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Abstract

This master’s thesis explores ways to uncover and exploit vulnerabilities in
Android applications by introducing a novel approach to security testing. The
research question focuses on discovering an effective method for detecting
vulnerabilities related to the context of an application.

The study begins by reviewing recent papers on Android security flaws
affecting application in order to guide our tool creation. Thus, we are able
to introduce three Domain Specific Languages (DSLs) for Model-Based
Security Testing (MBST): Context Definition Language (CDL), Context-
Driven Modelling Language (CDML), and Vulnerability Pattern (VPat). These
languages provide a fresh perspective on evaluating the security of Android
apps by accounting for the dynamic context that is present on smartphones and
can greatly impact user security.

The result of this work is the development of VPatChecker[1], a tool that
detects vulnerabilities and creates abstract exploits by integrating an application
model, a context model, and a set of vulnerability patterns. This set of
vulnerability patterns can be defined to represent a wide array of vulnerabilities,
allowing the tool to be indefinitely updated with each new CVE.

The tool was evaluated on the GHERA benchmark, showing that at least
38% (out of a total of 60) of the vulnerabilities in the benchmark can be
modelled and detected.

The research underscores the importance of considering context in Android
security testing and presents a viable and extendable solution for identifying
vulnerabilities through MBST and DSLs.

Keywords

Android Application Security, Vulnerability Detection, Context-Awareness,
Model-Based Security Testing, Domain Specific Language
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Sammanfattning

Detta examensarbete utforskar vägar för att hitta och utnyttja sårbarheter i
Android-appar genom att introducera ett nytt sätt att utföra säkerhetstestning.
Forskningsfrågan fokuserar på att upptäcka en effektiv metod för att detektera
sårbarheter som kan härledas till kontexten för en app. Arbetet inleds med en
översikt av nyliga forskningspublikationer om säkerhetsbrister som påverkar
Android-appar, vilka vägleder utvecklingen av ett verktyg. Vi introducerar
tre domänspecifika språk (DSL) för modellbaserad testning (MBST): CDL,
CDML och VPat. Dessa språk ger ett nytt perspektiv på säkerheten för Android-
appar genom att ta hänsyn till den dynamiska kontext som finns på smarta
mobiltelefoner och som kan starkt påverka användarsäkerheten.

Resultatet av arbetet är utveckling av VPatChecker[1], ett verktyg
som upptäcker sårbarheter och skapar abstrakta sätt att utnyttja dem i en
programmodell, en kontextmodell, och en mängd av sårbarhetsmönster. Denna
sårbarhetsmönstermängd kan defineras så att den representerar ett brett
spektrum av sårbarheter, vilket möjliggör för verktyger att uppdateras med varje
ny CVE.Verktyget utvärderades på datamängden GHERA, vilket visade att
38% (av totalt 60) av alla sårbarheter kunde modelleras och upptäckas.Arbetet
understryker vikten av att ta hänsyn till kontext i säkerhetstestning av Android-
appar och presenterar en praktisk och utdragbar lösning för att hitta sårbarheter
genom MBST and DSLs.

Nyckelord

Android-applikationssäkerhet, Upptäckt av sårbarheter, Kontextmedvetenhet,
Modellbaserad säkerhetstestning, Domänspecifikt språk
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Résumé

Ce mémoire de maîtrise explore les moyens de découvrir et d’exploiter les
vulnérabilités des applications Android en introduisant une nouvelle approche
des tests de sécurité. La question de recherche se concentre sur la découverte
d’une méthode efficace pour détecter les vulnérabilités liées au contexte d’une
application.

L’étude commence par l’examen de documents récents sur les failles de
sécurité des applications Android afin de guider la création de notre outil. Nous
sommes ainsi en mesure d’introduire trois Langages dédié (DSL) pour des
Tests de Sécurité Basés sur les Modèles (MBST) : Langage de Définition
de Contexte (CDL), Langage de Modélisation Déterminée par le Contexte
(CDML) et Motif de Vulnérabilité (VPat). Ces langages offrent une nouvelle
perspective sur l’évaluation de la sécurité des applications Android en tenant
compte du contexte dynamique présent sur les smartphones et qui peut avoir
un impact important sur la sécurité de l’utilisateur.

Le résultat de ce travail est le développement de VPatChecker[1], un outil
qui détecte les vulnérabilités et crée des exploits abstraits en intégrant un
modèle d’application, un modèle de contexte et un ensemble de modèles de
vulnérabilité. Cet ensemble de modèles de vulnérabilité peut être défini pour
représenter un large éventail de vulnérabilités, ce qui permet à l’outil d’être
indéfiniment mis à jour avec chaque nouveau CVE.

L’outil a été testé sur le benchmark GHERA[2] et montre qu’un total d’au
moins 38% (sur un total de 60) des vulnérabilités peut être modélisé et détecté.

La recherche souligne l’importance de prendre en compte le contexte dans
les tests de sécurité Android et présente une solution viable et extensible pour
identifier les vulnérabilités par le biais de MBST et DSLs.

Mots-clés

Sécurité des Applications Android, Détection de Vulnérabilités, Sensibilité au
Contexte, Tests de Sécurité Basés sur les Modèles, Langage Dédiés
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Glossary

Android Android is a mobile operating system based on a modified
version of the Linux kernel.

FlowDroid FlowDroid: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps.

Phishing Phishing is a type of attack, not specific to Android, that
consists of faking a real system to steal data from a user. It
is often used with login pages to steal credentials..

Sink A sink is an open output of a system that acts as the exit of data
in a data flow.
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Chapter 1

Introduction

This chapter presents a short introduction to the subject of the master’s thesis.
We will set the context of the research field and discuss the problems and
scientific issues brought up.

1.1 Motivation

Over 5 billion people use a mobile phone today, meaning that 2/3 of the
population is prone to an attack via a mobile application [3]. In 2020 over
200 billion mobile applications have been downloaded [4] and an average user
has spent 3h39 browsing the internet on his smartphone daily. With this amount
of usage, the impact of a single vulnerability can have disastrous effects. From
an attacker’s perspective mobile devices are a gold mine, since the creation
of the first smartphone a couple of decades ago they grew in usefulness and
contain nowadays our bank accounts, mail services and social medias. This
amount of data gives incentive to be attacked through different methods, and
while security has evolved tremendously, we still find vulnerabilities each day.

To handle this demand in security, researchers and engineers have
conceptualized and created different tools and methods to handle different
steps of an applications cycle. Scanning, either statically (without executing)
or dynamically (with execution), is part of this process that consists of giving
more tools to developers, that sometimes is not aware of the security issues
he may bring to his code. According to Veracode 12th volume on the state
of software security [5], the number of applications scanned has tripled from
2011 to 2021 and the cadence of scan has been multiplied by 20. But, at the
same time, approximately 75% of applications still contain a flaw of some
sort, with almost 25% of applications containing high severity flaws [5]. An
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important distinctive parameter of mobile security is context and context-aware
applications. Context-awareness is a methodology of taking into account
context in the analysis of the program, the context itself is a broad subject
that was already defined in 2008 by Hong et al. [6] as "[...] any information
that can be used to characterize the situation of an entity". While the definition
is vague and there is no set consensus among researchers, the concept is easy
to grasp. In smartphone applications, this could be the location, orientation,
time or even smartphone model just to cite a few.

The importance of context-awareness comes from the rapid evolution of
Internet of Things (IoT) and the need for tools to be intuitive and easy to use. In
this context, our smartphones have evolved to change automatically depending
on the context. Whether it is simply accessing the user’s location to give him
feedback on the weather or even automatically setting energy saving mode
under a certain battery percentage, a lot of data affect our applications [7].
The ubiquity of Android smartphones brings the need to test applications in
different contexts to ensure security. Here is where our work comes in, we
will aim to bring a new method for developers to prevent vulnerabilities on
their applications through context-aware security testing before release of their
application. While a lot of work already exists in terms of application testing [8],
security testing, i.e. testing for vulnerabilities, has only very little work in terms
of context-awareness (also called adaptive). Simply enough, this thesis aims to
bring more security to users by testing applications whose context may change
during their execution.

Our work will be primarily oriented at Android applications as, according
to statista.com [9], Android holds more than 70% of the market share, and we
want to be able to apply our project to the most systems we possibly can.

This situation is the foundation for this master’s thesis.

1.2 Problem

As seen in section1.1, with the amount of time spent on their phone, there is a
need for users to be able to trust the tools t hey are using. For this reason,
bringing new ways for developers to give users trust in their systems is a
priority. While protecting the system in which the code is executed is possible,
developers are not always in control of it. This is due to the tremendous amount
of downloads a single application can have, the executable is run in different
Operating Systems (OSs), in different devices with different capabilities and
limitations.

In terms of development, security is still fairly uncommon as a
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consideration and not considered a priority by developers [10]. This is due to
a multitude of factors: lack of money, short development deadlines or simply
lack of knowledge. To solve that, companies have started including security as
an extra step in the development cycle using large scale tools that can assess
the security of a project. Due to the amount of new vulnerabilities each year
and even simply of new features and technologies developed, it is important
that research be oriented in the conception of new techniques following recent
vulnerabilities and technologies, or even try to foresee the future evolution of
hackers.

One method to detect vulnerabilities is using a model of the general code
and running a set of algorithms that infer if a vulnerability may be/is present on
the source code. Then it generates a penetration test to assess if the vulnerability
truly exists. This method is called Model-Based Security Testing (MBST) and
is useful in giving a more abstract representation of the code to run faster tests.
Through the rise of smartphones, ubiquity is a real problem that is hard in terms
of time analysis. Indeed, checking every possible combination of context is
not realistic as such models and their level of abstraction can be a way to solve
this new problem.

For this exact reason and, in order to simplify the development process, we
aim to bring a larger tool set for software developers focusing on automatic
vulnerability detection through context-aware MBST.

1.3 Threat Model

In the context of security in computer science, we choose to protect against
specific types of adversaries, each having specific goals and means of attack.

During our project, we will consider that the attacker wants to break one of
the components of the Confidentiality, Integrity and Availability (CIA) triad
of our vulnerable application. This can be:

• Confidentiality: Data theft.

• Integrity: Data injection or Tampering.

• Availability: Denial Of Service (DOS)

We will assume that the attacker’s victim is always an application and
ultimately the user. We will also assume that any cryptographic protocol is
perfect if used correctly, an exception would be if the protocol is known for not
being safe.
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More specifically, in the context of Android applications, the adversary will
either want to steal the user’s private data or misuse the application to get more
rights than what should be allowed.

1.4 Goals

In this master’s thesis we will aim at answering the following questions:

RQ1. What Android permission system vulnerabilities could be related to the
context of an application, and can they be modeled in order to test them?

RQ2. What security testing process could be applied to detect vulnerabilities
related to the context (threat models, attack vectors, security tests,
analysis of results)?

Through an earlier master’s thesis work by Abdallah Adwan [11]
concerning context-aware testing of Android applications, Adwan developed
a model for Android apps and their context. The host laboratory LCIS
is interested in expanding the project to allow for model based security
testing, in other words, expanding the aforementioned model to detect possible
vulnerabilities within an application code.

1.5 Research methodology

The methodology will be an implementation of MBST. If we follow the
definition by Schieferdecker et al. [12], MBST is a broad subject that is
important in that it aims to test security requirements (CIA) in an efficient
manner. In our case, we will model the security mechanism of an application
to generate security tests for a specific vulnerability and then, try to generalize
to more vulnerabilities.

We will follow the following steps:

• Find a specific vulnerability that is defined by the context of the
application.

• Analyse the extent of the vulnerability. (How many devices can be
affected, is it still relevant nowadays, etc.)

• Expand on the testing model previously created by the lab with the
information needed to detect the selected vulnerability.
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• Model the vulnerability with a specifically crafted Domain Specific
Language (DSL).

• Link both models via a penetration test generator on a vulnerable
application.

• Measure the performance of our process via a set of applications. This
set will either be found free online or be generated during the master’s
thesis.

• Expand and generalise our process to related vulnerabilities.

1.6 Delimitation

We will not be able to model every existing vulnerability during the degree
project, but only give the ability to extend the model to further research. As
such, we will choose a set of vulnerabilities during the pre-study on which we
will focus the thesis work.

1.6.1 Ethics and Sustainability

While the project does not directly address questions of ethics or sustainability,
it is, by design, at least partly a software process consuming energy. We do not
need to precisely measure the power usage, but it will be developed with this
issue in mind in order to limit at our scale the impacts on the environment.

In order to explain the studied vulnerabilities, we may need to explain in
what way they make the application vulnerable. In order not to share exploits,
we will try to have an artificial scenario and clearly separated from real world
applications.

1.7 Structure of the thesis

• Chapter 2 introduces the concepts of Android, context and a study on
current vulnerabilities.

• Chapter 3 presents the design goals for the project, and the methodology
for analysing the results obtained.

• Chapter 4 presents the tools created during the thesis, ConTest a code
coverage tool and VPatChecker an exploit generator.
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• Chapter 5 will demonstrate the capabilities of the aforementioned tools
and discuss their range of usage.

• Lastly, chapter 6 will discuss the limitations, possible enhancements that
could be made in the future, as well as conclude this thesis.
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Chapter 2

Background

2.1 Security models and security policies

In the following sections, we will be reviewing Android application
vulnerabilities. We consider vulnerabilities from several perspectives, but one
particularly important perspective is based on information flow. In the idealized
form originally described by Goguen and Meseguer in 1982 [13], information
flow security is attained by achieving noninterference: no matter what public
inputs are given to a system, the public outputs of this system will not be
unduly influenced by the private (secret) inputs to the system. In particular, the
publicly available outputs of a secure program (or, mobile app) is not allowed to
contain data deemed private. Noninterference is a form of hyperproperty [14]
that imposes requirements over sets of executions of a system and is difficult
to establish in practice.

In the field of Android applications, we find different types of data
depending on their criticality for the owner. Some data can be viewed as
public or non-sensitive like data not permission-protected, for example the
API version. On the other hand, some data are considered critical (or sensitive)
when it affects the user’s privacy like accessing the location of the device,
although more application-specific sensitive data exists like login credentials
for banking or social media applications.

In our case, the context of the device is important and not to be blindly
trusted by the application. Our adversary may be a malicious user or a malicious
application running in the same device as such inputs, and Inter-Process
Communication (IPC) can be vectors of attack and must be analyzed.

Information flow security must be true in any execution of an application
with any type of input and additionally, in our case, in any type of execution
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context as will be defined by section 2.3. Since hyperproperties such as
noninterference are too strong for our purposes, we will limit our scope to
direct information flow (from high to low) meaning private data leakage. To
disprove a property, we will try to generate a proof of broken information flow
security with a specifically crafted execution of an application.

Lastly, because our model only takes into account input and output from an
application, we knowingly exclude side-channels as external communication
outputs. This is a simplification that allows for a more restricted model,
but it should be noted that this means that any conclusion drawn from our
vulnerability detection cannot be complete. The work by Alqazzaz et al. [15]
provides insight on the confidentiality problems that exist in the Android
environment.

2.2 Android

Android is a mobile operating system that owns more than 70% of the
marketshare at the time of writing [9]. Originally released in September 2008
with Android 1.0, the operating system owned mostly by Google has released,
on the 15th of August 2022, Android 13 the current most recent Android
version.

Android’s core components are completely free and open-source. Based
on a modified version of the Linux kernel and other open-source software, it
is used by mobile device vendors around the world as a base to proprietary
versions [16].

The development of Android is mostly done by Google but has open-source
parts (mostly the base OS) and they are open to outside contributions. For
example, the Google vulnerability reward program [17] rewards users for
vulnerability reports with digital trophies and paid rewards.

2.2.1 Android architecture

As explained in section 2.2, Android is a mobile operating system build on the
Linux kernel. According to the official documentation of Android [18], the OS
is built of several layers that are called software stacks, as can be seen on 2.1∗.

∗Source:developer.android.com/
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Figure 2.1: Android general architecture.

2.2.1.1 Hardware level

The first stack is the kernel, this stack handles most of the hardware operations,
low-level memory management and threading. Most of this stack is written is
in C language and assembly code, as it is closer to the physical components of
the device.

2.2.1.2 Hardware Abstraction Layer

The next stack is the Hardware Abstraction Layer (HAL) that acts as a set of
Application Binary Interface (ABI) to enable communication between higher-
level java layers and lower-level (usually) C-level code. The HAL consists
of multiple library modules used as an interface of hardware components.
Android API that need sensor values call this stack.



10 | Background

2.2.1.3 Android Runtime

The Android Runtime (ART) stack allows for sandboxing of android
applications.

As a security measure but also per design choice, Android application
are executed in a virtual machine through a format called Dalvik Executable
Format (DEX) a custom bytecode that is not Java bytecode but a custom-made
language. This bytecode was executed on the Dalvik Virtual Machine until
Android 5. Two effects come from this sandboxing:

• Optimisation: ART has optimised DEX that is better than Java bytecode

• Complete separation per application: When an application is executed,
it runs on a completely separate environment from other applications. It
basically runs with a different user each application.

2.2.1.4 Native C/C++ Libraries

This part is separated from the HAL in that it does not act as interface with
hardware, but sometimes optimised native libraries are needed. For example,
the ART and HAL may need some functions from the Bionic libC [19] (a
Android specific GNU C library designed for less processor power). Other
graphical libraries are also found here, like the OpenGL implementation
available to applications through a Java API.

2.2.1.5 Java API Framework

This stack is the main one used by application developers, it contains most of
the libraries/API that allows usage of Android features as well as the services
(called managers) that provide different features to applications.

This stack contains the following [18]:

• View system: That controls UI’s, views, buttons etc.

• Resource manager: That gives access to resources like images and XML
files.

• Notification manager: That allows applications to send notification to
the user outside the scope of the app’s UI.

• Activity Manager: That controls the application’s execution and lifecycle.
For example, an application can call another app’s activity to access
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some feature he does not provide like taking a photo for example. It also
controls what is in foreground and background, etc.

• Content providers: That allows to access information from other
applications or to share the app’s information to others.

2.2.1.6 Application / System applications

Lastly, this stack comprises most of the user experience: Applications.
In the base Android, this stack has only the default system applications,

but nothing separates application installed by default and others. These
applications use the framework API to communicate with the other applications,
with sensors or even with the network.

2.2.2 Android permission system

A lot of security features are implemented in Android at the application level.
Arguably the most important feature is the permission system. According to the
official documentation of Android [20], this permission system defines what
the application may do and use at the system level, whether it is accessing data
on the device like reading the state of the Wi-Fi or even being able to use the
camera.

To do this Android separates the permissions into 3 categories, normal,
signature, and dangerous. Since Android 6 (API version 23) [21] these
permissions are asked to the user either when he installs the application or
during runtime, when before it was only on installation.

2.2.2.1 Install time permissions

The permissions that are asked from the user before he installs the application
fall under the categories of normal or signature.

Normalpermissions are general permissions that allow the application to
access information that are not critical to the user privacy like allowing access to
Bluetooth, changing the Wi-Fi state, and accessing internet. These permissions
are automatically granted to an installed application, and the application store
takes care of informing the user that an application may use these permissions.

Signaturepermissions are more specific permissions custom-made by
application developers to allow applications made by the same developer to
access a specific feature. For example, a developer may create an application
A that has a feature Fa and that demands for a permission P(Fa) if another
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application wants access to the feature. If the developer wants, he can restrict
this permission P(Fa) so that it is signed by him, meaning that only his
applications or applications signed with the same certificate may have access
to this permission. Specifically, a certificate may be shared between groups
and not only be restricted to a single developer.

2.2.2.2 Runtime permissions

The permissions that are asked from the user before he installs the application
fall under the category of dangerous. They are requested specifically when
using the app’s feature that needs the permission and can be refused by the
user. The permission request is done by the developer and can technically be
done at any point during the app’s execution, it is good practice to wait until the
last moment to ask that permission. Since Android 11 (API version 30) users
may choose between accepting a runtime permission forever or only accepting
once the permission. This means that when the application is not used any
more, the permission will be revoked. This is called one-time permission.

Dangerouspermissions are permissions that give access to critical
information or features. This means private data or sensors like the camera and
the location. These permissions have a great impact on the user’s privacy and
should be kept to a minimum by developers.

2.2.2.3 Criticisms of the permission system

The permission system has been an ongoing debate between researchers for a
long time and has evolved a lot to try to find solutions. The base problem is
that it is difficult to have a system that combines:

• Great security measures

• Simple/straightforward developer implementation of security

• Clear user understanding of the risks and fast UI

For this reasons design choices have been made, that are criticised among
those:

• Permissions are too coarse [22]: Meaning that permissions are too broad
in regard to what is needed by applications. Which meant that the user
could not know precisely what was going to be used.
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• Too static in nature: While there are now runtime permissions, it is clear
that some contexts may need different permissions. For example, an
application may ask for Bluetooth during install time but never actually
use it, depending on how the user uses the app [22].

• Too complicated for developers: Leading to overprivileged applications,
as developers don’t want to select every permission specifically [23].

2.3 Context and Context-Awareness

Context and context-awareness has evolved a lot in the last decade. This field
of study has gained importance with the appearance of mobile applications for
their ubiquity in comparison to standard wired equipment. Muccini et al. [24]
separated mobile applications into two different categories:

• App4Mobile are apps that are simply translated software for mobile
applications, and

• MobileApps are apps that were designed with context and adaptiveness
in their core.

This difference showed a shift in paradigm between software development and
mobile app development.

A base definition appears in the widely cited paper on context computing
by Abowd et al. [25] as any information that can be used to characterize the
situation of an entity.

In terms of definition, nowadays, context is often defined in two different
ways:

• A list of elements considered as context

• A list of subcategories of context

The first definition is useful for simplification but is limited when building
models. As an example, in his document, Brown et al. [26] considers that the
context is what the computer sees and understands of the user’s environment.
This includes the location, the time, what is near the computer, et cetera.

For subcategories, we can find examples that separate static and dynamic
context, this is the case in the document by Gomez et al. [27] in which they
separate static properties and dynamic properties. This definition is useful in
defining when each property has to be surveyed. The static properties being
detected at boot and the dynamic surveyed during the execution.
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With the evolution of mobile applications, the need for a third more abstract
or high level categories has raised, often inferred from other categories. As
explained by Almeida et al. [28] low-level context is what we referred as static
and dynamic context and high-level context are situations that have an impact
on the system and exists in order to simplify analysis. As an example they
explain the situation "high-speed vehicle" which aggregates:

• GPS coordinates to detect the highway the vehicle is in

• Accelerometer/gyroscope values to detect the current speed of the vehicle

• Internet to check maximum speed accepted in this vehicle

This allows for a simple check "is the context over speed?" to trigger events for
an application.

For the continuation of this paper, we will be using the terms:

• Static Context: Context that does not evolve with time during the
application’s execution

• Dynamic Context: Context that may evolve with time during the
application’s execution

• Derived Context (or situation): High level contexts acting as an
agglomeration of contexts or specific context values.

2.4 Android vulnerability survey

In order to answer to the requirement RQ1 defined in section 1.4, an analysis
of current Android vulnerabilities has been made. This survey is designed
to be clarifying the current ecosystem of application security and be used to
conceptualize the vulnerability model introduced in section 1.5.

2.4.1 Survey methodology

The research for Android vulnerability papers has been made with the usage
of common research papers engines like Google Scholar with snowballing of
references. In order to stay relevant to future research, we have filtered papers
that were older than 2015. It is also important to note that our goal is to list
vulnerabilities linked to applications that can be detected and solved through
modification of the application code.
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For the research, a total of 12 papers have been selected to base our
survey on, we tried to find big research papers that tried to supervise Android
vulnerabilities. We also selected a few papers that explained some very
specific or sometimes overlooked (either because too specific or too recent)
vulnerabilities that remained relevant to our topic.

Figure 2.2: Graph of research papers selected by year

We can see in figure 2.2 the distribution of papers selected for section 2.4.
Each document will be cited for the specific vulnerability they relate to.

A visual representation of android vulnerabilities relating to application
security can be seen on figure 2.3.

Lastly, we linked each vulnerability to an existing mobile Common
Weakness Enumeration (CWE) [29]. The goal of an CWE is to serve as a
common baseline for any vulnerability in order to be able to classify specific
vulnerabilities faster. This will allow us to measure the effectiveness of our
tool by class to then lead further research more carefully into what is missing
with our work.

The analyzed documents and authors are summarized in the table 2.1.
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Table 2.1: Vulnerability papers explored in the survey

Author.s Paper title Year Type of paper

S. Bojjagani et al. STAMBA: Security Testing for
Android Mobile Banking Apps[30]

2015 Tool showcase

V. Jain et al. Detection of SQLite Database
Vulnerabilities in Android Apps[31]

2016 Partial Survey

F. Tabassum et al. Vulnerability testing in online
shopping android applications[32]

2017 Partial Survey

F. H. Shezan et al. Vulnerability detection in recent
Android apps: An empirical study[33]

2017 Survey

S. Almanee et al. Too Quiet in the Library: A Study
of Native Third-Party Libraries in
Android[34]

2018 Partial Survey

P. Bhat et al. A Survey on Various Threats and
Current State of Security in Android
Platform[35]

2019 Survey

A. Nirumand et al. VAnDroid: A framework for
vulnerability analysis of Android
applications using a model-driven
reverse engineering technique[36]

2019 Tool showcase

L. Gonzalez-Manzano et al. Impact of injection attacks on sensor-
based continuous authentication for
smartphones[37]

2020 Vulnerability
showcase

T. Liu et al. MadDroid: Characterizing and
Detecting Devious Ad Contents for
Android Apps[38]

2020 Tool showcase

M. A. El-Zawawy et al. Vulnerabilities in Android webview
objects: Still not the end![39]

2021 Partial Survey

J. Gao et al. Understanding the Evolution of
Android App Vulnerabilities[40]

2021 Survey

P. Sun et al. VenomAttack: automated and
adaptive activity hijacking in
Android[41]

2022 Vulnerability
showcase
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2.4.2 Integrated third-party code

This type of vulnerability relates to external code inclusion that directly
accepted by the developer.

These vulnerabilities can be classified as:

• CWE-200: Exposure of Sensitive information to an unauthorized actor

• CWE-359: Exposure of Private Personal Information to an Unauthorized
Actor

In the survey, two possibilities emerge.

2.4.2.1 Advertisement code exploits

The Android revenue system for applications has 3 main ways of working:

• Pay to use: The user needs to pay to download and use the application.

• Pay to upgrade: The user can download the application for free, but can
pay to upgrade or get bonuses in the app.

• Advertisement inclusion: The user sees adds in the application, this
generates revenue for the developer.

The third method uses the inclusion of ad libraries provided by ad providers.
Ad provider can pay more than others, and ad providers can check more or less
the ad they are including in an application.

This means that it can lead to insecure code being run on the device through
an application, whether it’s malware, adware or ad that redirects to malicious
websites [33]. This case is studied in depth by Jonathan Crussel et al. [38].

2.4.2.2 Webview

This vulnerability vector has a lot of literature on it. Webview is a component
that allows developers to open webpages inside their app. As explained by
Faysal et al. [33], while webview is not vulnerable by themselves, it allows for
execution of JavaScript [32] and more generally arbitrary third-party content.
While important vulnerabilities have been removed after API level 17 [40].
Recent work shows that a lot of vulnerabilities still exist [39] that allow for data
theft without the user’s/developer’s consent.
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2.4.3 Insecure communication

Mobile applications are very deeply tied to network usage for multiple design
reasons. The misuse of communication channels due to misunderstanding or
mistakes can lead to very serious confidentiality leaks. Two vulnerabilities
groups have been identified relating to network communications.

2.4.3.1 SSL (TLS) not used

Secure Sockets Layer (SSL) (Replaced by Transport Layer Security (TLS)
since 1999, and completely replaced in 2014) is a security protocol for network
communications, ensuring server authentication, confidentiality and integrity
of exchanged messages [42]. When application developers make use of network
channels without using proper cryptography (like the simple usage of HTTPS)
they expose their code to Man in the Middle (MitM) attacks [40] [32] [30],
basically interception of the data sent through the network. While HTTPS is
activated by default since API level 23 [43] a misuse by the developer can lead
to data theft.

These SSL-related vulnerabilities can be classified as:

• CWE-200: Exposure of Sensitive information to an unauthorized actor

• CWE-359: Cleartext Transmission of Sensitive Information

2.4.3.2 Sloppy certification usage

As pointed out by Jun Gao et al. [40], even if SSL usage is good, a bad
verification of the certificate leads to MitM attacks. The idea is that in order
to work, Android applications are required to have a valid x.509 certificate for
multiple reasons [32] (application signing and TLS handshakes) but if your
code accepts every possible certificate to communicate than the TLS means
nothing. Simply enough, if an application developer gives trust to anyone
then the certificate has no reason to exist, thus configuring the server with an
Certificate authority (CA) is primordial to only accept trusted websites. These
certificate-related vulnerabilities can be classified as:

• CWE-295: Improper Certificate Validation

• CWE-297: Improper Validation of Certificate with Host Mismatch

• CWE-940: Improper Verification of Source of a Communication
channel
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2.4.4 Local code/system

The following subsection lists vulnerabilities related to the local environment
of the application.

2.4.4.1 Library vulnerabilities

Libraries are fully part of an application, they are used and trusted without
thinking too much about it. According to Sumaya Almanee et al. [34],
application developers take, on average, 3 times more time to patch native
libraries than the time it takes for the library to be updated. This means that
even if a library is updated, the developers don’t make directly the choice to
release a new version of their code using this new library. This happens because
they are afraid their code will break or because they think of functionality before
utility.

Another aspect of libraries is libraries that come from third-party providers,
this is the case for example with ad providers but also with any code libraries
that a user may find on the internet. This leads the application to be prone
to misuse of permissions provided to these libraries. According to Parnika
Bhat et al. [35] third-party libraries hold more than 60% of Android application
code. This means that the quantity of vulnerabilities are very large, as no
security verification is necessary on any third-party library. Vulnerabilities
related to libraries are really wide as they open to any kind of code exploit:
Logic/time bombs, data leak, power consumption.

• CWE-511: Logic/Time Bomb

• CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

• CWE-359: Exposure of Private Personal Information to an Unauthorized
Actor

Another type of library related vulnerability is intra-library collusion. The idea
of this vulnerability is that, due to how libraries are designed, libraries have
the union of every permission that applications using the libraries have. This
means that they end up being over privileged and can be attacked this way. We
can link this to the following CWE.

• CWE-250: Execution with Unnecessary Privileges
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2.4.4.2 Local data

Vulnerabilities relating to how the local data is handled is a large part of
vulnerabilities. They mainly relate to vulnerabilities appearing due to low
encryption settings when storing data or trusting that no one will tamper
available data on the device [40]. The first one we can find is Structured Query
Language (SQL) related. SQL is a Structured Query Language designed by
IBM in 1974 [44]. SQL is a DSL designed to create, modify, delete and classify
data stored in table, these tables are often high impact for data thefts [32]. One
of the usages of SQLite is to act as a copy of the SQL stored in a server, this
allows to not have to exchange a message between server and client every time.
The problem is that if the local database is stored without proper encryption,
then it can be tampered, leading to a synchronization attack. A modification
of the local database can have repercussions on the server database, meaning
a possible SQL injection. This type of attack is presented in more detail by V.
Jain et al. [31].

From a more general perspective, unsafe data storing in Android is a
common concern. As explained in the document by Shezan et al. [33], even
with a sandboxed application isolation, we can use permissions to be able to
share our files between applications. This opens up possible security problems
if developers misuse these permissions. In the same way, rooted devices make
every file available to any applications, opening up even more risks that the
developer should be aware of.

Lastly, we can find local vulnerabilities in files with encryption when the
key or encryption mechanism is left open by the developers, this can be the case
with hardcoded encryption keys or a misunderstanding between encryption and
encoding that has happened. Even leaving the hashed data in the local files
could be flagged as a security failure, as they can possibly be stolen. We can
relate these vulnerabilities to:

• CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

• CWE-312: Cleartext Storage of Sensitive Information

• CWE-359: Exposure of Private Personal Information to an Unauthorized
Actor

• CWE-921: Storage of Sensitive Data in a Mechanism without Access
Control
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2.4.5 Application input

This section relates to the input/output of the application. Should it be from the
user or from other entities, communication should be wary of inputs received
and of the privacy of data sent.

2.4.5.1 Untrusted user input

Untrusted user input can be separated into two parts, first inputs that are not
sanitized leading to further attacks, DOS, code execution and more, depending
on the rest of the code and of the permissions given to said vulnerable
application.

Another well studied vulnerability is insecure data flow[40]. The principle
is that an application can have private/sensitive data exiting the application to
a public Sink. This can happen explicitly, for example when data is sent to the
server without TLS or implicitly, like when an event happens only when the
private data is in a certain state allowing us to infer the private data.

The CWE relating to the above vulnerabilities are:

• CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

• CWE-359: Exposure of Private Personal Information to an Unauthorized
Actor

2.4.5.2 Inter process communication

This part relates to vulnerabilities linked to inter process communication
(Content provider, explicit/implicit intents, broadcasts...). In a device, multiple
application are able to communicate with each other, in Android the main way
is by using content providers/receivers and intents. But if the developer is not
careful, it is easy to either leak data or allow for third-party usage of the benign
app’s permissions.

2.4.5.2.1 Intent spoofing This subtype of vulnerability concerns benign
applications that may receive data from other applications. According to
Faysal .H et al. [33], this type of vulnerability is one of the most common
in Android. In their work on Vandroid [36], Atefeh N. et al. classified intent
spoofing into three categories:

• Broadcast injection: When a receiving application trusts blindly any type
of broadcast intent sent by other applications. This can lead to using the
data received as if it was trusted data.
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• Activity launch: When an activity is launched by an intent from untrusted
applications. With this, we can control the applications data or even do
Phishing-type exploits as an attacker.

• Service launch: A service can be understood as a background activity.
Therefore, like activity launch attacks, we are able to control the data or
even start new tasks. This is even more powerful as the former, as it can
stay up even if the user changes the foreground application.

We can relate these vulnerabilities to the following CWE.

• CWE-925: Improper Verification of Intent by Broadcast Receiver

• CWE-926: Improper Export of Android Application Components

2.4.5.2.2 Unauthorized intent receipt This subtype of vulnerability
concerns benign applications that are too noisy when sending data. The most
common mistake when sending data is to not be sufficiently specific about
who is able to receive data. When sending data through a broadcast, virtually
any application is allowed to register as a receiver to read the data. This type
of vulnerability is called broadcast theft [36]. Another, more complex type
of intent reading concerns hijacking attacks. The general idea of a hijacking
attack is to be able to either:

• Replace an app’s service or activity

• Redirect an app’s service or activity to a malicious app

A recent work by Pu SUN et al. [41] has shown the effects of hijacking
attacks. The idea is to detect/infer when an application is starting an
activity/service/component and to find a way to hijack the flow of execution to
inject their own code or redirect to their own application.

Venomattack makes a screenshot of the application’s UI (usually a login
screen) then transforms it into real code. Through a hot patch technique,
they update the malicious application to contain the login page of the victim
application, then they hijack and redirect to their own application. The hijacking
attacks are both system and application vulnerabilities. We can relate these
vulnerabilities to the following CWE.

• CWE-927: Use of Implicit Intent for Sensitive Communication
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2.4.6 Hardware / Sensor related vulnerabilities

With the common usage of a lot of sensors, some vulnerabilities arise.

2.4.6.1 Untrusted sensors

In 2016, a paper by Manar Mohamed et al. [45] demonstrated the ability
to inject sensor values with the usage of commonly installed apps (at the
time) with only the need to have an internet API and the right device context.
While this specific vulnerability is rarer, injection attacks still exist and are
studied. In a recent paper by Gonzalez-Manzano Lorena et al. [37] we see that
injection attack can potentially lead to identity theft through the exploitation
of continuous authentication. Nowadays, mobile applications like banking
apps use continuous authentication to keep the user connected for a short time
before disconnecting them. This is done either by reading time, reading the
touchscreen usage, or even by inferring the user’s presence via the light sensor.
Being able to inject might help an attacker to perform further attacks on the
now authenticated application.

2.4.6.2 Sensor API and backward compatible API

With the complexity and number of devices running Android, it is nearly
impossible to have every device using the same up-to-date version. This
means that sometimes developers have to create backwards compatible code.
Thus, when working with different versions of, Android a developer may use a
deprecated package with real, very well known vulnerabilities [33]. According
to a study by Jun Gao et al. [40], applications tend to stay on one API level and
not necessarily upgrade.

2.4.7 Settings aggravating an application vulnerability

This section will not define more vulnerabilities, but will contribute to
determine bad contexts. We will list device settings that very importantly
aggravate the possible vulnerabilities or even open more vulnerabilities on an
application.

2.4.7.1 Malware infected devices

The most straightforward setting would be when an attacker is present in the
device when the application is installed or executed. Depending on the malware,
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some usually trusted mechanisms may be broken or replaced (For example, a
fake camera application may be present).

2.4.7.2 Debug mode

Then, we may also have a debug mode activated. This mode is part of the
developers options that allow for testing of Android application, sadly and as
seen in the paper by Manar Mohamed et al. [45] it can be misused to install
overprivileged services or just to simply install root applications.

2.4.7.3 Overprivileged applications

Lastly, giving too many privileges to an application is an extremely dangerous
action. This is an ongoing research topic, but it is a fact that developers tend to
give too many privileges (intentionally or not). This leads to different situations,
attackers who get to control the app’s whereabouts may execute unwanted
actions on the benign app, libraries can do unwanted actions if not trusted,
among other things.
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Chapter 3

Methods

3.1 Security Approach

The project is based on software testing, a methodology consisting of designing
and executing tests, and observing the results. In their book, Myers et al. [46]
give the following definition of testing;

"Testing is the process of executing a program
with the intent of finding errors"

Glenford J. Myers

Testing was already an important step of the development phase in 1979
when the book [46] came out and is still as of writing these lines.

An important advantage of software testing is that it is not expensive to
just test the tool, in comparison to using more complex methodologies like
formal verification. That said, the low-cost of this methodology comes with the
drawback that testing is based on executing cases, and it is mostly impossible
to execute every possible case of a software. We are still able to control the
amount of tests executed by following specific coverage criteria, these criteria
define what a full test is and allow limiting the amount of tests needed to validate
the program.

For our project we decided to use White-Box testing, that means that we
will be testing the tools with the knowledge of the code of the tool itself and
not only by controlling inputs and observing outputs. White-box testing allows
for more fine-grained and cheap tests, as we already have a lot of information
on the System under Test (SuT).
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3.1.1 Model-Based Testing

One of the subcategories of testing is called Model Based Testing (MBT). This
methodology uses a partial description of the SuT called a model. A lot of
methods exist that fall in the category of Model-based testing, but the one that
will interest us is finite-state machine MBT.

The advantage is that we are able to simplify the SuT and the testing
mechanism by using a stripped-down, ideal set of conditions, thus having a
more efficient tool with the drawbacks that we decide to ignore parts of the
SuT.

Other methodologies could have been chosen, we could cite:

• Fuzz testing: The SuT is tested with pseudo-random inputs to find bugs
or unexpected outputs. This is very close to what we do, but can be very
expensive in terms of energy or CPU usage.

• Boundary value analysis: This methodology is based on building the
topology of an SuT input/outputs and testing only the boundaries/ex-
treme cases that are usually more error-prone. This methodology works
perfectly on simple algorithms, but can be hard to implement on more
complex cases.

3.1.2 Application security testing

This project has a more specific focus on security testing, this means defending
against’t a specific adversary (see section 1.3). The security testing equivalent
of MBT is MBST. We introduced MBST briefly in section 1.5 as a
methodology to test security requirements efficiently.

More specifically, we use MBST to carefully model the context of an
application and abstracting most of the application in order to gain efficiency
and create a process that is able to cover different contextual events.

One of the difficulties in analysing context when trying to detect
vulnerabilities is that due to the situation of mobile phones, there exists way
more contextual data than classic software, so the cost is very high. Using
models specifically for context representation allows us to test the context while
keeping the cost low.

3.1.3 Security properties

As introduced in section 1.3, we focus our definition of vulnerability and our
threat model with the CIA triad. Confidentiality, Integrity and Availability. In
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particular, we focus on Confidentiality and integrity of data. Private data is
an important part of security, and protecting applications against data theft is
crucial.

The main part of security testing of this project is the analysis of data flows,
whether it’s private or public data. This analysis was important as it allows to
properly detect vulnerabilities and not "features". The idea is that we define a
vulnerable feature when we find private flows of data on public channels.

It is important to note that we are not specifically studying data flows, but
merely using them to have a more precise model of the SuT.

3.2 Base work

As introduced in section 1.4, we will be expanding on the work of Adwan and
build upon his theory with our contribution.

During his master’s thesis [11], Adwan designed a methodology to generate
tests that take into account the context of an application. The general idea he
brought was to define two DSL and apply a MBST process to generate tests.
The first DSL defines the context that a generic application can have and the
values that each context may have, and the second DSL defines the behaviour
a specific application has and which context may affect it.

By combining both, DSL we are able to have the information on what an
application does, and which contexts change the behaviour of the application.

Adwan goes on by defining algorithms for different coverage criteria that
allows his architecture to generate tests.

During our project we will be reusing his theory, expanding on the two DSL
so that we have enough information to detect vulnerabilities. It is important
to note that while the two DSL he created exist, the algorithms were never
implemented, so our work will also contain this part. His project also asks
the developer to write the model of his application manually, and the tests
generated also need to be converted into Java (or Kotlin) code to be used as
real tests.

3.3 Design objectives

In terms of design, we have a few constraints:

• Base our work on Adwan’s internship work.
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• Cover most vulnerability types with a focus on vulnerabilities linked
with context.

• A maximum of 5 months are available for this project

The goals we aimed during the design of the architecture of the solution
are as follows:

Make the most out of the models Building upon models is really useful
as it allows to abstract specific parts of the code, this is often used to
detect vulnerabilities over multiple types of language or vulnerabilities tied
to behaviour. Our project being specifically on, Android we will want to have
the possibility to detect vulnerabilities up to function specific but still keeping
a high level of abstraction.

Time is a constraint The project’s time is limited to 5 months and while it
is a limitation, it also gives us a reason to make use of open-source and try to
find a way to provide something that can be expanded easily.

A tool for developers or testers Our contribution aims to be a helping guide
to developers that want to check their code. It would also be useful for a tester
to add a layer of vulnerability checking to the application process

Separate the work Our contribution will aim at separating the knowledge
needed to use the tool. If developers want to use the tool, then they don’t
need to understand the vulnerabilities they check. This way, we will need to
generate reports to guide the developers in removing the vulnerability, either by
automatically removing the vulnerability or by giving the information needed
to alter the code.

3.4 Evaluation methodology

In order to measure the efficiency of our work, we will need to build a test
bench, as none is currently available at the laboratory.

During the research process, the GHERA [2] repository has been found.
This repository gives examples of vulnerabilities, how to exploit them and the
solution to the vulnerability. We will base some of our tests on this repository
and build the rest in the same manner as they do, as the limitations of this
website is that it has not been updated since 2019.
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Table 3.1: GHERA and the represented vulnerabilities

Vulnerability Type Crypto ICC Networking NonAPI Permission Storage System Web

Number of examples 5 17 8 2 2 7 7 12

A problem that arises is that the GHERA project gives "fake" examples
of vulnerabilities. To give an example, the vulnerability WeakPermission-
UnauthorizedAccess-Lean features an application that did not limit who can
access and launch its activities. This vulnerability shows that we can call a
specific action to query the "database" it contains from outside the application.
To show this they simply print the string "query MyContentProvider for
sensitive information" which is in my design not a vulnerability as it does
not print a private value nor does it allow for any misuse of the application. To
solve this, we will partly modify the code so that it actually prints a private
value if needed.

In terms of evaluation, we will be using GHERA to measure the
detectability of every vulnerability:

Is the vulnerability X possible to detect using the tool Y?

As explained, due to the limitations of GHERA we will try to use
vulnerabilities that allow for data leakage. If needed, we will add the data
flow through the presented vulnerability.

Limitations Our project aims at detecting vulnerabilities in specific contexts
as much as giving a Model-Based security testing tool. Due to time limitations
and lack of existing benchmarks, we kept GHERA. Due to that, we could not
specifically measure the efficiency in terms of context-specific vulnerability
detection or how well our tool compares to non context-aware security testing
tools.
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Chapter 4

Software contribution

In this section, we will be reviewing the theory and technology built during
the master’s thesis. The first section, section 4.1 will give a conclusion to our
vulnerability study. Then, section 4.2 will introduce the general architecture
of the process we created. After that, in section 4.3, will be reviewed the first
part of the architecture on the subject of behavioural test generation. Lastly,
we will present in section 4.4 the exploit generator, its design and philosophy,
and its architecture.

4.1 Vulnerability focus

In section 2.4 we have described the state of the art of Android application
vulnerabilities. The table 4.1 transcribes the features that need to be used to
detect each vulnerability, which will be used as a guide for the design of our
contribution.

The features are:

The application code

• Yes: The application code is enough to detect the vulnerability.

• No: The application code is not enough to detect, and additional
information is needed (context).

• Not applicable: The vulnerability cannot be detected through the
application code and other means must be used.
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Context

• Dynamic: The dynamic context can (or must if application code is not
enough) be used to detect the vulnerability. This can refer to interactions
with other applications or sensor values (Wi-Fi, location. . . )

• Static: The static context can (or must if application code is not enough)
be used to detect the vulnerability. This can refer to the configuration of
the phone and application (API version, network configuration...)

Table 4.1: Vulnerabilities and their detectable features

Vulnerability Is application
code enough. Context Explanation

Untrusted or Manipulated
Sensors

Not applicable Dynamic Detected with unusual context modifications.
May be detected with unusual sensor patterns

Outdated API version, Sen-
sitive API

No Static Detected through application calls to vulnerable
functions or old API configurations.

SQLite Yes Detected through code review.

Storage Access Vulnerabil-
ity

Sometimes Static Detected by checking configuration of readable
content.

Hardcoded private data or
broken cryptography

Yes Static Detected through bad cryptographic function
written, hardcoded values or bad libraries.

Outdated library or third-
party library

Yes Detected through bad library usage.

Intra library collusion Not applicable Dynamic Detected through contextual checking of other
applications using the same library. Also
checking library code.

Intent spoofing Yes Static Detected through bad configurations of the
activities/services or code that gives too much
rights to incoming intents.

Unauthorized intent receipt No Dynamic Detected through bad coding practices when
writing broadcasts. Detected through strange
activity overlap between applications.

Untrusted user inputs Yes Detected through input sanitizing.

Incorrect data flow No Dynamic Detected by checking application code or private
data leakage on public channels

This table highlights the value of handling context when designing a tool
for vulnerability detection, as it is mandatory for at least 6 vulnerabilities to
not limit to source code our research but also as it helps most vulnerabilities,
possibly allowing us to detect wider versions of the cited vulnerabilities.
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4.2 Global Architecture

During the master’s thesis, we designed and created a two part process. First,
a context-aware code coverage generator tool called ConTest. Then an abstract
vulnerability generator tool called VPatChecker. In figure 4.1 we can see the
global design of this process.

In terms of usage, the developer of a specific Android application creates
a high level model of his application using a defined DSL.

The resulting model is enriched with the information on dataflow using
FlowDroid [47]. This tool allows building a call graph of an application using
the specified functions as input and the specified functions as output.

This allows to:

• See the flows from private data to public output

• See the effects on public inputs to specific functions (in the case of
vulnerable functions)

The model is then used by ConTest, the test generator built by Adwan
and I, to generate a set of tests by combining it with a generic definition of
Android context. This combination allows generating a set of tests taking into
account the multiplicity of dynamic context that may or may not change during
execution of the application. The generated tests are behaviour test exported
as XML files, these test provide coverage information on the application.

Lastly, the generated tests are used by VPatChecker comparing each test
with every vulnerability pattern written in order to see if a specific pattern can
be applied to one of the tests. If a positive comparison is found, VPatChecker
makes the necessary modifications to the tests in order to transform it into an
exploit (like changing the input values, for example). The output is exported as
".xml" files, these provide information on vulnerabilities present in the code.

The entire process allows preventing vulnerabilities during the development
process by telling the developer how we can exploit his specific code and
allowing him to fix his code.

4.3 Test Generation

As explained in section 3.2, we based our work on a work by Adwan called
"Context-dependent Model-based Testing of Mobile Apps" [11] (or ConTest).
In order to be clear about the participation of Adwan in this base, each part
will detail the contributions.
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Figure 4.1: Global architecture of test generation in ConTest

ConTest was designed as a tool for code coverage that in its design allows
for a multiplicity of coverage criteria. Because generating test is a complex
problem we limit the number of tests we generate with test objectives, this can
be for example: Checking that we executed each line of code at least once or
checking that we executed each function once.

4.3.1 ConTest - Architecture

The ConTest process design is defined around a model of an application. This
model is an implementation of a DSL designed using Xtext [48], a part of the
Eclipse Modelling Framework. Xtext gives a tool to describe a language via
metamodels or directly writing the code ourselves. The power of Xtext is that it
generates a parser and multiple other tools from the definition of the language
we gave. In ConTest it allows us to create languages that are easy to write for
someone but also easy to parse by a program and thus allows us to exploit the
model with algorithms (for code coverage for example).

A popular framework for creating DSLs is Xtext which is part of the Eclipse
Modelling Framework. Xtext can be used to create DSLs either by supplying
a metamodel or by defining a grammar for the language. Furthermore, Xtext
automatically generates a parser and a text editor supporting syntax colouring
and error highlighting

In figure 4.2 we see the design of the test generation process. As a whole,
the project takes a Finite State Machine (FSM) (more precisely an Hierarchical
Finite State Machine (HFSM)) of a specific application. The behaviour knows
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that it is dependent on a specific number of dynamic and static contexts. Then,
using the context definition, we generate the combinations of tests using the
different context values.

In the example 4.2, the model is dependent on the connectivity. In this
case we generate tests that follow the coverage criteria, taking into account that
context can either be: offline, Wi-Fi, slow3g or more.

4.3.2 ConTest - Implementation

In this section we will explain in more detail the inner workings of ConTest
following the 3 parts of figure 4.2.

4.3.2.1 CDML: Behaviour DSL

General idea: As we can see in figure 4.2, an HFSM is used to
represent the model. This particularity, although originally designed for web
applications [49] fits perfectly in the context of Android development.

To understand why, we have to understand that an Android application is a
agglomeration of different components:

• Activities

• Services
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• Broadcast receivers

• Content providers

As explained in the Android developer’s webguide [50], each component
is an entry point through which the system or a user can enter your app. The
developers are then able to limit who can access which components through
different permissions or filters.

In terms of model, we can thus separate each component in its own FSM
and study it separately. This means that we would have a model with two
level of abstractions: HFSM defining the model as seen from the exterior (an
aggregation of components jumping from one to another), and a set of FSM
defining the inner behaviour of each component.

With this in mind, we define the behaviour model (Context-Driven
Modelling Language (CDML)) as an Xtext file. The defining file can be found
at annex A.

Cdml:
'model' name=EString '{'

((contexts+=Contexts)?) &
((staticContexts+=StaticContexts)?) &
((situations+=Situations)?) &
(statemachines+=Statemachine+) &
(adaptations+=Adaptation∗)

'}'

Figure 4.3: Main description of CDML

In figure 4.3 we can see the main parts of the model. A model is described
by:

• A set of dynamic contexts: The type of contexts its code depends on

• A set of static contexts: The type of static contexts its code depends on

• A set of situations: As defined by section 2.3. A set of specific contexts.

• At least one state machine: Each defining a specific component of our
application

Lastly, in order to carefully represent states that happen in a specific
situation, like for the case of error handling (internet disconnected), we define
a set of FSM called adaptations. Adaptations adapt from a specific state in a
specific FSM when a specific situation triggers.
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Context: As explained, context is separated in three parts, each of them
defining a specific part of the code.

In the dynamic context section, we define context names that affect specific
states and situations. The names relate this model to the DSL for context
Context Definition Language (CDL). The CDL model will then give us the
real values that this context can have during an execution of the application.
This separation helps the developer not having to specify the values itself,
removing mistakes and improving model readability. An example can be seen
in listing 4.1.
model TranslationApp {

contexts {
INTERNET_CONNECTIVITY

}

Listing 4.1: Example of dynamic context model

In the static context part, we define context values that affect the start of
the application, these values reign the execution process of an application
and do not change after boot. This information is particularly interesting
for vulnerability detection as it contains configurations like Android versions
this app may run on or network configuration, allowing detection of retro-
compatibility vulnerabilities or more.

static contexts {
minSdk = "26",
maxSdk = "",
targetSdk = "32"

}

Listing 4.2: Example of static context model

In the listing 4.2, the model defines as static values the version on which
the application may run. Notably, minsdk defines that an application may not
run on an Android phone running an API version older than minsdk. This
specific example will allow us to generate tests on specific Android versions
and possibly find unexpected results.

Lastly, situations define specific dynamic context events that may affect a
state in a very specific way. Situations define specific context values during
which a state will jump to an adaptation.

situations {
INTERNET_DISCONNECTED : INTERNET_CONNECTIVITY,
INTERNET_SLOW : INTERNET_CONNECTIVITY

}

Listing 4.3: Example of situation model

In the listing 4.3, a situation exists when internet is disconnected. This
allows to later define adaptations for cases when internet is disconnected (like
to handle errors or disconnections).



Software contribution | 39

FSM: As explained above, we defined state machines for each component.
As we can see in figure 4.4, each state machine will announce its permission
type, these values are usually written by the developer in its manifest file but
are needed in order to determine if an application has permission flaws or if
it’s accessible from another application. The exported value indicates that the
component may receive broadcasts from an exterior application, the permission
value shows which permission a specific component requires the caller to have
to be called.

/∗
∗ FSM defining a specific component
∗/

Statemachine:
'statemachine' name=EString (exported?='exported' (permission=Permission)?)?'{'

states+=State∗
'}'

;

State:
(AtomicState | SuperState)
(

'{'
transitions+=Transition∗
('dataflows' '{' dataflows+=DataFlow∗ '}')?

'}'
)?

;

Figure 4.4: Description of statemachine

Each FSM (or statemachine) is defined as an agglomeration of states. Each
state being either an atomic state or a super state.

statemachine ABSTRACT_SM {
state START {

transition on APP_STARTED −> SEND_MESSAGE_ACTIVITY
}

super state SEND_MESSAGE_ACTIVITY abstracts SEND_MESSAGE_ACTIVITY_SM {
transition on TERMINATE_BUTTON_CLICKED −> EXIT
transition on SUCCESS −> HANDLE_SUCCESS

}

state HANDLE_SUCCESS {
transition on BACK_BUTTON_CLICKED −> SEND_MESSAGE_ACTIVITY

}

state EXIT
}

Listing 4.4: Statemachine (SM) containing the atomic state Start,
Handle_Success and Exit, and the super state Send_Message_Activity

We define super states as states that abstract another FSM (in simpler words,
links to another statemachine). In listing 4.4, Send_Message_Activity is a super
state that links to the FSM Send_Message_Activity_SM. On the other hand,
atomic states are what we could call normal states containing transitions to
other states inside the same FSM.
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statemachine SEND_MESSAGE_ACTIVITY_SM exported {
state SEND_MESSAGE awareof INTERNET_CONNECTIVITY {

transition on SEND_MESSAGE_CLICKED −> SHOW_ANSWER
}

state SHOW_ANSWER
}

Listing 4.5: Statemachine containing the context aware state Send_message
and the atomic state Show_Answer

As seen in listing 4.5, an atomic state may be context dependent, which
indicates that transitions may differ in different contexts. If a specific transition
happens in a specific situation, a developer may model that with an adaptation.

adaptation for INTERNET_DISCONNECTED at SEND_MESSAGE {
state SEND_MESSAGE {

transition on SEND_MESSAGE_CLICKED −> HANDLE_ERROR
}

state HANDLE_ERROR{
transition on BACK_BUTTON_PRESSED −> external SEND_MESSAGE_ACTIVITY_SM.

↪→ SEND_MESSAGE
}

}

Listing 4.6: Adaptation of the state SEND_MESSAGE in the situation
INTERNET_DISCONNECTED

In this example 4.6, the adaptation happens on state SEND_MESSAGE
when situation INTERNET_DISCONNECTED is true. In this case, the
adaptation will act as if it was more states existent in the original FSM.

4.3.2.2 Context DSL

The second component of ConTest is the Context Definition Language (CDL)
DSL. This language allows defining the context values of an Android
application. Originally thought to be implemented by the developer for each
application, during this master’s thesis the design changed so that only a single
implementation of CDL is needed for every application keeping it as a DSL so
that it’s easily extendable by a tester

It is also important to note that no really significant change has been made
to CDL since the work of Adwan, I will thus only briefly present the language
to simplify the understanding of the test generation for the reader.

As explained by Adwan in his paper [11], CDL was created to capture the
concepts of our context representation (Dynamic and Situation). This DSL
contains information surrounding the contexts, separated from the application
itself. The language itself, as seen in the figure 4.2 is set as a list with a certain
amount of data.

For each dynamic context, we have can have the following data:
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• Provider: Source of the context information (Eg: Location is given by
the GPS sensor or internet)

• Properties: The set of value types that define a context (Eg: Location is
defined by longitude and latitude)

context INTERNET_CONNECTIVITY {
providers: [WIFI_ADAPTER, CELL_ADAPTER],
properties: [connectivity: Connectivity]

}

context LOCATION {
providers: [GPS_SENSOR, CELL_ADAPTER],
properties: [availability: Availability, longitude: double, latitude: double]

}

Listing 4.7: Context for location and internet connectivity as defined by CDL

The types of the properties can either be Java native ones (double, int,
string. . . ) or defined by the user in lists, as seen in the listing 4.8.

type Connectivity {offline, wifi, slow3G, fast3G, _4g, high_latency}

Listing 4.8: Example of new type definition in CDL

CDL also defines situation values, meaning that for a specific situation, it
gives the values that the context needs to have to validate the situation. This
can be seen in listing 4.9.

situation INTERNET_DISCONNECTED {
INTERNET_CONNECTIVITY.connectivity == offline

}

situation INTERNET_SLOW {
INTERNET_CONNECTIVITY.connectivity == slow3G

}

Listing 4.9: Situations as defined by CDL

4.3.2.3 Model enrichment

During the study on Android vulnerabilities seen on figure 2.3 and later on the
table 4.1, a large part of vulnerabilities are based on incorrect/unsafe data flow.
For this very reason, we needed a way to track information flow through our
applications.

While this is impossible in the high-level oriented design of CDML, it felt
like an incredible limitation, as most vulnerabilities detected would have been
linked to the behaviour. One important design choice added to CDML was
dataflows.

The idea of adding dataflow information in the model was guided
by research papers on the subject, most notably the open-source project
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FlowDroid [47]. FlowDroid is a very powerful tool created by Steven Arzt et al.
that allows the creation of call graphs of the function we give it as input.

FlowDroid takes as input the Android Package Kit (APK) of an application,
a list of input functions and output functions. The tool then outputs a graph
of links from these input to these output functions as a full graph of function
calls and data modifications. The main goal of FlowDroid is to link private
data (location, sensor values. . . ) to public channels (logs, prints, non-encrypted
communication. . . ). Indirectly, we can hijack the process to also follow public
inputs in any function we set as output.

This possibility means we can track these kinds of dataflow:

• Public input data not sanitized in specific vulnerable functions.

• Private data sent on public channels.

FlowDroid works directly on the APK which will allow the enrichment
process to be used on a possible future black box version of ConTest.

To give an example of the enrichment process, let’s say that we use the
private source internet status in the state Send_Message of the state machine
Send_message_activity_SM (listing 4.5 this will update the into listing 4.10.

statemachine SEND_MESSAGE_ACTIVITY_SM exported {
state SEND_MESSAGE awareof INTERNET_CONNECTIVITY {

transition on SEND_MESSAGE_CLICKED −> SHOW_ANSWER
dataflows {

source internet_status
}

}

state SHOW_ANSWER
}

Listing 4.10: Statemachine containing the context aware state Send_message
and the atomic state Show_Answer enriched with the private data
Internet_Status

On another part of the program we find that a function log.d outputs that
same internet status, this then updates the model from listing 4.6 to listing
4.11.

adaptation for INTERNET_DISCONNECTED at SEND_MESSAGE {
state SEND_MESSAGE {

transition on SEND_MESSAGE_CLICKED −> HANDLE_ERROR
}

state HANDLE_ERROR{
transition on BACK_BUTTON_PRESSED −> external SEND_MESSAGE_ACTIVITY_SM.

↪→ SEND_MESSAGE
dataflows {

sink "log.d" ( source SEND_MESSAGE_ACTIVITY_SM.SEND_MESSAGE.internet_status
↪→ )

}
}
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Listing 4.11: Adaptation of the state SEND_MESSAGE in the situation
INTERNET_DISCONNECTED enriched with the public sink log.d

This example already gives an information to the developer by itself by its
simplicity, we find a direct flow from a private source (data) to a public sink
(channel), although it is in a specific context only (Internet_disconnected).

Sinks can have multiple parameters, in listing 4.11 log.d only has a single
parameter, but it could have more.

It is important to note that this section 4.3.2.3 is not used by the
test generation process (information is kept but not used) but only by the
vulnerability detection process of section 4.4.

4.3.2.4 Generator

The main process of generation is made by combining the two models (Context
and Behaviour) with a set of coverage algorithms.

A coverage algorithm is ruled by a coverage criterion, a set of rules that
define when the set of tests is complete. A coverage criterion exists to simplify
the highly complex problem of test generation, as well as to allow simple
validation of the tests generated.

A coverage criterion is defined by the context of the SuT and in the case of
MBST:

• All-States: All states have been executed at least once

• All-Transitions: All transitions have been gone through.

• All-Transition pairs: All pairs of adjacent transitions have been executed.

These are taken from the document by Dawood et al. [51], in the case of
graphs comparable to FSMs.

In the case of contextual operations, we define a new coverage criteria called
All-Situation. This coverage criteria aimed at validating that every context-
aware state is tested against every possible value of context it depends on.

The developer is free to choose the context criterion that will be used during
the test generation, each criterion has different complexity values. During the
tests and for the rest of the report, we will be using the criterion "All-transition
and All-Situation"

Generator is a small plugin of 2400 lines of code that allows in its design
to add as many coverage criteria as we want. In its current design it follows
the following steps:
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• Load CDML and CDL models

• depending on the coverage criteria selected, initialize the end goal of test
generation.

• For each statemachine we generate the subtests following the selected
criteria

• If a statemachine has "exported" or is the main, it is counted as a starting
node.

• We aggregate the tests from each super state to the statemachines
generated tests

• Print/export all the tests that come from starting nodes

The advantage of an HFSM model is the possibility to separate the
generation algorithms in two parts. Generating the paths (or tests) in a single
FSM (or statemachine). Then aggregating the tests together using the super
states.

SubPath generation The first part, subpath generation, takes every
statemachine separately and build the paths found inside.

If we take as example the listing 4.4, we are able to generate the following
paths (table 4.2).

Table 4.2: Subpaths of abstract_sm; Transitions between square brackets

Path # PathDescription

Path 1 Start [APP_STARTED] → SEND_MESSAGE_ACTIVITY
[TERMINATE_BUTTON_CLICKED] → EXIT

Path 2 Start [APP_STARTED] → SEND_MESSAGE_ACTIVITY [SUCCESS]
→ HANDLE_SUCCESS [BACK_BUTTON_CLICKED] →
SEND_MESSAGE_ACTIVITY [TERMINATE_BUTTON_CLICKED] → EXIT

In a less trivial example, if we take the statemachine Send_Message_Activity_SM
(listing 4.10) with the adaptation of listing 4.11 then we have to generate
subpaths after having handled the contexts for the context-aware state
SEND_MESSAGE. The values of Internet connectivity are found in the CDL
model 4.7, 4.9 and 4.8, it allows us to generate the following paths 4.3.
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Table 4.3: Subpaths of send_message_activity_sm; Transitions between square
brackets; Context in green; Situation in purple

Path # PathDescription

Path 1 SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline}
{Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED]
→ SEND_MESSAGE [SEND_MESSAGE_CLICKED] → Show_Answer

Path 2 SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} →
SHOW_ANSWER

Path 3 SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} →
SHOW_ANSWER

Path 4 SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} →
SHOW_ANSWER

Path 5 SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} →
SHOW_ANSWER

Path 6 SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} →
SHOW_ANSWER

Test Path Aggregation Now that we have every subpath for every FSM, the
process of aggregating every subpath from a specified top level of the hierarchy
is called aggregation. The goal here is to take every starting node selected (the
main activity and every activity we can call from the outside) and to fill every
super state with the subpath we generated earlier.

One of the limitations of this technique is infinite calls. There is the
possibility that a model contains an activity A that calls an activity B that
calls an activity A. While this is not realistic, we decided to ignore loops in our
code when a case like this one happens. Another debatable method is to limit
the CDML model directly, but this could have led to problematic limitations,
so the solution was ignored.

Once we apply this process to the tables 4.2 and 4.3, taking Abstract_SM
as the starting node, we get the table 4.4.

In the table 4.4, we only see a limited version, as the final number of paths
is 40. This is due to the original subpaths of abstract sm 4.2 having two times
the super state Send_Message_Activity_SM. This means that we generated
the combinations of paths.

The resulting tests are generated as XML documents, in terms of usage
the main goal of using XML is to be able to both easily read the document if
needed for manual translation in Java/Kotlin and also to be able to be able to
easily parse the document for a possible automatic generation or other software.
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Table 4.4: Aggregated paths of abstract sm (incomplete version)

Path # PathDescription

Path 1 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]
{offline} {Internet_Disconnected} → HANDLE_ERROR
[BACK_BUTTON_PRESSED] → SEND_MESSAGE
[SEND_MESSAGE_CLICKED] → Show_Answer
[TERMINATE_BUTTON_CLICKED] → EXIT

Path 2 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi}
{} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT

Path 3 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]
{slow3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] →
EXIT

Path 4 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]
{fast3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT

Path 5 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g}
{} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT

Path 6 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]
{high_latency} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED]
→ EXIT

Path X ... Shortened, complete version at annex C

As is the case for the exploit generation that directly uses these output tests.
Lastly, we chose XML over any other type of serialising tool as it is native

in Java.

4.4 Exploit generator

As seen in figure 4.1, if the previous part allows us to generate tests for
code coverage, this section will introduce the process that allows vulnerability
detection and exploit generation. In section 4.4.1 will be introduced the
architecture of the solution. Then, section 4.4.2 will give a better understanding
of how this solution is assembled and works by detailing the vulnerability
pattern language Vulnerability Pattern (VPat) and the vulnerability checker
VPatChecker.
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4.4.1 VPAT - Architecture

The definition of this contribution has been an extension of our design goals
of section 3.3. The solution is technically completely separate from ConTest
as it only requires tests as an input that could be generated by another tool as
long as the information contained in these data packets are of the same nature
as the one we implemented.

Two parts define this process:

• A set of vulnerability patterns not tied to a specific application

• A tool that compares these patterns with a set of tests and modifies the
tests if they could be vulnerable

The general idea of the project is to separate the work between two distinct
groups, the first one being the developer that creates his application (and
potentially the model of his application). The second actor being a pentester,
whose job is to analyse new vulnerabilities and design their pattern with our
provided language and editor VPat. VPat is a DSL written with Xtext that
provides a way to define a vulnerability in a simple way, with the objective
of building an open-source database of vulnerabilities written abstractly to be
used by security testing tools.

In figure 4.5, we see represented the detailed process of VPatChecker, that
uses abstract tests in XML form and patterns to detect vulnerabilities and
generate exploits.

4.4.2 VPAT - Implementation

In this section, we will detail the way VPatChecker and VPat are built.

4.4.2.1 Vulnerability patterns

As explained in section 4.4.1, VPat was created like CDL and CDML using
Xtext. Here the advantage is very clear, we are able to separate the tool to
check vulnerabilities, from the vulnerabilities and from the actual application.
Complete Xtext language can be found in annex D.

A vulnerability pattern is defined by its name and description. We are then
able to separate it’s characteristics into two main parts:

• Context: Defines the specific state the application/host should have to
be vulnerable.
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Figure 4.5: Detailed high level architecture of exploit generation (VPatChecker)

• Function: Defines the specific function and/or dataflow the application
should have to be vulnerable.

Context This can be seen as the static context component of the application
or activity. This component aims at allowing contextual vulnerabilities to be
defines. Whether it’s specific Android versions, network configurations or
permission configurations, a vulnerability can be present on a specific situation.

To give a specific example, in Android versions lower than API 28
(which corresponds to Android 9 Pie), the default network configuration is
to accept plaintext HTTP communications. This means that in the context of
a default network configuration and Android API versions lower than 28, a
request to a website is considered a completely public channel. Whether the
communication is encrypted otherwise meaning that the communication is
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private (or at least as private as HTTPS is. . . ). See example 4.12.
Vulnerability "HTTP API27" {

description "Cleartext communication is accepted on api version < 28 when
↪→ network configuration is default"

context {
apiversion "27",
network default

}

function {
main Sink "Example_HTTP_func" {

parameter {
private

}
},
Source private ∗

}
}

Listing 4.12: Example of private data sent to example http_function

function This is the component that defines the dataflow we should be
tracking. In a very simple way we can write the pattern 4.13, in this pattern
we describe that the flow of a private value to the public sink log.d should be
detected.
Vulnerability "Log.d Leak" {

description "Log.d kept in code makes it vulnerable to leakage of data"

function {
main Sink "log.d" {

parameter {
private

}
} ,
Source private ∗

}
}

Listing 4.13: Example of private data sent to log.d

In more generic way, the function component is a sink (or final function)
called with specified parameters. This sink can either be a literal sink to a
public channel or simply a vulnerable function. The specified parameters are
either a sink, an inflow or a static value (string, int...). Inflow is a term defining
both a private source (a function or set of functions giving private information)
or an input.

4.4.2.2 Vulnerability detection

The vulnerability detection process compares every test generated to every
vulnerability a build a report containing the resulting information. In terms
of implementation the code allows for easy addition of a different checker
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allowing the code to be updated with new methods using the model that has
been created.

A checker makes use of the defined test model and pattern to find possible
vulnerabilities in a test. For our project, we designed a simple checker that does
not optimise the checking process, meaning that it checks every test on every
pattern. This simple checker takes the main sink of the pattern as base and tries
to match the pattern sink to the test sink. The checker builds a report folder of
positive and negative reports that will later be used to generate reporting and
real folders with the tests.

The report classifies the exploits per starting node, then vulnerability and
finally execution context. This classification is used to simplify real code
generation and for readability. As shown in figure 4.6

Figure 4.6: Reporting created by VPatChecker
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4.4.2.3 Update tests

The last process of the exploit generation process is transforming a simple
behaviour test into an exploit. In our case the difference between behaviour
test and exploit is thin, a behaviour test can be an exploit without change when
the vulnerability is a simple design mistake, for example if the developer chose
to let a logging function print the gps values then it leaks private data but no
manipulation of input values may be needed as long as we get to the specific
line of code of the function.

The other way around sometimes we may need to control the input values
in a specific test to control a specific value in a function.
Vulnerability "vulnerableFunc EXPLOITME" {

description "The function vulnerableFunction leaks data when the second
↪→ parameter is EXPLITME in android version 31"

context {
apiversion "31"

}

function {
main Sink "vulnerableFunction" {

parameter {
private,
static "EXPLOITME"

}
},
Source private ∗

}
}

Listing 4.14: Example of pattern that needs a specific value in its second
parameter

In the pattern seen in listing 4.14, we can see that the function
vulnerableFunc can be exploited when we have the possibility to set the value
EXPLOITME on the second parameter. In our case, a test may have the sink
vulnerableFunc with a second parameter that already has an static value in it,
but it also may be an input value.

In the excerpt 4.7, we can see in the state DISPLAY_WARNING that the
dataflow vulnerableFunc takes as parameters:

• The source internet from the state SEND_MESSAGE

• The source enter_value from the state SENDER

When building the exploit for the specific pattern 4.14, we will change the
value of the input dataflow enter_value in the state SENDER to EXPLOITME
to fit the pattern. This gives us the exploit modified shown in figure 4.8.
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<state name="SEND_MESSAGE">
<transition name="SEND_MESSAGE_CLICKED">

<contexts>
<context origin="INTERNET_CONNECTIVITY">wifi</context>

</contexts>
</transition>
<dataflows>

<dataflow name="internet" type="Source"/>
</dataflows>
</state>
<state name="SENDER">
<transition name="EXCEPTION"/>
<dataflows>

<dataflow name="enter_value" type="Input"/>
</dataflows>
</state>
<state name="DISPLAY_WARNING">
<transition name="BACK_BUTTON_PRESSED"/>
<dataflows>

<dataflow name="vulnerableFunc" type="Sink">
<parameters>

<parameter origin="source">internet</parameter>
<parameter origin="source">enter_value</parameter>

</parameters>
</dataflow>

</dataflows>
</state>

Figure 4.7: Excerpt from a test generated by ConTest, input value is not set

<state name="SEND_MESSAGE">
<transition name="SEND_MESSAGE_CLICKED">

<contexts>
<context origin="INTERNET_CONNECTIVITY">wifi</context>

</contexts>
</transition>
<dataflows>

<dataflow name="internet" type="Source"/>
</dataflows>
</state>
<state name="SENDER">
<transition name="EXCEPTION"/>
<dataflows>

<dataflow name="enter_value" type="Input" value="EXPLOITME"/>
</dataflows>
</state>
<state name="DISPLAY_WARNING">
<transition name="BACK_BUTTON_PRESSED"/>
<dataflows>

<dataflow name="vulnerableFunc" type="Sink">
<parameters>

<parameter origin="source">internet</parameter>
<parameter origin="source">enter_value</parameter>

</parameters>
</dataflow>

</dataflows>
</state>

Figure 4.8: Excerpt from an exploit generated by VPatChecker, input value is
set to the value EXPLOITME
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Chapter 5

Results and Analysis

5.1 GHERA as a test database

As explained in section 3.4, to test the project, an interesting dataset is the
GHERA [2] dataset. GHERA is a paper and open-source project with the
idea to give researchers a set of Android applications carefully designed to
demonstrate a vulnerability.

In section 6.2 will be introduced that the tool is not yet automated, making
any test a long process (that for now includes implementing the vulnerability
pattern for the specific vulnerability), this limited our testing capabilities.

In this chapter, we will show the capabilities of ConTest and VPatChecker
through a series of tests, then a discussion on the theoretical range of
vulnerabilities we are able to detect and what parts should be enhanced to
broaden this range.

Limitations of GHERA

As introduced in section 3.4, GHERA has three main limitations:

• It has not been updated since 2019, which means that the test set does
not include recent vulnerabilities.

• The tests are made for demonstration. With only a single demonstration
per vulnerability. Meaning, we cannot test against complex cases with
only GHERA.

• The vulnerabilities depicted are not always really considered as a
vulnerability, this is due to our definition of adversary in sections 1.3
and 2.1.
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5.1.1 Detail of the analysis process

In this section we will show a full detailed usage of the contribution to
vulnerable code of GHERA.

As example, we will be taking showing that a dataflow failure (high to low)
is detected and a test leading to the specific situation will be generated. The
base example will be on WeakPermission-UnauthorizedAccess-Lean [52] of
the permission category.

5.1.1.1 Base code

The main idea of this vulnerability is to show off that an exported content
provider that demands a normal permission can be called by anyone, as a
normal permission is accepted by default. In the test case, the vulnerable app
has a query that can be called by another app, we will modify this query so a
real vulnerability is exploited.

In order to have an interesting test, a dataflow from high to low has been
added when the query operation of the content provider is called. The added
dataflow is a simple log of a check to see if internet is available, which gives
the information on connectivity to the attacker.

@Override
public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

try {
ConnectivityManager cm = (ConnectivityManager) this.getContext().getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo nInfo = cm.getActiveNetworkInfo();
boolean connected = nInfo != null && nInfo.isAvailable() && nInfo.isConnected();
String connectedString = "Connectivity : Phone is " + new Boolean(connected).toString();
Log.d(TAG, connectedString);

}
catch (Exception e) {

Log.e("Connectivity Exception", e.getMessage());
}

return null;
}

Figure 5.1: Added part to the GHERA code example

The figure 5.1 checks if the network is available through a check whether
the NetworkInfo created is null or not and prints the results (true or false)
with log.d. For an attacker, reading the logs is simple and often forgotten by
developer, which allows giving a pretty common vulnerability as example.

5.1.1.2 Model creation

The first part of the process is to convert the chosen code to a CDML model.
This example being simplistic it is easy to create:
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• Two different statemachine: One for MainActivity.java the other one for
MyContentProvider.java

• No dynamic context condition, and a simple static context API version
from 22 to API version 27 and default network

• Mostly empty states (States that have no transition)

This gives us the following model 5.1.
model WeakPermission {

static contexts {
minSdk = "22",
maxSdk = "",
targetSdk = "27"

}

statemachine MainActivity_SM {
state onCreate

}

statemachine MyContentProvider_SM exported normal "edu.ksu.cs.benign.MYCP_ACCESS_PERM"{
↪→

state receiveIntent {
transition on DELETE_INTENT −> delete
transition on GETTYPE_INTENT −> getType
transition on INSERT_INTENT −> insert
transition on QUERY_INTENT −> query
transition on UPDATE_INTENT −> update
transition on ONCREATE_INTENT −> onCreate

}

state delete

state getType

state insert

state query

state update

state onCreate
}

}

Listing 5.1: CDML model of WeakPermission-UnauthorizedAccess-Lean
from GHERA

The content provider MyContentProvider is exported with the normal
permission "edu.ksu.cs.benign.MYCP_ACCESS_PERM" which has been
added to the model.

5.1.1.3 Model Enrichment

For the model enrichment after using the given script, we get the graph 5.2.
As we can see, a flow from a NetworkInfo source to a log.d sink was

detected. We can then extend the model with the red and blue information
of the graph 5.2.
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Line: 55
int android.util.Log.d($u10, $u8)

Line: 52
$u-1#7 = android.net.NetworkInfo cm.getActiveNetworkInfo()

if $u-1#7 == null goto $u-1#9 = 0

$u10 = <edu.ksu.cs.benign.MyContentProvider: java.lang.String TAG>

int android.util.Log.d($u10, $u8)

sinks through

Figure 5.2: Flowgraph given by the enrichment script, from FlowDroid’s output

This gives the following enriched model 5.2
model WeakPermission {

static contexts {
minSdk = "22",
maxSdk = "",
targetSdk = "27"

}

statemachine MainActivity_SM {
state onCreate

}

statemachine MyContentProvider_SM exported normal "edu.ksu.cs.benign.MYCP_ACCESS_PERM"{
↪→

state receiveIntent {
transition on DELETE_INTENT −> delete
transition on GETTYPE_INTENT −> getType
transition on INSERT_INTENT −> insert
transition on QUERY_INTENT −> query
transition on UPDATE_INTENT −> update
transition on ONCREATE_INTENT −> onCreate

}

state delete
state getType
state insert
state query {

dataflows {
source NetworkInfo,
sink "log.d" ( source MyContentProvider_SM.query.NetworkInfo )

}
}
state update
state onCreate

}
}

Listing 5.2: Enriched CDML model of WeakPermission-UnauthorizedAccess-
Lean from GHERA
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As we can see in figure 5.2, the model’s state query has two dataflows: A
sink and a source.

5.1.1.4 Code coverage

In order to get a code coverage of this model, we use the ConTest tool which
is able to generate us:

• 6 Tests for MainActivity: Only one final state (onCreate) in 6 different
static contexts (1 per Android API versions)

• 36 Tests for MyContentProvider: 6 Final states in 6 different static
contexts

Of course, this test is made simple for presentation. A more complex test
was run on the introduction to ConTest and VPatChecker in chapter 4 as seen
in the tests of annex C.

These generated tests are abstract and can be translated by the developer,
or we can analyse them to check for vulnerabilities.

5.1.1.5 Vulnerability detection

For the vulnerability detection, we tested with 3 different vulnerability patterns.
One of those is seen in listing 4.13 a simple flow from a source to the sink log.d.

By checking every generated test, we get the report shown in figure 5.3
In this report, we see that every test was checked against every pattern and

gives us the following:

• For MainActivity_SM: Every pattern was negative

• For MyContentProvider_SM: The pattern 4.13 was positive for 6 out of
36 tests

Note that the pattern log.t is only checked on tests with the static context
API version 26.

Our tool shows us that the 6 different exploits exist when an exterior intent
sent to the MyContentProvider_SM. This exploit exists when we simply call
query, and in every static context.

A more complex full test can be found in annex E.
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Figure 5.3: Report generated by VPatChecker for WeakPermission-
UnauthorizedAccess-Lean from GHERA

5.2 Detectability analysis on GHERA’s database

In this section, we will detail the analysis of this project on the test bench
GHERA.

Permission subgroup

Table 5.1: Result of analysis for Permission-type vulnerabilities of GHERA

Vulnerability Subtype Detectable Explanation (Optional)

WeakPermission-
UnauthorizedAccess-Lean

Yes

UnnecessaryPerms-PrivEscalation-
Lean

No An application can have libraries that
contain unused functions that could
be called through the application by a
malicious application
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NonAPI subgroup

Table 5.2: Result of analysis for NonAPI-type vulnerabilities of GHERA

Vulnerability Subtype Detectable Explanation (Optional)

NonFunctional-OutdatedLibrary-
Lean

Yes/No It is possible to detect this specific
instance of the vulnerability but as we do
not model API versions used we are not
able to correctly model the vulnerability
of this type

MergeManifest-
UnintendedBehavior-Lean

No Technically the same vulnerability as
UnnecessaryPerms-PrivEscalation-
Lean but we are not able to model API
versions used to safely model vulnerable
libraries

Crypto subgroup

Table 5.3: Result of analysis for Crypto-type vulnerabilities of GHERA

Vulnerability Subtype Detectable Explanation (Optional)

BlockCipher-ECB-
InformationExposure-Lean

Yes

BlockCipher-NonandomIV-
InformationExposure-Lean

No It is possible to model the vulnerability,
but the PoC checker does not allow for
multiple functions to be detected

PBE-ConstantSalt-
InformationExposure-Lean

Yes

ConstantKey-ForgeryAttack-Lean Yes

ExposedCredentials-
InformationExposure-Lean

Yes
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Storage subgroup

Table 5.4: Result of analysis for Storage-type vulnerabilities of GHERA

Vulnerability Subtype Detectable Explanation (Optional)

ExternalStorage-DataInjection-
Lean

Yes

ExternalStorage-InformationLeak-
Lean

Yes

InternalStorage-DirectoryTraversal-
Lean

Yes/No We are able to detect that there may
be a vulnerability as we have the
information that an input was sent to a
specific function, but we do not handle
modification of the data

InternalToExternalStorage-
InformationLeak-Lean

Yes

SQLite-execSQL-Lean Yes/No We are able to detect that there may
be a vulnerability as we have the
information that an input was sent to a
specific function, but we do not handle
modification of the data

SQLlite-RawQuery-SQLInjection-
Lean

Yes

SQLlite-SQLInjection-Lean Yes
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System subgroup

Table 5.5: Result of analysis for System-type vulnerabilities of GHERA

Vulnerability Subtype Detectable Explanation (Optional)

CheckCallingOrSelfPermission-
PrivilegeEscalation-Lean

Yes

CheckPermission-
PrivilegeEscalation-Lean

Yes

ClipboardUse-
InformationExposure-Lean

Yes

DynamicCodeLoading-
CodeInjection-Lean

Yes

EnforceCallingOrSelfPermission-
PrivilegeEscalation-Lean

Yes

EnforcePermission-
PrivilegeEscalation-Lean

Yes

UniqueIDs-IdentityLeak-Lean Yes
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Network subgroup

Table 5.6: Result of analysis for Networking-type vulnerabilities of GHERA

Vulnerability Subtype Detectable Explanation (Optional)

CheckValidity-
InformationExposure-Lean

No The vulnerability model do not allow
modelling non-called functions

IncorrectHostNameVerification-
MITM-Lean

No Same as CheckValidity-
InformationExposure-Lean

InsecureSSLSocket-MITM-Lean Yes

InsecureSSLSocketFactory-MITM-
Lean

Yes

InvalidCertificateAuthority-MITM-
Lean

No Same as CheckValidity-
InformationExposure-Lean

OpenSocket-InformationLeak-Lean No Too complex

UnEncryptedSocketComm-MITM-
Lean

No Same as CheckValidity-
InformationExposure-Lean

UnpinnedCertificates-MITM-Lean No Same as CheckValidity-
InformationExposure-Lean

Web subgroup

The result of the web subgroup can be summarized as it being out of scope
of our project. The main reason being that we are unable to model JavaScript
code in our vulnerability model.

Vulnerabilities tied to JavaScript inside webview will never be detected.
Of course, vulnerability "JavaScriptExecution-CodeInjection-Lean" tied to
accepting the execution of JavaScript is detectable.
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ICC subgroup

Table 5.7: Result of analysis for ICC-type vulnerabilities of GHERA

Vulnerability Subtype Detectable Explanation (Optional)

DynamicRegBroadcastReceiver-
UnrestrictedAccess-Lean

No Dynamically registered broadcasts
components are not tracked by the
program model

EmptyPendingIntent-
PrivEscalation-Lean

Yes

FragmentInjection-PrivEscalation-
Lean

Yes

HighPriority-ActivityHijack-Lean No We do not track priority in the models

ImplicitPendingIntent-IntentHijack-
Lean

No The vulnerability model do not allow
modelling non-called functions

InadequatePathPermission-
InformationExposure-Lean

Yes/No The model does not track pathPrefix thus
we are able to detect the vulnerability

IncorrectImplicitIntent-
UnauthorizedAccess-Lean

Yes/No The model does not track Intent Filters
thus we are able to detect the vulnerability

NoValidityCheckOn
BroadcastMessage-
UnintendedInvocation-Lean

Yes/No Same as IncorrectImplicitIntent-
UnauthorizedAccess-Lean

OrderedBroadcast-DataInjection-
Lean

No Too complex

StickyBroadcast-DataInjection-
Lean

No Too complex

TaskAffinity-ActivityHijack-Lean No We do not handle taskAffinity

TaskAffinity-LauncherActivity-
PhishingAttack-Lean

No We do not handle taskAffinity

TaskAffinity-PhishingAttack-Lean No We do not handle taskAffinity

TaskAffinityAndReparenting-
PhishingAndDoSAttack-Lean

No We do not handle taskAffinity

UnhandledException-DOS-Lean No Not a confidentiality vulnerability

UnprotectedBroadcastRecv-
PrivEscalation-(Fat|Lean)

Yes

WeakChecksOnDynamicInvoation-
InformationExposure-Lean

Yes
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5.3 Summarized analysis results

Here we can see the complete result of the analysis found in tables 5.1, 5.2, 5.3,
5.4, 5.5 and 5.7 summarised in a single table 5.8. The results which showed a
vulnerability detected but missing the real vulnerability were counted as "Not
detected" in the resulting table.

Table 5.8: Summarised result of vulnerabilities detectable by VPatChecker on
the GHERA benchmark

Vulnerability type Number of total
vulnerabilities

Number of detectable
vulnerabilities

Percentage of
detectability

Permission 2 1 50%

NonApi 2 0 0%

Crypto 5 4 80%

ICC 17 4 24%

Networking 8 2 25%

Storage 7 5 71%

System 7 7 100%

Web 12 Out of scope Out of scope

Total 60 23 38%

5.4 Range of tests outside GHERA

In this section we discuss the capabilities and limitations of the VPat patterns in
order to measure this we will compare with our specifications, more specifically
the vulnerabilities we want to tackle as shown by table 4.1.

5.4.0.1 Storage Access Vulnerability

As explained in earlier sections, we define this vulnerability by the misuse of
certain permissions concerning data written. With VPat we are able to detect
when a wrong setting is sent to a specific function, thus we are able to detect the
"vulnerability" that consists in making a specific file world_readable (although
that can be a choice).

A lot of different functions exist for this, although most are deprecated
as this is not the best way to share a file between apps. Figure 5.3 shows an
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example of pattern for the function "file.setReadable".
Vulnerability "File.setReadable" {

description "File.setReadable(true, false); - Local storage made world
↪→ readable is vulnerable"

function {
main Sink "File.setReadable" {

parameter {
static "true",
static "false"

}
}

}
}

Listing 5.3: Example of pattern detecting the use of File.setReadable which
would allow anyone to read the specified file

5.4.0.2 Intent spoofing

This specific vulnerability is related to bad configurations in the manifest file.
More specifically, it is about leaving a component available for others to start
or use when the developer did not intend to.

For detection, it is easy to detect, with VPatChecker, that a component
is callable by an outsider. The problem we have is the same we had with
GHERA [2], an application may have its components open for others for good
reasons.

Thus, we could consider that this is not a vulnerability per se, even though
it is considered this way in the literature.

In its design, VPatChecker (and ConTest) find every path from every starting
node in our project, and we define a starting node as the first line of code that
we are able to execute. In this case, open components are defined as starting
nodes if they did not ask for permissions that are signatures (See section 2.2.2).

5.4.0.3 Unauthorized intent receipt

This vulnerability can be considered as the opposite of intent spoofing, this
time we try to prevent other applications from being able to read the intents
we sent.

In the same way, in section 5.4.0.2 something unauthorized is to be
defined by a developer. We can still imagine a pattern that tells the developer
that a broadcast has been sent, for example by simply detecting the use of
sendBroadcast(...).
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Vulnerability "Broadcaster intent with private data" {
description "sendBroadcast is dangerous, it can leak data"

function {
main Sink "sendBroadcast" {

parameter {
anyPrivate

}
},
Source anyPrivate ∗

}
}

Listing 5.4: Example of pattern detecting the use of sendBroadcast which
would allow anyone to receive an intent

In figure 5.4, a pattern detects the usage of sendBroadcast with a payload
containing private data, allowing the user to know data is leaked.

5.4.0.4 Untrusted user inputs

For this vulnerability, the usage of a FlowDroid with custom input allows us
to detect user inputs as being data that we should track, this way we are able
to check if a user input is put inside a specific function. This specific function
could be set as being vulnerable in a pattern when a specific parameter is set,
this combination of features allow creating an exploit using specific user inputs.

An example of this would be the vulnerability linked to the API 28 update,
that removed the possibility to use HTTP by default on Android. This means
that we can create a pattern that checks if an application can be run in version
27 with default network configuration, listing 4.12 is an example of this.
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Chapter 6

Conclusions and Future work

In this chapter we summarize the conclusion of the project, we then give
possible future work tips to continue working on it. Lastly, we give a reflection
on the ethical issues of the contribution.

6.1 Conclusions

Generally speaking, the project started out as an exploratory idea to complete
and expand a previous work on application testing into a security testing
tool. Through a first analysis on current Android vulnerabilities, it has
been established that vulnerabilities cannot all be detected through the
application’s code and information on context is needed to tackle more specific
vulnerabilities.

With the theory of Adwan [11] has been created a tool called ConTest
(Context and Test) a process that, through a model of the application and the
contexts, allows a developer to generate abstract tests by following a selected
coverage criteria.

An extension of this work has been created, that instead of analysing
an application, directly scans coverage tests for matches against patterns of
vulnerabilities. This process has been named VPatChecker and is available
on GitHub[1] (For Vulnerability Pattern Checker). The end goal of this
contribution is to separate a developer’s work from the security testers, this
is allowed by designing the tool so that the patterns are separated from the
application code.

In order to create patterns for vulnerabilities, a language has been built.
This language aims at being simple to read, but also to parse. In a broader
point of view, every part of the contribution has been designed to allow for
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automatising in the future.

6.2 Limitations

The tools created, ConTest and VPatChecker, are not mature enough to join
a proper development process. While the tools allow to safely detect a wide
range of vulnerabilities two parts are missing:

• A database of vulnerability patterns: The project aims at using open-
source processes to build up its vulnerability database, but no platform
has been set up, and it will be left for a future contribution.

• An automation process: The project currently asks the user to rewrite
the abstract tests into (or at least to read them), this is not something that
a real developer may use (at least not an average developer).

• A complex matching algorithm: This should be created to detect complex
cases that may be close to obfuscation. This is important for Boolean
operations for example that may be more complicated than simply a true
or false in the code.

6.3 Future work

As explained in 6.2, the project has a few key points that could prove to be
interesting to examine in future works.

6.3.1 Automation process

This is the case for an automation process that converts the abstract tests
generated by both ConTest and VPatChecker into real code. This would allow
proving that vulnerabilities are detected and that no false positive was found.
It would also allow for the project to reach usable maturity. Indirectly, this
would allow a more specific analysis of the tool, giving more insights on its
efficiency. A proposal was made by Adwan to translate our generated tests into
Cucumber [53] tests, Cucumber uses the language gherkin to allow for human-
readable tests to exist in the development chain. While it was first designed to
allow non-developers to create tests, it is nowadays often used to automate test
generation.
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6.3.2 Vulnerability patterns

For the vulnerability patterns, a few key points can be enhanced, mainly taking
into account regular expressions and Boolean operands. This would mainly
allow having only one pattern for a multiplicity of different vulnerabilities
working on the same principle. Extending the range of vulnerabilities that
a pattern can take may also bring the need to alter its design in some parts.
One of the ideas that was not implemented during the project was to bring
the vulnerability fix into the vulnerability pattern. In simple words, have each
pattern also define how you solve the vulnerability. This process could allow
having a complete project directly solving a detected vulnerability, helping
non-security oriented developers to quickly solve vulnerabilities.

Open-sourced patterns

A last future work idea concerns the open-sourcing of vulnerability patterns.
If it is desired to allow anyone to add a vulnerability pattern (with moderation),
there arises a need to classify the vulnerability other than by name. In the same
fashion as during section 2.4, it could be interesting to classify every pattern
by CWE and Common Vulnerabilities and Exposures (CVE).

6.4 Reflections

The main goal of this project is to give more tools for developers to defend
their code from attacks or from attackers exploiting their code to steal the user’s
data. During the process, we generate abstract tests and exploits. While this
may allow attackers to use this tool to generate exploits on other people’s code,
it is currently only possible if they already have the code. In a more mature
version of the project, this could be a reason to stay with White-Box and not
Black-Box. In its current form, the contribution does not allow an attacker to
do any notable attack on an unknown code, we also only used fake applications
(not real, distributed and open-source code) so we do not provide exploits in
this master’s thesis.
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Appendix A

CDML.xtext

grammar fr.lcis.castav.cdml.CDML with org.eclipse.xtext.common.Terminals

generate cDML "http://www.lcis.fr/castav/cdml/CDML"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

Cdml:
'model' name=EString '{'

((contexts+=Contexts)?) &
((staticContexts+=StaticContexts)?) &
((situations+=Situations)?) &
(statemachines+=Statemachine+) &
(adaptations+=Adaptation∗)

'}'
;

/∗
∗ Dynamic context whose applications depend on
∗/

Contexts:
'contexts' '{'

contexts+=Context (',' contexts+=Context)∗
'}'

;

Context:
name=EString

;

/∗
∗ Static Context that define the application
∗/

StaticContexts:
'static' 'contexts' '{'

staticContexts+=StaticContext (',' staticContexts+=StaticContext)∗
'}'

;

StaticContext:
name=EString '=' value=STRING

;
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/∗
∗ Situations that exist in the context of the application.
∗ Each situation links to which context changes said situation
∗/

Situations:
'situations' '{'

situations+=Situation (',' situations+=Situation)∗
'}'

;

Situation:
name=EString ":" context=[Context|ID]

;

/∗
∗ FSM defining a specific component
∗/

Statemachine:
'statemachine' name=EString (exported?='exported' (permission=Permission)?)?'{'

states+=State∗
'}'

;

State:
(AtomicState | SuperState)
(

'{'
transitions+=Transition∗
('dataflows' '{' dataflows+=DataFlow∗ '}')?

'}'
)?

;

AtomicState:
'state' name=EString (contextAware?='awareof' contexts+=[Context] (',' contexts+=[Context])∗)?

;

SuperState:
'super' 'state' name=EString 'abstracts' abstracts=[Statemachine]

;

//External transition: source and target states do not belong to the same statemachine
Transition:

{Transition} 'transition' ('on' on=Event)? '->' ((external?='external' target=[State|FQN] )? |
↪→ target=[State])

;

Event:
name=EString

;

/∗∗
∗ Permission defining what we need to start said component/FSM
∗/

Permission:
(

normal?='normal' permissionValues+=PermissionValue (',' permissionValues+=PermissionValue)
↪→ ∗ |
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dangerous?='dangerous' permissionValues+=PermissionValue (',' permissionValues+=
↪→ PermissionValue)∗ |

signature?='signature' |
signatureOrSystem?='signatureOrSystem'

)
;

PermissionValue:
name=EString

;

/∗
∗ Enriched model part: Contains information on source/sink inside the model
∗/

DataFlow:
(Source | Sink)

;

Sink:
'sink' name=EString '(' (parameters+=Parameter (',' parameters+=Parameter)∗)? ')'

;

Parameter:
(wildcard?='*') | value=ID | (source?='source') origin=[Source|FQN]

;

Source:
(input?='input')? 'source' name=EString

;

/∗∗
∗ Defines states that happen in specific situations only
∗/

Adaptation:
'adaptation' 'for' situations+=[Situation] (',' situations+=[Situation])∗ 'at' state=[State]
'{'

states+=State∗
'}'

;

FQN hidden(): EString('.' EString)∗;

EString returns ecore::EString:
STRING | ID;
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Appendix B

CDL.xtext

grammar fr.lcis.castav.cdl.CDL with org.eclipse.xtext.common.Terminals

generate cDL "http://www.lcis.fr/castav/cdl/CDL"

ContextModel:
"contextModel" name=ID '{'

Contexts+=Context∗ &
Providers+=Providers∗ &
Situations+=Situation∗ &
Types+=DefinedType∗

'}'
;

Context:
(static?='static')? 'context' name=ID (derived?='derives' derives+=[Context] (',' derives+=[

↪→ Context] )∗)? '{'
('providers' ':' '[' providers+=[Provider] (',' providers+=[Provider])∗ ']' ',')?
'properties' ':' '[' properties+=Property (',' properties+=Property)∗ ']'
(',' ('mappings') ':' '{'

mappings+=ContextMapping (',' mappings+=ContextMapping)∗
'}')?

'}'
;

ContextMapping:
ref=[ContextValue|FQN] '->' expression=ContextExpression

;

Providers: 'providers' '{'
providers+=Provider (',' providers+=Provider)∗

'}'
;

Provider:
name=ID

;

Property:
name=ID ':' type=(TypeRef|SimpleType)
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;

TypeRef:
ref=[DefinedType|ID]

;

DefinedType:
'type' name=ID '{'

values+=ContextValue (',' values+=ContextValue)∗
'}'

;

ContextValue:
name=(STRING | ID)

;

SimpleType:
StringType | IntegerType | BooleanType | DoubleType

;

StringType:
{StringType} "string"

;
IntegerType:

{IntegerType} "integer"
;
BooleanType:

{BooleanType} "boolean"
;
DoubleType:

{DoubleType} "double"
;

Situation:
'situation' name=ID '{'

expression+=ContextExpression
'}'

;

ContextExpression:
ref=[Property|FQN] ('<' | '>' | '>=' | '<=' | '==' | '!=') value=ContextValue (('and' | 'or') expr=

↪→ ContextExpression)?
;

FQN hidden(): ID('.' ID)∗;
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Full table: Aggregation
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Table C.1: Aggregated paths of abstract sm (complete version)
Path # Path description
Path 0 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] → Show_Answer [TERMINATE_BUTTON_CLICKED] → EXIT
Path 1 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 2 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 3 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 4 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 5 Start [App_Started] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 6 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] → Show_Answer→ HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]

{offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] → Show_Answer [TERMINATE_BUTTON_CLICKED] → EXIT
Path 7 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE

[SEND_MESSAGE_CLICKED] → Show_Answer [TERMINATE_BUTTON_CLICKED] → EXIT
Path 8 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE

[SEND_MESSAGE_CLICKED] → Show_Answer [TERMINATE_BUTTON_CLICKED] → EXIT
Path 9 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE

[SEND_MESSAGE_CLICKED] → Show_Answer [TERMINATE_BUTTON_CLICKED] → EXIT
Path 10 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE

[SEND_MESSAGE_CLICKED] → Show_Answer [TERMINATE_BUTTON_CLICKED] → EXIT
Path 11 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE

[SEND_MESSAGE_CLICKED] → Show_Answer [TERMINATE_BUTTON_CLICKED] → EXIT
Path 12 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] → Show_Answer→ HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]

{wifi} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 13 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 14 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 15 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 16 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 17 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 18 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] → Show_Answer→ HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]

{slow3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 19 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 20 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 21 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 22 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 23 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 24 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] → Show_Answer→ HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]

{fast3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 25 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 26 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 27 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 28 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 29 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 30 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] → Show_Answer→ HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]

{_4g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 31 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 32 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 33 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 34 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 35 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 36 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {offline} {Internet_Disconnected} → HANDLE_ERROR [BACK_BUTTON_PRESSED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] → Show_Answer→ HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED]

{high_latency} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 37 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {wifi} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 38 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {slow3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 39 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {fast3g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 40 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {_4g} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
Path 41 Start [APP_STARTED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER → HANDLE_SUCCESS [BACK_BUTTON_CLICKED] → SEND_MESSAGE [SEND_MESSAGE_CLICKED] {high_latency} {} → SHOW_ANSWER [TERMINATE_BUTTON_CLICKED] → EXIT
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Appendix D

VPAT.xtext

grammar fr.lcis.castav.vpat.VPAT with org.eclipse.xtext.common.Terminals

generate vPAT "http://www.lcis.fr/castav/vpat/VPAT"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

Vulnerability returns Vulnerability:
{Vulnerability}
'Vulnerability'
name=EString
'{'

('description' description=EString)?
('context' '{' context+=Context ( "," context+=Context)∗ '}')?
('function' '{' ('main' mainFunction=Sink & (( "," function+=Function)∗)) '}')?

'}';

EString returns ecore::EString:
STRING | ID;

Context returns Context:
Permission?='android.permission.' value=Permission | Network?='network' value=Network |

↪→ Version?="apiversion" value=Version
;

Version returns Version:
name=STRING

;

Permission returns Permissions:
{Permission} name=permissionID

;

//TODO : ADD every permission in android
permissionID returns PermissionID:

name='ACCESS_MEDIA_LOCATION' |
name='ACCESS_NETWORK_STATE' |
name='ACCESS_WIFI_STATE' |
name='INTERNET'

;
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//TODO : ADD network configurations (Trusted CA...)
Network returns Network:

{Network} 'default'
;

Function returns Function:
Sink | Inflow

;

Sink returns Sink:
'Sink' name=EString
'{'

('parameter' '{'
parameter+=Parameter ( "," parameter+=Parameter)∗ '}'

)?
'}'

;

Parameter returns Parameter:
origin=[Function|FQN] |
(static?='static' (anyValue?='*' | value=EString))

;

Inflow returns Inflow:
Source |
Input

;

Source returns Source:
{Source} 'Source' name=EString (anyPrivate?='*' | method=EString)

;

Input returns Input:
{Input} 'Input' name=EString method=EString

;

FQN hidden(): EString('.' EString)∗;
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Appendix E

Complete Example Vulnerability
Pattern Detection

In this annex, a complete example is shown, more complex than section 5.1.1.
The enriched model we are going to analyse is the following:

Figure E.1: Enriched CDML of an example application - part 1
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Figure E.2: Enriched CDML of an example application - part 2

With the ConTest tool, a total of:

• 245 tests starting from the main abstract_sm

• 49 tests starting from the exported activity SEND_MESSAGE_ACTIVITY_SM

The patterns used for the vulnerability detection are:

Figure E.3: Annex: Pattern used 1

With this configuration, the output of figure E.6 shows the number of
exploits generated for each starting node and each vulnerability pattern.

The resulting tests are not shown because of the sheer amount of space it
would take on the report.

Here’s a single example of a generated exploit in listing E.7.
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Figure E.4: Annex: Pattern used 2

Figure E.5: Annex: Pattern used 3

Figure E.6: Result of the VPatChecker tool on model E.2
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<TestPath>

<staticContext APIVersion="30"/>
<state name="START">

<transition name="APP_STARTED"/>
</state>
<state name="SEND_MESSAGE">

<transition name="NONE">
<contexts>

<context origin="INTERNET_CONNECTIVITY">slow3G</context>
</contexts>
<situations>

<situation origin="DEFAULT_ORIGIN">INTERNET_SLOW</situation>
</situations>

</transition>
<dataflows>

<dataflow name="internet" type="Source"/>
</dataflows>

</state>
<state name="HANDLE_SLOW_INTERNET">

<transition name="NONE"/>
<dataflows>

<dataflow name="log.d" type="Sink">
<parameters>

<parameter origin="source">internet</parameter>
</parameters>

</dataflow>
</dataflows>

</state>
<state name="SENDER">

<transition name="WRONG"/>
<dataflows>

<dataflow name="enter_value" type="Input"/>
</dataflows>

</state>
<state name="DISPLAY_WARNING">

<transition name="BACK_BUTTON_PRESSED"/>
<dataflows>

<dataflow name="log.t" type="Sink">
<parameters>

<parameter origin="source">internet</parameter>
<parameter origin="source">enter_value</parameter>

</parameters>
</dataflow>

</dataflows>
</state>
<state name="SEND_MESSAGE">

<transition name="SEND_MESSAGE_CLICKED"/>
<dataflows>

<dataflow name="internet" type="Source"/>
</dataflows>

</state>
<state name="SENDER">

<transition name="GOOD_MESSAGE"/>
<dataflows>

<dataflow name="enter_value" type="Input"/>
</dataflows>

</state>
<state name="SHOW_ANSWER">

<transition name="SUCCESS"/>
</state>
<state name="HANDLE_SUCCESS">

<transition name="MESSAGE_PRINTED"/>
</state>
<state name="HANDLE">

<transition name="END_HANDLE"/>
</state>
<state name="EXIT"/>

</TestPath>

Figure E.7: Generated exploit for vulnerability "private data to log.d" in context
API version 30 from starting node ABSTRACT_SM



90 | Appendix E: Complete Example Vulnerability Pattern Detection





TRITA-EECS-EX-2023:78

www.kth.se


	Introduction
	Motivation
	Problem
	Threat Model
	Goals
	Research methodology
	Delimitation
	Ethics and Sustainability

	Structure of the thesis

	Background
	Security models and security policies
	Android
	Android architecture
	Hardware level
	Hardware Abstraction Layer
	Android Runtime
	Native C/C++ Libraries
	Java API Framework
	Application / System applications

	Android permission system
	Install time permissions
	Runtime permissions
	Criticisms of the permission system


	Context and Context-Awareness
	Android vulnerability survey
	Survey methodology
	Integrated third-party code
	Advertisement code exploits
	Webview

	Insecure communication
	SSL (TLS) not used
	Sloppy certification usage

	Local code/system
	Library vulnerabilities
	Local data

	Application input
	Untrusted user input
	Inter process communication
	Intent spoofing
	Unauthorized intent receipt


	Hardware / Sensor related vulnerabilities
	Untrusted sensors
	Sensor API and backward compatible API

	Settings aggravating an application vulnerability
	Malware infected devices
	Debug mode
	Overprivileged applications



	Methods
	Security Approach
	Model-Based Testing
	Application security testing
	Security properties

	Base work
	Design objectives
	Evaluation methodology

	Software contribution
	Vulnerability focus
	Global Architecture
	Test Generation
	ConTest - Architecture
	ConTest - Implementation
	CDML: Behaviour DSL
	Context DSL
	Model enrichment
	Generator


	Exploit generator
	VPAT - Architecture
	VPAT - Implementation
	Vulnerability patterns
	Vulnerability detection
	Update tests



	Results and Analysis
	GHERA as a test database
	Detail of the analysis process
	Base code
	Model creation
	Model Enrichment
	Code coverage
	Vulnerability detection


	Detectability analysis on GHERA's database
	Summarized analysis results
	Range of tests outside GHERA
	Storage Access Vulnerability
	Intent spoofing
	Unauthorized intent receipt
	Untrusted user inputs



	Conclusions and Future work
	Conclusions
	Limitations
	Future work
	Automation process
	Vulnerability patterns

	Reflections

	References
	CDML.xtext
	CDL.xtext
	Full table: Aggregation
	VPAT.xtext
	Complete Example Vulnerability Pattern Detection

