidase 8 
8 CCL2 C-C motif chemokine ligand 2 TNF Tumor necrosis factor 
9 ACTA2 Actin alpha 2, smooth muscle CNDP1 Carnosine dipeptidase 1 

10 ITIH3 Inter-alpha-trypsin inhibitor 
heavy chain 3 VWF Von Willebrand factor 

Overlap: 3 proteins 
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3.6 Systemic Lupus Erythematosus 
The SLE cohort data exhibited the most inconsistency, both across analysis techniques and 
case-control variations, as depicted in the heatmap in figure 18. One peculiar observation is the 
strong overlap between MWU healthy and limma disease, as named in the figure. The 
inconsistency can likely be attributed to the presence of heavy outliers in this cohort. 

 
Figure 18. A heatmap plot of the SLE cohort showing some proteins on the x-axis and methods together with case-
control combination on the y-axis. The color scale represents the significance scoring by the method, either 
adjusted p-value or importance score, with 1 representing the highest significance. Limma/MWU disease: other 
rheumatic diseases were used as control. Limma/MWU healthy: the healthy cohort was used as control. 

 

Figure 19 presents the results from the limma and glmnet analyses, revealing a two-protein 
overlap between them, as indicated in table 7. Both models identified certain proteins with 
prominent outliers, including C2, TAFA5, and SLITRK2. Removing these outliers would likely 
improve the reliability of the findings. One of the overlapping proteins, MFAP5, has been 
indirectly associated with SLE through its involvement in inflammatory responses and the 
stimulation of cytokine secretion (Milwid et al., 2014).  
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Figure 19. a) Volcano plot of the resulting p-values when running limma for the SLE cohort as case and the 
remaining rheumatic diseases as control. b) Boxplots of the top ten most significantly differentially expressed 
proteins according to the limma analysis with NPX values on the y-axis and cohort names on the x-axis. c) Lollipop 
plot of the top, most important, features and their importance scores as assigned by the glmnet model. d) Boxplots 
of the top ten most important features assigned by the glmnet model. The SLE cohort is shown in pink. 

 

AXL, another selected protein, has been found to be elevated in the serum of SLE patients and 
is involved in regulating inflammatory cytokine release, among other functions (Orme et al., 
2016). Inhibiting the AXL signaling pathways has been proposed as a potential treatment in 
SLE (Zhen et al., 2018). IL15, a cytokine that stimulates T-lymphocyte proliferation, has been 
shown to be elevated in sera of SLE patients. One study reported 38% elevation in SLE patients 
compared to the control group, where no elevations of protein was observed (Aringer et al., 
2001). TNFSF11, is another cytokine that enhances the ability of dendritic cells to stimulate 
naive T-cell proliferation. Lastly, PPY, chosen by glmnet, is a pancreatic hormone and acts as 
a regulator of pancreatic and gastrointestinal functions (HPA, n.d.) and it has not been 
associated with SLE in previous literature. 

 

 

 

a) 

d) 
c) 

b) 
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Table 7. Shows the top ten proteins picked by the differential expression (DE) model limma (with rheumatic 
disease as control group) and the machine learning (ML) model glmnet (using all disease groups). It also includes 
the full protein names and the number of proteins picked by both models. 

Rank DE (limma) Full protein name ML (glmnet) Full protein name 
1 MFAP5 Microfibril associated protein 

5 PPY Pancreatic polypeptide 

2 IGFBP6 Insulin like growth factor 
binding protein 6 C2 Complement C2 

3 C2 Complement C2 TNFSF11 TNF superfamily member 11 

4 TAFA5 TAFA chemokine like family 
member 5 IL1A Interleukin 1 alpha 

5 MMP7 Matric metallopeptidase 7 FABP1 Fatty acid binding protein 1 

6 IL15 Interleukin 15 MFAP5 Microfibril associated protein 
5 

7 LY6D Lymphocyte antigen 6 family 
member D HAGH Hydroxyacylglutathione 

hydrolase 

8 RBP2 Retinol binding protein 2 KLK10 Kallikrein related peptidase 
10 

9 AXL AXL receptor tyrosine kinase SLITRK2 SLIT and NTRK like family 
member 2 

10 KLK11 Kallikrein related peptidase 
11 DEFA1/1B Defensin alpha 1/Dephensin 

alpha 1B 
Overlap: 2 proteins 
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Discussion 
The objective of this project was to identify potential biomarkers using two statistical methods: 
linear regression modeling for differential expression analysis and generalized linear models 
with elastic net penalty for disease classification. The limma model focuses on comparing 
quantitative expression differences using statistical inferences, assuming linear relationships 
between expression levels and experimental conditions. It employs a feature-wise, binomial 
approach with global variance analysis for information borrowing, and incorporates weights for 
increased statistical power and accuracy. On the other hand, the glmnet model can analyze all 
data and features simultaneously in a multinomial manner, making it well-suited for high-
dimensional, topological data variations that are challenging to uncover with limma. By 
examining the data from different perspectives, limma and glmnet complement each other and 
provide more confidence in the validity of proteins detected by both methods as potential 
biomarkers. 

The study successfully identified ten potential biomarkers per disease and model. In some cases, 
the top expressed proteins overlapped with the most important classification features. However, 
there are several other desirable attributes in a biomarker, such as the magnitude of difference 
in expression for one disease group compared to all others and the fold change. These attributes 
are crucial for robustness against batch and cohort effects. The greater the variance and spread 
of NPX values within the groups, the more challenging it becomes to distinguish one disease 
from another. With the exception of MS and Sjögren’s syndrome, all other diseases had a 
minimum of two to three top proteins that satisfied these criteria. SS exhibited less prominent 
differentiation, likely due to biological factors. The other rheumatic disorders, with joint and 
organ involvement, likely display larger physiological differences that are detectable in plasma. 

Most of the proteins identified in this project had previous mentions in the literature, ranging 
from biomarker studies and pathogenetic associations to being the subject of a clinical trials. 
While these proteins had been identified other bodily fluids, tissue samples or animal models, 
their discovery association with disease in this project highlights the power of the proximity 
extension assay technique in detecting low-abundance proteins and capturing early signs of 
disease symptoms. 

Several challenges were encountered in this project, including the effects of poor control group 
selection, the lack of paraclinical validation for diagnoses, and skewed data. The analysis of the 
healthy control group often deviated from the inter-disease analysis in selecting significant 
proteins. This discrepancy was particularly evident in the analysis of the MS cohort, the limma 
identified proteins as significantly up-regulated when compared to the healthy cohort and 
significantly down-regulated compared to the autoimmune disease cohort. This created 
ambiguity as to whether the deviations in the healthy cohort were due to batch effects or if the 
MS cohort was biologically different from the rheumatic cohorts. In contrast, the glmnet model 
managed to identify three proteins with clear up- or down-regulation compared to all other 
cohorts. To address this issue in future studies, it is essential to incorporate a healthy control 
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group from the same geographical region as the disease cases, sampled according to the same 
protocol, and processed in the same batch. 

Subgroup analysis also presented challenges, stemming from uneven sample distribution and 
the absence of significant biological differences in some cases. Autoimmune diseases are 
diagnosed based on criteria that evolve over time. While RA and myositis subgroups were 
identified using serological data, the MS subgroups lacked confirmation from paraclinical 
markers due to the lack thereof. Furthermore, some of the identified proteins for both RA and 
myositis exhibited subgrouping behavior unrelated to the predefined clinical subgroups, 
suggesting avenues for further investigation. 

The distribution of the sample data was skewed and contained numerous outliers, more 
prevalent in some disease groups than others, which impacted both the machine learning model 
and the linear regression model. For example, in SLE the selection of SLITRK2, C2 and TAFA5 
proteins was based on one major outlier in each assay. This is most likely why there was a large 
discrepancy between MWU, limma and glmnet when it came to protein importance for the SLE 
cohort. 

To improve future analyses, greater attention should be given to removing outliers, and 
exploring alternative scaling or normalization methods. Robust scaling, which considers data 
skewedness and is more resilient to outliers, could be a viable alternative. While z-score 
normalization improved the quality of the machine learning model outcome, it assumes a 
Gaussian distribution, which may explain instances where significant proteins were detected in 
some runs but received an importance score of zero upon changing parameters or conducting 
class balancing. Scaling should also positively impact the limma analysis, which performed 
reasonably well in its current form. The heterogeneity in data quality and magnitude of NPX 
values can vary exponentially between assays due to dilution differences and running in 
different panels, making it difficult for the regression models to handle despite their statistical 
robustness. This emphasizes the importance of careful preanalytical data wrangling when 
working with large biological datasets, a concept well-known in the field of “Big Data”. 

Furthermore, future studies should consider testing different hyperparameter tunings to 
examine their effects on the model. It is important to make the model more robust and the results 
more reproducible. Exploring the classification performance with a smaller set of features, such 
as selecting the top five to ten features per disease, can provide insights into the model’s ability 
to classify disease accurately. Understanding the inner workings and decision-making processes 
of the model will be pivotal for future investigations. 

Despite the potential for improvement in the preanalytical stages and the glmnet classification 
model, the overall workflow pipeline used in this project proved sufficient and will serve well 
in future analyses and research. The pipeline has been previously tested by the HPA in the 
cancer study, which was the first to launch on the HDBA, and it was also employed by two 
other master’s students during the spring, who worked on different disease cohorts.  
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Future Perspectives 
An updated version of the OlinkⓇ Explore platform, capable of running 3000 assays, has 
recently been released by Olink Proteomics. In an upcoming study, the HPA plans to assess the 
reproducibility of the results obtained from this study and other disease atlas projects by running 
new samples from a selection of the already analyzed disease cohorts on the new explore 
platform. If the results are reproducible, the subsequent step would involve initiating a project 
for quantitative analysis using plasma samples from both healthy individuals and those with 
diseases. Once the quantitative intervals are confirmed, phase I clinical trials can be initiated, 
progressing further into the development of potential biomarkers.  

The results from this study will be made publicly available on the HDBA in the near future. 
These findings are anticipated not only to inspire new biomarker testing but hopefully offer 
valuable insights for pathologists and geneticists to further research and enhance our 
understanding of disease mechanisms. Ultimately, this work aims to contribute to the 
advancement of personalized medicine, leading to improved care and quality of life for 
individuals with autoimmune disease. Early diagnosis plays a key role in effectively managing 
these diseases, preventing them from becoming debilitating or fatal. The identification of 
reliable biomarkers is essential for the development of better therapeutic interventions. 
Furthermore, readily accessible biomarkers used for diagnosis and care indicators are vital in 
ensuring equitable healthcare conditions worldwide.  
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