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a b s t r a c t 

We study the impact of data sharing policies on cyber insurance markets. These policies have been pro- 

posed to address the scarcity of data about cyber threats, which is essential to manage cyber risks. We 

propose a Cournot duopoly competition model in which two insurers choose the number of policies they 

offer (i.e., their production level) and also the resources they invest to ensure the quality of data regard- 

ing the cost of claims (i.e., the data quality of their production cost). We find that enacting mandatory 

data sharing sometimes creates situations in which at most one of the two insurers invests in data qual- 

ity, whereas both insurers would invest when information sharing is not mandatory. This raises concerns 

about the merits of making data sharing mandatory. 

© 2023 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

With an ever-increasing societal dependence upon information 

echnology and digital services, cyber risk has received much atten- 

ion lately. Such risk is not limited to any particular sector, but can 

e found everywhere; from manufacturing ( Ani et al., 2017; Wells 

t al., 2014 ) over healthcare ( Coventry and Branley, 2018; Kruse 

t al., 2017 ) and the power grid ( Ericsson, 2010; Sridhar et al.,

011 ) to financial services ( Dupont, 2019; Kopp et al., 2017; Varga 

t al., 2021 ). 

Not only is cyber risk increasingly found everywhere, but the 

nterconnectedness and interdependency of this modern world 

lso poses challenges of its own. As pointed out by Böhme and 

ataria (2006) , there are at least two important forms of interde- 

endent cyber risk : First, firms are connected to each other. While 

llowing huge efficiency gains when exchanging information across 

omplex supply-chains, this also means that diligent security ef- 

orts at any one firm always risk being undermined by sloppy se- 

urity somewhere else. The proverbial chain is never stronger than 

ts weakest link. Second, many firms use the same systems, so a 

ulnerability found in a popular operating system, web browser, or 

ncryption protocol may immediately put millions if not billions of 
achines at risk. 
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These difficulties are particularly relevant for insurers and rein- 

urers who underwrite cyber risks as part of cyber insurance of- 

erings, and it has been repeatedly observed that interdepen- 

ent cyber risk poses an important challenge to the development 

f a more mature and well-functioning cyber insurance market 

 Anderson and Moore, 2006; OECD, 2017 , pp. 93–98). This is not 

he place to review the extensive literature on cyber insurance—

 comprehensive but slightly dated literature review is offered by 

öhme and Schwartz (2010) and a more recent review is given by 

arotta et al. (2017) , Barreto et al. (2021) . Some notable complica- 

ions with cyber insurance—in addition to the interdependence of 

yber risks noted above—include unclear coverage, immature mar- 

et offerings, various information asymmetries, and lack of cyber 

ecurity experience and expertise on the part of insurers. In our 

ontext, however, the most important complication is lack of good 

ctuarial data (see e.g. Biener et al., 2015; EIOPA, 2019; Franke, 

017; OECD, 2017 , pp. 94–95). 

To some extent, this lack of data reflects more general prob- 

ems with cyber risk data, not limited to cyber insurance. A recent 

ttempt to systematize quantitative studies of the consequences of 

yber incidents by Woods and Böhme (2021) found several con- 

radictory and sometimes spurious results, and cautions against 

mploying too simple statistical relationships. Similarly, a review 

f estimates of cyber risk likelihood found contradicting trends 

nd emphasizes the need for rigorous and transparent methods to 

void jumping to erroneous conclusions ( Woods and Walter, 2022 ). 
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n the insurance context, the difficulty of properly quantifying cy- 

er risk forces expert-based or best-guess rather than actuarial 

ricing. Clearly, this may lead to undesirable outcomes, such as 

nderpricing, where insurers unknowingly accept too much cy- 

er risk, overpricing, where insureds pay too much for their risk 

ransfer, or blanket exclusions of certain kinds of customers, who 

hus cannot reap the benefits of insurance (see, e.g., Gordon et al., 

003b; Mott et al., 2023 ). Against this background, it has been pro- 

osed that increased sharing of data between insurers might be 

eneficial. 

A recent example is an analysis by the OECD (2020) on how 

o enhance the availability of data for cyber insurance underwrit- 

ng. The report walks through existing practices such as cyber inci- 

ent data being published by CERTs or regulators, information ex- 

hange (such as the CRO forum), commercial catastrophe models 

ade available by firms such as AIR Worldwide and RMS, and rein- 

urer collections of aggregate data, but ultimately concludes that 

[n]one of these data sources on their own provide sufficient in- 

ormation for underwriting coverage as incident data is seen to be 

ncomplete, historical experience covers too few claims and models 

re relatively new and untested” (OECD, 2020, p. 9) . Instead, three 

ecommendations for government action are made; (i) to remove 

egal obstacles to incident and claims data sharing, (ii) to encour- 

ge industry associations to establish mechanisms for incident and 

laims data sharing, and (iii) to encourage international collabora- 

ion. 

Another recent example is a strategy note on cyber underwrit- 

ng published by the European Insurance and Occupational Pen- 

ions Authority ( EIOPA, 2020 ). Here, lack of data is identified as 

 primary obstacle to the understanding of cyber risk, and ac- 

ordingly, to appropriate coverage being offered on the market. It 

s also noted that the mandatory incident reporting regimes es- 

ablished by recent legislation such as the GDPR and the NIS di- 

ective will create relevant data. Against this background it is ar- 

ued that access to a cyber incident database “could be seen as 

 public good and underpin the further development of the Euro- 

ean cyber insurance industry and act as an enabler of the digital 

conomy” ( EIOPA, 2020 , p. 3). The strategy delineated consists of 

IOPA (i) promoting a harmonized cyber incident reporting taxon- 

my with “an aim to promote the development of a centralised 

anonymised) database” ( EIOPA, 2020 , p. 4), (ii) engaging with the 

ndustry to understand their perspective, and (iii) encouraging data 

haring initiatives. 

The industry association Insurance Europe (2020) , in a direct 

esponse to the EIOPA strategy, broadly welcomes the strategy’s 

ecognition that lack of data is a serious impediment to the growth 

f the European cyber insurance market. However, Insurance Eu- 

ope also notes that there are trade-offs involved. Specifically, it 

s cautioned that while a common cyber incident database should 

deally be more detailed than the GDPR and NIS data it should at 

he same time not impose unnecessary burdens of additional re- 

orting or IT system adaptation, and such a database should not 

istort competition. 1 Specifically, “if an insurer shares data it must 

ain access to an equal quantity and quality of data in return”

 Insurance Europe, 2020, p. 2 ). 

The relevance of data quality is underscored by recent empirical 

esearch on NIS incident reports. Based on all the mandatory NIS 

ncident reports received by the responsible government agency in 

weden in 2020, Franke et al. (2021) find the economic aspects of 

eports to be incomplete and sometimes difficult to interpret. Thus, 

t is concluded that “just making NIS reporting, as-is, available to 
1 Despite the enthusiasm of Insurance Europe about using GDPR and NIS incident 

eports to improve cyber insurance offerings, not everyone offering cyber insurance 

s even aware of this possibility, as shown by a study in Norway where the inter- 

iewed “insurers seem oblivious to this aspect of NIS” ( Bah ̧s i et al., 2019 ). 

i

t

l

t

t

2 
nsurers would not by itself solve the problem of lack of data for 

yber insurance. Making the most of the reporting requires addi- 

ional quality assurance mechanisms.”

It is this unfolding policy issue that motivates the research 

uestion of this article: What would happen to data quality under 

 mandatory cyber data sharing regime for insurers? To answer it, 

 game-theoretic model is constructed where cyber insurers inter- 

ct on a Cournot oligopoly market, but are uncertain about their 

and their competitors’) production costs, i.e., the true costs of the 

yber incidents underwritten. When forced to share what informa- 

ion they do have, they cannot refuse, but they can choose whether 

o invest in improving the data quality of their own information, or 

ust provide it as-is. The model can be seen as an attempt to for- 

alize Insurance Europe’s remark about sharing equal quantities 

nd qualities of data—how would such sharing unfold? It should be 

tressed that both the OECD and EIOPA stop short of recommend- 

ng mandatory cyber data sharing laws. Nevertheless, the question 

s implicitly on the table, and our investigation aims to bring one 

ore perspective to this important issue. 

The rest of the paper is structured as follows. In the next sec- 

ion, some related work is discussed, and the contribution is posi- 

ioned with respect to this literature. In Section 3 the formal model 

s introduced, and the main results are shown in Section 4 . We find

andatory data sharing changes the feasible Nash Equilibria (NE) 

nd creates situations in which at most one of the two insurers 

nvests in data quality, whereas both insurers would invest when 

nformation is not shared. The results are followed by a discussion 

f implications and conclusions in Section 6 . 

. Related work 

The general topic of cyber security information sharing is ex- 

ensively addressed in the literature. A good starting point is the 

iterature survey provided by Skopik et al. (2016) , who offer a 

omprehensive and broad overview of legal, technical and orga- 

izational aspects. Koepke (2017) provides a more focused litera- 

ure review on incentives and barriers, complemented by a sur- 

ey of 25 respondents. Of particular interest in our context are the 

ollaborative barriers related to “a lack of reciprocity from other 

takeholders or the problem of free-riders. This barrier category 

lso includes the risk of sharing with rivals/competitors who may 

se the shared information to enhance their competitive position”

Koepke, 2017, p. 4) . 

Turning to formal game-theory, two classic treatments are of- 

ered by Gal-Or and Ghose (2005) ; Gordon et al. (2003a) , who 

how information sharing may yield benefits to firms, but also can 

esult in free-riding. Later works typically find similar results, and 

ddress the question of what the incentives needed for cooperation 

ook like. For example, Naghizadeh and Liu (2016) study the effects 

f repeated interactions , focusing on the effectiveness of monitoring 

egimes to detect and punish non-cooperative behavior. Similarly, 

n a series of papers Tosh et al. study a game where players face 

he binary choice of either participating in a sharing regime or not 

o, including its evolutionary stability (see e.g. Tosh et al., 2015 ; 

017) . 

Whereas the previous treatments consider symmetric players—

he potential victims of cyber attacks—asymmetric games have also 

een studied. Laube and Böhme (2016) devise a principal–agent 

odel of mandatory security breach reporting to authorities (such 

s those mandated under the GDPR and the NIS directive). Assum- 

ng imperfect audits which cannot determine for certain whether 

he failure to report an incident is deliberate concealment or mere 

ack of knowledge, Laube and Böhme find that it may be difficult 

o enact the sanctions level needed for the breach notification law 

o be socially beneficial. 
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2 It may seem unrealistic that production levels have to be chosen this way. After 

all, an insurance policy differs from physical goods and is not subject to the same 

production constraints. However, this is too simplistic—an insurer cannot scale pro- 

duction arbitrarily fast. Even if the constraints are not identical to those of physical 

production, important constraints are indeed imposed by, e.g., the ability to hire 

underwriters and claims managers, by access to capital (whether from investors or 

from bank loans), by the capacity of the brokers who act as middlemen on the 

cyber insurance market (see, e.g., Franke, 2017; Woods and Moore, 2019 ), and by 

regulation. 
Whereas the works mentioned above treat for-profit parties in- 

erested in sharing and receiving information there are also non- 

rofit actors who can participate in such arrangements. For in- 

tance, Dykstra et al. (2022) analyze information sharing of unclas- 

ified cyber threat information by a government institution. Such 

on-profit institutions may share unclassified information in order 

o improve social welfare, rather than maximize their own profits. 

For a fuller literature review of game theory models of cyber 

ecurity information sharing, see Laube and Böhme (2017) , who 

ot only summarize the literature, but also systematize it using an 

lluminating unified formal model. However, in our context, it is 

mportant to note that their review does not include any articles 

nvestigating information sharing among insurers. Thus, whereas 

nformation sharing between the firms at risk is a standard com- 

onent in game theoretic models of cyber risk—models which of- 

en include insurance—information sharing between the insurers 

nderwriting the firms at risk has not yet been formally investi- 

ated using game theory, despite the policy attention described in 

ection 1 . 

Our model is inspired in the seminal work by Gal-Or (1986) , 

hich addresses information transmission in oligopolies. In her 

odel, firms can share information about their production cost, 

hich is unknown and different for each firm. Gal-Or (1986) finds 

hat under Cournot competition, firms chose to share information, 

ecause they benefit when competing firms make an accurate es- 

imation of their production cost. In our model the insurers have 

he same cost (e.g., they compete in the same market); hence, by 

haring information a firm may reduce the uncertainty of the com- 

etitor (which is what we expect in an insurance market). 

As mentioned above, we have not found any work formally in- 

estigating cyber security information sharing among insurers . In- 

tead, the work that is most closely related to ours is a qual- 

tative study by Nurse et al. (2020) , who explore data use by 

yber-underwriters in general, and the feasibility and utility of 

 ‘pre-competitive dataset’ shared within the industry in partic- 

lar. Such a dataset is in fact precisely what is “encouraged”

y the OECD (2020) and EIOPA, (2020) . However, the idea was 

et with considerable skepticism by the 12 cyber insurance pro- 

essionals who participated in the focus groups conducted by 

urse et al. (2020) . They were all concerned about the impli- 

ations for competitiveness, asking why incumbents would jeop- 

rdize their advantage by sharing information with market en- 

rants. Indeed, the very structure of such a dataset was deemed 

ensitive, as even proposal forms are considered proprietary, even 

hough there are published studies based on such forms, see 

oods et al. (2017) . “People are insanely protective,” remarked one 

articipant ( Nurse et al., 2020 , p. 6). 

. Market model 

We use a Cournot model to study situations in which two insur- 

rs compete in a market, given that the claims (risk level) is uncer- 

ain. Before giving the formal statement of the model, it is appro- 

riate to discuss some of the modeling choices. First, the Cournot 

odel is an oligopoly model. Thus, on the one hand, competi- 

ion is not perfect—insurers make profits, which they would not 

f competition drove marginal prices down to equal marginal costs 

Varian, 1992, pp. 180–181) . To understand why competition is not 

erfect, recall that economies of scale and rigorous regulation raise 

arriers to entry, making it harder for new insurance companies 

o challenge the incumbents. On the other hand, insurers are not 

onopolists who can raise prices arbitrarily—there is competition 

ven among oligopolists. For cyber insurance, this is confirmed by 

everal studies: Nurse et al. (2020 , p. 3) speak of “an extremely 

ompetitive cyber insurance market” and Woods and Moore (2019 , 

. 27) fear that “Competitive pressures drive a race to the bottom 
3 
n risk assessment standards”. Furthermore, the Cournot model is 

ot an uncommon choice for modeling general (non-cyber) insur- 

nce markets (see, e.g., Cheng and Powers, 2008; Gale et al., 2002; 

ao et al., 2016; Wang et al., 2003 ). 

Second, production costs are uncertain—insurers do not know 

eforehand how much it will cost to produce their product, i.e. 

ow large the indemnities owed will be. This reflects the uncer- 

ainty about cyber risk and lack of actuarial pricing described in 

ection 1 : insurers underwriting cyber risks are uncertain about 

hose risks. 

Third, these uncertain production costs are assumed to be the 

ame for all the market competitors. This reflects the interdepen- 

ency of cyber risk described in Section 1 : for an insurer. More 

recisely, cyber risk can only be managed up to a point by prac- 

ices such as insuring customers in different geographical loca- 

ions or from different industries. While such practices are effec- 

ive against incident causes such as an outage at a payment ser- 

ice provider servicing a market of just one or a few countries, 

hey are ineffective against other risks, such as the Heartbleed 

see, e.g., Zhang et al., 2014 ) or Log4J (see, e.g., Srinivasa et al., 

022 ) vulnerabilities, or prolonged outages at major cloud service 

roviders ( Lloyd’s, 2018 ). It is these risks—the ones that are dif- 

cult to manage—that is our concern here. With respect to these 

isks, thus, insurers can be seen as essentially picking and insuring 

nsureds from the very same set of eligible firms (with some firms 

eing excluded by all insurers using similar rules-of-thumb). Thus, 

hile the outcomes of claims in a particular year will certainly dif- 

er, it is not unreasonable to model these outcomes with random 

ariables representing production costs being the same for all mar- 

et actors. Indeed, such an assumption—in one form or another—is 

mplicit in the entire discussion about data sharing. 

Fourth, the uncertainties are modeled using normal random 

ariables. The immediate rationale for this assumption is that it 

llows analytic calculations of conditional random variables. There- 

ore, it is almost always used in the extant literature on uncertain- 

ies on oligopoly markets (most prominently Gal-Or, 1986 , and the 

econdary literature citing her). However, this should be seen as 

 convenient mathematical approximation, not an empirical claim. 

ndeed, the literature on the statistics of cyber risk instead typi- 

ally suggests more heavy-tailed distributions (see, e.g., the review 

y Woods and Böhme, 2021 ), and our model does not question 

hat. This approximation is further discussed in Section 5 . 

Turning to the formal model, in the Cournot competition two 

rms select their production levels, 2 which determine the market 

rice of their goods. Let P = { 1 , 2 } be the set of firms and the real

uantity q i ∈ R their production, for i ∈ P . In this case q i repre-

ents the number of policies offered. We define the inverse de- 

and function, i.e., the unitary price of a product as 

p i (q i , q j ) = a − bq i − dq j , 

here a, b, d > 0 . The value p i represents the premium, i.e., the

ayment that the insurer i receives. 

We assume that each insurer has a linear production cost q i C i , 

here C i is the marginal cost (the claims of each policy). For sim- 

licity we assume that the insurers offer identical products ( b = d), 

llowing the price to be written as a function of the total produc- 

ion p(q i , q j ) = p(q i + q j ) = a − b(q i + q j ) . We also assume that the
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Fig. 1. Our Cournot model has two decision stages: 1) insurers decide the uncer- 

tainty of their data m i (and investment in data quality); 2) insurers use their avail- 

able information to choose their production level (policies offered) q i . 
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nsurers have the same marginal production costs ( C i = C), an un- 

nown value with distribution C ∼ N (0 , σ ) , where σ is the uncer-

ainty about the production cost. 3 Note that the assumption that C

as mean zero does not affect the results, but considerably simpli- 

es the exposition. 4 

The use of a single random cost variable merits some additional 

iscussion. Importantly, this means that insurers do not benefit 

rom the law of large numbers, as they would if instead there was 

ather a sum of q i single random cost variables—one per insured. 

o understand why this is reasonable, recall the discussion above 

bout the fact that cyber risk can only be managed up to a point

y practices such as insuring customers in different geographical 

ocations or from different industries. Some risks remain, namely, 

he ones stemming from irreducible interdependence, as discussed 

n Section 1 . These risks—e.g., the risks that all of the insureds are

it by something like Heartbleed or Log4J—are precisely the ones 

hat have prompted the policy interest in cyber insurance informa- 

ion sharing, i.e., the risks that are our concern here. These risks 

re well modeled by the use of a single random cost variable, and 

his is what the model is designed to reflect. Of course, this is not 

o deny that the law of large numbers works well for other risks, 

ncluding (some) other cyber risks, and that this is a cornerstone of 

nsurance. But the model developed here aims to reflect precisely 

he interdependent cyber risks that cannot be tamed by the law of 

arge numbers. 

In our model each insurer conducts a risk assessment and finds 

 noisy signal about the claims (i.e., the production cost), denoted 

 i = C + E i , where the noise E i ∼ N (0 , m i ) is independent from the

ost C. Here m i represents the uncertainty inherent in the sig- 

al. We assume that Z i is a private signal that depends on invest- 

ents to improve the risk assessment process and its output. We 

o not explicitly model the mechanisms by which Z i can be im- 

roved. However, it is clear that many possibilities exist, ranging 

rom better security audits before underwriting clients, to contin- 

ous SIEM-like monitoring of clients’ systems, to improving DFIR 

Digital Forensics and Incident Response) processes once incidents 

ccur. It is equally clear that such possibilities entail costs. Note 

hat as opposed to Gal-Or , we do not assume that firms deliber- 

tely garble any information. We do, however, assume that data 

uality is a real issue, and that it may be low in the absence of de-

iberate and costly effort s to improve it. Recall the results from the 

tudy of Swedish NIS reports: “Making the most of the reporting 

equires additional quality assurance mechanisms” ( Franke et al., 

021 ). Concretely, an investment h i ≥ 0 leads to an uncertainty 

 i = m 0 α
−h i , (1) 

here m 0 > 0 represents the uncertainty without any investments 

e.g., when the assessment is made using publicly available data 5 ) 

nd α > 1 represents the efficacy reducing noise. Again, we assume 

hat these parameters are equal for both insurers. From Eq. (1) the 

nvestment needed to have an uncertainty m i is 

 i (m i ) = log (m 0 /m i ) , (2) 
α

3 While variance is often denoted σ 2 , for simplicity, we adhere to the notation of 

al-Or (1986) and denote it as σ . 
4 Consider the marginal cost C ′ = ̄c + C, where c̄ ∈ R and C ∼ N (0 , σ ) represent 

xed and variable components. With an inverse demand function of the form a ′ −
q i − dq j the profit can be rewritten as 

 i (a ′ − bq i − dq j ) − q i ( ̄c + C) = q i (a ′ − c̄ − bq i − dq j ) − q i C = q i p i (q i + q j ) − q i C 

he last step results by making a = a ′ − c̄ . We can set the parameter a ′ large enough 

o guarantee that a > 0 . 
5 Public reports, like the studies conducted by NetDiligence or the Ponemon In- 

titute, may offer some information about the cyber risks of different industries. 

n addition, information sharing may take place among business partners, e.g., be- 

ween insurance firms and their reinsurance providers and/or third parties that of- 

er technical support. 

G

w  

t

t

t  

t

L

W

w

q

4 
hich is a concave with respect to the uncertainty level m i . 

q. (2) implies that it’s prohibitively expensive to have no uncer- 

ainty ( m i = 0 ). Now, the profit of firm i , denoted πi (q i , q j ) , is equal

o its income minus both production and risk assessment costs 

i (q i , q j ) = q i · p i (q i + q j ) − q i · C − h i (m i ) . (3)

.1. Game formulation 

In our Cournot model the insurers make two decisions at dif- 

erent stages (see Fig. 1 ): 

1. In the first stage insurers make investments and commit to an 

information sharing policy. This is equivalent to selecting the 

uncertainty level m i , which in turn determines the investment 

h i (m i ) . We assume that the sharing policy is defined before the 

game starts. 

2. In the second stage the marginal production cost C is realized 

and each firm gets an estimate Z i . Then the information trans- 

mission takes place and each firm uses the information avail- 

able, represented as t i , to select the production quantity q i (t i ) . 

The information available is t i = (Z i , Z j ) when insurers share 

their cost estimations, otherwise it is t i = (Z i ) . 

Thus, the strategy of each firm has the form (m i , q i (t i )) , which

atisfies the subgame perfect equilibria if it is a Nash Equilibrium 

NE) in each stage of the game. We start by analyzing the second 

tage game to determine the production q i (t i ) (see Fig. 1 ). With 

his result we build the game in the first stage and then formu- 

ate the problem of selecting the optimal uncertainty (noise level) 

f the data m i . Some of the results in this section resemble the 

ndings of Gal-Or (1986) , because the Cournot model there is sim- 

lar (at a high level) to ours; however, the precise solution for our 

odel is different. We find the precise profit function for each sce- 

ario in the next section. 

.2. Second stage (low level) game 

In this stage m i and m j are given and each firm chooses a pro-

uction q i (t i ) that maximizes their expected profits given the avail- 

ble information t i ( Fig. 1 ). We define the game in the second stage

s 

 2 = 〈P, (S i ) i ∈P , (W i ) i ∈P 〉 , (4) 

here P is the set of players, S i = R is the strategy space, and W i is

he payoff function of the i th firm, which in this case corresponds 

o the expected profit in a Cournot competition (see Eq. (3) ) given 

he signal t i . The following result shows the form of W i as a func-

ion of the optimal production q i (t i ) . 

emma 1. The utility of the game G 2 defined in Eq. (4) is 

 i (q i , q j ) = bq 2 i (t i ) − h i (m i ) , 

here the optimal production q i (t i ) satisfies 

 i (t i ) = 

a − bE { q j (t j ) | t i } − E C { C| t i } 
2 b 

. (5) 
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roof. The expected profit in a Cournot competition (see Eq. (3) ) 

s 

 i (q i , q j ) = E { πi (q i , q j ) | t i } . 
he expectation is made with respect to the unknown parameters, 

uch as the cost C (and the signal Z j when the firms do not share

nformation). Thus, 

 i (q i , q j ) = q i (t i ) 
(
a − bq i (t i ) − bE { q j (t j ) | t i } − ˆ C i 

)
− h i (m i ) (6) 

here ˆ C i = E C { C| t i } is an estimation of the production cost and

 { q j (t j ) | t i } is the estimated production of the adversary, given the

vailable observation t i . The optimal production must satisfy the 

ollowing first order condition (FOC) 

∂W i 

∂q i 
= a − 2 bq i (t i ) − bE { q j (t j ) | t i } − ˆ C i = 0 . (7)

n this case the optimal production is unique, since the expected 

rofit is concave with respect to q i : 

∂ 2 W i 

∂q 2 
i 

= −2 b < 0 . 

ow, from Eq. (7) the optimal production satisfies 

 i (t i ) = 

a − bE { q j (t j ) | t i } − ˆ C i 

2 b 
. (8) 

eplacing Eq. (8) in Eq. (6) we obtain 

 i (q i , q j ) = q i (t i ) ( 2 bq i (t i ) − bq i (t i ) ) − h i (m i ) 

= bq 2 i (t i ) − h i (m i ) . 

�

.3. First stage (upper level) game 

We define the game in the first stage (see Fig. 1 ) as 

 1 = 〈P, ([0 , m 0 ]) i ∈P , (J i ) i ∈P 〉 , (9) 

here insurers can select an uncertainty level m i ∈ [0 , m 0 ] and the

tility J i is the expected profit, given that firms choose q i (t i ) in the

econd stage (see Lemma 1 ). In this stage t i hasn’t been realized; 

ence, the optimal production q i (t i ) can be seen as a random vari- 

ble. The following result shows the form of J i . 

emma 2. The utility of the game G 1 defined in Eq. 9 is 

 i (m i , m j ) = b 
(
μ2 

i + γi 

)
− h i (m i ) , (10) 

here μi = E [ q i (t i )] and γi = Var [ q i (t i )] are the first and second mo-

ents of the optimal production q i (t i ) , respectively (see Eq. (5) ). 

roof. In the first stage the utility (expected profit) is 

 i (m i , m j ) = E Z i ,Z j 

{
W i (q i (t i ) , q j (t j )) 

}
= bE Z i ,Z j 

{
q 2 i (t i ) 

}
− h i (m i ) . 

(11) 

he expectation is with respect to the signals Z i and Z j , which 

aven’t been realized in the stage. Let us define μi = E [ q i (t i )]

nd γi = Var [ q i (t i )] . Since Var [ X] = E [ X 2 ] − E [ X] 2 , then E [ X 2 ] =
ar [ X] + E [ X] 2 . Hence, the expected profit in Eq. (11) can be writ-

en as Eq. (10) . �

emark 1. We cannot guarantee that G 1 has a Nash Equilibrium 

NE). Also, rather than finding the precise NE of G 1 , we focus on

nding the conditions in which investing in risk assessment is fea- 

ible or not. Thus, we classify the possible NE in the following cat- 

gories 

• Both insurers invest (but different amounts): (m i , m j ) , with 

m i , m j ∈ (0 , m 0 ) and m i 	 = m j . 
5

• Both insurers invest the same amount: (m, m ) , with m ∈ 

(0 , m 0 ) . 

• Only one insurer invests in risk assessment: (m, m 0 ) , with m ∈
(0 , m 0 ) . 

• Neither insurer invests: (m 0 , m 0 ) . 

.4. Cost Estimation 

Since both the cost C and the noise E i are normally distributed, 

he sample Z i = C + E i is also normally distributed: Z i ∼ N (0 , σ +
 i ) . This property makes it easier to find the closed form expres- 

ions of variables of interest. For instance, the estimation of the 

ost conditional to the sample Z i is 

¯
 i = E C { C| Z i } = δi Z i (12) 

ith δi = 

σ
σ+ m i 

. Moreover, we can find the expected cost given two 

bservations, Z i and Z j , using the multivariate normal distribution 

¯
 i j = E C { C| Z i , Z j } = 

1 

k 0 

(
σm j Z i + σm i Z j 

)
, (13) 

here k 0 = σm i + σm j + m i m j . Fig. 2 shows the Bivariate distribu-

ion of Z i and Z j with parameters m i = m j = 2 and σ = 4 . 

The samples Z i and Z j are correlated through the cost C; hence, 

ov (Z i , Z j ) = σ . For this reason the insurer i can estimate the sam-

le of it’s adversary Z j as 

 { Z j | Z i } = E { C + E j | Z i } = E { C| Z i } (14)

ote that sharing information creates a conflict, because although 

nsurers may benefit, they may also help the competing insurer. 

Fig. 3 shows an example of the cost distribution given some ob- 

ervations. In this case each additional observation reduces the un- 

ertainty of the cost (variance). Note that the insurers use E [ C| Z i ]
o make decisions in the second stage, rather than the rv (C| Z i )
epicted in Fig. 3 . 

. Analysis of the market’s equilibria 

In this section we find the optimal production q i (t i ) and the 

tility function in the upper level game J i for each scenario (shar- 

ng and non-sharing information). Then we find the possible equi- 

ibria of the game and illustrate them with examples. 

.1. Market with information sharing 

In this case the firms share their private information Z i . Thus, 

hey have the same signal t i = t j = t = (Z i , Z j ) , and therefore, make

he same cost estimation 

ˆ C i = 

ˆ C j = 

ˆ C , where ˆ C = C̄ i j (see Eq. (13) ). 

oreover, since firms have the same characteristics and possess 

he same information, there is no uncertainty about the produc- 

ion of the adversary, because E { q j (t j ) | t i } = E { q j (t ) | t } = q j (t) . In

ddition, they produce the same quantity q i (t) = q j (t) . Thus, from

q. (8) we get 

 i (t) = 

1 

3 b 
(a − ˆ C ) . (15) 

Now, recall that the cost C, E i , and E j are independent normal 

andom variables. Thus, in the first stage, when neither C, Z i nor 

 j have been realized, we can see ˆ C as a random variable (see 

q. (13) ) 

ˆ 
 = k c C + k i E i + k j E j , (16) 

here k c = 

σ (m i + m j ) 

k 0 
, k i = 

σm j 

k 0 
, and k j = 

σm i 
k 0 

, with k 0 = σ (m i +
 j ) + m i m j . Thus, the cost estimation 

ˆ C is normally distributed 

ˆ 
 ∼ N (0 , ˆ σ ) with 

ˆ = 

σ 2 

k 
(m i + m j ) . (17) 
0 
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Fig. 2. Bivariate distribution of the samples Z i and Z j . Since the samples are positively correlated, sharing information benefits an insurer but also may benefit competitors. 

Fig. 3. Example of the distribution of the cost estimation with observations Z i and Z j . Each additional observation reduces the uncertainty (variance) of the estimation. 
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Now, from Eq. (15) the optimal production q i can be seen as a 

andom variable q i ∼ N ( a 
3 b 

, ˆ σ
9 b 2 

) . Therefore, the profit of the game

 1 (see Eq. (10) ) is 

 i (m i , m j ) = 

1 

9 b 
( ̂  σ + a 2 ) − h i (m i ) (18) 

= 

1 

9 b 

(
σ 2 (m i + m j ) 

σ (m i + m j ) + m i m j 

+ a 2 
)

− h i (m i ) . (19) 

The following result shows that only one firm may invest in risk 

ssessment. 

roposition 1. A duopoly in which insurers share information can 

ave two types of Nash equilibria (but only one of this scenarios can 

ccur in a game): 

• Neither firm invests ( m i = m j = m 0 ) if m 0 < 

36 b 
log α

or if 

m 0 > 

36 b 

log α
and σ < ˜ σ = 

36 bm 0 

m log α − 36 b 
. (20) 
0 

6 
• Only one insurer invests (e.g., m i ≤ m 0 and m j = m 0 ) if 

m 0 ≥ 36 b 

log α
and σ ≥ ˆ σ = 

m 0 

� − 2 

, (21) 

where �2 = 

m 0 log α
9 b 

. 

The reader can find the proof of this and the following results 

n the appendix. 

Fig. 4 illustrates the possible equilibria for different values of 

and m 0 (see Proposition 1 ). Fig. 5 shows examples with the 

wo possible NE, namely (m 0 , m 0 ) and ( ̂  m , m 0 ) . In this case, free-

iding can occur because at most one insurer invests in data qual- 

ty (when m 0 is large, i.e., when the data quality is low without 

ny investment). In these examples we use the following parame- 

ers: a = 10 , b = 1 , α = 3 , and m 0 = 1 . 5 36 b 
log α

. Moreover, for the NE

xamples we use σ = 1 . 2 ̂  σ ( Fig. 5 a) and σ = 0 . 9 ̃  σ ( Fig. 5 b). 
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Fig. 4. When the insurers share information at most one insurer invests in data quality. 
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.2. Market without information sharing 

In this case the information available is t i = (Z i ) . From Gal-

r (1986) ; Radner (1962) the decision rules must be affine in the 

ector of observations (in this case Z i ), therefore, 

 i (t i ) = q i (Z i ) = αi 
0 + αi 

1 Z i , (22) 

or some constants αi 
0 

and αi 
1 
. From Eq. (22) we can find the ex- 

ected demand of the adversary given the information t i 

 { q j (t j ) | t i } = E { q j (Z j ) | Z i } = α j 
0 

+ α j 
1 
E { Z j | Z i } (23)

e can use Eq. (14) to rewrite Eq. (23) as 

 { q j (t j ) | t i } = α j 
0 

+ α j 
1 
δi Z i . (24) 

eplacing Eq. (12) and Eq. (23) in Eq. (8) we obtain 

 i (Z i ) = 

a − δi Z i − b(α j 
0 

+ α j 
1 
δi Z i ) 

2 b 
(25) 

q. (22) and Eq. (25) are equivalent, therefore the coefficients αi 
0 

nd αi 
1 

must satisfy 

i 
0 = 

a − bα j 
0 

2 b 
and αi 

1 = −δi 

1 + bα j 
1 

2 b 
, (26) 

hich have the following solution 

i 
0 = 

a 

3 b 
and αi 

1 = 

σ (2(σ + m j ) − σ ) 

b(σ 2 − 4(σ + m i )(σ + m j )) 
. (27) 

Now, in the first stage the optimal production q i (t i ) can be seen

s a random variable. Since Z i is normal, the production is also nor- 

al (see Eq. (22) ) 

 i (Z i ) ∼ N (αi 
0 , (α

i 
1 ) 

2 (σ + m i )) . (28) 

hen, the profit of G 1 is 

 i (m i , m j ) = b((αi 
0 ) 

2 + (αi 
1 ) 

2 (σ + m i )) − h i (m i ) (29) 

= 

a 2 

9 b 
+ 

σ 2 (2(σ + m j ) − σ ) 2 (σ + m i ) 

b(σ 2 − 4(σ + m i )(σ + m j )) 2 
− log α(m 0 /m i ) (30) 
i

7

The following result states that the market can have three types 

f equilibria. Unlike the previous case, not sharing information cre- 

tes the conditions to have both insurers investing in data quality. 

roposition 2. A duopoly in which insurers do not share information 

an have the following equilibria 

• (m 0 , m 0 ) is the only NE if m 0 ≤ 27 b 
5 log α

• (m 0 , m 0 ) is the only feasible NE if 

m 0 ≥ 27 b 

5 log α
and σ ≤ σ́ = 

2 m 0 

˜ γ 1 / 2 − 3 

, (31) 

where ˜ γ = 

5 m 0 log α
3 b 

. 

• ( ̂  m , m 0 ) and ( ̂  m , ˆ m ) are feasible NE if 

m 0 > 

9 b 

log α
and σ ≥ σ̆ = 

2 m 0 

ˆ γ 1 / 2 − 3 

, (32) 

where ˆ γ = 

m 0 log α
b 

. 

Fig. 6 shows the feasible equilibria (when insurers do not share 

nformation) for different values of σ and m 0 . Investments in data 

uality occur only when m 0 is large, that is, when the data qual- 

ty is low without any investment. Fig. 7 shows two examples of 

he possible equilibria in the market without sharing information. 

n particular, Fig. 7 b shows that, unlike in the market that with 

nformation sharing enforced, one or both firms can invest in data 

uality in the equilibria. In these examples m 0 = 1 . 5 36 b 
log α

(same as

he example in Fig. 5 ). Fig. 7 a has σ = 0 . 9 ̃  σ and Fig. 7 b σ = 1 . 2 ̂  σ .

. Relaxing the normal approximation 

In this section we argue that the previous results are also 

alid—to some extent—when we consider extreme events in the 

osts, i.e., cost distributions with heavier right tails than the nor- 

al distribution, as is often the case with cyber risks. Let us con- 

ider a cost distribution with pdf 

 [ C = x ] = 

{
w 1 f 1 ( x ) if − ∞ < x ≤ x 0 
w 2 f 2 ( x ) if x 0 ≤ x < ∞ 

(33) 

here w 1 , w 2 ≥ 0 , w 1 + w 2 = 1 , f 1 is a normal pdf, f 2 a General-

zed Pareto Distribution (GPD). In this case, claims that exceed the 
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Fig. 5. Best response of insurers in a market where sharing information is enforced. 
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6 We can use Lemmas 1 and 2 because they are independent of the distributions 

of C and t i . 
hreshold x 0 are modeled with the GPD. Now, an estimation of the 

ost given some information t i is 

 [ C| t i ] = 

∫ ∞ 

−∞ 

x P [ C = x | t i ] dx. (34)

et us decompose the estimation into two terms, one correspond- 

ng to the most frequent events and one to the tail 

 [ C| t i ] = 

∫ x 0 

−∞ 

xw 1 f 1 ( x | t i ) dx + 

∫ ∞ 

x 0 

xw 2 f 2 ( x | t i ) dx (35) 

= C̄ i + εi . (36) 

ere C̄ i and εi represent the lower and upper estimates of the cost. 

e assume that the first term C̄ i is close to the cost estimation 

ssuming a normal distribution. Intuitively, estimations assuming 

 normal distribution ignore the contribution of the tail. 
8 
The optimal amount of policies issued by each insurer—see 

q. (5) —then becomes 6 

 i (t i ) = 

a − bE { q j (t j ) | t i } − C̄ i − εi (t i ) 

2 b 
. (37) 

ote that the optimal production is lower when we consider the 

osts from the tail. Now, let us express the optimal production as 

 i (t i ) = 

˜ q i (t i ) − δi (t i ) (38) 

here ˜ q i (t i ) is the optimal production assuming a normal distribu- 

ion. Substituting Eq. (38) into Eq. (37) we obtain 

 i (t i ) = 

a − bE { ̃  q j (t j ) − δ j (t j ) | t i } − C̄ i − εi (t i ) 

2 b 
. (39) 
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Fig. 6. Without information sharing the insurers make symmetric or a single-sided investments. 

Fig. 7. Best response of insurers when they do not share information. 

9
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Fig. 8. Regions where a change in the information sharing policy may change the NE. In region A the NE changes from (m, m 0 ) or (m, m ) to a NE where neither insurer 

invests (m 0 , m 0 ) . Mandatory information sharing can create situations of free-riding, because (m, m ) is not feasible (see region B). 
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he previous expression can be rewritten as 

 i (t i ) = 

a − bE { ̃  q j (t j ) | t i } − C̄ i 

2 b 
− bE { δ j (t j ) | t i } + εi (t i ) 

2 b 
(40) 

= 

˜ q i (t i ) −
bE { δ j (t j ) | t i } + εi (t i ) 

2 b 
. (41) 

he last step results from using Lemma 1 to get the optimal pro- 

uction when we estimate the cost assuming a normal distribution 

i.e., using the cost estimate C̄ i ). From Eq. (38) and Eq. (40) con- 

lude that 

i (t i ) = 

bE { δ j (t j ) | t i } + εi (t i ) 

2 b 
. (42) 

hrough Eq. (42) we express the impact of the tail in the opti- 

al decision (in the second stage of the game). Now we can ana- 

yze how the tail affects the game in the first stage. Concretely, the 

tility function becomes (see Lemma 2 ) 

 i (m i , m j ) = b(E [ ̃  q i − δi ] 
2 + Var [ ̃  q i − δi ]) − h i (m i ) . (43)

ote that δi depends on both εi and ε j . Thus, we argue that if the 

ail of the cost has finite mean and variance, then we can approx- 

mate Eq. (43) with 

˜ 
 i (m i , m j ) = b(E [ ̃  q i ] 

2 + Var [ ̃  q i ]) − h i (m i ) , (44)

here ˜ J i (m i , m j ) represents the utility in the first stage that we

btain using the normal approximation. If the tail of the cost has 

nite mean and variance, 7 then we can find some bounds φ
i 
, φ̄i > 

 s.t. 

 i (m i , m j ) ≥ ˜ J i (m i , m j ) − φ
i 

(45) 

 i (m i , m j ) ≤ ˜ J i (m i , m j ) + φ̄i . (46) 

It follows from Lemma 10 that the NE obtained assuming a nor- 

al distribution is close to the NE that we would obtain consider- 

ng the tail of the distribution (see the discussion of ε-equilibria in 
7 Heavy tail distributions like the Lognormal distribution, sometimes used to 

odel the size of cyber incidents ( Woods and Böhme, 2021 ), satisfy E [ εi ] < ∞ and 

ar [ εi ] < ∞ . 

(

s

o

h

10 
udenberg and Levine, 1986; Myerson, 1978 ). How close depends 

n the size of the tail. 

. Discussion and Conclusions 

Fig. 8 compares the equilibria resulting with each information 

olicy. When insurers share information, they tolerate data with 

oorer quality (i.e., large m 0 ) before starting to invest. Also, forc- 

ng information sharing may reduce the investment in data quality 

f the risk assessments, because the NE changes from (m, m 0 ) or 

m, m ) to a NE where neither insurer invests (m 0 , m 0 ) (see region

). Likewise, mandatory information sharing can restrict the NE to 

 situation of free-riding, because (m, m ) is not feasible (see region 

). 

These results illustrate important concerns about mandatory in- 

ormation sharing about cyber incidents in insurance. With no way 

o enforce data quality, a mandatory information sharing regime 

ay be (i) counterproductive if leading to no investment in data 

uality—an (m 0 , m 0 ) NE—or (ii) unfair if leading to free-riding—

n (m, m 0 ) NE. This result is a bit reminiscent of Laube and

öhme (2016) , who show that mandatory security breach reporting 

o authorities may have adverse effects unless it can be determined 

hether the failure to report an incident is deliberate concealment 

r mere lack of knowledge. 

Needless to say, the model employed is simplified, and does 

ot capture the full complexity of reality. A first aspect of this is 

hat it is exceedingly difficult to determine the parameters needed 

o facilitate exact calculations according to the model. Neverthe- 

ess, the model does show what we believe are important quali- 

ative properties of mandatory information sharing situations: po- 

entially undesirable transitions to counterproductive or unfair NEs 

f mandatory information sharing is enacted. A second aspect of 

his relates to the normal approximation discussed in Section 5 . A 

hird aspect is that the model treats duopoly rather than the more 

eneral oligopoly situation. Now, there is good reason to believe 

hat our results should generalize to the oligopoly situation—Raith 

1996 , see 3.a, p. 263) has shown that for Cournot markets, the re- 

ults from Gal-Or (1986) and similar duopoly studies are valid for 

ligopolies as well. A detailed investigation of the oligopoly case, 

owever, is beyond the scope of this paper. Nonetheless, we would 
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xpect that insurers would have lower incentives to invest in data 

uality for two reasons: 1) the profit of firms will be lower with 

ach additional competitor; and 2) imposing data sharing in an 

ligopoly will give each firm access to more data. 

In addition to the simplifications of the model, the NE concept 

lso has some limitations. Concretely, the existence of a particular 

E only says that if the players are there, none of them has any-

hing to gain from unilaterally deviating. However, if they are not 

here, the NE concept does not provide any mechanism for how 

he NE could be reached. This means that it is not possible to say 

hich outcome will actually occur when there are multiple NEs. 

espite this, our analysis is important because it reveals strategic 

ensions between the players. For example, in practice, situations 

hat create opportunities for free-riding may result in no invest- 

ents, because each firm will try to free-ride. 

Future research directions include analyzing whether sharing 

nformation policies benefit insurers and consumers (despite of 

reating free-riding scenarios) and designing incentives that could 

mprove the data quality. Also, it would be interesting to contem- 

late other cost and risk aversion functions on the part of the in- 

urers, as well as extending the treatment in Section 5 of alterna- 

ive cost distributions. 
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ppendix A. Additional results and proofs 

The following results show some properties of the decision of 

ach firm. We use these results to analyze the equilibria of the 

arket with different data sharing policies. 

emma 3. Let m i be a feasible decision in the game G 1 when the

dversary selects m j . The following is satisfied 

• m i = 0 is not feasible 

• m i = m 0 is feasible if J ′ 
i 
(m 0 , m j ) ≥ 0 

• 0 < m i < m 0 is feasible if J ′ 
i 
(m i , m j ) = 0 and J ′′ 

i 
(m i , m j ) ≤ 0 , 

where J ′ 
i 

and J ′′ 
i 

represent the first and second derivative of J i with 

espect to m . 
i 

11 
roof of Lemma 3. We formulate the decision of each firm with 

he following optimization problem 

ax 
m i 

J i (m i , m j ) 

s. t. −m i ≤ 0 

m i − m 0 ≤ 0 

(A.1) 

hose Laplacian is 

 (m i , μ1 , μ2 ) = −J i (m i , m j ) − m i μ1 + (m i − m 0 ) μ2 . (A.2)

he noise level m i is a local maxima if the following necessary con- 

itions are satisfied 

J ′ i (m i , m j ) − μ1 + μ2 = 0 (A.3) 

nd 

m i μ1 + (m i − m 0 ) μ2 = 0 (A.4) 

ith μ1 , μ2 ≥ 0 . Moreover, the second order sufficient condition is 

 

′′ 
i (m i , m j ) ≤ 0 . (A.5) 

Now let us analyze the strategies that the insurer i may choose: 

• m i = 0 is a valid solution if μ2 = 0 , μ1 ≥ 0 and 

−J ′ i (0 , m j ) − μ1 = 0 (A.6) 

however, this is not possible because 

lim 

m i → 0 
J ′ i (m i , m j ) → ∞ . (A.7) 

• m i = m 0 is a valid solution if μ2 ≥ 0 , μ1 = 0 and 

−J ′ i (m 0 , m j ) + μ2 = 0 (A.8) 

which means that 

J ′ i (m 0 , m j ) ≥ 0 (A.9) 

• 0 < m i < m 0 is a valid solution if μ2 = 0 , μ1 = 0 and 

J ′ i (m i , m j ) = 0 (A.10) 

with the second order condition 

J ′′ i (m i , m j ) ≤ 0 . (A.11) 

�

The next result shows that, except a special case, ( ̂  m , m 0 ) and

m 0 , m 0 ) cannot be NE simultaneously. Thus, we assume that only 

ne of these NE can occur. 

emma 4. The tuples ( ̂  m , m 0 ) and (m 0 , m 0 ) , with ˆ m < m 0 , can be

E simultaneously only if they return the same profit, i.e., J i ( ̂  m , m 0 ) =
 i (m 0 , m 0 ) . Otherwise, only one of them can be a NE. 

roof of Lemma 4. Assume that (m 0 , m 0 ) is a NE, this means that

 i (m 0 , m 0 ) ≥ J i ( ̂  m , m 0 ) . (A.12) 

f the inequality is strict, i.e., J i (m 0 , m 0 ) > J i ( ̂  m , m 0 ) , then ( ̂  m , m 0 )

annot be a NE. We can make the same argument when ( ̂  m , m 0 )

s a NE. �

Now we introduce some results that specify conditions that re- 

trict the possible NE. 

orollary 1. If J ′ 
i 
(m, m ) ≥ 0 for all m ∈ [0 , m 0 ] , then (m 0 , m 0 ) and

m i , m j ) , with m i , m j < m 0 , are the only possible NE. 

roof of Corollary 1. Recall that from Remark 1 the possible equi- 

ibria are (m 0 , m 0 ) , ( ̂  m , ˆ m ) , ( ̂  m , m 0 ) , and (m i , m j ) . If J ′ 
i 
(m, m ) ≥ 0
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or all m , then (m 0 , m 0 ) is a feasible NE, but ( ̂  m , ˆ m ) , for some ˆ m 	 =
 0 , is not feasible (see Lemma 3 ). Moreover, from Lemma 4 we

now that an equilibria of the form ( ̂  m , m 0 ) is not feasible. Thus,

he only remaining possibilities are (m 0 , m 0 ) and (m i , m j ) . �

emma 5. If J ′ 
i 
(m i , m j ) is decreasing with respect to m j , then the best

esponse of the insurer i , denoted m 

∗
i 
(m j ) , is decreasing with respect

o m j . In such cases, if (m 0 , m 0 ) is a feasible NE, then no other NE

xists. 

roof. Suppose that m 

∗
i 
(m j ) < m 0 is the best response to the strat-

gy m j ∈ [0 , m 0 ] . This means that m 

∗
i 
(m j ) is a local maxima, i.e.,

 

′ 
i 
(m 

∗
i 
(m j ) , m j ) = 0 and J ′′ 

i 
(m 

∗
i 
(m j ) , m j ) < 0 (see Lemma 3 ). Then

he following applies for two strategies ˜ m j and ˆ m j 

 

′ 
i (m 

∗
i ( ̂  m j ) , ˆ m j ) = J ′ i (m 

∗
i ( ̃  m j ) , ˜ m j ) = 0 . (A.13)

et us assume without loss of generality that ˜ m j < ˆ m j . If J 
′ 
i 
(m i , m j )

s decreasing wrt m j , then 

 

′ 
i (m 

∗
i ( ̃  m j ) , ˜ m j ) ≥ J ′ i (m 

∗
i ( ̃  m j ) , ˆ m j ) . (A.14)

ow, replacing Eq. (A.14) in Eq. (A.13) we obtain 

 

′ 
i (m 

∗
i ( ̂  m j ) , ˆ m j ) ≥ J ′ i (m 

∗
i ( ̃  m j ) , ˆ m j ) . (A.15)

ince J ′′ 
i 
(m 

∗
i 
(m j ) , m j ) < 0 we know that J ′ 

i 
(m 

∗
i 
( ̂  m j ) , ˆ m j ) is decreas-

ng wrt m 

∗
i 
( ̂  m j ) . Hence, 

 

∗
i ( ̂  m j ) ≤ m 

∗
i ( ̃  m j ) . (A.16) 

n other words, the best response function m 

∗
i 
(m j ) is decreasing 

rt m j . �

1. Market with information sharing 

Now we are ready to prove Proposition 1 . 

roof of Proposition 1. In this proof we first find the form of the 

ossible NE and then find the conditions to guarantee that they 

re feasible. From Eq. (18) the first and second derivatives of the 

rofit are: 

∂ 

∂m i 

J i (m i , m j ) = 

σ 2 

9 b 

−m 

2 
j 

((σ + m i )(σ + m j ) − σ 2 ) 2 
+ 

1 

m i log (α) 

(A.17) 

nd 

∂ 2 

∂m 

2 
i 

J i (m i , m j ) = 

σ 2 

9 b 

2 m 

2 
j 
(σ + m j ) 

((σ + m i )(σ + m j ) − σ 2 ) 3 
− 1 

m 

2 
i 

log (α) 
. 

(A.18) 

Let us show that a NE in which both firms invest ( m i , m j 	 = m 0 )

oes not exist. Note that (m i , m j ) , with 0 < m i , m j < m 0 , is a fea-

ible equilibria if it satisfies J ′ 
i 
(m i , m j ) = 0 for each firm. This FOC

an be rewritten as (see Eq. (A.17) ) 

1 

m i m 

2 
j 

log (α) 
= 

σ 2 

9 b 

1 

((σ + m i )(σ + m j ) − σ 2 ) 2 
. (A.19) 

ince the right hand side is identical for each firm we obtain 

m j log (α) 

m i log (α) 
= 

m 

2 
j 

m 

2 
i 

. (A.20) 

he above expression implies that m i = m j (this is the only possi- 

le solution). Replacing m i = m in Eq. (A.19) results in 

1 

m log (α) 
= 

σ 2 

9 b 

1 

(2 σ + m ) 2 
. (A.21) 

Now, the second derivative evaluated on m i = m is 

∂ 2 

∂m 

2 
J i (m, m ) = 

σ 2 

9 b 

2(σ + m ) 

m (2 σ + m ) 3 
− 1 

m 

2 log (α) 
. (A.22) 
i 

12 
eplacing Eq. (A.21) in the previous expression leads to 

∂ 2 

∂m 

2 
i 

J i (m, m ) = 

σ 2 

9 b 

2(σ + m ) 

m (2 σ + m ) 3 
− 1 

m 

σ 2 

9 b 

1 

(2 σ + m ) 2 
(A.23) 

= 

σ 2 

9 b 

1 

(2 σ + m ) 3 
> 0 . (A.24) 

hus, a pair (m, m ) that satisfies the FOC corresponds to a local 

inimum; hence, it is not a valid NE. This implies that in the NE 

t least one of the firms doesn’t invest at all. Following this obser- 

ation we set m j = m 0 and investigate possible values of m i in the

E. A pair (m i , m 0 ) is a feasible NE if it satisfies the FOC 

∂ 

∂m i 

J i (m i , m 0 ) = 

1 

m i log (α) 
− σ 2 

9 b 

m 

2 
0 

(σm 0 + m i (σ + m 0 )) 2 
= 0 . 

(A.25) 

he above expression leads to 

 b(σm 0 + m i (σ + m 0 )) 
2 − σ 2 m 

2 
0 m i log α = 0 , (A.26) 

hich is a quadratic equation of the form 

m 

2 
i + Bm i + C = 0 , (A.27) 

ith A = 9 b(σ + m 0 ) 
2 , B = 18 bσm 0 (σ + m 0 ) − σ 2 m 

2 
0 

log α, and C =
 bσ 2 m 

2 
0 
. The solution of Eq. (A.27) has the well known form 

 i = 

−B ± √ 

B 

2 − 4 AC 

2 A 

, (A.28) 

here 

 

2 − 4 AC = σ 3 m 

3 
0 log α(σm 0 log α − 36 b(σ + m 0 )) . (A.29) 

Now, let us investigate the conditions in which Eq. (A.28) has 

o valid solution. In other words, cases in which J ′ 
i 
(m i , m 0 ) > 0 for

ll m i ∈ [0 , m 0 ] . If this happens then the game can have a single

E, namely (m 0 , m 0 ) (see Lemma 3 ). Eq. (A.28) has an imaginary

alue if B 2 − 4 AC < 0 , that is, if 

(m 0 log α − 36 b) − 36 bm 0 < 0 . (A.30) 

his inequality holds in the following two cases: 

• If m 0 log α − 36 b > 0 and 

σ < 

36 bm 0 

m 0 log α − 36 b 
= ˜ σ . (A.31) 

• If m 0 log α − 36 b < 0 . 

In summary, (m 0 , m 0 ) is the only NE if m 0 < 

36 b 
log α

or if m 0 >

36 b 
log α

and σ > ˜ σ . 

Now, a real solution exists only if B 2 − 4 AC ≥ 0 , that is, if 

 0 ≥ 36 b 

log α
and σ ≥ 36 bm 0 

m 0 log α − 36 b 
. (A.32) 

oreover, observe that | B | > 

√ 

B 2 − 4 AC (since AC > 0 ). Therefore, 

f B < 0 then we have two positive solutions. This occurs if 

m 0 (18 b(σ + m 0 ) − σm 0 log α) < 0 . (A.33) 

he above holds when 

 0 > 

18 b 

log α
and σ > 

18 bm 0 

m 0 log α − 18 b 
. (A.34) 

ote that the conditions in Eq. (A.34) hold when Eq. (A.32) is 

rue. For this reason, if Eq. (A.27) has real solutions, then they are 

ositive. 

Now, let us find the conditions to have a feasible NE of the 

orm (m i , m 0 ) , where m i < m 0 . Alternatively, we are looking for

ituations in which m = m is not a feasible solution, i.e., when 
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′ 
i 
(m 0 , m 0 ) ≤ 0 . This is the case when Eq. (A.27) has only one so-

ution in the interval (0 , m 0 ] . In other words, if the largest root is

reater than m 0 : 

−B + 

√ 

B 

2 − 4 AC 

2 A 

≥ m 0 . (A.35) 

rom the above inequality we obtain 

 

2 − 4 AC ≥ (B + 2 Am 0 ) 
2 , (A.36) 

hich leads to 

 ≥ Am 

2 
0 + Bm 0 + C. (A.37) 

e expand Eq. (A.37) to obtain 

 ≥ (2 σ ) 2 + 2(2 σ ) m 0 + m 

2 
0 − σ 2 m 0 

log α

9 b 
(A.38) 

he above in turn leads to 

 ≥ (m 0 + σ (� + 2))(m 0 − σ (� − 2)) (A.39) 

here �2 = 

m 0 log α
9 b 

. Observe that � > 2 when Eq. (A.32) has real 

oots. Therefore, Eq. (A.39) holds if 

≥ m 0 

� − 2 

= ˆ σ . (A.40) 

hus, from Eqs. (A.32) and (A.40) (m i , m 0 ) is a feasible solution

hen 

 0 ≥ 36 b 

log α
and σ ≥ m 0 

� − 2 

= ˆ σ (A.41) 

�

2. Market without information sharing 

Let us define x i = m i + σ , x j = m j + σ , x̄ = σ + m 0 , and the

unctions 

f 1 (x i , x j ) = 

4 x j x i + σ 2 

4 x j x i − σ 2 
(A.42) 

nd 

f 2 (x i , x j ) = 

(2 x j − σ ) 2 

(4 x j x i − σ 2 ) 2 
. (A.43) 

o write the marginal profit as 

∂ 

∂m i 

J i (m i , m j ) = 

1 

x i − σ

1 

log α
− σ 2 

b 
f 1 (x i , x j ) f 2 (x i , x j ) (A.44)

Before proving Proposition 2 we need the following results: 

emma 6. The equation 

2 m 0 + 3 σ ) 2 = σ 2 γ (A.45) 

as no positive solution (i.e., σ ≥ 0 ) when 9 − γ > 0 . However, if 9 −
> 0 , then there is only one positive solution σ = 

2 m 0 

γ 1 / 2 −3 
. 

roof. We can rewrite Eq. (A.45) as 

 m 

2 
0 + 12 m 0 σ + (9 − γ ) σ 2 = 0 (A.46) 

et A = 9 − γ , B = 12 m 0 and C = 4 m 

2 
0 . Since m 0 > 0 , then B, C > 0 .

he solution to Eq. (A.46) has the form 

= 

−B ± √ 

B 

2 − 4 AC 

2 A 

. (A.47) 

f A > 0 , then 

√ 

B 2 − 4 AC < B ; hence, both solution of 

q. (A.46) are negative. On the other hand, if A < 0 , then
 

B 2 − 4 AC > B . In this case, Eq. (A.46) has only one positive 

olution: 

= 

−B − √ 

B 

2 − 4 AC 
(A.48) 
2 A 

13 
 

2 m 0 

γ 1 / 2 − 3 

. (A.49) 

�

emma 7. A game G 1 where insurers do not share information can 

ave a NE of the form (m, σ
2 

4 m 

) if 
√ 

3 −1 
2 σ ≤ m ≤ 1+ √ 

3 
4 σ . 

roof. From the second derivative of the profit J ′′ 
i 
(m i , m j ) and the

OC J ′ 
i 
(m i , m j ) = 0 we get 

∂ 2 

∂m 

2 
i 

J i (m i , m j ) = 

σ 2 

b 

(2 x j − σ ) 2 

(4 x i x j − σ 2 ) 4 (x i − σ ) 
g(x i , x j ) , (A.50) 

here g(x i , x j ) = 16 x j (σ
2 + 2 x i x j )(x i − σ ) − (4 x i x j + σ 2 )(4 x i x j −

2 ) . Observe that we only need to identify the sign of g(x i , x j ) . 

Now, replacing m j = 

σ 2 

4 m i 
, i.e., x j = 

σ 2 

4(x i −σ ) 
+ σ , and x i = m + σ

e get 

(m, 
σ 2 

4 m 

) = 

σ 2 (8 m 

2 − 4 σm − σ 2 )(2 m 

2 + 4 σm + σ 2 ) 

m 

2 
(A.51) 

f m ≤ 1+ √ 

3 
4 σ then 8 m 

2 − 4 σm − σ 2 ≤ 0 and (m i , 
σ 2 

4 m i 
) is a local

aximum. 

Replacing m i = 

σ 2 

4 m j 
, i.e., x i = 

σ 2 

4(x j −σ ) 
+ σ and x j = m + σ , we get

( 
σ 2 

4 m 

, m ) = 

σ 2 (−2 m 

2 − 2 σm + σ 2 )(8 m 

2 + 8 σm + σ 2 ) 

m 

2 
(A.52) 

f m ≥
√ 

3 −1 
2 σ then −2 m 

2 − 2 σm + σ 2 ≤ 0 and ( σ
2 

4 m 

, m ) is a local

axima. 

In summary, (m, σ
2 

4 m 

) is a feasible NE if 
√ 

3 −1 
2 σ ≤ m ≤

1+ √ 

3 
4 σ . �

emma 8. A game G 1 where insurers do not share information can 

ave a NE of the form (m, m ) if σ > 2 m . 

roof. From the second derivative of the profit J ′′ 
i 
(m i , m j ) and the

OC J ′ 
i 
(m i , m j ) = 0 we get 

J ′′ i (m, m ) = 

σ 2 (2 x − σ ) 2 

b( x − σ )(4 x 2 − σ 2 ) 4 

×
{

16 x (x − σ )(2 x 2 + σ 2 ) − (4 x 2 + σ 2 )(4 x 2 − σ 2 ) 
}
, (A.53) 

here x = m + σ . Expanding the right hand side 

6 x 4 − 32 x 3 σ + 16 σ 2 x 2 − 16 xσ 3 + σ 4 (A.54) 

e can reorganize as 

2 x − σ ) 4 − 8 xσ 2 (x + σ ) (A.55) 

eplacing x = m + σ we obtain 

2 m + σ ) 4 − 8 σ 2 (m + σ )(m + 2 σ ) (A.56) 

hen, if σ > 2 m we can guarantee that J ′′ 
i 
(m, m ) ≤ 0 , which means

hat a NE o the form (m, m ) is feasible. �

emma 9. Consider a game G 1 without sharing information. If 

m, σ
2 

4 m 

) is a feasible solution, then (m, m ) is also a feasible solution,

ut the converse is not necessarily true. 

roof. Let (m, σ
2 

4 m 

) be a feasible solution, which means that 

 

′ 
i 

(
m, 

σ 2 

4 m 

)
= 0 (A.57) 

 

′ 
i 

(
σ 2 

4 m 

, m 

)
= 0 (A.58) 
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Without loss of generality we assume that m ≤ σ 2 

4 m 

. Note that 

he marginal profit is decreasing wrt m j , that is, 

∂ 

∂m j 

J ′ i (m i , m j ) = 

4 σ 3 (2 x j − σ )(σ 3 − 4 σ 2 x i + 8 σ x i x j − 8 x 2 
i 
x j ) 

b(4 x i x j − σ 2 ) 4 
< 0

(A.59) 

he inequality follows since x i ≥ σ . 

Now, since m < 

σ 2 

4 m 

, from Eq. () we get 

 = J ′ i 

(
m, 

σ 2 

4 m 

)
≤ J ′ i (m, m ) (A.60) 

nd 

 = J ′ i 

(
σ 2 

4 m 

, m 

)
≥ J ′ i 

(
σ 2 

4 m 

, 
σ 2 

4 m 

)
. (A.61) 

Since the function is continuous wrt m i and m j , then there exist 

 m such that J ′ 
i 
(m, m ) ≥ J ′ 

i 
(m, m ) = 0 ≥ J ′ 

i 
( σ

2 

4 m 

, σ
2 

4 m 

) . �

Now we are ready to prove Proposition 2 . 

roof of Proposition 2. First, let us consider a scenario in which 

 pair (m i , m j ) with m i , m j ∈ (0 , m 0 ) is a NE, which satisfies the

OC J ′ 
i 
(m i , m j ) = 0 for both firms (see Lemma 3 ). We can reorga-

ize Eq. (A.44) for each player to obtain 

−1 

x i − σ

1 

log α

1 

(2 x j − σ ) 2 
= 

−1 

x j − σ

1 

log α

1 

(2 x i − σ ) 2 
. (A.62) 

he above expression leads to 

(2 x i − σ ) 2 

x i − σ
= 

(2 x j − σ ) 2 

x j − σ
, (A.63) 

hich has two solutions, namely m i = m j and m j = 

σ 2 

4 m i 
. Thus, the

E can have the following form: 

 ̂

 m , ˆ m ) and 

(
˜ m , 

σ 2 

4 ̃

 m 

)
, (A.64) 

or some ˆ m , ˜ m < m 0 . 

An equilibria of the form ( ̃  m , σ
2 

4 ̃ m 

) has multiple restrictions. 

oncretely, it is a local maxima only if 
√ 

3 −1 
2 σ ≤ ˜ m ≤ 1+ √ 

3 
4 σ (see 

emma 7 ). In addition, it restricts the range of ˜ m to [ σ
2 

4 m 0 
, m 0 ] ;

ence, such solutions are feasible only if m 0 > 

σ 2 

4 m 0 
(i.e., 2 m 0 > σ ). 

Lemma 9 shows that if ( ̃  m , σ
2 

4 ̃ m 

) is a feasible NE, then ( ̂  m , ˆ m ) is

lso feasible (however, the converse is not necessarily true). Note 

hat a NE of the form (m, m ) is a local maxima if σ ≥ 2 m (see

emma 8 ). We focus on equilibria of the form ( ̂  m , ˆ m ) because it

as less restrictions. 

Now let us analyze the conditions for the following equilibria: 

m 0 , m 0 ) , ( ̂  m , m 0 ) , and ( ̂  m , ˆ m ) , for ˆ m ∈ (0 , m 0 ) . 

Let us show that J ′ 
i 
(m, m ) > 0 for all m , which according to

orollary 1 , is enough to guarantee that (m 0 , m 0 ) is the only NE.

ote that 

 

′ 
i (m, m ) = 

1 

(x − σ ) log α
− σ 2 

b 
f 1 ( x, x ) f 2 ( x, x ) , (A.65)

ith x = m + σ . Since f 1 (x, x ) ≤ 5 
3 and f 2 (x, x ) ≤ 1 

9 σ 2 , then 

 

′ 
i (m, m ) ≥ 1 

m 0 log α
− σ 2 

b 

5 

3 

1 

9 σ 2 
(A.66) 

= 

1 

m 0 log α
− 5 

27 b 
(A.67) 

hen J ′ 
i 
(m, m ) ≥ 0 if m 0 ≤ 27 b 

5 log α
. Note that if m 0 > 

27 b 
5 log α

, then an

quilibria of the form ( ̂  m , ˆ m ) is possible. 
14 
Now, using f 2 ( ̄x , ̄x ) ≤ 5 
3 we can obtain the following 

∂ 

∂m i 

J i (m 0 , m 0 ) ≥ 1 

m 0 

1 

log α
− σ 2 

b 

1 

(2 m 0 + 3 σ ) 2 
5 

3 

(A.68) 

et σ́ be such that the upper bound in Eq. (A.73) is equal to zero, 

hat is, 

1 

m 0 

1 

log α
− σ́ 2 

b 

1 

(2 m 0 + 3 ́σ ) 2 
5 

3 

= 0 (A.69) 

rom Lemma 6 we know that the previous expression has a posi- 

ive solution if 9 − ˜ γ < 0 , where ˜ γ = 

5 m 0 log α
3 b 

. Concretely, the solu- 

ion to Eq. (A.69) is 

´ = 

2 m 0 

˜ γ 1 / 2 − 3 

(A.70) 

f 

 0 ≥ 27 b 

5 log α
. (A.71) 

n summary, 

∂ 

∂m i 

J i (m 0 , m 0 ) ≥ 0 (A.72) 

or σ ≤ σ́ , and according to Lemma 3 , (m 0 , m 0 ) is a feasible NE.

oreover, since J ′ 
i 

is decreasing wrt m j , then (m 0 , m 0 ) is the only

E (see Lemma 5 ). 

Next, using 1 < f 2 ( ̄x , ̄x ) we obtain 

∂ 

∂m i 

J i (m 0 , m 0 ) < 

1 

m 0 

1 

log α
− σ 2 

b 

1 

(2 m 0 + 3 σ ) 2 
(A.73) 

et σ̆ such that the upper bound in Eq. (A.73) is equal to zero 

1 

m 0 

1 

log α
− σ̆ 2 

b 

1 

(2 m 0 + 3 ̆σ ) 2 
= 0 (A.74) 

e can rewrite the above as 

2 m 0 + 3 ̆σ ) 2 = σ̆ 2 ˆ γ , (A.75) 

here ˆ γ = 

m 0 log α
b 

. From Lemma 6 we know that the previous ex- 

ression has a positive solution if 9 − ˆ γ < 0 , that is, if 

 0 > 

9 b 

log α
. (A.76) 

f the above is satisfied, then the solution is 

˘ = 

2 m 0 

ˆ γ 1 / 2 − 3 

(A.77) 

ote that Eq. (A.73) is decreasing wrt σ ; hence, 

∂ 

∂m i 

J i (m 0 , m 0 ) < 0 (A.78) 

or σ ≥ σ̆ , in which case ( ̂  m , m 0 ) is a feasible NE. �

Lastly, the next result defines conditions to have an ε Nash 

quilibrium: 

emma 10. Consider the games G a = 〈P, (S i ) i ∈P , (u i ) i ∈P 〉 and G b =
P, (S i ) i ∈P , ( ̃  u i ) i ∈P 〉 . If ˜ u i is an approximation of u i s.t. 

 i (s i , s −i ) ≥ ˜ u i (s i , s −i ) − δ (A.79) 

 i (s i , s −i ) ≤ ˜ u i (s i , s −i ) + η (A.80) 

or δ, η > 0 and any s i ∈ S i for i ∈ P , then a NE of G b is an ε-NE (or

ear NE) of G a . 

roof of Lemma 10. Let ( ̃ s i , ̃  s −i ) be a NE for G b . This means that 

˜ 
 i ( ̃  s i , ̃  s −i ) ≥ ˜ u i (s i , ̃  s −i ) , ∀ i ∈ P, s i ∈ S i (A.81)
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rom the upper and lower bound conditions in Eq. (A.79) we get 

 i ( ̃  s i , ̃  s −i ) + δ ≥ u i (s i , ̃  s −i ) − η (A.82) 

hich can be rewritten as 

 i ( ̃  s i , ̃  s −i ) ≥ u i (s i , ̃  s −i ) − η − δ. (A.83) 

hen ( ̃ s i , ̃  s −i ) is an ε-NE, with ε = η + δ. �
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