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Abstract

Computed tomography (CT) is a medical imaging technique that uses
X-rays to obtain a reconstruction of an object. The term acquisition ge-
ometry refers to the arrangement of imaging sensors and the X-ray source
as well as the procedure used for data collection. The quality of the re-
construction is often limited by the acquisition geometry and parameter
values. In this thesis, we present a procedure for fine-tuning acquisition
geometry parameters in CT by minimizing the difference between the
forward projection of a known phantom and measured data, i.e. data dis-
crepancies. We extend the ODL library in Python and create acquisition
geometries where different parameters have been distorted. We utilize
gradient descent in an attempt recover the true parameters of the acquisi-
tion geometries. Our results show that the recovery of the true geometry
is successful when one or, in some cases, two parameters are perturbed.
The objective function becomes very sensitive when more parameters are
perturbed, requiring a low learning rate and making convergence slow.
Nevertheless, we are able to minimize the objective function in the for-
ward projection for all perturbations. Although our algorithm performs
well in some aspects relating to parameter recovery, there is potential for
further research by implementing other optimization methods.
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1 Introduction

Computed tomography (CT) is a technique for medical imaging that uses data
obtained by X-rays to produce a recreation of the scanned object. CT scans can
be used to determine medical diagnosis for conditions such as cancer, damage
to bones or internal organs, or problems with blood flow. Historically, there
have existed a variety of setups, or so called acquisition geometries, to obtain
the required data. The term acquisition geometry refers to the arrangement of
imaging sensors as well as the procedure used for data collection. Meaning, the
process of configuring the position angles for the source, as well as the pitch and
shift values for both the source and detector. Researchers working on improv-
ing reconstruction quality in CT often have limited access to the information
about the acquisition geometry and the parameter values are known only ap-
proximately. This can happen because the scanner manufacturer either did not
disclose or did not measure the exact values. For instance, the source position
might be hard to measure due to the speed of the rotation. Therefore, this
thesis aims to develop a procedure for fine-tuning parameters of the acquisi-
tion geometry by minimizing the difference between the forward projection of a
known phantom and measured data, i.e. data discrepancies. Furthermore, suc-
cessful realization of this work creates an opportunity to include the geometry
parameters in the set of learned parameters in deep learning-based reconstruc-
tion algorithms.

2 Materials and Methods

2.1 Beer’s Law

We start with defining the volume density of particles at x as N(x) and let vϕ

be their velocity field. Thus, we denote the flux of photons through a surface S
as

Φ(x) :=

‹
S

vϕN(x)dS, (1)

where S is the area of the surface. The flux of photon density represents the
number of photons passing through a given surface per unit of time and per unit
area. In this case, it specifically refers to the flow of X-ray photons through the
surface S. By the definition of the attenuation constant from ISO [1989],

µ = − 1

Φ

∂Φ

∂ℓ
, (2)

where the attenuation constant quantifies the absorptive and scattering prop-
erties of the medium and relates the change in flux to the spatial variation of
the particle density. Here, ∂ℓ is a short segment of the line ℓ which the pho-
tons are propagating along. However, as we are looking at different positions in
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our medium with varying attenuation constants we are going to have a space-
dependent attenuation constant defined as f(x). With this, we get the following
relationship

∂Φ(x) = −f(x)Φ(x)∂ℓ. (3)

This can be interpreted as the change in flux when the X-ray travels over a short
segment ∂ℓ of the line ℓ. The change in flux will depend on the attenuation
coefficient in medium of ∂ℓ. Recall that Φ is the flux of photons through an
area S, thus by multiplying the flux with the frequency of the radiation v and
Planck’s constant, denoted h, we get the radiation power P = hvΦ. Now by
dividing the radiation power by the transversal area of the beam, we get the
intensity I = P

A . Thus, we can rewrite our expression as

∂I(x)

I(x)
= −f(x)∂ℓ. (4)

Since both sides depend on the position x in space and the X-ray propagates
along the line ℓ which starts at x0 and ends at x1, we derive the following
relationship

∂I(x)

I(x)
= −f(x)∂ℓ =⇒ ln(I(x1))− ln(I(x0)) =

ˆ
ℓ

−f(x)dℓ. (5)

Therefore, we have

ln

(
I(x1)

I(x0)

)
=

ˆ
ℓ

−f(x)dℓ ⇐⇒ ln

(
I1
I0

)
= −
ˆ
ℓ

f(x)dℓ. (6)

An explanation for the intensity relationship can be given as follows: since the
intensity decreases exponentially as the line passes through the object and the
sum of the attenuation along a line can be interpreted as a line integral, the dif-
ference between the logarithm of the intensity measured at the detector and the
logarithm of the intensity measured at the source will be equal to the integral
of the (negative) attenuation at all points x along the line propagating through
the object.

2.2 Forward Projection

In the context of CT, the real-valued function f will be the (linear) attenuation
coefficient. This relates to the information collected from the scan as described
by the equation in (6). The line integral is dependent on the line being integrated
over and thus, to understand how the geometry is dependent on the parameters,
we must formulate equation (6) with explicit dependence on the parameters of
the geometry. The ray transform can be defined as

Af(ℓ) =

ˆ ∞

−∞
f(x)dℓ (7)

5



Since the attenuation constant is zero outside the scanned object, the following
relationship holds

ln

(
I1
I0

)
= −A(f(ℓ)). (8)

To apply the ray transform to a set of lines passing through the 3D body we
use the forward operator Af(x), where we have that

Af(x) = Y, (9)

where f(x) represents the attenuation constant at each position in the 3D body
x and Y is the data collected by the scanner Gündüzalp et al. [2021]. In sum-
mary, the ray transform refers to the integration of the attenuation coefficient
function f(x) along a ray, while the forward operator Af(x) represents the ap-
plication of the ray transform to a set of lines passing through the 3D body.

As we scan from multiple angles we obtain a sinogram, which is a projection of
the image from all angles Kumar et al. [2010]. An example of this can be seen
in figure 1, where we have the angles on the x-axis, the position on the detector
on the y-axis and the values produced by the forward projection represented
using the color of the sinogram and the color bar.

Figure 1: A 2D slice of a sinogram of the Shepp-Logan phantom scanned using
a helical path cone beam geometry.

2.3 Acquisition Geometries in CT

There are various geometries used in computed tomography for different pur-
poses. One of them is the parallel scanning geometry, where the object is
scanned one position at a time, moving in a straight line until a slice is fully
scanned. Then, the angular position is changed and the process is repeated until
the entire object is scanned. A visualisation of the parallel scanning geometry
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Figure 2: Parallel beam geometry Maier et al. [2018]

can be seen in figure 2. However, this method is highly inefficient Natterer and
Wübbeling [2001]. To derive the integrating paths for the different acquisition
geometries we parameterize the lines. Note that in ODL, the Python library
used to simulate the geometries in the report, the initial position for the source
is at the negative y-axis and the rotation is counter clock-wise. Thus, when
parameterizing, the initial position for the source is assumed to be the at the
negative y-axis and the rotation counter clock-wise. For parallel beam geometry
each line can be represented by

ℓ(t) = u(u, θ) + v(θ) · t, (10)

where

u =
(
u · cos(θ), u · sin(θ)) (11)

v =
(
− sin(θ), cos(θ)) (12)

where u is the offset at the detector from its middle point and v is orthogonal
to u and is the vector pointing from the source to the detector. θ is the angle
between the initial position of the source and the current position and u is the
distance between the center of the detector and the location where the line hits
the detector. The ray transform A of f for the parallel beam geometry becomes

Af(u, θ) =

ˆ ∞

−∞
f
(
u(u, θ) + v(θ) · t

)
dt, (13)
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Figure 3: Fan beam geometry Maier et al. [2018]

Another choice of geometry is the fan beam geometry, where the scanner and
detector are mounted at opposite sides in a rotating configuration. A visualisa-
tion of the fan beam geometry can be seen in figure 3. This geometry enables
faster switching between relevant positions while maintaining a similar cover-
age to that of the parallel beam Kumar and Singh [2013]. For the fan beam
geometry, we parameterize the lines using the vectors

a(u, θ) =
(
−Rd · sin(θ), Rd · cos(θ)) +

(
u · cos(θ), u · sin(θ)) (14)

b(u, θ) = a(u, θ)−
(
Rs · sin(θ),−Rs · cos(θ)). (15)

Where Rd and Rs represent the radius to the detector and the radius to the
source, respectively. The vector a represents the line from the origin to the
detector point where the line ends and b is a vector pointing in the direction of
the source from the point of the detector where a points at. Rotation is assumed
to be counterclockwise and the starting position of the source is assumed to be
at the negative y-axis. The ray transform A of f for the fan beam geometry
becomes

Af(u, θ) =

ˆ ∞

−∞
f
(
a(u, θ) + bN (u, θ) · t

)
dt, (16)

where bN (u, θ) is the normalization of b(u, θ), i.e.

bN (u, θ) :=
b(u, θ)

∥b(u, θ)∥
. (17)
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Figure 4: Conebeam geometry with helical path Kudo et al. [2004]

Finally, the geometry used in this thesis is helical path cone beam geometry,
which captures data points in three dimensions instead of two, like the fan beam.
This allows for gathering a greater amount of data at each angular position. The
cone beam geometry is frequently used in dental imaging. The cone-beam geom-
etry is able to generate high-resolution images at the risk of scattered radiation
but works well for smaller objects Scarfe and Farman [2008].

In 3D, an extension to the scanning geometry is the implementation of a helical
path, known as 3D helical scanning. Instead of scanning slice by slice, the scan-
ner moves in a helical path along the body’s axis. This is visualized in figure 4.
Helical cone beam geometries are commonly used in medical imaging of internal
organs, bones, soft tissue, etc Lechuga and Weidlich [2016].

For the cone beam geometry we parameterize the lines in a similar way as for
the fan beam geometry. A line in 3-dimensional space can be parameterized as

ℓ(t) = a(u, v, θ) + bN (u, v, θ) · t, (18)

where θ is the angle between the initial position of the source and the current
position in the xy−plane and u and v are coordinates corresponding to the hori-
zontal and vertical distances from the detector center to the point where the line
hits the detector, respectively. For the cone beam geometry, we parameterize
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the lines using the vectors

a(u, v, θ) =
(
−Rd · sin(θ), Rd · cos(θ), z

)
+

(
u · cos(θ), u · sin(θ), v

)
(19)

b(u, v, θ) = a(u, v, θ)−
(
Rs · sin(θ),−Rs · cos(θ), z

)
. (20)

The ray transform A of f for the cone beam geometry becomes

Af(u, v, θ) =

ˆ ∞

−∞
f
(
a(u, v, θ) + bN (u, v, θ) · t

)
dt, (21)

where bN (u, v, θ) is the normalization of b(u, v, θ).

The specific geometry used in the system will decide the sampling of lines.
When we scan a body of interest, there will be, in theory, an infinite number
of lines we could scan by adjusting the system’s geometry. Thus, altering the
parameters will imply other lines being scanned and different values of the ray
transform will be retrieved. This means that there will be differences in the
forward projection for different geometries.

2.4 Geometry Discretization

The CT scan will be conducted using a limited number of angles (i.e., source
positions) and a finite number of detector cells in both the horizontal and vertical
directions. Consequently, the number of lines formed during the scan is also
finite. Thus, given indices i, j, k, we partition the detector and positions in the
z-direction as follows

(u, v) =

(
(i+ 0.5) · w

nw
− w

2
,
(j + 0.5) · h

nh
− h

2

)
and zk = z0 +

Nrot · η
Nang

· k,

where w and h are the width and height of the detector respectively. The vari-
ables nw and nh are the numbers of cells along the width and height of the
detector, z0 is the starting position of the source in the z-direction, η is the to-
tal traversed distance in the z-direction per rotation (pitch), which is visualized
in figure 4. Nrot is the number of rotations performed and Nang is the total
number of angles (source positions) in the model. Since the set of angles may
not be uniform, the angle partition is a finite set of angles, where θk simply is
the k:th element in the partition. The partition in the z−direction is assumed
to be uniform.

2.5 Data Discrepancy Minimization

In a realistic scenario, the parameters of the acquisition geometry will only be
known approximately. This can be because the scanner manufacturer did not
measure or disclose the exact parameter values. We assume, therefore, that
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we know the values approximately. We define the forward operator for the
distorted geometry as Apf(x). The data observed from CT scan with this
geometry, Apf(x), will be a distorted version of the data generated with the
true parameters, Y. Thus, to recover the parameters of the true geometry, we
wish to solve the following problem

argmin
p

||Apf(x)−Y||2. (22)

To find the parameters that minimize the objective function (22) we use the
method of gradient descent. Let L(p) = ||Apf(x) − Y||2. Then, minimizing
L(p) is done by, at each iteration, finding the ∆p minimizing

L(p+ λ∆p) ≈ L(p) + λ∆pT∇L(p), (23)

for some, sufficiently small, step size λ. As we know, (23) is minimized by letting
∆p be equal to the negative of the gradient. Thus, we set

pn+1
i = pni − λ

∂

∂pi
||Apf(x)−Y||2, (24)

where pni is the i:th parameter at iteration n and λ is the step size we take at
each iteration.

2.6 Differentiation

We define Y and Apf(x) as tensors in Rnθ×ndw×ndh , where we define both
tensors as a stack of matrices where each matrix represents a specific angle in
the model and will be of the same dimensions as the detector screen. Thus, we
get

∂

∂pl

1

2
∥Apf(x)−Y∥2 =

∑
i,j,k

(Ai,j,k
p f(x)−Yi,j,k)

∂

∂pl
Ai,j,k

p f(x). (25)

We have

Ai,j,k
p f(x) =

ˆ ∞

−∞
f
(
ai,j,k(p) + bi,j,k

N (p) · t
)
dt,

so by the Leibniz rule, we get

∂

∂pl

ˆ L2

L1

f
(
ai,j,k(p) + bi,j,k

N (p) · t
)
dt

= f
(
ai,j,k(p) + bi,j,k

N (p) · L2

)∂L2

∂pl
− f

(
ai,j,k(p) + bi,j,k

N (p) · L1

)∂L1

∂pl

+

ˆ L2

L1

∂

∂pl
f
(
ai,j,k(p) + bi,j,k

N (p) · t
)
dt. (26)
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As the limits L2 and L1 will be independent of p, (26) gives us

∂

∂pl
Ai,j,k

p f(x) =

ˆ ∞

−∞

∂

∂pl
f
(
ai,j,k(p) + bi,j,k

N (p) · t
)
dt. (27)

When differentiating the objective function we see that it dependent on the
location, which is dependent on the parameters. Meaning that, a(p) +bN (p) · t
represent, for some t, an x ∈ R3. Thus, when differentiating with respect to a
parameter pi we have that

∂f

∂pi
=

〈
∇xf,

∂x

∂pi

〉
=

〈
∇xf,

∂(a(p) + bN (p) · t)
∂pi

〉
, (28)

by the chain rule, where ∇xf is the gradient of f with respect to x. Thus, we
have

∂

∂pi
f(a(p) + bN (p) · t) = (29)〈
∇xf

(
a(p) + bN (p) · t

)
,
( ∂

∂pi
a(p) +

∂

∂pi
bN (p) · t

)〉
(30)

and

∂

∂pl
Ai,j,k

p f(x) =
∂ai,j,k(p)

∂pl

ˆ ∞

−∞
∇xf

(
ai,j,k(p)

+ bi,j,k
N (p) · t

)
dt+

∂bi,j,k
N (p)

∂pl

ˆ ∞

−∞
∇xf

(
ai,j,k(p) + bi,j,k

N (p) · t
)
· tdt, (31)

We are now ready to start differentiating with respect to the parameters. As
bN (p) is a normalized vector defined by bN = b/⟨b,b⟩ 1

2 , we have the following
derivative for the inverse norm

∂

∂p
⟨b,b⟩− 1

2 = −1

2
⟨b,b⟩− 3

2 ·
(〈∂b

∂p
,b

〉
+

〈
b,

∂b

∂p

〉)
(32)

= −⟨b,b⟩− 3
2 ·

〈∂b
∂p

,b
〉
. (33)

This gives us

∂

∂p
bN =

∂b
∂p

⟨b,b⟩ 1
2

− b

⟨b,b⟩ 3
2

3∑
i=1

bi ·
∂bi
∂p

. (34)

Partial derivatives of a and b w.r.t. θk are then given as

∂a

∂θk
=

(
−Rd · cos(θk),−Rd · sin(θk), 0

)
+

(
−
( (i+ 1

2 ) · w
nw

− w

2

)
· sin(θk),

( (i+ 1
2 ) · w
nw

− w

2

)
· cos(θk), 0

)
∂b

∂θk
=

∂a(p)

∂θk
+
(
−Rs · cos(θk), Rs · − sin(θk), 0

)
.

(35)
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The corresponding partial derivatives of a and b w.r.t. Rs and Rd read as

∂a

∂Rd
= (− sin(θk), cos(θk), 0)

∂a

∂Rs
= (0, 0, 0) (36)

∂b

∂Rd
= (− sin(θk), cos(θk), 0)

∂b

∂Rs
= (− sin(θk), cos(θk), 0) (37)

and those w.r.t. w are given as

∂a

∂w
=

(( i+ 1
2

nw
− 1

2

)
· cos(θk),

( i+ 1
2

nw
− 1

2

)
· sin(θk), 0

)
∂b

∂w
=

(( i+ 1
2

nw
− 1

2

)
· cos(θk),

( i+ 1
2

nw
− 1

2

)
· sin(θk), 0

)
.

(38)

Finally, the partial derivatives of a and b w.r.t. h and η are given as

∂a

∂h
=

(
0, 0,

j + 1
2

nh
− 1

2

) ∂a

∂η
=

(
0, 0,

Nrot

Nang
· k

)
(39)

∂b

∂h
=

(
0, 0,

j + 1
2

nh
− 1

2

) ∂b

∂η
= (0, 0, 0). (40)

2.7 Convexity

The objective function is a norm composed of two parts: the forward projection
Apf(x) for the perturbed geometry and Y the data from the forward operator
for the actual geometry. Consequently, it is not immediately apparent that the
objective function will be convex. Thus, further analysis is necessary to ascer-
tain any conclusions regarding convexity.

2.8 Implementation

The forward operator was simulated using the Operator Discretization Library
(ODL) in Python and the derivatives were tested on the Shepp-Logan phantom,
using gradient descent.

For each parameter of interest, we conducted a unit test to observe convergence
using the following algorithm
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Create True Geometry
Create True Forward Projection: Y = RayTransform(Phantom)
Perturb Parameter: P 0

D = P · (1.01)
for n = [1 : N ] do

Create Perturbed Geometry
Perturbed Forward Projection:
Apf(x) = RayTransform(Phantom)

Get Gradient: Grad =
∂Apf(x)

∂Pn
D

Pn+1
D = Pn

D − step ·(Apf(x)− Y ) ·Grad
end

Algorithm 1: Parameter Unit Test

The number of angles used in the simulations were 500 per rotation, the number
of rotations were 2 and the space was partitioned from [-170, -170, 0] to [170,
170, 50] with [512,512,50] points. The detector was partitioned using 736 cells
for the width and 64 cells on for the height. The parameters used for the true
geometry were as follows:

• Source Radius: 600

• Detector Radius: 500

• Pitch: 25

• Detector width: 970

• Detector height: 70.

In the case when a single, or a couple of, parameters were perturbed, a 1%
perturbation was added to the true parameter values, while in the case where
all parameters were simultaneously perturbed, the size of the perturbation was
1‰ of the true parameter values. The angles were perturbed uniformly by
adding a distortion to all angles of 1% in the case when a single or a couple of
parameters were perturbed and adding a perturbation of 1‰ in the case where
all parameters were simultaneously perturbed.

3 Results

Like this, the plots in figure 5 were generated, where the parameters have been
perturbed one at a time. Thus one can observe that minimizing the objective
function and recovering the true geometry, when perturbing only one param-
eter, is possible and is done quite smoothly. However, by perturbing several
parameters at once, which is a more realistic scenario, the task of minimizing
the objective function becomes more complex. This is observed in figure 7. The
observed convergence exhibits non-smooth behavior, which could be attributed
to the misalignment between the steepest descent direction and the direction
toward the global minimum at certain points. This phenomenon is visualized
evidence figure 6. It is also possible that a smaller step size would yield better
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Figure 5: Plots of unit tests when perturbing each parameter one by one.

Figure 6: Image of multivariate gradient descent with zig-zag descent path.

results in this case. Solving the primary optimization task, which entails si-
multaneously optimizing the geometry for all relevant parameters, we obtained
the the results show in figure 8. Since the plot has a logarithmic scale, our
objective function is decreasing exponentially. A more detailed examination of
the simulation’s initial parameters during the first iteration provides a better
understanding of the observed steep descent, revealing notable changes in some
of the parameters. These trends are illustrated in figure 9a. During the first
30 iterations, the optimization process had an impact on the pitch and detector
height parameters, while showing only minor changes in the source radius and
detector width, and a slight increase in error for the detector radius. Upon
allowing the algorithm to continue, further changes in error were observed for
all parameters, as shown in figure 9b. Upon analyzing the error rates of each
parameter throughout the entire simulation, we observe that pitch quickly ap-
proaches its actual value, while detector height exhibits a significant deviation
after 200 iterations, which stabilizes after 2000 iterations. Source radius and de-
tector width move towards their true values, albeit at a slow rate. In contrast,
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(a) Plot of error in percentage of Source- and Detector Radius they are
perturbed in the model with 1 % for 30 iterations

(b) Plot of error in percentage of Source- and Detector Radius they are
perturbed in the model with 1 % for 1000 iterations

Figure 7: Plots of convergence for two parameters.
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Figure 8: Plots of logarithmic error when all parameters are perturbed.

the detector radius continues to deviate throughout the simulation.

As seen in figure 12, a 1% offset of a parameter results in varying objective
function values depending on the parameter. A perturbation of detector width
and pitch seem to have a substantial impact on the system error compared to
other parameters. By varying the values of two parameters simultaneously, we
can observe how the objective function depends on these parameters. This is
shown in figure 10. Included in figure 11 are log-scaled versions of the same
plots. These plots indicate local convexity when the objective function only
depends on the pairs of parameters shown used in the plots.

4 Discussion

Our results indicate that the true geometry can be recovered using gradient
descent when a single parameter is perturbed. However, as the number of per-
turbed parameters increases, the problem becomes more complex, making it
challenging to recover all true parameters. Analyzing the example when the
detector radius and source radius were perturbed in figure 7, the parameters
do not seem to converge initially. However, as the parameters gradually sta-
bilize, they start to converge simultaneously. Using the method of gradient
descent, we do not observe convergence for all parameters when every param-
eter is perturbed, in a reasonable time frame. This suggests that the recovery
of multiple parameters may still be possible in certain cases, but could require
the use of other optimization techniques beyond gradient descent. Interestingly,
minimization of the objective function does not seem to necessarily correspond
to convergence in parameters. In the case where multiple parameters are per-
turbed simultaneously, we observe convergence to true parameter values for
some of the parameters while others seem to converge at a considerably slower
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(a) Plot of error in per mille of parameters when all parameters
are perturbed in the model for 30 iterations

(b) Plots of percentage error for parameters when all parameters
are perturbed with one per mille for 1000 iterations.

Figure 9: Plots of convergence for two parameters.

pace or not at all. This indicates, since a monotonic decrease in the value of the
objective function is observed, that some parameters have a much greater influ-
ence on the forward projection than others for the minimization of the objective
function. Furthermore, we observe that, for this combination of geometry and
phantom, pitch seems to be an important parameter for reconstruction quality,
since its convergence reduces the value of the objective function by a consid-
erable amount. The relationship between the choice of geometry parameters

and the reconstructions dependence on those parameters could be investigated
further for a more complete understanding of the behavior of the objective func-
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Figure 10: Heat map of the objective function with perturbation of −1% to 1%.

Figure 11: Logarithmic heat map of the objective function with perturbation of
−1% to 1%.
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Figure 12: Values of the objective function resulting from perturbing each pa-
rameter 1%.

tion. Furthermore, the heat maps in figure 10 and 11 provide very little insight
about the convexity of the objective function when all parameters are included
in the model and so the convexity of the objective function should be analyzed
further. Another topic that could be investigated is the uniqueness of the for-
ward projection. As Zhang et al. [2022] shows, for a cone beam and a helical
path geometry, there will be overlapping data between adjacent helical scans
when a pitch that is less than half the detector width is used. This is the case
in our experiments. The selection of an optimization algorithm can significantly
impact the convergence properties of the model, and alternative optimization
algorithms may be better suited to determine the true parameter values. Incor-
porating a momentum term into the gradient method represents one potential
improvement, although this may also elevate the risk of overshooting. Another
viable approach involves including second derivative terms to enhance the ac-
curacy of each step during the optimization process. Furthermore, stochastic
gradient descent algorithms may be better suited for parameter recovery due
to their resilience against local minima, particularly considering the difficulty
in determining the convexity of the objective function. It may also be possible
to use a deep learning-based approach for tuning the parameters. This entirely
different approach would, however, likely provide difficulties of its own.
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