
Degree Project in Computer Science and Engineering

Second cycle, 30 credits

Simplifying Software Testing in
Microservice Architectures
through Service Dependency
Graphs

MARCUS ALEVÄRN

Stockholm, Sweden, 2023

Simplifying Software Testing in
Microservice Architectures through
Service Dependency Graphs

MARCUS ALEVÄRN

Master’s Programme, Computer Science, 120 credits
Date: July 5, 2023

Supervisors: Wafaa Mushtaq, Hannes Fornander
Examiner: Elena Troubitsyna

School of Electrical Engineering and Computer Science
Host company: Marginalen Bank
Swedish title: Förenkla mjukvarutestningen i mikrotjänstarkitekturer genom
tjänsteberoendegrafer

© 2023 Marcus Alevärn

Abstract | i

Abstract
A popular architecture for developing large-scale systems is the microservice
architecture, which is currently in use by companies such as Amazon,
LinkedIn, and Uber. The are many benefits of the microservice architecture
with respect to maintainability, resilience, and scalability. However, despite
these benefits, the microservice architecture presents its own unique set
of challenges, particularly related to software testing. Software testing
is exacerbated in the microservice architecture due to its complexity and
distributed nature. To mitigate this problem, this project work investigated
the use of a graph-based visualization system to simplify the software
testing process of microservice systems. More specifically, the role of the
visualization system was to provide an analysis platform for identifying the
root cause of failing test cases. The developed visualization system was
evaluated in a usability test with 22 participants. Each participant was asked
to use the visualization system to solve five tasks. The average participant
could on average solve 70.9% of the five tasks correctly with an average effort
rating of 3.5, on a scale from one to ten. The perceived average satisfaction
of the visualization system was 8.0, also on a scale from one to ten. The
project work concludes that graph-based visualization systems can simplify
the process of identifying the root cause of failing test cases for at least five
different error types. The visualization system is an effective analysis tool
that enables users to follow communication flows and pinpoint problematic
areas. However, the results also show that the visualization system cannot
automatically identify the root cause of failing test cases. Manual analysis
and an adequate understanding of the microservice system are still necessary.

Keywords
Microservice architecture, Service Dependency Graph, Software testing

ii | Abstract

Sammanfattning | iii

Sammanfattning
En populär arkitektur för att utveckla storskaliga system är mikrotjänstarki-
tekturen, som för närvarande används av företag som Amazon, LinkedIn och
Uber. Det finns många fördelar med mikrotjänstarkitekturen med avseende
på underhållbarhet, motståndskraft och skalbarhet. Men trots dessa fördelar
presenterar mikrotjänstarkitekturen sin egen unika uppsättning utmaningar,
särskilt med hänsyn till mjukvarutestningen. Mjukvarutestningen försvåras i
mikrotjänstarkitekturen på grund av dess komplexitet och distribuerade natur.
För att mildra detta problem undersökte detta projektarbete användningen
av ett grafbaserat visualiseringssystem för att förenkla mjukvarutestpro-
cessen för mikrotjänstsystem. Mer specifikt var visualiseringssystemets
roll att tillhandahålla en analysplattform för att identifiera grundorsaken
till misslyckade testfall. Det utvecklade visualiseringssystemet utvärderades
i ett användbarhetstest med 22 deltagare. Varje deltagare ombads att
använda visualiseringssystemet för att lösa fem uppgifter. Den genomsnittliga
deltagaren kunde i genomsnitt lösa 70.9% av de fem uppgifterna korrekt med
ett genomsnittligt ansträngningsbetyg på 3.5, på en skala från ett till tio. Den
upplevda genomsnittliga nöjdheten med visualiseringssystemet var 8.0, också
på en skala från ett till tio. Projektarbetet drar slutsatsen att grafbaserade
visualiseringssystem kan förenkla processen att identifiera grundorsaken till
misslyckade testfall för minst fem olika feltyper. Visualiseringssystemet
är ett effektivt analysverktyg som gör det möjligt för användare att följa
kommunikationsflöden och peka ut problemområden. Men resultaten visar
också att visualiseringssystemet inte automatiskt kan identifiera grundorsaken
till misslyckade testfall. Manuell analys och en grundlig förståelse av
mikrotjänstsystemet är fortfarande nödvändigt.

Nyckelord
Mikrotjänstarkitektur, Tjänsteberoendegraf, Mjukvarutestning

iv | Sammanfattning

Acknowledgments | v

Acknowledgments
I would like to express my gratitude to KTH for giving me this invaluable
opportunity. In addition, thanks to Marginalen Bank for hosting my master’s
thesis. A special thanks to my supervisors Hannes Fornander and Wafaa
Mushtaq, who regularly provided me with guidance and feedback on my work.

Stockholm, July 2023
Marcus Alevärn

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Purpose . 2
1.4 Goals . 3
1.5 Research Methodology . 3
1.6 Delimitations . 4
1.7 Structure of the Thesis . 4

2 Background 5
2.1 HTTP . 5
2.2 Microservices . 6

2.2.1 Common Technologies and Features 7
2.2.2 DevOps . 8
2.2.3 Advantages . 8
2.2.4 Challenges . 9

2.3 Software Testing . 10
2.4 Service Dependency Graph 11
2.5 Causal Order . 12
2.6 OpenTelemetry . 12
2.7 Marginalen Bank . 13
2.8 Usability Testing . 14
2.9 Related Work . 15

2.9.1 Composition and Decomposition 15
2.9.2 Design Errors . 16
2.9.3 Software Testing . 16

3 Methods 19
3.1 Research Process . 19

viii | Contents

3.2 Usability Testing . 20
3.2.1 Data Collection . 20
3.2.2 Questionnaire . 21
3.2.3 Fictional Microservice System 21
3.2.4 Tasks . 23
3.2.5 Data Analysis . 24

4 Proof-of-concept 27
4.1 Architecture . 27
4.2 Span Types . 28
4.3 Instrumentation . 29

4.3.1 Services . 29
4.3.2 Test client . 30

4.4 SDG Generation . 30
4.5 Visualization . 32

4.5.1 Graph Drawing . 32
4.5.2 Clickable Edges . 33
4.5.3 Edge Coloring . 33

5 Prototype 35
5.1 Instrumentation . 35

5.1.1 Services . 35
5.1.2 Test Client . 36
5.1.3 Limitations . 38

5.2 Collector . 38
5.3 Visualization . 39

5.3.1 Overview . 39
5.3.2 Select Test Case . 40
5.3.3 Clickable Edges . 41
5.3.4 Edge Coloring . 41

6 Results 43
6.1 Task 1 . 43
6.2 Task 2 . 44
6.3 Task 3 . 45
6.4 Task 4 . 46
6.5 Task 5 . 47
6.6 Effectiveness . 48
6.7 Efficiency . 48
6.8 User Satisfaction . 50

Contents | ix

6.9 Usefulness . 51

7 Discussion 53
7.1 Methods . 53
7.2 Implementation . 55
7.3 Results . 55

7.3.1 Task 1 and 2 . 56
7.3.2 Task 3 . 57
7.3.3 Task 4 . 58
7.3.4 Task 5 . 59

8 Conclusions and Future work 61

References 63

x | Contents

List of Figures | xi

List of Figures

2.1 Example of a Microservice System 6
2.2 Mike Cohn’s Test Automation Pyramid 10
2.3 Example of a Service Dependency Graph 11
2.4 Percentage of Usability Problems Discovered Depending on

the Number of Participants Using the Mean Values N = 41

and λ = 0.31 . 15

3.1 Service Dependency Graph of the Fictional Microservice
System . 23

4.1 Overview of the Proof-of-concept Architecture 28

5.1 Enable Instrumentation in Each Service with Dependency
Injection . 36

5.2 Enable Instrumentation in the Test Client with a Custom
Attribute . 37

5.3 Code to Ensure That the Spans Are Sent to the Collector
Before Exiting the Test Program 38

5.4 Example Image of the Visualization System 40
5.5 Example Table for Selecting a Test Case in the Visualization

System . 40
5.6 Example of Colored Edge in the Visualization System 41

6.1 Bar Chart Showing the Effort Distribution for Task 1 44
6.2 Bar Chart Showing the Effort Distribution for Task 2 45
6.3 Bar Chart Showing the Effort Distribution for Task 3 46
6.4 Bar Chart Showing the Effort Distribution for Task 4 47
6.5 Bar Chart Showing the Effort Distribution for Task 5 48
6.6 Bar Chart Showing the User Satisfaction Distribution 50

xii | List of Figures

7.1 The Service Dependency Graph (SDG) the User Saw When
Trying to Solve Task 1 . 57

7.2 The SDG the User Saw When Trying to Solve Task 3 58
7.3 The SDG the User Saw When Trying to Solve Task 4 59
7.4 The SDG the User Saw When Trying to Solve Task 5 60

List of Tables | xiii

List of Tables

3.1 The Fictional Microservice System with Its Endpoints 22

6.1 Aggregated Correctness Results from All Tasks 48
6.2 Aggregated Effort Results from All Tasks 49

xiv | List of Tables

List of acronyms and abbreviations | xv

List of acronyms and abbreviations

API Application Programming Interface

CD Continuous Delivery
CI Continuous Integration
CM Continuous Monitoring

gRPC Google Remote Procedure Call

HTTP Hypertext Transfer Protocol

IoC Inversion of Control

JSON JavaScript Object Notation

QoS Quality of Service

REST Representational State Transfer

SDG Service Dependency Graph
SOA Service-Oriented Architecture

UAT User Acceptance Testing
URL Uniform Resource Locator

xvi | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

A popular architecture for developing large-scale systems is the microservice
architecture, which is currently in use by companies such as Amazon,
LinkedIn, Uber [1], and the Swedish bank Marginalen Bank. The
microservice architecture breaks down complex software systems into self-
contained services. Each service has a single responsibility and can be
independently deployed, scaled, and tested [2]. This is a significant
difference to the monolithic architectural style, where the entire application is
developed as a single, unified entity. The microservice architecture facilitates
maintainability, resilience, and scalability [3]. Despite these benefits,
the microservice architecture presents its own unique set of challenges,
particularly related to software testing [4, 5, 6, 7]. This thesis aims to
investigate a graph-based approach to simplify and enhance the software
testing process of a microservice system.

1.1 Background
Software testing is a necessity to achieve correct and reliable software,
especially in today’s world when many software systems are large and
complex. The microservice architecture organizes an application as a
distributed system, which is inherently more difficult to test than a monolithic
system [5]. In the microservice architecture, services communicate with
other services through a network, often using Representational State Transfer
(REST) and a lightweight communication protocol such as Hypertext Transfer
Protocol (HTTP) [8]. This establishes inter-dependencies among services,
as some services rely on information or functionality provided by other
services. Thus, testing each service in isolation is generally insufficient

2 | Introduction

for verifying the correctness of a microservice system. Consequently,
development teams working with microservice systems often write integration
and end-to-end tests that evaluate the behavior of multiple services together
[6, 7]. Testing microservice systems can be challenging due to several factors,
including interdependent services, cloud infrastructure, and external service
dependencies [7].

This thesis is conducted on behalf of Marginalen Bank, a Swedish financial
institution that is currently encountering challenges related to software testing.
The bank maintains and develops a microservice system with more than 60
services written in .NET. To overcome the difficulties of software testing, this
thesis aims to explore the possibilities and limitations of utilizing an Service
Dependency Graph (SDG)-based method to simplify the software testing
process of microservice systems. An SDG is a directed graph that visualizes
inter-dependencies between services. Software testing large microservice
systems can be challenging and time-consuming, making this research topic
relevant to many organizations involved in microservice development.

1.2 Problem
Software testing is necessary to ensure that software functions as expected.
This is especially important for software related to vital societal applications
such as banking. As organizations switch from the traditional monolithic
architecture to the microservice architecture, new and unique challenges arise,
particularly with respect to software testing. The distributed and dynamic
nature of a microservice system makes it more difficult to understand and
debug failing test cases. Finding the root cause of a failing test case may
require the investigation of logs or traces, which can be tedious work. The
existing research on how useful an SDG-based method can be in identifying
the root cause of failed test cases is limited. Therefore, this thesis aims to
answer the research question of whether the use of an SDG-based method can
simplify the software testing process of microservice systems.

1.3 Purpose
The purpose of this thesis is twofold. Firstly, Marginalen Bank would want
to gain insight into how SDG-based methods can assist them in the software
testing process of their microservice system. Secondly, there is only limited
research on how SDG-based methods can simplify the software testing process

Introduction | 3

of microservice systems. Thus, the thesis should provide relevant up-to-date
knowledge to the research community.

1.4 Goals
To satisfy both Marginalen Bank and the research community, the work has
been divided into three concrete goals:

• Proof-of-concept: A proof-of-concept of an SDG-based method will
be developed. The purpose of the proof-of-concept is to produce a
general model that delineates a reasonable approach that highlights what
is possible to achieve with an SDG-based method in relation to software
testing microservice systems.

• Prototype: A prototype, based on the proof-of-concept, will be
developed. The prototype is a realization of the proof-of-concept
particularly built for being compatible with the architecture and
frameworks used by Marginalen Bank. Consequently, the prototype is
not a general model and will only work with services written in .NET
and software tests that utilize the testing framework NUnit.

• Evaluation: To answer the research question the prototype is evaluated
using an evaluation methodology known as usability testing. Usability
testing involves the examination of the prototype by individuals
who serve as representative users. Specifically, for this study, the
representative users will consist of developers and quality assurance
engineers from Marginalen Bank.

1.5 Research Methodology
The prototype was evaluated in a usability test by representative users from
Marginalen Bank. In total, 22 participants took part in the study. Each
participant was asked to use the prototype to solve five tasks. In each task,
a test case had failed and the participant was asked to use the prototype to
identify the root cause of the failed test. Five different types of errors that can
occur in a microservice system were tested. The microservice system that was
used in the usability test was fictional. The data collected from the study was
the number of tasks correctly solved and the subjective effort required to solve
each task. Lastly, the participants were asked if they perceived the prototype

4 | Introduction

as useful and if they believed that it could be useful in a real-world commercial
microservice system.

1.6 Delimitations
A set of limitations was adopted to limit the scope of the project work and to
make it feasible within the time constraints:

• The implementation will only work with services that are communicat-
ing over the HTTP protocol.

• Only five different error types that can occur in a microservice system
were tested in the usability test.

• Only one prototype is developed from the proof-of-concept specifically
designed to work for .NET and NUnit.

1.7 Structure of the Thesis
Chapter 2 presents relevant background information about the microservice
architecture, software testing, and also related work. Chapter 3 describes
the methods used in this project work. In particular, the usability test that
was carried out. Chapter 4 describes the proof-of-concept developed in this
project. Chapter 5 highlights the key features of the prototype. Chapter 6
presents the results. Chapter 7 presents a discussion. Lastly, chapter 8 presents
conclusions and a proposal for future work.

Background | 5

Chapter 2

Background

This chapter covers the background information needed to understand the
context of this project work. A brief overview of the HTTP protocol is given in
section 2.1. See section 2.2 for details on the microservice architecture and its
advantages, challenges, and common technologies and features. Furthermore,
see section 2.3 for a brief discussion on software testing. In addition, see
section 2.4 for an explanation of SDG. An important ordering for distributed
systems known as causal order is presented in section 2.5. Information about
OpenTelemetry is presented in section 2.6. Section 2.7 covers Marginalen
Bank and section 2.8 explains usability testing. Lastly, see section 2.9 for
related work.

2.1 HTTP
HTTP is an application-layer protocol that is widely used as a communication
format for web clients and servers. In the context of microservice
systems, the HTTP protocol can be used to allow services to expose their
functionality through well-defined HTTP-based Application Programming
Interfaces (APIs). The full technical specification of the HTTP protocol can
be found in RFC 7231 [9].

There are two different types of HTTP messages, namely, requests and
responses. An HTTP request must specify an HTTP method, such as GET,
POST, or DELETE, which determines the desired action of the request.
In addition, a Uniform Resource Locator (URL) to target a specific server
resource. Both HTTP requests and responses can also include a set of headers
and a body. A common data exchange format that is used to store data in the
HTTP body is JavaScript Object Notation (JSON). A technical specification

6 | Background

of the JSON format can be read in RFC 8259 [10].
Unique to HTTP response messages is that they must contain a three-digit

status code that indicates if the request could be fulfilled or not. A common
status code is, for example, 200, which indicates that the request succeeded.

2.2 Microservices
The microservice architecture has evolved from the Service-Oriented Ar-
chitecture (SOA). Both architectural styles share the fundamental principle
that an application should be structured as a collection of loosely-coupled
services rather than as a monolith. In addition, the idea that services should
be organized around business capabilities [11]. However, the microservice
architecture offers features more suitable for cloud computing. For example,
each service in the microservice architecture should be independently
deployable and scalable and not share its resources such as containers, caches,
and databases with other software components [11]. Thus in the microservice
architecture, a database can be seen as belonging to a service. The service
restricts how the database can be accessed with the help of an API. See
Figure 2.1 for a primitive high-level example of a banking application that
is implemented as a microservice system with three separate services.

Account
Service

Account
Database

Customer
Service

Customer
Database

Transaction
Service

Transaction
Database

Figure 2.1: Example of a Microservice System

The first service in Figure 2.1 is the Customer Service, which is
responsible for handling customer-related functionality such as managing
customer data. The second service is the Account Service, which is
responsible for account-related functionality such as creating and closing
accounts and checking balances. Lastly, the Transaction Service

Background | 7

is responsible for transaction-related functionality such as depositing and
withdrawing funds and issuing payments. Each service has a unique
responsibility and maintains its own database. Thus, there is a distinct
separation between services and their responsibilities, which allows for each
service to be individually deployed, scaled, and tested. However, the services
will need to communicate with each other in order to perform the tasks that
one expects a banking system to be able to handle. For example, when a
transaction is initiated, the Transaction Service would need to verify
that the account from which the funds are being withdrawn is active and
has sufficient funds. This information would need to be obtained from the
Account Service. In addition, when a new account is created, there
must also exist a customer record that the new account can belong to. Hence,
there will need to be communication between Account Service and
Customer Service. By defining an API for each service, such as a REST
API based on HTTP, a communication protocol can be established between
the services, enabling them to interact with one another.

2.2.1 Common Technologies and Features
Many different technologies are widely employed when developing microser-
vice systems. Perhaps the most well-known technology is Docker, which is
a virtualization platform that enables software to be packaged and executed
inside containers [12]. Docker makes it possible to efficiently execute software
in a variety of environments and has therefore gained a lot of popularity in
the era of cloud computing. Another technology often used in conjunction
with Docker is a container orchestration platform such as Kubernetes that
can manage Docker containers and provide features such as load-balancing
and automatic scaling. There are many different technologies out there that
provide abstractions and functionality to microservice systems. However,
some of the most widely known features that microservice systems are
equipped with are circuit breaker, service discovery, and API gateway [13].

The circuit breaker is a failure-handling mechanism that avoids cascading
effects in a microservice system. The circuit breaker ensures that if a service
fails and becomes unresponsive then all the dependent services should still be
responsive. This is implemented by quickly realizing that a service has failed
and stopping the communication between dependent services and the failed
service. Consequently, this reduces the load on the failed service and thus will
provide better conditions for recovery. [13]

Another feature implemented in most microservice systems is a service

8 | Background

discovery. The idea behind a service discovery is to provide a standardized
way for services to locate other services. In other words, make services
addressable. This is relevant if the microservice system is hosted in the cloud,
which can replicate and relocate services at runtime. In such a scenario, a
service discovery will be needed to enable communication between services.
[13]

Lastly, the API gateway is an entry point for the microservice system. It
provides access to many APIs and be customized to fit the needs of different
clients. For example, some clients may want to use an API that is less
network intensive. Furthermore, the API gateway is often equipped with load
balancing, service discovery, monitoring, and security. [13]

2.2.2 DevOps
DevOps is a collective term for all practices, processes, and tools that aim to
streamline the software development lifecycle and reduce the time it takes to
release software changes into production [14]. Common DevOps practices
are Continuous Integration (CI), Continuous Delivery (CD), and Continuous
Monitoring (CM). CI is the first step towards CD and enables developers to
regularly merge their code changes into a central repository [14]. Each code
change is then automatically built and tested to ensure that the new code does
not break the existing system. CD is a practice that makes it possible to
automatically deploy software to any environment. The idea is to continuously
deliver software to a production-like environment, where the software can
be tested, verified, and finally released to production when ready. Another
common practice is CM which provides developers with performance metrics
and can help detect operational anomalies [14].

DevOps is important to successfully develop, test and deploy microservice
systems due to their highly distributed nature. A microservice system
may involve many separate services, each of which must be independently
developed, deployed, and managed. This can create challenges concerning
the coordination between different teams to ensure that each service is tested
and deployed properly. Effective DevOps practices can alleviate this burden
and make the development lifecycle less cumbersome.

2.2.3 Advantages
Migrating from a monolithic architectural style to a microservice architecture
presents both benefits and drawbacks. The first advantage is an increased

Background | 9

degree of maintainability because each service is independent with a single
responsibility [1]. The separation into individual services that communicate
over a network also avoids technology lock-in [14] as each service can be
developed in a unique programming language and use a different type of data
storage. The third benefit is scalability since each service can be individually
scaled to quickly adapt to changes in demand [3]. A monolithic system does
not bring this flexibility, and must often be scaled as a whole, which may be
a more complex process and lead to more hardware usage [3]. The fourth
benefit is resilience because the failure of one service does not necessarily
impact the entire system [3]. Hence, parts of the system may function
properly even though some services have failed. The fifth benefit is that
the microservice architecture improves time to market by allowing for more
continuous deliveries [1]. In addition, the microservice architecture promotes
agile development by allowing agile teams to structure their work around
services [1].

2.2.4 Challenges
Although the advantages of the microservice architecture are many, one
should not think that the microservice architecture will automatically solve
all software design problems. The microservice architecture, like any
architecture, presents its own unique set of challenges. It can be difficult to
structure a large application into a set of well-defined services, where each
service handles a specific responsibility and provides a suitable interface [8].
If the design of the microservice system is not well-planned it can cause an
increase in network communication between services [8], which will have a
negative impact on the overall performance of the system. Over time as new
features are added to the system and existing ones are modified, then design
principles may break and the initial decomposition of the system may not be
appropriate. This is known as architectural degradation, which can lead to the
system being unfeasible to maintain [15].

Other common challenges in the microservice architecture are related
to monitoring, deployment, testing, versioning, and deprecation [1]. A
single microservice can be individually tested with ease. However, as the
number of microservices and the number of connections between them grow,
performing tests that consider more than one microservice can become a
complex task [1]. Several different sources have highlighted software testing
as a significant challenge in the microservice architecture [1, 4, 5, 6, 7]. A
distributed system, such as a microservice system, is inherently more difficult

10 | Background

to test than a monolithic system [5]. The complexity of software testing
is exacerbated by interdependent services, cloud infrastructure, and external
service dependencies [7]. Consequently, different automatic testing tools
[16, 17, 18, 19, 20] have been proposed to simplify and optimize software
testing.

2.3 Software Testing
Software testing involves the activities that check the correctness, complete-
ness, and accuracy of software [21]. A common software testing method is
to dynamically verify that a software system produces the expected behavior
on a finite set of test cases [22]. In the context of microservice systems, it
is crucial that test automation is in place to regularly check that the system
is working as expected. Test automation is often part of the CI/CD pipeline.
According to Mike Cohn, there are three different levels that should be covered
in test automation, he illustrates this in his test automation pyramid [23], see
Figure 2.2.

Unit Tests

Service Tests

UI
Tests

Figure 2.2: Mike Cohn’s Test Automation Pyramid

The bottom layer in the pyramid involves unit tests, which are designed to
test a single unit of code in isolation. Unit tests are easy to write, maintain,
and quick to execute, as they only test one specific piece of functionality. The
middle layer covers automated service tests for APIs and integration. These
tests are designed to test the interactions between different units of code and
the integration of those units into a larger system. Lastly, the top layer entails
end-to-end tests that cover a complete system requirement. In general, as we

Background | 11

go up the layers in the pyramid, tests become harder to maintain, cover more
and more units in combination, and take longer time to execute. [24]

2.4 Service Dependency Graph
An SDG is a directed graph that visualizes the dependencies among services
in a microservice system. Thus, each node in an SDG represents a service and
each directed edge indicates a dependency relationship between two services.
A service that depends on another service makes at least one request to
that service. More mathematically precise, an SDG can be defined as in
equation 2.1.

SDG = (V,E) (2.1)

Where V is a set of nodes and E is a set of ordered pairs. If (u, v) ∈ E then
there exists a directed edge between the nodes u and v.

See Figure 2.3 for a concrete example of an SDG that visualizes the
dependencies between four different services.

Service A

Service B

Service C

Service D

Figure 2.3: Example of a Service Dependency Graph

From Figure 2.3 we can see that Service D is independent as no edges
are originating from it. In contrast, Service B and Service C are
both dependent on Service D. Lastly, Service A is directly dependent
on both Service B and Service C, but also indirectly dependent on
Service D.

12 | Background

The purpose of an SDG is to provide an analysis tool and visual
reconstruction of the microservice system to assist developers in identifying
problems such as anti-patterns, architectural degradation, and anomalies.

There are three common approaches to constructing an SDG: static
analysis, dynamic analysis, and manual analysis. In static analysis, the SDG
is constructed from artifacts available before deployment. Such artifacts could
be source code, configuration files, and documentation. The benefit of static
analysis is that it can be performed before actual deployment, which is not the
case for dynamic analysis. In dynamic analysis, a broad variety of different
data sources can be used to create the SDG such as runtime traces, logs, and
network traffic. Lastly, manual analysis consists of manually constructing the
SDG by letting a human analyze the code, which can be an important step in
validating the results. However, it is not an automated process. Thus, static
analysis and dynamic analysis are two feasible options in terms of maintaining
a high degree of automation while manual analysis is not. [25]

2.5 Causal Order
An important topic in distributed systems is how to track the ordering of events.
It is not as simple as using clocks due to inherent problems such as clock drift
and clock skew. Causal order is concerned with how the occurrence of certain
events may affect other events in the future [26]. An event is said to causally
precede another event if it occurs before the other event and can be considered a
cause of that event. For example, when a service initiates a request to another
service, the act of sending the request causally precedes the corresponding
response that the receiving service will generate and send in reply.

Causal order is a type of partial order, which means that it satisfies the
properties of reflexivity, transitivity, and antisymmetry. Not all events in a
causal order can be compared pairwise, meaning that some events may be
considered concurrent or independent of each other. Thus, a causal order is
not a total order because a total order ensures that all elements are pairwise
comparable.

2.6 OpenTelemetry
OpenTelemetry is a vendor-agnostic framework for collecting telemetry data
such as traces, metrics, and logs [27]. The goal is to enable observability in
distributed systems. OpenTelemetry is an open standard and has support for

Background | 13

instrumentation in several programming languages such as C#, Java, and C++,
to name a few. In addition, OpenTelemetry has support for both automatic
and manual instrumentation. In automatic instrumentation, telemetry data is
automatically captured from popular libraries during runtime. This telemetry
data could be HTTP requests, HTTP responses, database calls, and so on. The
difference between automatic and manual instrumentation is that in automatic
instrumentation the developer is not required to modify the application’s
source code to start capturing telemetry data. Tracing in OpenTelemetry is
achieved by collecting objects, known as spans. A span represents a unit of
work and contains the following information:

• Operation name

• Parent span id (empty for root spans)

• Start and end timestamps

• Span context: Contains information needed to reference spans, such as
span id and trace id

• Attributes: A list of key-value pairs.

• Span events: A set of zero or more events, each event has a name,
timestamp, and attribute list

• Span links: A set of links to zero or more causally-related spans

• Span status: Can be used to indicate an error or normal operation

Spans that share the same trace id belong to the same trace. A trace can
be seen as a set of events that were triggered by a single logical operation.
The single logical operation can for example be an HTTP GET request to a
service in a microservice system. Important to note is that a causal relationship
between spans can be established with the help of the parent span id or span
links.

2.7 Marginalen Bank
Marginalen Bank is a Swedish bank that maintains and develops a
microservice system with more than 60 services written in .NET. The bank
has a development team and a quality assurance team. The development team
is responsible for developing the microservice system and writing unit tests

14 | Background

to verify that individual functionality works correctly. The quality assurance
team implements end-to-end tests that verify that the microservice system
satisfies all business requirements. To ease development, Marginalen Bank
utilizes a continuous delivery pipeline consisting of three stages: test, User
Acceptance Testing (UAT), and production. All the developed code gets built
in the test environment and unit tests are executed. In the UAT environment,
end-to-end tests are scheduled regularly every night. The last environment is
the production environment, which maintains the microservice system that is
commercially deployed.

2.8 Usability Testing
In usability testing, a product is evaluated with the help of representative users.
Each user is asked to use the product to complete a set of tasks while the
product owner watches, listens, measures time, and takes notes. The goal
of usability testing is to measure how well the system fulfills effectiveness,
efficiency, and subjective user satisfaction [28]. Effectiveness is how well the
user can utilize the system to solve the tasks at hand. Moreover, efficiency is
how much effort and/or time the user must spend to solve the problems using
the system. Lastly, user satisfaction is how subjectively useful the user finds
the system and the general attitude towards the system. The motivation for
using usability testing is that it is considered a reliable way to estimate users’
performance and subjective satisfaction with a product [29]. It is often used to
evaluate interactive systems such as web and mobile applications [29, 28]. The
number of participants that is needed in a usability test to get accurate results
depends on several factors. However, previous work [30], has developed
a mathematical model to estimate the number of participants i required to
discover a specific number of usability problems that exist in a product, see
equation 2.2.

Discovered(i) = N(1− (1− λ)i) (2.2)

Where N is the total number of usability problems that exist in the product
and λ is the probability of finding the average usability problem when doing
the usability test with a single average participant. Both N and λ depend
on the product and must be estimated as per product basis. However, the
authors in [30] computed the mean values of N and λ from 11 studies and
got the following mean values N = 41 and λ = 0.31 which can act as a very
approximate rule of thumb. Using these mean values we get the graph that can

Background | 15

be seen in Figure 2.4. Observing the graph we can see that more than 80% of
all usability problems can be discovered with only 5 participants. As already
noted, this should only be seen as a very approximate rule of thumb and the
actual number of participants needed will vary depending on the project.

0 5 10 15 20 25
0%

20%

40%

60%

80%

100%

1− 0.69i

Number of Participants

U
sa

bi
lit

y
Pr

ob
le

m
sD

isc
ov

er
ed

Figure 2.4: Percentage of Usability Problems Discovered Depending on the
Number of Participants Using the Mean Values N = 41 and λ = 0.31

2.9 Related Work
See section 2.9.1 and section 2.9.2 for two microservice problems that
have been solved with graph-based methods. These solutions highlight the
utility of graph-based methods to solve problems related to the microservice
architecture. Similarly, this project work will also focus on solving a problem
related to the microservice architecture, and also use a graph-based approach
to do so. However, this project work will focus on the specific problem
of software testing, which is different from the two problems mentioned in
section 2.9.1 and section 2.9.2. Lastly, see section 2.9.3 for previous work on
software testing the microservice architecture, which is similar to the problem
this thesis is addressing.

2.9.1 Composition and Decomposition
Composition algorithms in the context of distributed systems are about
combining services to achieve a certain goal or task. Several service
composition algorithms use graph-based methods to achieve their goals.

16 | Background

For example, [31] uses an SDG-based algorithm to find the k-top service
compositions that are optimal with respect to Quality of Service (QoS).
Another example is [32], which uses a graph-based method to find a service
composition that offers a feature not provided by any individual service alone.

The opposite of composition is decomposition. The goal of decomposition
algorithms is to break down a monolithic application into smaller, independent
services. This can be done by constructing a dependency graph from the
source code and applying clustering techniques and evaluation metrics to
identify individual services [33, 34].

2.9.2 Design Errors
Design errors and anti-patterns in microservice systems have also caught the
interest of the research community. A cyclic dependency is an example of an
anti-pattern, which occurs when two or more services depend on each other
in a circular manner. Anti-patterns are considered bad design practices and
should be avoided to maintain the quality of microservice systems. Several
sources have constructed graph-based models from microservice systems and
applied graph algorithms to identify anti-patterns [19, 20, 35, 36, 37]. Both
[35, 36] study degree centrality and clustering coefficient as possible graph
metrics to discover design problems. For example, degree centrality can be
used as an indication to locate bottleneck services [36]. Furthermore, cyclic
dependencies can automatically be identified by constructing an SDG from the
microservice system and applying Tarjan’s Strongly Connected Component
algorithm [20].

2.9.3 Software Testing
Two graph-based methods to simplify and optimize software testing has been
identified [19, 20]. Both papers propose a model that takes the source code of
microservices as input and produces a complete SDG over the microservice
system. To build the SDG the authors employed the built-in reflection library
in the Java language. The proposed model in the first paper [19] calculates
test coverage and visualizes test results directly in the SDG. The test coverage
metric can assist developers in understanding the quality of the developed
system. Furthermore, the test result visualization in the SDG makes it possible
to see the complete path each test has taken through the system. This
visualization can assist developers in finding the root error of a failing test
case.

Background | 17

The model in the second paper [20] adds functionality related to regression
testing. For example, the model can retrieve only the necessary tests to rerun
due to a code change, which allows for regression test optimization. The
order of the test to rerun is decided based on a priority-based algorithm. This
strategy shows a significant reduction in the number of tests that need a rerun.

There are some similarities and differences between this project work
and the work presented in [19, 20]. This project work is based on the idea
to visualize test results in a graph, which is also covered in the mentioned
two papers. However, this project work will provide more information in the
visualization and therefore provide a more comprehensive tool for identifying
the root cause of failing test cases. Furthermore, the proposed solution in
this project work does not build the entire SDG using reflection, instead
utilizes dynamic analysis to build a partially complete SDG as each test case is
executed. This project work takes a different approach because it is not always
necessary to visualize a complete SDG to debug a single test case.

Another paper [16] proposes a method for simplifying regression testing
by integrating it into continuous delivery steps. Hence, this method does not
rely on an SDG. Instead, the idea is to compare the input-output pairs of the
production environment compared to the development environment where
we want to perform regression testing. The work is not graph-based and is
therefore different from the work covered in this project work.

Work has also been put on automatic generation of test cases based on
formal microservice specifications [17]. In addition, architectures to make test
frameworks easier to maintain and reusable [18]. These topics are different
from the topic of this project work. This project work is about providing
a graph-based visualization tool for debugging and analyzing test cases and
not about automatic test generation or how to design the infrastructure of test
frameworks.

18 | Background

Methods | 19

Chapter 3

Methods

This thesis aims to answer the research question of whether the use of an
SDG-based method can simplify the software testing process of a microservice
system. See section 3.1 for the research process utilized to answer the research
question. See section 3.2 for more information on the selected evaluation
methodology.

3.1 Research Process
1. Literature study: The essential findings of the literature study is covered

in chapter 2. The literature study should provide enough background
knowledge to be able to understand the difficulties of inter-dependencies
and software testing microservice systems. Furthermore, different
approaches that have been taken to solve similar problems related to
the microservice system. The literature study should provide enough
background knowledge to make it possible to develop the proof-of-
concept, which should be a general model that tackles the problem at
hand.

2. Proof-of-concept: The proof-of-concept should be based on the findings
of the literature study. The proof-of-concept is covered in chapter 4.
The proof-of-concept should be a general model that is platform-
independent and later used as a basis for constructing the prototype. The
role of the proof-of-concept is to answer general design problems, such
as how the SDG should be built using one of the methods discussed
in Section 2.4. The proof-of-concept should highlight features and
functionality that the system should have. The reason for developing

20 | Methods

the proof-of-concept before the prototype is to increase the likelihood
of thinking through the functionality required by the system before
actually implementing it. Thus, saving time that may have been wasted
in the development of faulty, unnecessary, or difficult functionality.
Another purpose of the proof-of-concept is to illustrate a general model
that solves the problem. This is different from the prototype, which is
bounded to the technology and architecture of Marginalen Bank.

3. Prototype: Based on the proof-of-concept the prototype is developed.
The prototype is covered in chapter 5. The prototype is an actual
implementation of the proof-of-concept and is tailored to the technology
and architecture of Marginalen Bank. Thus, the prototype is less general
compared to the proof-of-concept but will instead showcase that the
proof-of-concept can be implemented and make it possible to evaluate
the system in the usability test.

4. Prototype evaluation: The prototype was evaluated in a usability test
with developers and quality assurance engineers from Marginalen Bank.
See section 3.2 for more information on how the usability test was
configured and carried out.

3.2 Usability Testing
To answer the research question a usability test was conducted. In total,
22 participants took part in the usability test. Out of these 22, 18 worked
with development and the remaining 4 worked with quality assurance. In the
usability test, both quantitative and qualitative data were gathered to measure
how well the prototype fulfills effectiveness, efficiency, and user satisfaction.

3.2.1 Data Collection
A similar project conducted usability testing remotely by hosting their web
application and sending out a questionnaire to users to enable the collection
of both quantitative and qualitative data [38]. This project work also collected
data remotely by hosting the web application and sending out a questionnaire.
The questionnaire was created in Google Forms. Two different user groups
from Marginalen Bank, namely developers and quality assurance engineers
participated in the usability test. In total, 18 developers and 4 quality assurance
engineers took part in the study. Each participant was asked to use the

Methods | 21

prototype to solve five tasks while answering questions in the questionnaire.
Thus, all data were collected remotely via Google Forms.

3.2.2 Questionnaire
The questionnaire was structured into three distinct sections. The first section
explained the purpose of the prototype and highlighted its main features.
Information on the fictional microservice system that is used in these five tasks
was also given. The second section of the questionnaire consisted of five tasks.
Each task had a brief problem statement and two questions. The first question
was a single-choice question that asked the respondent to select the correct
alternative from a list of five alternatives in total. The purpose of this question
was to measure effectiveness, i.e. how well the user can utilize the system to
solve the tasks at hand. The second question asked the user to rate the level of
effort on a scale from one to ten that was required to solve the task with the
prototype. The purpose of this question was to measure efficiency, i.e. how
much effort the user must spend to solve the task using the system.

The last section of the questionnaire collected quantitative data and also
qualitative data in the form of free text. If the user had entered a low or high
level of effort on any task, then the user was asked to motivate why it was easy
or hard to solve that task using the prototype. Furthermore, the user was asked
to rate the satisfaction of using the prototype on a scale from one to ten and
motivate the answer in free text. In addition, answer a yes or no question if the
user believed that the prototype could be useful in a real-world microservice
system and motivate that answer in free text.

3.2.3 Fictional Microservice System
All five tasks were performed on the same fictional microservice system that
was developed to be used in the five tasks. The fictional microservice system
was for a made-up consultant firm that offered consulting services in three
different domains: it, legal, and financial. Each domain had at least one service
that maintained information about the completed projects within that domain.
There was also another dedicated service to summarize the income from all
completed projects. See Table 3.1 for the name of all services and a description
of their endpoints.

22 | Methods

Service Endpoints
SoftwareConsultingService /GetCompletedProjects returns a

JSON array with all the completed
software projects

HardwareConsultingService /GetCompletedProjects returns a
JSON array with all the completed
hardware projects.

ITConsultingService /GetCompletedProjects returns a
JSON array with all the completed
software and hardware projects

LegalConsultingService /GetCompletedProjects returns a
JSON array with all the completed
legal projects

AccountingConsultingService /GetCompletedProjects returns a
JSON array with all the completed
accounting projects

InvestmentConsultingService /GetCompletedProjects returns a
JSON array with all the completed
investment projects

FinancialConsultingService /GetCompletedProjects returns a
JSON array with all the completed
accounting and investment
projects

SummarizeIncomeService /GetTotalIncome returns a JSON
object with the total income from all
completed projects.

Table 3.1: The Fictional Microservice System with Its Endpoints

The services from Table 3.1 are depending on each other as illustrated
by the SDG in Figure 3.1. ITConsultingSevice invokes SoftwareConsult-
ingService and HardwareConsultingService and aggregates their completed
projects into one list and returns that to SummarizeIncomeService. The same
principle is used again in FinancialConsultingSevice which invokes Account-
ingConsultingService and InvestmentConsultingService and aggregates their
completed projects into one list and returns that to SummarizeIncomeService.

Methods | 23

SummarizeIncomeService

ITConsultingService

SoftwareConsultingService

HardwareConsultingService

LegalConsultingService

FinancialConsultingService

AccountingConsultingService

InvestmentConsultingService

Figure 3.1: Service Dependency Graph of the Fictional Microservice System

The reason why ITConsultingService and FinancialConsultingService
were added to this fictional microservice system was to increase the length
of the longest path in the SDG. In Figure 3.1 it is clear that the longest path
is of length two. It is desirable to have some depth in the SDG that is used in
the usability test. This is due to the fact that in real microservice systems,
the invocation chains can be long and deep and therefore it would not be
reasonable to have an SDG that is too shallow in the usability test.

3.2.4 Tasks
The goal of each task was for the participant to identify the root cause of
a failing test case. The same fictional microservice system described in
the previous section was used in all five tasks. All tests were written for

24 | Methods

SummarizeIncomeService. In each task, a unique error or bug was introduced
in any of the eight services listed in Table 3.1. The following errors were tested
in the five tasks:

1. Service down: InvestmentConsultingService is down and unrespon-
sive, which results in FinancialConsultingService and SummarizeIn-
comeService returning an HTTP status code of 500.

2. Misspelled URL: SummarizeIncomeService had misspelled the URL
that was used to get the completed projects from FinancialConsult-
ingService. This resulted in FinancialConsultingService returning a
status code of 404 and SummarizeIncomeService returning a status code
of 500.

3. Invalid response data: HardwareConsultingService returned an
invalid response body with a value of type string when ITConsult-
ingService expected that value to be of type number. Thus, both
ITConsultingService and SummarizeIncomeService returned a status
code of 500.

4. Bad request data and missing input validation: SummarizeIn-
comeService did not properly validate a query parameter that had
an invalid value which resulted in the parameter being passed down
to ITConsultingService and then down to SoftwareConsultingService.
Improper or missing input validation is not only a bug it can also be an
attack vector for adversaries known as an injection attack [39].

5. Missing response data: LegalConsultingService returned zero com-
pleted projects, which made SummarizeIncomeService compute the
wrong expected total income. This can happen due to several reasons,
there might have been problems with the underlying database yielding
an empty response, for instance.

3.2.5 Data Analysis
Both quantitative and qualitative data were collected from the usability test.
The data analysis focused on measuring the effectiveness, efficiency, and user
satisfaction of the prototype. For each task, the number of correctly solved
tasks, as well as popular incorrect alternatives that were selected by many
participants, were analyzed.

Methods | 25

Furthermore, the amount of effort required to solve each task according to
the participants was also analyzed. Each participant entered an effort rating
on a scale from one and ten. This data was visualized in a bar chart and the
average, median, and variance were also computed. In the last part of the
questionnaire the participant could motivate why they had entered a low or
high effort rating, these answers were also analyzed to see common patterns
of what features of the prototype reduced the effort and what features or lack
of features increased the effort.

The last section of the questionnaire aimed to assess the perceived user
satisfaction and usefulness of the prototype in a real-world microservice
system. Participants were asked to rate the usefulness on a scale from one to
ten and were encouraged to provide their reasons in free text. The number
of participants who believed the prototype could be useful in a real-world
microservice system, along with their motivations, were analyzed to see
common and similar reasons. Additionally, any criticisms or missing features
brought up by participants that would hinder the prototype’s usefulness in a
real-world microservice system were also analyzed.

26 | Methods

Proof-of-concept | 27

Chapter 4

Proof-of-concept

This proof-of-concept is a general solution for microservice systems that
enhances the debugging experience of end-to-end tests that cover more than a
single service. The aim is to provide a visualization based on an SDG to enable
debuggers and developers to locate the cause of failing test cases. In addition,
verify that the execution of each test case generates the correct communication
between services. Thus, the goal is to visualize the SDG and also make it
possible to inspect all HTTP request-response pairs that are being sent between
services. For simplicity, the proof-of-concept will be limited to only work for
HTTP-based communication.

This proof-of-concept aims to tackle two significant challenges that
impede the software testing process for microservice systems, namely, inter-
service dependencies and third-party services [7]. For a microservice system
to work properly, the communication between all internal services and
third-party services must be correct. The proof-of-concept will provide a
visualization platform to visualize the communication between services to
assist in finding incorrect communication. The proof-of-concept will be based
on the open standard OpenTelemetry which enables tracing in distributed
systems.

4.1 Architecture
The overall architecture of the proof-of-concept is illustrated in Figure 4.1.
The test client will run a test case by sending at least one request to the
microservice system. As the test case is executed spans will be generated
by the test client and the microservice system. In total, three different
span types can be generated and collected as discussed in section 4.2. To

28 | Proof-of-concept

enable the generation of spans, both the test client and all the services in
the microservice system must have activated OpenTelemetry instrumentation
which is discussed in section 4.3. This will enable the generation of spans
that can be transmitted to the collector over the Google Remote Procedure
Call (gRPC) protocol. The collector retrieves all these spans and stores them.
On-demand, the collector can build the SDG for a specific test case using
the algorithm explained in section 4.4. The visualization system can retrieve
the SDG from the collector by making a certain HTTP request. When the
visualization system has received the graph from the collector, then it can draw
the graph on the screen and allow the user to interact with it as discussed in
section 4.5.

Test client
Microservice

system

Collector

gRPC server

HTTP server

Visualization

Execute test case
by sending requests

Spans Spans

Request SDG for a test case

Figure 4.1: Overview of the Proof-of-concept Architecture

4.2 Span Types
In this work, three different span types are used. These three span types are
distinguished from one another with the help of the operational name, see
section 2.6 for a reminder of the span format. It does not really matter what
specific operational name that is assigned to each span type as long as they
are different. However, the following naming convention will be used in the
report when referring to the three span types:

Proof-of-concept | 29

• Client span: Is generated every time an HTTP request is sent.

• Server span: Is generated every time an HTTP response is sent.

• Test span: Is generated every time a test case is executed in the test
client.

Depending on the span type, different type-specific information may be stored
in the span. For instance, in client and server spans, HTTP headers and bodies
will be stored. Furthermore, in test spans, information on the name of the test
case and if it passed or failed will be stored.

4.3 Instrumentation
To enable the generation of spans instrumentation must be activated.
Instrumentation should be activated in all services in the microservice system
as discussed in section 4.3.1. In addition, instrumentation should be enabled
in the test client as well, which is explained in section 4.3.2.

4.3.1 Services
The first step is to enable instrumentation among all services in the
microservice system. The request and response between all services need to
be captured. This can be achieved with automatic instrumentation libraries
for OpenTelemetry that automatically generates a span every time an HTTP
request or response is sent. Thus, using automatic instrumentation libraries it
should be possible to generate both client spans and server spans as listed in
section 4.2.

By default, automatic instrumentation libraries do not necessarily capture
the HTTP header and body that need to be stored in client and server
spans. However, the OpenTelemtetry format has support for adding additional
fields as key-value pairs that can be stored under the attribute section of
the span format. Thus, it is possible to add custom key-value pairs such as
request_body, request_headers, response_headers, and response_body. Then
modify the source code of the automatic instrumentation libraries to ensure
that these custom key-value pairs are included when the span is generated.
Another more straightforward approach is to check the API of these automatic
instrumentation libraries. For example, it may be possible to pass a callback
function with some custom code that is called every time the span is about to

30 | Proof-of-concept

be generated. This could enable the retrieval of HTTP headers and bodies and
the insertion of them as key-value pairs in the span.

4.3.2 Test client
The second step is to enable instrumentation in the test client that initiates
the end-to-end test. The test client will send requests to the microservice
system. Thus, the test client should be able to generate client spans that capture
information about the outgoing requests. This is enabled with automatic
instrumentation libraries as described previously. Furthermore, every time
the test client runs a test case a test span should be generated that contains the
name of the test and if the test passed or not. If no automatic instrumentation
library exists for the test framework that is used, then it is possible to enable
this with manual instrumentation in OpenTelemetry. This requires more work
as this must be integrated with the testing framework that is used. The name
of the test case and if the test passed or not shall also be added as key-value
pairs under the attribute section of the span format.

4.4 SDG Generation
The actual generation of the SDG is performed in the collector in Figure 4.1.
The collector stores client, server, and test spans. For every executed test case,
the collector should store a unique test span. Thus, the span id of the test span
can be used to uniquely identify every test case. Furthermore, since the test
span is the first span that is generated in every test case, then it will become
the root span that casually precedes all other client and server spans that are
generated during the execution of the test case. Consequently, this will create
a distributed trace where the test span is the root span of the trace. Hence,
by looking at the trace id of the test span it is possible to filter out all client
and server spans that belong to the same test case from all other spans that do
not. This filter mechanism will ensure that the proof-of-concept still works
even though test cases may be executed in parallel or other clients may be
interacting with the microservice system at the same time.

See algorithm 1 for the pseudocode of the SDG generation algorithm. The
algorithm takes a list of spans of all three types and the span id of the test span
for the test case to build the SDG for. The algorithm returns the SDG as an
ordered pair (V,E) as defined in equation 2.1.

Proof-of-concept | 31

Algorithm 1 Pseudocode for generating the SDG given a list of spans and the
span id of the test span that corresponds to a test case.

1: function GENERATESDG(spans, id)
2: V ← {}
3: E ← {}
4: tspan ← find the test span with span id equal to id
5: cspans ← find all client spans with trace id equal to tspan.traceId
6: sspans ← find all server spans with trace id equal to tspan.traceId
7: for cspan ∈ cspans do
8: from = cspan.serviceName
9: match← find the span in sspans with parent id equal to cspan.id

10: if match exists then
11: to← match.serviceName ▷ An internal service responded
12: else
13: to← cspan.peerName ▷ Third-party or unresponsive service
14: V ← V ∪ {from, to}
15: E ← E ∪ {(from, to)}
16: return (V,E)

The lines 2-3 in algorithm 1 initialize an empty graph. The lines 4-6 find
the test span, all client spans, and all server spans, respectively that belong to
the test case to build the SDG for. On line 7, a loop starts iterating over all
client spans in the test case. These spans correspond to all outgoing requests
from services in the microservice system. The name of the service that made
the outgoing request is stored in the from variable on line 8. Then on line
9, an attempt is made to look up the matching server span that was generated
in the service that got the request and sent back the response. The matching
server span is found if its parent id is equal to the span id of the client span
cspan. On lines 10-11, a check is made if the server span match exists and if so
the name of the service that responded to the request is stored in the variable
to. On the other hand, on lines 12-13, there existed no matching server span
for the client span. Thus, it may be the case that the response came from a
third-party service that does not provide the collector with any spans, or it
could be the case that the service that should have gotten the request is down
and unresponsive and therefore did not provide the collector with any spans.
In either case, the peer name of the client span is stored in the to variable. The
peer name is the domain part of the URL that the request was sent to. The last
lines of the loop 14-15 add the two nodes from and to to the set of nodes V ,
and also add the edge (from, to) to the set of directed edges E.

Note that an actual implementation should contain some more details

32 | Proof-of-concept

compared to the pseudocode. For example, there is no error handling in the
pseudocode for the case if the test span does not exist, which may happen if the
provided id is invalid. In addition, in each edge, it is insufficient to only store
the name of the two services. Additional information should be stored together
with the edge such as the request-response pairs that was generated between
the two services. This information already exists in the client span and the
matching server span. Consequently, this information can be extracted from
the two spans and stored together with the directed edge.

4.5 Visualization
By collecting spans it is possible to generate the SDG for every test case.
However, the SDG still needs to be visualized in an understandable manner
and provide enough information to be useful. How the graph should be drawn
to be graspable is explained in section 4.5.1. Furthermore, two novel features
added to the visualization system of the SDG to possibly make the SDG more
straightforward to work with are presented in section 4.5.2 and section 4.5.3.

4.5.1 Graph Drawing
The visualization system should be an interactive application that the user
can use to see the SDG for a test case and inspect the communication
between services. The SDG should be drawn on a 2D surface in such
a way that it increases readability and avoids clutter to allow the user to
follow dependencies among services. For SDGs that have a clear hierarchical
structure, like the SDG in Figure 3.1, a hierarchical graph drawing algorithm
like the Sugiyama Algorithm is suitable. The Sugiyama Algorithm draws
nodes on parallel lines without overlapping, each line represents a level in the
hierarchy, and all edges point in the same direction [40]. Thus, the algorithm
enhances the understandability of the graph’s flow and the relationships
between nodes that belong to the same hierarchy.

In this proof-of-concept, an assumption is made that there is a clear
hierarchical structure in the SDGs and therefore a single hierarchical graph
drawing algorithm will be used. However, for SDGs that lack hierarchical
structure other graph drawing algorithms such as the force-directed graph
drawing algorithms might be a better option.

Proof-of-concept | 33

4.5.2 Clickable Edges
In the visualization system of the SDG, all edges should be clickable with
the mouse. When a user clicks on a specific edge, a list containing all the
HTTP request-response pairs exchanged between the two services connected
by that edge should be displayed on the screen. This interactive feature serves
the purpose of enabling users to quickly examine the communication between
two services that are involved in the test. The user should also be able to
inspect each request-response pair and see the information in that request and
response, such as the HTTP method, target URL, status code, request and
response headers and bodies, to name a few.

An alternative solution would be to provide a comprehensive list with all
HTTP request-response pairs that are generated between any services during
the test. However, that list could be extensive and the user may find it difficult
to find the request-response pairs between two services in a long list. Of
course, a hybrid approach is also possible where the visualization system has
support for both clickable edges and can show a full list with all the HTTP
request-response pairs captured during the test. However, for simplicity, in
this proof-of-concept, there will only be support for clickable edges.

4.5.3 Edge Coloring
Up until now, the SDG visualizes all dependencies between services that were
captured during the execution of a test. However, the user is still required
to manually search the graph to identify where the root cause of the problem
might be. To remedy this problem and streamline the debugging process, the
visualization system will incorporate colored edges in the graph to indicate
problematic areas. An edge in the SDG that contains at least one HTTP
request-response pair with a status code of 400 or above will be colored red.
This should provide users with visual cues and quickly draw their attention to
areas where issues may have occurred during the test. HTTP codes of 400 or
above are reserved for client and server errors. Consequently, it makes sense
to highlight edges that contain HTTP status codes of 400 or above.

However, note that this is not always the case that an HTTP status code of
400 or above indicates a problem. For example, in negative tests that check
that the software behaves correctly when provided with invalid or unexpected
inputs, then a status code of 400 or above can be the expected and correct
response code in a test. For positive tests, however, then a status code of 400
or above is more likely to indicate something wrong as positive tests aim to
test the expected or intended behavior of the system under valid conditions and

34 | Proof-of-concept

inputs, and then error codes should not be returned.
A more elaborate solution might use edge coloring during positive tests and

turn off this feature during negative tests. However, that requires the system
to be aware of whether the test is positive or negative which can be difficult
to identify. Thus, for simplicity, the proof-of-concept will stick with always
having this feature on, even though the system is visualizing a negative test.

Prototype | 35

Chapter 5

Prototype

The prototype is a realization of the proof-of-concept tailor-made to be
compatible with the architecture and technology stack in use by Marginalen
Bank. See section 5.1 for how instrumentation is enabled in each individual
service and test client. Furthermore, see section 5.2 for a brief overview of how
the collector was implemented. Lastly, see section 5.3 for the implementation
of the visualization system.

5.1 Instrumentation
In the prototype, OpenTelemetry instrumentation is realized using two
different approaches depending on if it is enabled in a service or a test client.
In both cases, instrumentation is activated with only a small amount of code
modification, which makes the prototype feasible to implement on a large
system. See section 5.1.1 and 5.1.2 for how instrumentation was activated
in the services and test client, respectively.

5.1.1 Services
In Marginalen Bank, each service is implemented using ASP.NET. A
software design pattern called dependency injection is widely used in
ASP.NET. Dependency injection achieves Inversion of Control (IoC) by
relying on a dependency injection container. The dependency injection
container is responsible for creating instances of dependencies and injecting
them into the constructors of components that require them [41]. Thus, this
removes the need for each component that requires the dependency to create
an instance of it.

36 | Prototype

To activate OpenTelemetry instrumentation in each service the depen-
dency injection container was used. See Figure 5.1, for an example of
the code modification that needs to be done to each service to activate
instrumentation. A custom dependency is added to the dependency injection
container services. Some additional information should also be supplied,
such as the service name (e.g., ”Service A”) and the endpoint of the collector
(e.g., ”https://collector.net”). The service name that is supplied here will be
the name that is shown in the visualization system. Rather than hardcoding this
information directly in the code as it is done in Figure 5.1, it’s recommended
to store it in a configuration file like appsettings.json.

services.AddOpenTelemetryExtension(new OpenTelemetryExtensionOptions {
Name = ”Service A”,
CollectorEndpoint = ”https://collector.net”

});

Figure 5.1: Enable Instrumentation in Each Service with Dependency
Injection

To summarize, to enable instrumentation in all services in the microservice
system, one line of code needs to be added per service.

5.1.2 Test Client
All end-to-end tests in Marginalen Bank are written in .NET using the NUnit
testing framework. Thus, instrumentation was activated by providing each test
class with the [OpenTelemetryExtension] attribute, see Figure 5.2.
This will ensure that every test case such as TestA and TestB generates a
test span when they are executed.

Prototype | 37

[TestFixture]
[OpenTelemetryExtension]
public class ExampleTests
{

[Test]
public void TestA()
{

...
}

[Test]
public void TestB()
{

...
}

}

Figure 5.2: Enable Instrumentation in the Test Client with a Custom Attribute

However, this was not enough to get a working solution due to a problem
with threads. As of now, a background thread is running that generates and
sends spans to the collector. What can happen is that the main thread that is
executing all test cases can finish and quit before the thread that sends spans has
finished. Then the collector will not receive all spans. To solve this problem
a special class needs to be added once to every test project that after all tests
have been executed waits for all the spans to be sent to the collector. This class
can be seen in Figure 5.3. Similar to how instrumentation was activated for
services, the test client also needs to be given a name and a collector endpoint
to send the spans to.

38 | Prototype

[SetUpFixture]
public class OpenTelemetryExtensionSetup
{

[OneTimeSetUp]
public void Setup()
{

OpenTelemetryExtensionNUnitSetup.Setup(
new OpenTelemetryExtensionOptions {

Name = ”TestClient”,
CollectorEndpoint = ”https://collector.net”

}
);

}

[OneTimeTearDown]
public void TearDown()
{

OpenTelemetryExtensionNUnitSetup.Teardown();
}

}

Figure 5.3: Code to Ensure That the Spans Are Sent to the Collector Before
Exiting the Test Program

5.1.3 Limitations
Two automatic instrumentation libraries were used to generate the client and
server spans, namely:

• OpenTelemetry.Instrumentation.AspNetCore,

• and OpenTelemetry.Instrumentation.Http.
It was possible to extend the spans generated from these two libraries

with HTTP headers and bodies. However, due to limitations in the API of
these libraries, it was only possible to include the response headers and the
response body in the client span and the request headers and the request body
in the server span. Consequently, the visualization system will be able to
show both the HTTP request and response headers and bodies if both the
client and matching server span have been collected. However, if a service
communicates with a third-party service then only a client span will be
collected and thus only the response headers and body from the third-party
service will be available and not the request headers and body.

5.2 Collector
A custom collector was implemented in .NET that runs both a gRPC server
and also an HTTP server as illustrated in Figure 4.1. The gRPC server

Prototype | 39

collects all spans and the HTTP server has two endpoints that are used by
the visualization system:

• /GetTestSpans/: Returns a JSON array with all the test spans,
each test span is for a specific test that has been executed, and contains
information such as the span id, name of the test case, and if it passed
or not. The span id can then be used to get the SDG for a specific test
case.

• /GetServiceDependencyGraph/{testSpanId}: Given the
span id of the test span, this endpoint will run the SDG generation
algorithm described in section 4.4 and return the SDG of the test case
in JSON format.

5.3 Visualization
The visualization system for the prototype is a web-based application written
in React. The application uses D3.js for visualizing the graph. D3.js is a
library that has been used by related research to visualize the SDG [19, 20].
Additionally, a library called dagrejs is used to lay out the nodes of the graph
using a hierarchical graph drawing algorithm.

5.3.1 Overview
The visualization system consists of four sections, see Figure 5.4 for a
complete view of the visualization system. The top section has a button that
enables the user to be able to view all test cases that the collector has collected
and makes it possible to select a specific test case to inspect the SDG for, see
section 5.3.2 for more information on this feature. The middle left section is
the actual SDG for a specific test case. Each node represents a service or a test
client and each edge represents a dependency. In Figure 5.4, it is possible to
see that the node for the test client has a different shape to distinguish it from
the other services. The middle right section contains a list of all services and
dependencies. If an edge is clicked in the SDG, then a list with all the request-
response pairs for that edge is opened in this panel. At the bottom, there
is a console view that prints some information about what is happening, for
instance, that a test case was loaded, or if there is a red edge in the visualization
system.

40 | Prototype

Figure 5.4: Example Image of the Visualization System

5.3.2 Select Test Case
If the button in the top section, see Figure 5.4, is pressed then a table that
looks like the table in Figure 5.5 will appear. All test cases are fetched
from the collector using the /GetTestSpans/ endpoint and displayed in
the table. It is possible to see the name of the test case and if the test case
passed or failed. For each test case, it is possible to press the blue button
called ”Inspect” which will start fetching the SDG from the collector using
the endpoint /GetServiceDependencyGraph/{testSpanId}.

Figure 5.5: Example Table for Selecting a Test Case in the Visualization
System

Prototype | 41

5.3.3 Clickable Edges
As described in the proof-of-concept by clicking on edges it should be possible
to see the communication between the two services connected by the edge.
Thus, this was implemented by making the edges clickable and if an edge
was clicked then a list was automatically opened up in the middle right-hand
section of the visualization system.

5.3.4 Edge Coloring
Another feature also described in the proof-of-concept, was to color edges
red that had at least one HTTP request-response pair with an HTTP status
code of 400 or above. See Figure 5.6 for an example of this. The prototype
extended this by not only making the edge red but also showing the status code
of the request-response pair that had a status code of 400 or above. Note, that
there can be many request-response pairs with a status code of 400 or above.
Currently, the algorithm selects the first one that is found and displays the
status code of that. However, another alternative would be to prioritize the
request-response pairs with status codes of 400 or above and select the most
important one, or the one that gives the most information.

There is one special case when the edge is also colored red that does not
depend on a HTTP status code of 400 or above. This is when a connection to
a service fails due to a service being unresponsive. Then the edge will also be
colored red and given the edge label ”Connection Refused”, to indicate that
the connection could never be established with the unresponsive service.

Figure 5.6: Example of Colored Edge in the Visualization System

42 | Prototype

Results | 43

Chapter 6

Results

In total 22 participated in the usability test. Out of these, 18 (81.8%) worked
with development and 4 (18.2%) worked with quality assurance. To see the
result from task 1, 2, 3, 4, and 5 view section 6.1, section 6.2, section 6.3,
section 6.4, and section 6.5, respectively. To see the aggregated effectiveness
results from all tasks see section 6.6. To read the aggregated efficiency results
from all tasks see section 6.7. Finally, the results from the user satisfaction
and if the prototype is considered useful in a real-world microservice system
are covered in section 6.8 and section 6.9, respectively.

6.1 Task 1
In the first task, the error was that InvestmentConsultingService was down
and unresponsive. The following three alternatives were the most commonly
chosen by participants:

• 72.7% of participants selected the correct alternative, which was:
”InvestmentConsultingService is down and does not respond to
requests.”

• 22.7% of participants selected an incorrect alternative: ”FinancialCon-
sultingService is missing the necessary authorization header.”

• 4.5% of participants selected another incorrect alternative: ”Summa-
rizeIncomeService is misconfigured and is unable to communicate with
any of the other services.”

See Figure 6.1, for how the participants perceived the required effort to
solve the task on a scale from one to ten.

44 | Results

1
(Low effort)

2 3 4 5 6 7 8 9 10
(High effort)

0%

20%

40%

60%

80%

100%

27.3%

45.5%

9.1% 9.1%
0%

4.5%
0%

4.5%
0% 0%

Effort Required to Solve the Task

Pe
rc

en
ta

ge
of

Pa
rti

ci
pa

nt
s

Figure 6.1: Bar Chart Showing the Effort Distribution for Task 1

6.2 Task 2
In the second task, the error was that SummarizeIncomeService had
misspelled the URL to FinancialConsultingService. The following three
alternatives were the most commonly chosen by participants:

• 81.8% of participants selected the correct alternative, which was:
”SummarizeIncomeService is using an invalid URL to get completed
projects from FinancialConsultingService.”

• 9.1% of participants selected an incorrect alternative: ”FinancialCon-
sultingService is experiencing database connectivity issues, causing
incomplete data to be returned.”

• 9.1% of participants selected another incorrect alternative: ”Financial-
ConsultingService is using a different authentication protocol than the
other services.”

See Figure 6.2, for how the participants perceived the required effort to
solve the task on a scale from one to ten.

Results | 45

1
(Low effort)

2 3 4 5 6 7 8 9 10
(High effort)

0%

20%

40%

60%

80%

100%

27.3%
31.8%

22.7%

9.1%
0%

4.5%
0% 0%

4.5%
0%

Effort Required to Solve the Task

Pe
rc

en
ta

ge
of

Pa
rti

ci
pa

nt
s

Figure 6.2: Bar Chart Showing the Effort Distribution for Task 2

6.3 Task 3
In the third task, the error was that HardwareConsultingService returned
an invalid response body to ITConsultingService. The following three
alternatives were the most commonly chosen by participants:

• 59.1% of participants selected the correct alternative, which was:
”HardwareConsultingService is returning data in a format that is not
supported by ITConsultingService.”

• 22.7% of participants selected an incorrect alternative: ”SoftwareCon-
sultingService is returning data in a format that is not supported by
ITConsultingService.”

• 13.6% of participants selected another incorrect alternative: ”ITCon-
sultingService sent a bad request to SoftwareConsultingService.”

See Figure 6.3, for how the participants perceived the required effort to
solve the task on a scale from one to ten.

46 | Results

1
(Low effort)

2 3 4 5 6 7 8 9 10
(High effort)

0%

20%

40%

60%

80%

100%

13.6%
4.5%

13.6%

0%

22.7%
13.6%

9.1% 9.1% 9.1%
4.5%

Effort Required to Solve the Task

Pe
rc

en
ta

ge
of

Pa
rti

ci
pa

nt
s

Figure 6.3: Bar Chart Showing the Effort Distribution for Task 3

6.4 Task 4
In the fourth task, the error was that SummarizeIncomeService did not do
proper input validation of a query parameter that had an invalid value. The
following three alternatives were the most commonly chosen by participants:

• 59.1% of participants selected the correct alternative, which was:
”SummarizeIncomeService does not do proper input validation of the
query parameter ”year”.”

• 27.3% of participants selected an incorrect alternative: ”ITConsult-
ingService sent a bad request to SoftwareConsultingService.”

• 9.1% of participants selected another incorrect alternative: ”ITConsult-
ingService does not do proper input validation of the query parameter
”year”.”

See Figure 6.4, for how the participants perceived the required effort to
solve the task on a scale from one to ten.

Results | 47

1
(Low effort)

2 3 4 5 6 7 8 9 10
(High effort)

0%

20%

40%

60%

80%

100%

22.7%
13.6%

40.9%

0%
9.1%

4.5%
9.1%

0% 0% 0%

Effort Required to Solve the Task

Pe
rc

en
ta

ge
of

Pa
rti

ci
pa

nt
s

Figure 6.4: Bar Chart Showing the Effort Distribution for Task 4

6.5 Task 5
In the fifth task, the error was that LegalConsultingService did not do return
any completed projects which caused SummarizeIncomeService to compute
the wrong total income. The following three alternatives were the most
commonly chosen by participants:

• 81.8% of participants selected the correct alternative, which was:
”LegalConsultingService does not return any completed projects at all.”

• 13.6% of participants selected an incorrect alternative: ”Finan-
cialConsultingService does only return completed projects from
AccountingConsultingService and not InvestmentConsultingService.”

• 4.5% of participants selected another incorrect alternative: ”ITConsult-
ingService does not return any completed projects at all.”

See Figure 6.5, for how the participants perceived the required effort to
solve the task on a scale from one to ten.

48 | Results

1
(Low effort)

2 3 4 5 6 7 8 9 10
(High effort)

0%

20%

40%

60%

80%

100%

13.6%
18.2%

22.7%

4.5%

22.7%

9.1%
0% 0% 0%

9.1%

Effort Required to Solve the Task

Pe
rc

en
ta

ge
of

Pa
rti

ci
pa

nt
s

Figure 6.5: Bar Chart Showing the Effort Distribution for Task 5

6.6 Effectiveness
Effectiveness is how well the user can utilize the system to solve the tasks at
hand. For each task, the percentage of the participants that were able to solve
the task is listed in Table 6.1.

Task Percentage of Participants That
Solved the Task

1 72.7%
2 81.8%
3 59.1%
4 59.1%
5 81.8%

Table 6.1: Aggregated Correctness Results from All Tasks

On average, the average participant solved 70.9% of all tasks correctly. In
Table 6.1, it is clear that task 2 and task 3 had the lowest correctness rate of
59.1%. While task 2 and task 5 had the highest correctness rate of 81.8%.

6.7 Efficiency
Efficiency is how much effort and/or time the user must spend to solve each
task using the system. See the aggregated results from all tasks in Table 6.2.

Results | 49

In Table 6.2, task 3 and task 5 do stand out with a higher mean and also a
higher spread. Task 4 had slightly higher mean and median values compared
to task 1 and task 2. Task 1 and task 2 had the lowest mean values. The average
participant was required to use an average effort level of 3.5 on a scale from
one to ten in order to solve an average task.

Task Mean Median Variance
1 2.5 2.0 3.0
2 2.6 2.0 3.6
3 5.2 5.0 7.3
4 3.1 3.0 3.4
5 4.0 3.0 6.3

Table 6.2: Aggregated Effort Results from All Tasks

When participants were asked to motivate why a task required low effort
or high effort to solve with the help of the visualization system the following
answers were mentioned to describe why a task required low effort:

• The red edge color gave a good hint of where the problematic area was.

• It felt easy and quick to retrieve information about requests and
responses, which made the tasks solvable.

• The easy tasks could be solved directly by just looking at the SDG.

• It was easy to follow the call chain and find all input and output data,
this was enough to figure out what was wrong.

The following answers were mentioned to describe why a task required
high effort:

• It was sometimes required to go through many dependencies especially
if no edge was colored red, which was the case in task 5.

• Misinterpreted what an edge in the graph meant.

• Not enough visualization to solve the problem quickly.

50 | Results

6.8 User Satisfaction
When asked if the user felt satisfied when using the system to solve the tasks
the user answered on a scale from one to ten as shown in Figure 6.6.

1
(Very

unsatisfied)

2 3 4 5 6 7 8 9 10
(Very satisfied)

0%

20%

40%

60%

80%

100%

0% 0% 0% 0%
4.5% 4.5%

27.3%
31.8%

9.1%

22.7%

Satisfaction

Pe
rc

en
ta

ge
of

Pa
rti

ci
pa

nt
s

Figure 6.6: Bar Chart Showing the User Satisfaction Distribution

The mean user satisfaction score was 8.0. Additionally, the median user
satisfaction score was also 8.0. The variance of the user satisfaction scores
was 2.0.

The participants were asked to motivate why they gave the visualization
system a high satisfaction score or a low satisfaction score. The following
reasons were mentioned for why they gave the visualization system a high
satisfaction score:

• It gives a great overview of all the call chains and makes it possible to
quickly inspect suspicious calls.

• Enables the inspection of services deep down the call chain.

• Very user-friendly interface.

• The visualization makes it easy to track routes and follow the flow
between services.

The following reasons were mentioned for why they gave the visualization
system a lower satisfaction score:

Results | 51

• Do not know if the visualization system would work well in a real-world
scenario.

• Cannot visualize common types of communication such as gRPC
communication and communication with service buses.

• The user interface can be improved, for instance by making it more
straightforward to find the body of HTTP messages.

• Some flows can be difficult to understand.

6.9 Usefulness
Out of all participants, 95.5% thought that the visualization system could be
useful in a commercial real-world microservice system, and the remaining
4.5% thought that the visualization system could not be useful. The same
reasons as highlighted in the previous section on why the visualization system
was satisfying to work with were used as a motivation for why the visualization
system could be useful in a real-world microservice system. Additionally,
some other reasons to motivate the usefulness of the visualization system were
brought forward:

• This visualization system can remove tedious work, which developers
do sometimes such as following request-response pairs in logs.

• This tool can reduce the time required to find the root cause of failed
test cases.

• This visualization system is more bare-bone compared to other
monitoring systems, which means that it is possible to learn it quickly
and use it without spending a lot of time.

Concerning the critique and why the visualization system would not
work well in a real-world microservice system. The most common critique
was that real-world microservice systems contain more complex forms of
communication. For example, asynchronous communication with service
buses. This is according to some participants a crucial feature that needs to be
added to the visualization system for it to be useful in real-world microservice
systems.

52 | Results

Discussion | 53

Chapter 7

Discussion

7.1 Methods
Usability testing is a suitable evaluation methodology for this project work
because the visualization system of the prototype is an interactive web
application. Remote usability testing makes it possible to save time and
get more data points. The downside is that it is harder to monitor how the
user interacts with the web application and ask follow-up questions. In the
usability test, participation was voluntary, resulting in a potential bias towards
individuals who were interested in participating. It is possible that those who
volunteered may have been more familiar with or experienced in using similar
tools.

Five different error categories were tested in the evaluation of this master
thesis. In a real-world setting, there are of course many more different error
types that can occur, and there can also occur many errors at the same time.
The reason behind an error may also be sophisticated and it is not necessary
that the visualization system can pinpoint exactly what the root cause of a
failing test case is. For example, the error in task 1 was that a service was
down and unresponsive. The visualization system can pinpoint which service
that is failing in a call chain. However, it will not provide the reason for why
the service is down. This can be due to several reasons e.g. misconfiguration,
server failure, etc. The reason for the service being down must be analyzed
using other means. However, knowing which service the problem exists in
should not be neglected as irrelevant information, as this provides a crucial
first step in the analysis of the error.

The fictional microservice system used in the usability test allowed for
the testing of five different error types that can occur in any microservice

54 | Discussion

system. However, it is important to note that the ease of identifying these
errors using the visualization system may differ in a real-world microservice
system. Since the fictional microservice system was specifically designed for
the usability test, it may provide a more straightforward means of identifying
and visualizing the errors. In contrast, a real-world microservice system
could involve more complex interactions and dependencies, making the
identification of errors through visualization more challenging.

It is a case to be made about the assignments being too simple. For each
task, the participant was provided with five alternatives, which could enable
the participant to use the method of exclusion to arrive at the correct alternative
without having a good grasp of what went wrong in the microservice system.
To mitigate this problem, alternatives were crafted in such a way as to make
it difficult to directly exclude alternatives. For example, in some tasks several
alternatives had to do with the error but only the correct alternative covered
the root cause of why the error occurred in the first place.

To evaluate the prototype other methods were considered for instance A/B
testing. However, to use such a methodology it is required to have something
to compare the prototype against. In the case of this masterwork, a good
baseline could not be identified. I could not find an open-source or publicly
available tool like the visualization system developed in this paper. There
are monitoring systems like Jaeger and Zipkin that can build an SDG from
OpenTelemetry traces, however, they do not enable the user to see the HTTP
headers or body being sent. In addition, they do not filter the SDG to only
contain the communication that belongs to a specific test case. Thus, they are
very different products and cannot be compared fairly. One option would be to
compare the prototype against collected logs of the communication between
services. However, then one must decide how to structure and format the logs
and in what order they should be presented to the user. All these factors can
severely affect how well the logs can be read and understood. Consequently,
it was decided that comparing the visualization system to a collection of logs
can also result in an unfair comparison.

The visualization system was evaluated using usability testing with respect
to effectiveness, efficiency, and user satisfaction. However, efficiency was
subjectively measured by letting the user provide a value between one to ten
to rate how much effort that was required to solve the task. A more objective
measurement would be to collect time instead. Time could indicate how much
effort a certain task required. However, this was not used due to the fact that
Google Forms has no official support for capturing time. In addition, time
can also introduce stress for the participant and make him or her more likely

Discussion | 55

to use strategies to exclude alternatives and guess the correct answer, which
is not desirable when measuring how many tasks that can be solved with the
prototype.

7.2 Implementation
There are some features of the implementation that should be discussed. First
of all, if this implementation is used in a real-world microservice system,
then the collector and instrumentation should be activated in a separate
environment from the production environment. For instance, this should only
be run in a separate test or UAT environment mainly due to two reasons. The
first reason is that it becomes a significant performance bottleneck to capture
all HTTP requests and responses, especially the headers and bodies of all
HTTP messages. This will significantly degrade the general performance of
the microservice system, which is something to be avoided in a production
system. The second reason is due to security and integrity. If this system
were to be run in a production environment then private information such as
personal data and access tokens would be captured and stored in a centralized
collector. This would be a prime target for cybercriminals to get access to all
HTTP communication in a microservice system.

In the proof-of-concept and the prototype, there is only a single collector
that collects all spans. This collector can become a bottleneck and may even
crash if the load is too high. In this master thesis, a single collector was only
considered because it is enough to evaluate the prototype. However, if the
system should be used for real, one should consider using many collectors and
providing a load balancer between them to ensure that a single collector does
not become a bottleneck in the microservice system. The way the SDG is built
may also need to change if all spans are not accessible by a single collector
anymore.

7.3 Results
The results show that the visualization system has great potential to be a useful
tool to identify the root cause of failing test cases in microservice systems.
From the results, the average participant solved 70.9% of all tasks on average,
and the average effort required to solve an average task was 3.5 on a scale
from one to ten. These tasks involved five different error categories, namely:
service is down, misspelled URL, bad response data, bad request data, and

56 | Discussion

missing response data.
Both task 1 and task 2 required a low average effort rate and had a high

average correctness rate. These two tasks are discussed briefly in section 7.3.1.
The lowest correctness rate was for task 3 and task 4. Task 3 was also
considered the task that required the most amount of effort to be solved
according to the average participant. See section 7.3.2 and section 7.3.3 for a
discussion on task 3 and task 4, respectively. Lastly, see section 7.3.4 for task
5 which required the second highest average effort to be solved according to
participants.

7.3.1 Task 1 and 2
The error in task 1 was that a service was down and the error in task 2 was a
misspelled URL. Compared to the other tasks task 1 and task 2 were the tasks
that required the lowest average effort to be solved according to participants.
Motivations for the low effort according to the participants had to do with the
red edges that highlighted the problematic areas and the fact that just observing
the SDG was enough to figure out the root cause of the failing test case.
Consequently, these two tasks did require a small amount of manual work
as the error could be directly identified by observing the SDG. According to
the results, task 1 had a slightly lower average correctness rate compared to
task 2.

See Figure 7.1 for the SDG that the participant saw in task 1. The
participants need to identify that the connection from FinancialConsult-
ingService to InvestementConsultingService could not be established due to
InvestementConsultingService being down and unresponsive, which is what
the red edge with the label ”Connection Refused” indicates. However, 22.7%
selected the wrong alternative: ”FinancialConsultingService is missing the
necessary authorization header”. However, if that were the case then instead
of ”Connection Refused” the edge label would be ”401 Unauthorized”. Thus,
one logical conclusion for why so many picked the wrong alternative could be
that they did not understand what ”Connection Refused” meant due to it not
being a standardized way to express that a service is down. This indicates that
the name of edge labels impacts how well the visualization system works.

Discussion | 57

Figure 7.1: The SDG the User Saw When Trying to Solve Task 1

7.3.2 Task 3
Task 3, had the highest mean effort and the lowest average correctness rate.
Thus, this task was likely the hardest task that the participant had to solve.
Task 3 covered bad response data which required the user to inspect the
response body of at least two services to find out which one returned the
invalid response data. Two factors can be identified that made this task
tricky. See Figure 7.2, for what the user saw when trying to solve this
task. The error is that HardwareConsultingService returns a bad response
body to ITConsultingService, which in turn made ITConsultingService
crash and return a response code of 500. The red edge can appear a bit
misleading here because it can make the user focus on the dependency
between SummarizeIncomeService and ITConsultingService, which is not
where the root cause of the problem resides. By clicking on the dependency
between SummarizeIncomeService and ITConsultingService it is possible to
see an error message that would indicate that there is a format error that
made ITConsultingService crash. This should provide enough of a hint to
make the user look up the responses from both SoftwareConsultingService
and HardwareConsultingService to see if they are returning something
strange. One should then identify that HardwareConsultingService is
returning projects where the income is formatted as a string with a dollar sign.
The error message previously read, also points out that there was a problem
with converting a string to a double due to the dollar sign in the string.

58 | Discussion

Figure 7.2: The SDG the User Saw When Trying to Solve Task 3

In task 3, 22.7% picked the option ”SoftwareConsultingService is
returning data in a format that is not supported by ITConsultingService”,
which indicates that they knew that there were a problem with a response
body, however, they did not properly investigate both the response body
from SoftwareConsultingService and HardwareConsultingService. Perhaps
they assumed that it must come from the service that is contacted by
ITConsultingService first, which is not the case. Consequently, this highlights
that the visualization is not a quick fix nor an automatic analysis tool that
finds the error automatically for the user. With this tool, the user is still
required to read error messages and go through request-response pairs between
dependencies.

7.3.3 Task 4
Task 4, had similarly to task 3 also the lowest average correctness rate. Task 4,
covered a negative test, which makes the task a bit special as all the other tasks
covered positive tasks. In task 4, the test was that SummarizeIncomeService
should return ”400 Bad Request” when an optional query parameter is used
with an invalid value. The error was that SummarizeIncomeService did not do
proper input validation of the query parameter and therefore instead of directly
returning a status code of 400, the invalid query parameter was passed down to
services deep down the call chain. Finally, when SoftwareConsultingService
received the query parameter with an invalid value, a status code of 400 was
returned, which generated a cascading effect where both ITConsultingService
and SummarizeIncomeService returned a status code of 500 as illustrated in
Figure 7.3.

Discussion | 59

Figure 7.3: The SDG the User Saw When Trying to Solve Task 4

The participant in this case must spot that SummarizeIncomeService does
not do proper input validation of the query parameter since the parameter is
passed down to ITConsultingService. This can be observed by following the
requests being made from the TestClient and seeing how the query parameter
is allowed through until it reaches SoftwareConsultingService which luckily
did do proper input validation. The most popular wrong alternative picked
by 27.3% of the participants was ”ITConsultingService sent a bad request to
SoftwareConsultingService”, which indeed is part of the problem, however,
it is not the root cause of the problem. The query parameter should never
have reached ITConsultingService, it should have been stopped directly by
SummarizeIncomeService, which is why this was an incorrect alternative.
This shows that it is not always the case that the root cause of an error can
be identified by looking deep down the call chain and taking the original bad
response message that made the microservice system crash. Some additional
grasp of how the system is supposed to behave is also needed to accurately
understand the root cause of the failed test case.

7.3.4 Task 5
Task 5, had the second highest mean effort of 4.0 according to participants.
However, at the same time, task 5 got one of the highest correctness rates of
81.8%. The reason participants thought this task required a high amount of
effort was due to the fact that there were no red edges in the visualization, as
can be seen in Figure 7.4.

60 | Discussion

Figure 7.4: The SDG the User Saw When Trying to Solve Task 5

Without additional visualization, the user is left to go over possible all
dependencies in the worst case and check all request-response pairs to figure
out which service that is returning an empty response. This is a tedious task.
It is possible to extend the visualization system to provide features that would
enable the user to find these types of errors more quickly. For instance, a search
feature that allows the user to search for all request-response pairs where the
response body has a certain format.

Conclusions and Future work | 61

Chapter 8

Conclusions and Future work

In this project work, a novel SDG-based method was developed to investigate
the research question of whether the use of an SDG-based method can simplify
the software testing process of a microservice system. The implementation
was divided into a proof-of-concept and a realization of the proof-of-concept
which was referred to as the prototype. The proof-of-concept was a general
model that can work for many different microservice systems, and the
prototype was a realization of the proof-of-concept specifically designed to
work with services written in .NET together with the testing framework
NUnit. To answer the research question the prototype was evaluated
in a usability test with developers and quality assurance engineers from
Marginalen Bank. The results, from the usability test, show that some
error categories such as service down and misspelled URL can be directly
identified in the visualization system just by observing the SDG. However,
more complex error categories such as invalid request and response data
require more manual work and going through request-response pairs.

The participants thought that the tasks that could be directly solved by
observing the SDG required on average less effort than the tasks that required
clicking around in the SDG and observing request-response pairs. A common
reason that was highlighted to make the user satisfied and the tasks low effort
was how problematic areas were marked as red in the SDG, and how the SDG
allowed the user to understand connections and follow call chains. However, in
the tasks, especially in task 3 and task 4 a minority of the participants seemed
to rely too much on the SDG and skipped analyzing the request-response pairs
and therefore came up with the wrong answer. Consequently, this highlights
the fact that just observing the SDG is insufficient to identify the root cause of
all problems. An understanding of the system and manual analysis of request-

62 | Conclusions and Future work

response pairs in the visualization system is still necessary. In addition, too
much emphasis on red edges should not be taken. Instead, they should just
provide a hint of where to start analyzing in the microservice system.

In conclusion, SDG-based methods can simplify the process of finding the
root cause of failing test cases for at least five different error types covered in
this project work. SDG-based methods can provide a graspable visualization
that enables the user to follow communication flows and understand how
services depend on each other in a test case. In complex microservice
systems with many dependencies, this can be an invaluable feature. Additional
visualization features such as red edges can reduce the required effort by
removing the burden of having to analyze every request-response pair.
However, the prototype brought forward in this project work, shows that an
SDG alone cannot automatically identify the root cause of failing test cases.
Manual analysis is still required but the SDG can provide a debugging platform
that simplifies the job of the user.

In future work, it would be interesting to see how well the prototype and
SDG-based methods in general can simplify the software testing process for
real-world microservice systems. Furthermore, more types of errors than
the five discussed in this project work should be considered in the future.
In addition, how SDG-based methods work when there are multiple errors
in the same test. For example, if two services are down at the same time.
As highlighted by participants in the usability study, there are many more
communication protocols that microservice systems can use, not only HTTP
communication. Consequently, it would be interesting to add support for
additional communication protocols such as gRPC and service bus protocols.

References | 63

References

[1] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert,
“Microservices,” IEEE Software, vol. 35, no. 3, pp. 96–100, May 2018.
doi: 10.1109/MS.2018.2141030 Conference Name: IEEE Software.
[Pages 1 and 9.]

[2] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116,
Jan. 2015. doi: 10.1109/MS.2015.11 Conference Name: IEEE Software.
[Page 1.]

[3] O. Al-Debagy and P. Martinek, “A Comparative Review of Microser-
vices and Monolithic Architectures,” in 2018 IEEE 18th International
Symposium on Computational Intelligence and Informatics (CINTI),
Nov. 2018. doi: 10.1109/CINTI.2018.8928192 pp. 000 149–000 154,
iSSN: 2471-9269. [Pages 1 and 9.]

[4] J. P. Sotomayor, S. C. Allala, P. Alt, J. Phillips, T. M. King, and
P. J. Clarke, “Comparison of Runtime Testing Tools for Microservices,”
in 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), vol. 2, Jul. 2019. doi: 10.1109/COMP-
SAC.2019.10232 pp. 356–361, iSSN: 0730-3157. [Pages 1 and 9.]

[5] S. Baškarada, V. Nguyen, and A. Koronios, “Architecting
Microservices: Practical Opportunities and Challenges,” Journal
of Computer Information Systems, vol. 60, no. 5, pp. 428–436,
Sep. 2020. doi: 10.1080/08874417.2018.1520056 Publisher: Taylor
& Francis _eprint: https://doi.org/10.1080/08874417.2018.1520056.
[Online]. Available: https://doi.org/10.1080/08874417.2018.1520056
[Pages 1, 9, and 10.]

[6] M. Waseem, P. Liang, G. Márquez, and A. D. Salle, “Testing
Microservices Architecture-Based Applications: A Systematic Mapping
Study,” in 2020 27th Asia-Pacific Software Engineering Conference

https://doi.org/10.1080/08874417.2018.1520056

64 | References

(APSEC), Dec. 2020. doi: 10.1109/APSEC51365.2020.00020 pp. 119–
128, iSSN: 2640-0715. [Pages 1, 2, and 9.]

[7] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez,
“Design, monitoring, and testing of microservices systems: The
practitioners’ perspective,” Journal of Systems and Software, vol. 182, p.
111061, Dec. 2021. doi: 10.1016/j.jss.2021.111061. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221001588
[Pages 1, 2, 9, 10, and 27.]

[8] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The Journey So Far and Challenges Ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, May 2018. doi: 10.1109/MS.2018.2141039
Conference Name: IEEE Software. [Pages 1 and 9.]

[9] R. T. Fielding and J. Reschke, “Hypertext transfer protocol (HTTP/1.1):
Semantics and content,” num Pages: 101. [Online]. Available:
https://datatracker.ietf.org/doc/rfc7231 [Page 5.]

[10] T. Bray, “The JavaScript object notation (JSON) data interchange
format,” num Pages: 16. [Online]. Available: https://datatracker.ietf.org
/doc/rfc8259 [Page 6.]

[11] Z. Xiao, I. Wijegunaratne, and X. Qiang, “Reflections on SOA and
Microservices,” in 2016 4th International Conference on Enterprise
Systems (ES), Nov. 2016. doi: 10.1109/ES.2016.14 pp. 60–67. [Page 6.]

[12] N. Kratzke, “About Microservices, Containers and their Underestimated
Impact on Network Performance,” Sep. 2017, arXiv:1710.04049 [cs].
[Online]. Available: http://arxiv.org/abs/1710.04049 [Page 7.]

[13] F. Montesi and J. Weber, “Circuit Breakers, Discovery, and API
Gateways in Microservices,” Sep. 2016, arXiv:1609.05830 [cs].
[Online]. Available: http://arxiv.org/abs/1609.05830 [Pages 7 and 8.]

[14] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architec-
ture Enables DevOps: Migration to a Cloud-Native Architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, May 2016. doi: 10.1109/MS.2016.64
Conference Name: IEEE Software. [Pages 8 and 9.]

[15] D. R. Apolinário and B. B. de França, “A method for monitoring
the coupling evolution of microservice-based architectures,” Journal

https://www.sciencedirect.com/science/article/pii/S0164121221001588
https://datatracker.ietf.org/doc/rfc7231
https://datatracker.ietf.org/doc/rfc8259
https://datatracker.ietf.org/doc/rfc8259
http://arxiv.org/abs/1710.04049
http://arxiv.org/abs/1609.05830

References | 65

of the Brazilian Computer Society, vol. 27, no. 1, p. 17, Dec.
2021. doi: 10.1186/s13173-021-00120-y. [Online]. Available: https:
//doi.org/10.1186/s13173-021-00120-y [Page 9.]

[16] M. J. Kargar and A. Hanifizade, “Automation of regression test in
microservice architecture,” in 2018 4th International Conference on Web
Research (ICWR), Apr. 2018. doi: 10.1109/ICWR.2018.8387249 pp.
133–137. [Pages 10 and 17.]

[17] J. G. Quenum and S. Aknine, “Towards Executable Specifications for
Microservices,” in 2018 IEEE International Conference on Services
Computing (SCC), Jul. 2018. doi: 10.1109/SCC.2018.00013 pp. 41–48,
iSSN: 2474-2473. [Pages 10 and 17.]

[18] M. Rahman and J. Gao, “A Reusable Automated Acceptance Testing
Architecture for Microservices in Behavior-Driven Development,” in
2015 IEEE Symposium on Service-Oriented System Engineering, Mar.
2015. doi: 10.1109/SOSE.2015.55 pp. 321–325. [Pages 10 and 17.]

[19] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using Service Dependency Graph to Analyze and Test Microservices,”
in 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), vol. 02, Jul. 2018. doi: 10.1109/COMP-
SAC.2018.10207 pp. 81–86, iSSN: 0730-3157. [Pages 10, 16, 17,
and 39.]

[20] S.-P. Ma, C.-Y. Fan, Y. Chuang, I.-H. Liu, and C.-W. Lan, “Graph-
based and scenario-driven microservice analysis, retrieval, and testing,”
Future Generation Computer Systems, vol. 100, pp. 724–735, Nov.
2019. doi: 10.1016/j.future.2019.05.048. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X19302614
[Pages 10, 16, 17, and 39.]

[21] A. Uddin and A. Anand, “Importance of Software Testing in the Process
of Software Development,” International Journal for Scientfic Research
and Development, pp. 2321–0613, Jan. 2019. [Page 10.]

[22] P. Bourque, R. Dupuis, A. Abran, J. Moore, and L. Tripp, “The guide to
the Software Engineering Body of Knowledge,” IEEE Software, vol. 16,
no. 6, pp. 35–44, Nov. 1999. doi: 10.1109/52.805471 Conference Name:
IEEE Software. [Page 10.]

https://doi.org/10.1186/s13173-021-00120-y
https://doi.org/10.1186/s13173-021-00120-y
https://www.sciencedirect.com/science/article/pii/S0167739X19302614
https://www.sciencedirect.com/science/article/pii/S0167739X19302614

66 | References

[23] M. Cohn, Succeeding with agile : software development using Scrum,
ser. The Addison-Wesley signature series. Upper Saddle River,
N.J: Addison-Wesley, 2010. ISBN 0-321-57936-4 Publication Title:
Succeeding with agile : software development using Scrum. [Page 10.]

[24] N. Radziwill and G. Freeman, “Reframing the Test Pyramid for
Digitally Transformed Organizations,” Nov. 2020, arXiv:2011.00655
[cs]. [Online]. Available: http://arxiv.org/abs/2011.00655 [Page 11.]

[25] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and
D. Taibi, “Microservice Architecture Reconstruction and Visualization
Techniques: A Review,” in 2022 IEEE International Confer-
ence on Service-Oriented System Engineering (SOSE), Aug. 2022.
doi: 10.1109/SOSE55356.2022.00011 pp. 39–48, iSSN: 2642-6587.
[Page 12.]

[26] X. Défago, “Causal Order, Logical Clocks, State Machine Replication,”
in Encyclopedia of Algorithms, M.-Y. Kao, Ed. Boston, MA: Springer
US, 2008, pp. 129–131. ISBN 978-0-387-30162-4. [Online]. Available:
https://doi.org/10.1007/978-0-387-30162-4_65 [Page 12.]

[27] G. Leffler, “OpenTelemetry and observability: What, why, and why
now?” Sydney: USENIX Association, Dec. 2022. [Page 12.]

[28] J. M. C. Bastien, “Usability testing: a review of some methodological
and technical aspects of the method,” International Journal of
Medical Informatics, vol. 79, no. 4, pp. e18–e23, 2010. doi:
https://doi.org/10.1016/j.ijmedinf.2008.12.004. [Online]. Available: ht
tps://www.sciencedirect.com/science/article/pii/S1386505608002098
[Page 14.]

[29] A. M. Wichansky, “Usability testing in 2000 and beyond,” Ergonomics,
vol. 43, no. 7, pp. 998–1006, 2000. doi: 10.1080/001401300409170.
[Online]. Available: https://doi.org/10.1080/001401300409170
[Page 14.]

[30] J. Nielsen and T. K. Landauer, “A mathematical model of the finding
of usability problems,” in Proceedings of the INTERACT ’93 and CHI
’93 Conference on Human Factors in Computing Systems, ser. CHI ’93.
New York, NY, USA: Association for Computing Machinery, May 1993.
doi: 10.1145/169059.169166. ISBN 978-0-89791-575-5 pp. 206–213.

http://arxiv.org/abs/2011.00655
https://doi.org/10.1007/978-0-387-30162-4_65
https://www.sciencedirect.com/science/article/pii/S1386505608002098
https://www.sciencedirect.com/science/article/pii/S1386505608002098
https://doi.org/10.1080/001401300409170

References | 67

[Online]. Available: https://dl.acm.org/doi/10.1145/169059.169166
[Page 14.]

[31] B. Zhang, K. Wen, J. Lu, and M. Zhong, “A Top-K QoS-Optimal Service
Composition Approach Based on Service Dependency Graph,” Journal
of Organizational and End User Computing (JOEUC), vol. 33, no. 3, pp.
50–68, May 2021. doi: 10.4018/JOEUC.20210501.oa4 Publisher: IGI
Global. [Online]. Available: https://www.igi-global.com/article/a-top
-k-qos-optimal-service-composition-approach-based-on-service-dep
endency-graph/www.igi-global.com/article/a-top-k-qos-optimal-servi
ce-composition-approach-based-on-service-dependency-graph/276376
[Page 16.]

[32] S. Hashemian and F. Mavaddat, “A graph-based approach to Web
services composition,” in The 2005 Symposium on Applications and
the Internet, Feb. 2005. doi: 10.1109/SAINT.2005.4 pp. 183–189.
[Page 16.]

[33] A. Santos and H. Paula, “Microservice decomposition and evaluation
using dependency graph and silhouette coefficient,” in 15th Brazilian
Symposium on Software Components, Architectures, and Reuse, ser.
SBCARS ’21. New York, NY, USA: Association for Computing
Machinery, Oct. 2021. doi: 10.1145/3483899.3483908. ISBN 978-1-
4503-8419-3 pp. 51–60. [Online]. Available: https://doi.org/10.1145/34
83899.3483908 [Page 16.]

[34] O. Al-Debagy and P. Martinek, “Dependencies-based microservices
decomposition method,” International Journal of Computers and
Applications, vol. 44, no. 9, pp. 814–821, Sep. 2022. doi:
10.1080/1206212X.2021.1915444 Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/1206212X.2021.1915444. [Online]. Available:
https://doi.org/10.1080/1206212X.2021.1915444 [Page 16.]

[35] E. Gaidels and M. Kirikova, “Service Dependency Graph Analysis
in Microservice Architecture,” in Perspectives in Business Informatics
Research, ser. Lecture Notes in Business Information Processing,
R. A. Buchmann, A. Polini, B. Johansson, and D. Karagiannis, Eds.
Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-
030-61140-8_9. ISBN 978-3-030-61140-8 pp. 128–139. [Page 16.]

[36] I. U. P. Gamage and I. Perera, “Using dependency graph and graph the-
ory concepts to identify anti-patterns in a microservices system: A tool-

https://dl.acm.org/doi/10.1145/169059.169166
https://www.igi-global.com/article/a-top-k-qos-optimal-service-composition-approach-based-on-service-dependency-graph/www.igi-global.com/article/a-top-k-qos-optimal-service-composition-approach-based-on-service-dependency-graph/276376
https://www.igi-global.com/article/a-top-k-qos-optimal-service-composition-approach-based-on-service-dependency-graph/www.igi-global.com/article/a-top-k-qos-optimal-service-composition-approach-based-on-service-dependency-graph/276376
https://www.igi-global.com/article/a-top-k-qos-optimal-service-composition-approach-based-on-service-dependency-graph/www.igi-global.com/article/a-top-k-qos-optimal-service-composition-approach-based-on-service-dependency-graph/276376
https://www.igi-global.com/article/a-top-k-qos-optimal-service-composition-approach-based-on-service-dependency-graph/www.igi-global.com/article/a-top-k-qos-optimal-service-composition-approach-based-on-service-dependency-graph/276376
https://doi.org/10.1145/3483899.3483908
https://doi.org/10.1145/3483899.3483908
https://doi.org/10.1080/1206212X.2021.1915444

68 | References

based approach,” in 2021 Moratuwa Engineering Research Conference
(MERCon), Jul. 2021. doi: 10.1109/MERCon52712.2021.9525743 pp.
699–704, iSSN: 2691-364X. [Page 16.]

[37] A. Al Maruf, A. Bakhtin, T. Cerny, and D. Taibi, “Using Microservice
Telemetry Data for System Dynamic Analysis,” in 2022 IEEE
International Conference on Service-Oriented System Engineering
(SOSE), Aug. 2022. doi: 10.1109/SOSE55356.2022.00010 pp. 29–38,
iSSN: 2642-6587. [Page 16.]

[38] B. Cemellini, R. Thompson, P. Van Oosterom, and M. De Vries,
“Usability testing of a web-based 3D Cadastral visualization system,”
in Proceedings of the 6th International FIG Workshop on 3D Cadastres,
Delft, The Netherlands, 2018, pp. 1–5. [Page 20.]

[39] M. Bach-Nutman, “Understanding The Top 10 OWASP Vulnerabilities,”
2020, _eprint: 2012.09960. [Page 24.]

[40] N. Nikolov, “Sugiyama Algorithm,” Jan. 2016, pp. 2162–2166.
[Page 32.]

[41] K. Larkin, S. Smith, S. Addie, and B. Dahler, “Dependency injection in
ASP.NET Core,” May 2023. [Online]. Available: https://learn.microsof
t.com/en-us/aspnet/core/fundamentals/dependency-injection [Page 35.]

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

TRITA-EECS-EX-2023:552

www.kth.se

	Introduction
	Background
	Problem
	Purpose
	Goals
	Research Methodology
	Delimitations
	Structure of the Thesis

	Background
	HTTP
	Microservices
	Common Technologies and Features
	DevOps
	Advantages
	Challenges

	Software Testing
	Service Dependency Graph
	Causal Order
	OpenTelemetry
	Marginalen Bank
	Usability Testing
	Related Work
	Composition and Decomposition
	Design Errors
	Software Testing

	Methods
	Research Process
	Usability Testing
	Data Collection
	Questionnaire
	Fictional Microservice System
	Tasks
	Data Analysis

	Proof-of-concept
	Architecture
	Span Types
	Instrumentation
	Services
	Test client

	SDG Generation
	Visualization
	Graph Drawing
	Clickable Edges
	Edge Coloring

	Prototype
	Instrumentation
	Services
	Test Client
	Limitations

	Collector
	Visualization
	Overview
	Select Test Case
	Clickable Edges
	Edge Coloring

	Results
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Effectiveness
	Efficiency
	User Satisfaction
	Usefulness

	Discussion
	Methods
	Implementation
	Results
	Task 1 and 2
	Task 3
	Task 4
	Task 5

	Conclusions and Future work
	References

