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SUMMARY 

There is a rapid increase in the deployment, acquisition and analysis of automated fare collection (AFC) 

systems, enabling a profound change in the ability to analyze high-volume data that relate to observed 

passenger travel behavior and recurrent patterns. The analysis of such passively collected data offers 

direct access to a continuous flow of observed passenger behavior at a large scale, saving expensive 

data collection efforts. For a review of the spectrum of applications – from strategic demand 

estimation to operational service performance measurements. 

The FairAccess project leverages on the availability of Access-kort data for the vast majority of trips 

performed in Stockholm County. The overarching goal of this project is to develop means to analyse 

empirically the impacts of policy/planning measures based on disaggregate passively collected smart 

card data. This involves a series of analysis and modelling challenges. We develop and apply a series 

algorithms to infer of tap-out locations, infer vehicles and travel times, and infer transfers to that 

journeys can be composed. Tap-in records have been matched with corresponding inferred tap-out 

locations and time stamps for about 80% of all records. Thereafter, we construct time-dependent 

origin-destination matrices for which segmentations can be performed with respect to geographical 

and user product features.  

We demonstrate the approach and algorithms developed by performing a before-after analysis of the 
fare scheme change from zone-based to flat fares. We analyse changes in travel patterns and derive 
price elasticities for distinctive market segments. The introduced fare policy delivered the desirable 
result of an increased ridership through improved convenience of the single-use products. 
Nevertheless, the significance of the service convenience component was underestimated, which 
resulted in the price adjustments being not in line with the mobility effects.  

The planning and development of the Stockholm public transport system must rely on the best 

empirical foundations available to support evidence-based decision-making and make the right 

priorities. To this end, the development and analysis performed in the FairAccess project lay a 

necessary foundation for further methodological developments and analyses such as on-board 

crowding evaluation, demand forecasting and identifying user groups.  
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1 INTRODUCTION  

1.1 BACKGROUND 
Three important developments and related lacks of knowledge set the stage for this project: 

- Availability of large-scale passively collected passenger data, which are greatly underutilized. 

Smart card validation records offer a potentially very rich dataset that enables a profound 

change in the ability to analyze observed passenger travel behavior and recurrent patterns. 

None of the existing offline functionalities at Trafikförvaltningen (TF) is coupled in a systematic 

way to long-term planning applications such as demand forecasting and project appraisal. 

There is a lot of potential in going beyond generating reports upon request for individual 

stations and gaining knowledge into travel patterns exhibited by different user groups and the 

corresponding impacts of planning interventions. To uncover the potential of this data, a series 

of algorithmic developments and data management and fusion capabilities are needed.  

- Greater focus on ‘inclusive transport service for all’ as a prime policy and planning goal yet no 

quantification of the distributional effects of interventions. Very little is known about the 

patterns that characterize the travel behavior of different users and socio-demographic 

groups. This lack of knowledge prevents planners from assessing the impacts of alternative 

investments/policy measures on different groups and as a result undermining its incorporation 

in the decision making process.    

- Changed from zone-based to flat fare while there is lack of knowledge on the impact of fare 

scheme changes. Little empirical knowledge on how fare schemes influence the decisions of 

different travelers’ groups. While changes in fare levels have often been investigated, very 

little is known on the impacts of fare structure such as differential vs. uniform fees on travel 

patterns. 

The combination of these developments, trends and opportunities paved the way and provide the 

context for the FairAccess project.  

1.2 AIM 
The overarching goal of this project is to develop means to analyse empirically the impacts of 

policy/planning measures based on disaggregate passively collected smart card data. This involves a 

series of analysis and modelling challenges. The application selected for this study is the Stockholm 

region’s fare scheme change from zone-based to flat-fare. Focus is on the distributional impacts of 

such a policy since smart card data can potentially reveal more information on travel patterns among 

different user groups.  

To achieve this overall aim, the specific objectives of this project are as follows: 

(i) Infer the tap-out location and time for tap-in records 
(ii) Construct passenger station-to-station journey records 
(iii) Identify travel patterns for different user groups 
(iv) Develop metrics to quantify the distributional aspects of accessibility and fare schemes 
(v) Perform an empirical evaluation of the fare policy change and its distributional impacts 
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1.3 APPROACH AND WORK PROCESS 
To realize the objectives stated above, the project constitutes of a series of algorithmic, theoretical 

and empirical research steps. The overall workflow is structured into four work packages (WP): 

- WP1: From smartcard data to individual (public transport) diaries 
- WP2: From disaggregate diaries to user-group travel patterns 
- WP3: Quantifying accessibility and equity effects 
- WP4: Before-after analysis of changes in fare scheme 

 The WPs and their relations are depicted in Figure 1.1.  

 

Figure 1.1: FairAccess project workflow 

WP1 involves the processing of large amounts of raw disaggregate smart card data and therefore 
required the development of software solutions to efficiently perform data analytics operations. A 
series of algorithms were designed and implemented to infer the most likely tap-out location for each 
tap-in record and the respective time stamp by fusing Automated Fare Collection (AFC) and Automated 
Vehicle Location (AVL) data and obtaining information over a long period of time per card holder. 
Thereafter, successive trips were combined into journeys if a transfer (as opposed to an activity) was 
inferred.  In the case of gated tap-ins (i.e. metro and commuter train), transfer locations were inferred. 
The outputs of these research steps became input to the subsequent analysis in WP2. 

The individual journey database was aggregated and travel patterns were analyzed in WP2. We 
analyzed the spatial and temporal characteristics of the travel patterns observed, also as part of model 
verification. We also examined the travel patterns at the zonal level and OD level as well as its relation 
with socio-economic variables available per statistical zone. Furthermore, we analyzed travel patterns 
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for different smart card products such as travel frequency and relate them to attributes of user groups 
to the extent possible. To support the analysis and dissemination, we invest in developing visualization 
capabilities to illustrate the travel patterns observed such as transfer hotspots, daily evolution patterns 
etc. 

WP1 and WP3 took place in parallel and provided the building blocks for the remaining activities. In 
WP3 we reviewed the theory on defining and measuring accessibility and equity. We then focused on 
methods that capture the distributional aspects of public transport service provision and fare schemes. 
We chose to operationalize those by employing the Gini and Suits metrics. Moreover, we proposed 
ways to perform a meaningful comparison among user groups since some of the geographical 
disparities are inherent to the properties of public transport network gravity and ridership. The 
conclusions of WP3 were used in selecting and applying the proposed indicators in WP4. 

In WP4 we investigated the case of the fare scheme change. The algorithmic development and the 
analysis performed in WP1 and WP2 allow investigating the travel patterns for specific smart card 
products before and after the policy change, and segmenting them further by the fare zones 
combination of the journey and the socio-economic attributes of the home-based zone. The latter can 
be identified thanks to the availability of (anonymous) data per individual card holder over a long 
period of time. We then applied the indicators proposed in WP3 to systematically evaluate the impacts 
of the fare change on ridership, trip frequency, origin-destination combinations and fare expenses, and 
their distributional dimensions.  

1.4 PROJECT MANAGEMENT 
The project team consists of researchers with diverse training and skills, interests and backgrounds. 

Moreover, the research team includes researchers at different stages of their research career, 

affiliated with different groups and based in different countries. To reduce communication overload 

and barriers three main mechanisms were introduced: 

- Regular project conference calls where all project members share updates, discuss issues and 

selected WP describe progress and outputs in greater detail. Meetings took place on a bi-

monthly basis. 

- Slack was used as the main communication channel for discussing technical developments and 

sharing intermediate results along with supporting tools for software development and project 

management for the core developers in WP1 and WP2. 

- Study visits when either intensive interaction is needed within a short time span or a longer 

stay to allow for regular contact opportunities. 

The combination of these work patterns and communication channels proved very effective yet 

efficient in ensuring the successful completion of this project, including dependencies within and 

between WPs.  

The role played by Isak Rubensson in his dual capacity was very important in guarantying a short line 

of communication with Region Stockholm, including granting access to data, getting insights on past 

and present developments within the organisation and potential applications of interest. In addition, 

Gabriella Nilsson was updated every 6 months or so on project progress.  

Two key meetings were organized with a large group of developers and planners at Region Stockholm 

on May 2, 2019 and November 13, 2019. During the first meeting, the key smart card processing 
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capabilities were presented as well as an array of applications of smart card data analytics from cities 

worldwide. During the second meeting, the key findings of this project were presented, and possible 

applications and use of the capabilities developed as part of business operations were discussed.  

1.5 PROJECT DISSEMINATION 
Parts of the work performed in this project has been presented in the following international peer-

reviewed scientific conferences: 

- ”Generating Network-wide Travel Diaries using Smart Card Data”. TransitData2019, Paris. July 2019. 
- “Equity Impacts of Alternative Fare Schemes: The Case of Stockholm”. The 98th Transportation 

Research Board Annual Meeting, Washington DC. January 2010. 
- “Fair Accessibility – Operationalizing the Distributional Effects of Policy Interventions”. 99th 

Transportation Research Board Annual Meeting, Washington DC. January 2020. 

In addition, three journal submissions based on the work performed in this project are either under 

preparation or under review: (i) detailing the smart card data analytics algorithms; (ii) proposing new 

means of analysing accessibility and equity as part of policy evaluation; (iii) reporting the results of the 

fare scheme change and discussing their implications.  

1.6 OUTLINE 
The remaining of this report is organized as follows. Chapter 2 reports the process of estimating 

individual travel records based on the raw smart card data made available for this project. The 

individual records and then aggregated in Chapter 3 to generate an understanding of global travel 

patterns as well as segmented to investigate specific user groups. Chapter 4 describes the notions and 

metrics of accessibility and equity proposed for quantifying the impacts of policy interventions. 

Chapter 5 presents the results of the fare scheme change empirical evaluation based on the smart card 

data and the proposed indicators. Chapters 2-5 correspond to a large extent to the work performed in 

WP 1-4, respectively. Chapter 6 concludes this work and provides suggestions for future research.   
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2 FROM SMART CARD DATA TO INDIVIDUAL TRAVEL DIARIES 

This chapter present the framework and methodology for building the individual travel diaries, which 

correspond to work package WP1 and opens numerous possibilities for analysing travel patterns at 

different aggregation levels in WP2 (Chapter 3). The latter involves the inference of home stop 

locations of card holders and data fusion with socio-economic data to enable that analysis of travellers’ 

socio-economic context. The techniques and analysis reported in this and the following chapters are 

essential prerequisites that enable the case study fare analysis performed in Chapter 5. 

The methodology carried out in this chapter follows a sequence of steps for processing smart card data 

to individual travel diaries. Two complete years, i.e. 2016 and 2017, are used for analysing the 

performance of the framework, followed by an analysis for February 2016 and February 2017 only. 

These months are selected for analysis of fare change later and its impact on different groups of 

travellers. 

The rest of this chapter is organized as follows. First, we briefly introduce the data format and notation 

used in this report (2.1). Then, the general workflow framework for processing smart card data is 

presented (2.2). Later we discuss in detail framework’s modules in the following order: inferring of tap-

out locations (2.3); Inferring vehicles and travel times (2.4); and journey algorithm (2.5). We close with 

brief information on model implementation (2.6). 

2.1 RAW DATA FORMAT AND RELATED NOTATIONS 
The complete database AnalysisDM contains more than 5TB data. There are approximately 2 million 

tap-ins per day. Every blip or tap-in of a smart card registers a record containing several attributes that 

can be used for constructing the travel diaries per individual cards.  

Let us introduce a notation for the description purposes, with the travel diary for card 𝑖 denoted by 𝐶𝑖 

which represents the set of timely ordered trips 𝑐𝑖𝑗  based on the tap-in 𝑏𝑖𝑗 record at time 𝑡𝑖𝑗. Trip 𝑐𝑖𝑗  

is a vector pair of tap-in 𝑏𝑖𝑗 and the inferred tap-out record 𝑏̂𝑖𝑗 such that 𝑐𝑖𝑗 = (𝑏𝑖𝑗, 𝑏̂𝑖𝑗). Each tapping 

contains information about vehicle 𝑣𝑖𝑗, line 𝑙𝑖𝑗, mode 𝑚𝑖𝑗, departure 𝑢𝑖𝑗, location 𝑠𝑖𝑗, product 𝑝𝑖𝑗, date 

𝑑𝑖𝑗  and time 𝑡𝑖𝑗. Each of these attributes represents the key to the different database tables containing 

even more information about particular attributes. For instance, the product 𝑝𝑖𝑗  in smart card data 

records enables the linkage that is used in chapters 3 and 5 when analysing particular groups of users. 

The ticketing system in Stockholm relies on a tap-in only system, and thus the tap-out 𝑏̂𝑖𝑗 locations 𝑠̂𝑖𝑗  

for all trips should be inferred. By utilizing automatic vehicle location (AVL) data, which are available 

in the AnalysisDM database, we are able to infer vehicle 𝑣𝑖𝑗  and travel times 𝑡̂𝑖𝑗 − 𝑡𝑖𝑗 for a significant 

share of all trips performed in Stockholm County. The sequence of analysis steps and related inference 

algorithms are described in the following sections. 

2.2 PROCESSING FRAMEWORK  
The complete processing framework consists of four modules: 

 Tap-out location inference algorithm (TOLIA) 

 Vehicle inference algorithm (VIA) 
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 Travel time estimation algorithm (TEA) 

 Journey Algorithm (JA) 

Figure 2.1 visually summarizes the framework workflow. TOLIA -  the estimation of tap-out locations 

𝑠̂𝑖𝑗 - constitutes the initial step in constructing travel diaries. If the tap-out location is inferred and 

vehicle 𝑣𝑖𝑗  is recorded on tap-in record 𝑏𝑖𝑗 then the TEA module checks the AVL record for vehicle 𝑣𝑖𝑗  

from tap-in location 𝑠𝑖𝑗 to tap-out location 𝑠̂𝑖𝑗 and infer the tap-out time 𝑡̂𝑖𝑗. If the vehicle 𝑣𝑖𝑗  is 

unknown then VIA is activated to infer it from the AVL data and return vehicle 𝑣𝑖𝑗  to TEA for travel 

time inference. Once the travel diaries at the level of trips in the set 𝐶 are completed, the JA module 

can produce travel diaries at the journey level. The modules can run independently in the following 

order: TOLIA, VIA, TEA, and JA; or simultaneously for better data loading/storing performance. It can 

also be easily extended for the real-time processing of data streams. The current implementation 

focuses on processing historical data. All modules are described in more detail in the sections below. 

 
Figure 2.1 Smart card data processing framework 

2.3 INFERENCE OF TAP-OUT LOCATIONS  
As discussed before, the Stockholm ticketing system is tap-in only, implying that all tap-out locations 

𝑠̂𝑖𝑗 for trips 𝑐𝑖𝑗  must be inferred. When inferring tap-out locations, all multimodal tap-in data are used. 

We use a radius 𝑟 around the next tap-in location 𝑠𝑖,𝑗+1 to infer the stop location along the same line 

𝑙𝑖𝑗  as the tap-in record 𝑏𝑖𝑗. The closest such station is considered as the tap-out location 𝑠̂𝑖𝑗 for trip 𝑐𝑖𝑗. 

This approach based on radiuses and walking distances is commonly used in the literature (Munizaga 

and Palma 2016). 

In describing the TOLIA algorithm in more detail, we refer by 𝐿𝑖𝑗 to the set of lines operating at stop 

𝑠𝑖𝑗. In order to infer the tap-out 𝑏̂𝑖𝑗 for trip 𝑐𝑖𝑗  the existence of the next tap-in 𝑏𝑖,𝑗+1 is needed. If 𝑏𝑖,𝑗+1 

exists, the radius 𝑟 around the location 𝑠𝑖,𝑗+1 is searched for the candidates for tap-out location 𝑠̂𝑖𝑗. If 

the tap-in 𝑏𝑖𝑗 has line 𝑙𝑖𝑗  defined, the algorithm selects the closest stop to the 𝑠𝑖,𝑗+1 in radius 𝑟  

including 𝑠𝑖,𝑗+1 where the line 𝑙𝑖𝑗  operates. To describe the case when 𝑙𝑖𝑗  is unknown, the algorithm 

looks for the closest stop to 𝑠𝑖,𝑗+1 which is served by one of the lines in the set 𝐿𝑖𝑗 serving tap-in stop 

location 𝑠𝑖𝑗. If the tap-location 𝑠̂𝑖𝑗 is not inferred by considering the direct line connections, the 
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algorithm applies the very same approach as with lines for the transport mode 𝑚𝑖𝑗. In most of the 

cases vehicle 𝑣𝑖𝑗  or line 𝑙𝑖𝑗  are known only for tap-ins on buses and for all tap-ins with recorded stop 

location 𝑠𝑖𝑗. 

In our setting, we consider a maximum gap of 5 days between tap-in 𝑏𝑖𝑗 and next tap-in 𝑏𝑖,𝑗+1 to be 

used for tap-out location 𝑠̂𝑖𝑗. In total 99.37% of all records in 2016 and 90.20% in 2017  have card key 

recorded. The remaining data cannot be used for inferring travel diaries. The reason of higher error in 

2017 is that all tap-ins for March 2017 are recorded with an unknown card key. Thus, for an adequate 

evaluation of success rates of TOLIA algorithm, rates in the tables below are proportional to the yearly 

tap-ins with identified card keys, i.e. correctly registered raw data. As the maximum search radius 𝑟 

we use 1 kilometre, reflecting a walking distance of 500 meters given that the actual origin might be 

positioned in the middle of an axis between two stop locations.  

Table 2.1 summarizes the overall rates of tap-out estimates for the entire years of 2016 and 2017 as 

well as for the respective months of February separately, which are higher than 80% in all cases. We 

provide some analysis for 400 meters and 1 kilometre radiuses for the non-metro trips where tap-out 

is identified based on the recorded line 𝑙𝑖𝑗  or lines on the tap-in location 𝑙𝑠𝑖𝑗
. Increasing the radius from 

400 to 1000 metres results in an increase of 8-9 %  (sum of reference lines 4 and 6 in Table 2.1) in the 

total number of estimated tap-outs from which about 75% (sum of reference lines (2,3,5) divided by 

sum (2,3,4,5) in Table 2.1) of tap-out locations are estimated within 400 meters. Many of the trips are 

made by metro, trains and trams without a line record. 

 

Ref.  2016 2017 February 
2016 

February 
2017 

1 Rate of inferred tap-outs 83.36% 81.38% 87.88% 86.87% 

 From which     

2 li,j and li,j+1 is the same  9.78% 10.34%   

3 si,j+1 in 400 meters radius considering li,j  13.72% 14.40%   

4 si,j+1 in 400 – 1000 meters radius considering li,j 7.22% 7.43%   

5 si,j+1 in 400 meters radius considering set of lines lsij
  3.11% 2.45%   

6 si,j+1 in 400-1000 meters radius considering set of lines lsij
 1.40% 1.54%   

7 msij
 and msi,j+1

 are the same, ŝij = si,j+1        31.38% 30.01%   

8 Only one location with mode as msij
 in radius of 1 km      1.70% 1.44%   

9 Multiple locations with mode as msij
 in radius of 1 km      15.05% 13.77%   

Table 2.1 Rates of tap-out estimates 

Inference rates per transport mode are presented in table 2.2. The highest rate is for metro and the 

lowest for ferries. When it comes to trains and trams, some stations do not have tap-in gates and thus 

records can be missing. This can be an issue in cases when the next tap-in 𝑏𝑖,𝑗+1 is at these stations but 

is not recorded. An opposite case is when the tap-in record 𝑏𝑖𝑗 is missing and thus the trip 𝑐𝑖𝑗  as well. 

The success rate for busses is lower than for metro and commuter train services because we choose 

to apply a more strict rule for this mode due to its stop density, yielding arguably more reliable 

estimates. The drop in the rate of tap-out estimates for trains from 2016 to 2017 is because Citybanan 

was introduced in the second half of 2017. It connects the metro and the commuter trains without 

requiring tapping-in at two metro stations (T-centralen and Odenplan). In this project we selected 

February 2016 and 2017 for the fare scheme evaluation purposes and hence it is not necessary to 

reflect this change, allowing us to consider metro and commuter systems as independent modes. A 
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different logic reflecting the change introduced at these stations can be added for specific dates in 

future applications of the model to relax the current assumption.  

Rates per transport mode 2016 2017 

Metro 88.53% 86.21% 
Bus 80.27% 79.54% 
Train 85.29% 79.49% 
Tram 67.64% 64.80% 
Ferry 58.98% 51.98% 

Table 2.2 Rates of tap-out estimates per transport mode. 

Table 2.3 shows the rates for cases when the tap-out location 𝑠̂𝑖,𝑗 has not been inferred. When there 

is no location 𝑠𝑖,𝑗+1 matching the line 𝑙𝑖𝑗  or any of the lines in 𝐿𝑖𝑗 for the bus mode, there is no clarity 

on which location within the allowable radius should be selected as the tap-out location. It is thus 

assumed that there is a trip missing or an alternative form of transport took place and cannot be 

directly identified from the smart card data. This is also likely to be the case if the stop locations of tap-

in and next tap-in are the same (𝑠𝑖,𝑗+1= 𝑠𝑖𝑗). This constitutes 9% (sum of ref. lines 1 and 6 in Table 2.3) 

of all trips, and indicates a potential improvement if machine-learning or pattern recognition would be 

applied to fill missing gaps based on individual user history. This lies outside the scope of this project 

and is a computationally and timely demanding task with uncertain reward. In all other cases inference 

of tap-out is not possible because of lack of information. For example, the rate for the case where 

there is no next tap-in 𝑏𝑖,𝑗+1 is about 3.5% (see ref. line 4), but this statistic also includes the natural 

end of each travel diary as for the last trip in the year. 

Ref. Rates for 2016 2017 

1 Tap-in and next tap-in locations are the same si,j+1= si,j 3.66% 3.57% 

2 Next tap-in location si,j+1 is unknown 0.61% 0.61% 

3 Tap-in location si,j is unknown 1.00% 0.97% 

4 There is no next tap-in bi,j+1  3.32% 3.66% 

5 No station in radius r, other modes as bus 2.79% 3.87% 
6 No station in radius r matching lines for bus 5.25% 5.57% 
7 Unknown mode 0.01% 0.37% 

 In Total 16.64% 18.62% 

Table 2.3 Rates for cases without tap-outs inferred 

2.4 INFERENCE OF VEHICLES AND TRAVEL TIMES 
Next, we infer trip time stamps by fusing the smart card data with the multimodal AVL data. It is 

important to note that the AVL data made available for this project are unfortunately incomplete, i.e. 

many departures or entire line operations are missing. In the case of buses, linking the smart card data 

with AVL data is simple since vehicle 𝑣𝑖𝑗, line 𝑙𝑖𝑗  and departure 𝑢𝑖𝑗 are registered in most tap-ins 

records. In case that particular departure 𝑢𝑖𝑗 of vehicle 𝑣𝑖𝑗  is known and recorded in the AVL data, a 

simple search in the AVL data of vehicle 𝑣𝑖𝑗  is performed until the tap-out location 𝑠̂𝑖𝑗 is reached, 

allowing the extraction of the exact tap-out time 𝑡̂𝑖𝑗 based on the vehicle 𝑣𝑖𝑗  arrival time to location 

𝑠̂𝑖𝑗. 

In case the vehicle 𝑣𝑖𝑗  and departure 𝑢𝑖𝑗 are unknown, which is the case for most tap-ins in modes 

with tap-ins at gates, the first vehicle departing tap-in location 𝑠𝑖𝑗 after tap-in time time 𝑡𝑖𝑗  towards 

tap-out location 𝑠̂𝑖𝑗 on the same line is considered as inferred vehicle 𝑣𝑖𝑗. The maximum accepted 
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waiting time is 35 minutes. For metro trips, we perform a transfer inference if the tap-in and tap-out 

stop locations are not on the same lines. In the case of a journey involving a transfer, the tap-out time 

from the first vehicle towards the transfer stop has to be inferred, followed by the inference of vehicle 

from transfer stop to the tap-out location 𝑠̂𝑖𝑗.  Once the vehicle is inferred, a simple search in the AVL 

data takes place when vehicle arrival time at tap-out location 𝑠̂𝑖𝑗 is considered as tap-out time 𝑡̂𝑖𝑗. 

Table 2.4 summarizes the performance of travel time estimates at the level of trips relative to the total 

number of complete trips with estimated tap-out locations (known 𝑠̂𝑖𝑗). We are able to estimate tap 

out times for 66% of the cases in 2016 and 60% in 2017.  

Ref.  2016 2017 February 2016 February 2017 

1 Rate of inferred tap-out times 65.79% 60.34% 70.36% 64.00% 

 From which     

2 Vehicle vij known, TEA only    25.97% 27.96%   

3 Vehicle vij unknown, VIA and TEA     28.67% 23.78%   

4 Metro transfer with VIA and TEA     11.15% 8.61%   

Table 2.4 Rates of tap-out time 𝑡̂𝑖𝑗  estimates 

The vehicle 𝑣𝑖𝑗  has to be inferred by the VIA algorithm in almost 49% (sum of ref. lines 3, 4 in Table 2.4 

and 1 – 9 in Table 2.5)  of the cases and is successful in 29% of trips in 2016 and 24% in 2017 (ref. line 

3 in Table 2.4). In cases when vehicle 𝑣𝑖𝑗  is recorded or inferred by VIA, TEA is unsuccessful only for 

about 10% of the trips, mostly because of missing AVL data (see sum of ref. lines 10 – 12 in Table 2.5). 

When combining rates in Table 2.4 with rates in Table 2.5 (sum or ref. lines 4 in Table 2.4 and ref. lines 

6 – 9 in Table 2.5), about 15% of all trips corresponding to metro trips with transfer within the metro 

system are not inferred. 

Table 2.5 shows the rates for the cases when tap-out time 𝑡̂𝑖𝑗 is not estimated.  

 Ref. Rates for 2016 2017 

 
 

VIA 
 

1 Tap-in location 𝑠𝑖,𝑗  vehicle cannot be inferred 0.52% 0.53% 

2 No AVL data on tap-in 𝑠𝑖𝑗   0.31% 1.96% 

3 Vehicle not inferred within 35 minutes from 𝑡𝑖𝑗   14.22% 14.75% 

4 Out of the 2 days constraint or over next-tapin day 
𝑑𝑖+1,𝑗  and 𝑡𝑖+1,𝑗  time  

0.72% 0.91% 

5 No AVL data for tap-in 𝑑𝑖𝑗  and tap-out 𝑑̂𝑖𝑗   days 1.62% 2.60% 

VIA 
(metro transfer) 

6 Vehicle not inferred within 35 minutes from 𝑡𝑖𝑗  2.82% 3.88% 

7 Over next-tapin day 𝑑𝑖+1,𝑗  and 𝑡𝑖+1,𝑗 time 0.06% 0.06% 

VIA 
(metro tap-in) 

8 Vehicle not inferred within 35 minutes from 𝑡𝑖𝑗  2.61% 3.63% 

9 Over next-tapin day 𝑑𝑖+1,𝑗  and 𝑡𝑖+1,𝑗 time 0.10 0.53% 

 
TEA 

10 No AVL data on tap-in 𝑠𝑖𝑗  and tap-out 𝑠̂𝑖𝑗  location    9.44% 9.44% 

11 Out of the 2 days constraint or over next-tapin day 
𝑑𝑖+1,𝑗  and 𝑡𝑖+1,𝑗  time 

0.60% 0.54% 

12 No AVL data for tap-in 𝑑𝑖𝑗  and tap-out 𝑑̂𝑖𝑗   days 1.19% 0.82% 

 13 In Total 34.21% 39.66% 

Table 2.5 Rates for cases without tap-out times 𝑡̂𝑖𝑗   inferred 

The main shortcoming of the analysis performed is that not all vehicles and departures are covered by 

the AVL data. This can mean an overestimation of travel times in case of missing AVL data if some 

departure is missing. GTFS timetables should be considered to identify and fill gaps and provide at least 
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some travel time estimates. The advantage of AVL data is that they represent the real vehicle travel 

times for a particular day and time.  

2.5 JOURNEY ALGORITHM 
The Journey algorithm processes individual trips made by card 𝑖 from the temporally ordered set of 

trips 𝐶𝑖 with the tap-out estimated by TOLIA. A necessary step in constructing journeys from trips is to 

infer transfers. For the actual compilation of trips into journeys, the approach used by Seaborn et al. 

(2009) is adopted. It defines a transfer as the interchange between vehicles of the same or different 

modes. However, throughout this change some activities might be performed, including “incidental” 

activities or activities that are the purpose of the journey. In the former case, a passenger would 

perceive two trips and an activity in between as one complete journey, whereas the latter would be 

considered as two journeys separated by an activity, regardless of its duration. The goal in transfer 

inference is to select the right time threshold that would allow identifying whether there is only an 

incidental activity between two trips with the best precision possible. In other words, the time 

threshold is the maximum transfer time for these two trips to be considered to constitute a single 

journey. 

Transfer inference 

As smartcard data do not provide any information on activities, it is recommended to rely on a 

network-wide analysis of the available time gap distribution. This opens up some insightful relations 

that lead to a decision on the approximate thresholds for the entire network. Yet they can be applicable 

to a specific route too, as long as the physical and operational context is similar. Taking into account 

the system specifics in Stockholm County, in particular the tap-in validation system, the analysis of 

inferred tap-out/next tap-in gaps like 𝑔𝑖,𝑖+1 = 𝑡𝑖,𝑗+1− 𝑡̂𝑖𝑗  does not seem sufficient, because tap-out 

time 𝑡̂𝑖𝑗 is estimated for only 60% of the trips. In this case, it can be complemented with tap-in/next 

tap-in gaps 𝑔𝑖,𝑖+1 = 𝑡𝑖,𝑗+1− 𝑡𝑖𝑗 which apart from the net transfer time and activities, include also the 

in-vehicle time. In other words, we check not only the transfer time but also the overall journey time. 

The logic behind the transfer inference is presented in Figure 2.2. It considers a set of potential time 

gaps and assigns a transfer status to those which fall short of a certain threshold. The priority is given 

to the inferred tap-out/next tap-in rule with known 𝑡̂𝑖𝑗, and only if the tap-out information is not 

available, then the tap-in/next tap-in condition is checked. It allows to consider a tap-in record where 

tap-out location 𝑠̂𝑖𝑗 or time 𝑡̂𝑖𝑗  is not estimated if it falls within the time gap 𝑔𝑖,𝑖+1 = 𝑡𝑖,𝑗+1− 𝑡𝑖𝑗. A 

journey is compiled when 𝑔𝑖,𝑖+1 time gap exceeds the transfer threshold, or there is no next tap-in 

available. 
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Figure 2.2 Logic of transfer inference algorithm 

Figure 2.3 presents the distribution of all available time gaps between successive trips, both for the 

tap-in/next tap-in and inferred tap-out/next tap-in combinations. There are no substantial differences 

between 2016 and 2017 data. In the case of tap-in/next tap-in gaps, 93% of them take place within 24 

hours, with an average of 9,3 hours (9,2 hours for 2017). People tend to use public transport on a daily 

basis, where the two peaks around 9 hours and 14 hours most likely correspond to the majority of 

commuters, who spend this amount of time at work (between morning and afternoon/evening tap-ins 

on the same day) and home (between afternoon/evening and the following morning), respectively. 

When it comes to the distribution in minutes of the first hour, tap-in/next tap-in demonstrate an 

average of 23 minutes (23,2 minutes for 2017) and 80% gaps within 35 minutes. In turn, inferred tap-

out/next tap-in have an average of 11,4 minutes (11,1 minutes for 2017) and 80% of the gaps are 

within 20 minutes. Most of the transfers are done within the first few minutes, whereas the in-vehicle 

time is more evenly distributed along the hour. It is facilitated by the highly efficient and frequent 

public transport system. 
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Figure 2.3 Distribution of available time gaps between trips 

 

Due to the high consistency between the two years, it is decided to continue the time gap analysis with 

the year 2016. To identify a set of thresholds, a cumulative distribution graph of available time gaps is 
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plotted, based on a certain parameter (Seaborn et al., 2008). With the inferred tap-out/next tap-in 

combination, the most important parameter is likely to be mode combination, as the physical 

infrastructure connecting two modes as well as their frequencies would determine the total transfer 

time. Table 2.6 presents top-eight combinations of three modes (metro, bus, commuter train) that 

yield 95% of all available gaps of the first hour. 

Mode transfer down stream Number of time gaps Share [%] Accumulative share [%] 

Bus Metro 3,546,233 20.94 20.94 

Metro Bus 3,224,930 19.04 39.97 

Bus Bus 2,867,267 16.93 56.90 

Metro Metro 1,847,922 10.91 67.81 

Bus Train 1,352,640 7.99 75.80 

Train Bus 1,282,324 7.57 83.37 

Train Metro 954,564 5.64 89.00 

Metro Train 923,858 5.45 94.46 

Other 938.956 5.54 100.00 

Table 2.6 Split of available time gaps by mode combination (top-eight results) 

The cumulative distribution of inferred tap-out/next tap-in time gaps for the aforementioned mode 

combinations is displayed in Figure 2.4. As explained in Seaborn et al. (2008), vertically oriented lines 

represent pure transfer (frequently observed), horizontally oriented correspond to gaps separating 

two journeys (evenly distributed, thus an activity of random duration is involved), while the curve 

connecting them is a transition phase that includes “incidental” activities. The threshold lies 

somewhere in the transition range, and choosing the exact value is an ambiguous task. To make sure 

that most of the potential transfers are covered, the point before linearity is selected. In Figure 2.4, 

four clusters are distinguished due to their similar distribution: (i) bus-train and bus-metro; (ii) metro-

train, train-metro, metro-bus and train-bus; (iii) bus-bus; (iv) metro-metro.  

 
Figure 2.4 Cumulative distribution of available inferred tap-out / next tap-in time gaps based on mode 

combination 
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The distribution for metro-metro is fairly even, because a transfer is by default “hidden”, hence it only 

gets registered when the user leaves the system and enters again. In order to account for any 

unconventional cases, the threshold is set to 5 minutes. The time thresholds for tap-out/next tap-in 

gap  𝑔𝑖𝑗 = 𝑡𝑖,𝑗+1− 𝑡̂𝑖𝑗 are summarized in Table 2.7. 

Mode/Mode Bus Metro Train Other 

Bus 30 10 10 20 

Metro 20 5 20 20 

Train 20 20 20 20 

Other 20 20 20 20 

Table 2.7 Gap time thresholds for tap-out → next tap-in  

In case that the tap-out time 𝑡̂𝑖𝑗 is not estimated, the tap-in time 𝑡𝑖𝑗  and next tap-in time 𝑡𝑖,𝑗+1 are 

considered when computing the gap 𝑔𝑖𝑗 = 𝑡𝑖,𝑗+1− 𝑡𝑖𝑗. The distribution of these gaps is plotted in 

Figure 2.5. What matters is the duration of in-vehicle time, which is much longer than an average 

transfer is (refer to Figure 2.3). The Origin-Destination combination affects the length of a trip, 

therefore the fare zones that existed in 2016 are chosen to be the defining parameter. For every stop 

the fare zone is defined as 𝑓𝑠. In this way, three clusters are clearly visible, each of them representing 

trips within one zone, between two or three zones. The Table 2.8 summarizes the time thresholds in 

this case. 

 

Figure 2.5 Cumulative distribution of available tap-in / next tap-in time gaps based on location located in one of 

the particular fare zones (A,B and C)  

 

Zone/Zone A B C 

A 40 50 60 

B 50 40 50 

C 60 50 40 

Table 2.8 Gap time thresholds for tap-in → next tap-in in minutes. 
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Figure 2.6 shows the combinations of successive modes for passengers transferring on 1 February 

2017. 

 
Figure 2.6 Transfer mode migration for 1 February 2017 

Given the decision on time thresholds, one can continue with the application of the transfer inference 

in the journey algorithm. 

Journey algorithm 

The Journey algorithm goes through the temporally ordered set of trips 𝐶𝑖 for every card i and follows 

the rules regarding the time thresholds and transfer inference discussed in detail above. Each pair of 

successive tap-in records for which the gap 𝑔𝑖𝑗 is larger than the pre-set threshold or there is no next 

tap-in 𝑏𝑖,𝑗+1, the current journey ends and new starts. It results in a new set 𝑌𝑖  of temporally ordered 

journeys made by card i. Every journey 𝑦𝑖𝑗  inherits all the attributes from its first tap-in and last tap-

out. The origin location 𝑠𝑦𝑖𝑗
𝑜  and tap-in time 𝑡𝑦𝑖𝑗

𝑜  as is inherited from first tap-in in the journey 𝑦𝑖𝑗. The 

destination location 𝑠̂𝑦𝑖𝑗
𝑑  and last trip tap-out time 𝑡̂𝑦𝑖𝑗

𝑑  are based on the last tap-out in the journey 𝑦𝑖𝑗. 

Table 2.9 summarizes the distribution of cases when the current journey is terminated and a new 

journey starts. Trips without tap-out recordings can still be associated with a transfer based on their 

tap-in information only, which is the case for 46,4% (37,0% plus 9,4%) and 53,5% (42,4% plus 11,1%) 

of the journeys in 2016 and 2017 respectively. 

Transfer inference conditions Feb 2016 Feb 2017 

Tap-out time 𝑡̂𝑖𝑗 available large gap 48,6% 42,5% 

no next tap-in 5,0% 3,9% 

Tap-out time 𝑡̂𝑖𝑗 not available large gap 37,0% 42,4% 

no next tap-in 9,4% 11,1% 

Table 2.9 Rates for cases of terminating journeys in journey algorithm 
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The inference rates for complete journeys with estimated last tap-out location 𝑠̂𝑖𝑗 and time 𝑡̂𝑖𝑗 are 

summarized in Table 2.10. The success rates of estimating tap-out locations 𝑠̂𝑦𝑖𝑗
𝑑  are high, about 85%. 

The journey tap-out time 𝑡̂𝑦𝑖𝑗
𝑑  is estimated for almost 63% of journeys in 2016 and 55% in 2017. 

Rates  Feb 2016 Feb 2017 

Destination tap-out location 𝑠̂𝑦𝑖𝑗
𝑑  estimated 85.51% 84.03% 

Destination tap-out time 𝑡̂𝑦𝑖𝑗
𝑑  estimated 62.63% 55.42% 

Destination tap-out time 𝑡̂𝑦𝑖𝑗
𝑑  estimated relative to 

the journeys with 𝑠̂𝑦𝑖𝑗
𝑑  estimated only  

73.24% 65.94% 

Table 2.10 Rates for JA algorithm 

Figure 2.7 shows the spatio-temporal illustration of origins and destination concentrations during the 

morning and afternoon peak on 1 February 2017. One can clearly observe in the morning the high 

concentration of destinations in city centre while origins are more spread around the inner city and 

corresponds to commuting flows. The exact opposite effect  is visible in afternoon when people travel 

back home. 

 
Figure 2.7 Spatio-temporal illustration of origin and destination heat maps for the morning and afternoon peaks 

on 1 February 2017. 
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Figure 2.8 present the distribution of journeys with a certain number of trips and Figure 2.9 shows the 

distribution of journey lengths. 

 
Figure 2.8 Distribution of journeys with a certain number of trips 

 
Figure 2.9 Cumulative distribution of journeys by length 

2.6 IMPLEMENTATION 
For processing the raw smart card data and running the TOLIA, TEA, VIA and JA algorithms, we used 

Python 3.7 and Ubuntu 14 Operating system. The resulting data are stored in a PostgreSQL database. 

 

 

  



 
 

 

22 
 
 

 

 

3 FROM DISAGGREGATE DIARIES TO USER GROUP TRAVEL PATTERNS  

The previous chapter covered the work package WP1 and opened numerous possibilities for analysing 

travel patterns at different aggregation levels in WP2. This chapter covers WP2 and introduces the 

process for aggregating the individual travel diaries based on different attributes from smart card data 

and fusion with socioeconomic data. Socio-economic data enables the analysis of travellers’ socio-

economic context, and thus the techniques and analysis reported in this chapters are essential 

prerequisites for the case study fare analysis performed in Chapter 5. 

The set of trips 𝐶 and set of journeys 𝑌, where each journey 𝑦𝑖𝑗  inherits attributes from the origin and 

destination, allows for various aggregations of the individual journeys at different levels, such as: 

origin-destination; spatio-temporal; product; line; vehicle; departure; and stop.  

The socio-economic data are defined at the fine level of administrative/statistical census zones as 

illustrated in Figure 3.1 for the variable car ownership. 

 
Figure 3.1 Illustration of resolution for socioeconomic data for the Stockholm region, illustrated by the index for 

car ownership. 

As these zones are represented by geographical polygons it is straightforward to add to each location 

𝑠 the attribute that defines the socioeconomic zone 𝑒𝑠. When combining the socio-economic data with 
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smart card data, the most likely home location for every card i needs to be identified, based on which 

the socioeconomic zone 𝑒𝑠 can be assigned. We call this analysis procedure “home zone estimation”. 

Another segmentation of users can be based on product 𝑝𝑖𝑗  information, which is recorded with all 

tap-ins, making it very straightforward when aggregating trips, journeys or cards based on the product. 

3.1 HOME ZONE ESTIMATION 
In order to assign socioeconomic characteristics to each card, its home location should be identified at 

the socioeconomic zone level. The algorithm applied in this study partly utilises the methodology from 

Aslam et al. (2018), adapted to the conditions of the tap-in validation system. Essentially, spatial and 

temporal regularity of usage is investigated, which helps to set up the right threshold that separates 

sporadic travellers from regular ones. This creates a meaningful dataset of cards assigned to home 

zones with a sufficient degree of confidence. 

The algorithm is based on the general assumption that the first journey of the day starting from 5 am 

(tap-in time of the journey 𝑡𝑦𝑖𝑗
𝑜 > 5 𝑎𝑚) always originates from home, thus zone 𝑒𝑠𝑦𝑖𝑗

𝑜  is considered as 

candidate for the home zone location in set 𝐸𝑖  of unique 𝑒𝑠𝑦𝑖𝑗
𝑜 observed candidates for home zone with 

the counts for each one. Journey destinations 𝑠𝑦𝑖𝑗
𝑑  are not considered to avoid reinforcement of any 

errors stemming from the travel diary compilation and related inferences. For each card 𝑖, a routine 

analysis is run that counts the number of first journeys of the day taking place from a particular census 

zone, or visit frequency in other words. If a zone reaches the defined frequency threshold and it is the 

only zone with the highest count, it is classified as the home location ℎ𝑖 for this card 𝑖.  

The selection of a threshold stems from the empirical data of four months for each of the analysis 

years: January, February, April and May. Figure 3.3 displays the relation between the number of cards 

that have their home location identified and the visit frequency threshold. It can be seen that a value 

between 8 and 9 provides a transition point, after which the number of cards decreases at a slower 

and more even rate than for lower values. This distinguishes regular travellers from occasional ones, 

hence the threshold of visit frequency is set to 9 trips within the four-month period. This is in line with 

the research by Aslam et al. (2018), who found a threshold of 5 for a two-month period. The threshold 

is half as high, as is the analysis period (two months instead of four). 
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Figure 3.2 Number of cards with identified home zones based on frequency threshold 

Subsequently, the home zone estimation is performed under the frequency threshold 9. The location 

is found for 70% of the cards, which account for 95% of all journeys. Thus, the removal of a significant 

number of infrequent travellers does not lead to a great reduction in journeys. The cards with assigned 

home zones are aggregated at the socioeconomic level and juxtaposed to the total population.  

Another aspect of visit frequency is the home zone observation rate. It indicates the fraction of the 

estimated home zone out of the total count of visited zones for each card. With a higher rate, the 

conclusion on the home location becomes more robust. As can be observed from Figure 3.3, around 

75% of all cards have their home location as their journey destination for more than 50% of all their 

journey (rate higher than 0,5), and 90% of cards more than 40% of all times (rate higher than 0,4). 

 
Figure 3.4 Cumulative distribution of cards by home zone observation rate 

Figure 3.5 shows the number of cards inferred for each socioeconomic zone. It is noticeable that some 

zones in the city centre representing big transport hubs are assigned to be the home location for 

significantly more cards as others (see Figure 3.5(b)). These hubs or important back-bone stations are 
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attracting travellers from neighbouring zones or zones within walking distance. There are two 

problems that should be addressed. First, the socioeconomic zones are especially granular in the city 

centre, just a few 100 square meters, so a lot of people can walk to stations in other zones and thus 

get assigned to a wrong home location and different socioeconomics. Second, when considering trains 

there are some stations without tap-in required and thus some travellers are assigned to the zone of 

first tap-in, which is usually one of the main transport hubs with mandatory tap-in on gates. This also 

does not reflect their true location and socioeconomics attributes.  

 
Figure 3.5 Illustration of inferred home locations on the socioeconomic zones. (a) Stockholm county (b) 

Stockholm City. 

Identifying home locations has some important limitations but as there is no connection between card 

and user and its true home location, the above estimation at the level of the most frequent first 

morning tap-in location is used.  Nevertheless, Figure 3.5 concurs with overall expectations given the 

spatial distribution of land-uses and activities in Stockholm County. 

3.2 AGGREGATION METHODOLOGY 
Trips in set 𝐶 or journeys in set  𝑌 can be easily queried and aggregated from the database based on 

their attributes. In order to extract the group of travellers using a specific product or trips made by this 

product, trips 𝑐𝑖𝑗  or journeys  𝑦𝑖𝑗  can be aggregated based on their products 𝑝𝑖𝑗  or  𝑝𝑦𝑖𝑗
𝑜 . This also 

enables origin-destination matrix generation based on origin stops 𝑠𝑦𝑖𝑗
𝑜  and 𝑠𝑦𝑖𝑗

𝑑 , fare zones 𝑓𝑠𝑦𝑖𝑗
𝑜 and 

𝑓𝑠𝑦𝑖𝑗
𝑑 , socioeconomic zones 𝑒𝑠𝑦𝑖𝑗

𝑜 and 𝑒𝑠𝑦𝑖𝑗
𝑑 , or just home zone location ℎ𝑖. The latter allows populating 

attributes connected to socioeconomic data such as car ownership, income etc. In addition, the 

combination of several different attributes can be obtained.   
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4 QUANTIFYING ACCESSIBILITY AND EQUITY EFFECTS  

4.1 EQUITY MEASUREMENTS LORENZ, GINI AND SUITS 
We investigate distributional effects of policies to assess the horizontal and vertical equity of a policy. 

Horizontal equity indicates if the policy benefits or harms all approximately equally or if some are 

receiving higher shares than others are. Vertical equity indicates if unevenly distributed effects harm 

or benefits specific groups more than others.   

In the literature there are a host of different measures and proposed metrics for assessing horizontal 

equity, se e.g. Banister (2018), p. 33-39 and World Bank Institute (2005), chapter 6 for discussions on 

alternative measures. The, by far, most used method is the combination of Lorenz-curves and Gini-

coefficient with widespread applications regarding assessments of distribution in e.g. transport, 

income, wealth, and education(Lorenz 1905; Gini 1912). 

In studies of vertical equity, there is not such a clear front-runner metric as Gini is for horizontal equity. 

In this project we have chosen the Suits metric (Suits 1977) due to its neat symmetrical similarity with 

Gini in computation and interpretation. In this sub-chapter, we first present the Lorenz-curve and its 

interpretation and then continue with the definitions, computations and interpretations of the Gini 

and the Suits metrics. 

Both Suits and Gini use the Lorenz curve (LC) for their computation, but the LC is also in its own right a 

source of information on the distributional effects studied. To prepare the LC, first chose the policy 

effect to study. The policy effect, benefit or cost, should be additive. Then, ordering the population by 

increasing policy effect per capita (in case of Horizontal equity), the LC is plotted as y=f(x), where y is 

the accumulated share of the total policy effect that is bestowed the x percentage of the population 

receiving the lowest shares of policy effect per capita. In Figure 1 we see a schematic illustration of the 

LC. 

 



 
 

 

27 
 
 

 

 

 
 
 

Figure 1 Schematic illustration of the Lorenz curve (green)  

The interpretation of a point (x,y) on the Lorenz curve is that the x percent of the population that have 

the lowest share per capita of the policy effect have y percent of the accumulated effect (income, 

accessibility, fare expenses). The LC, then, gives the reader the ability to look at the distribution 

throughout the population. Due to its definition, The LC will always be below or on the dotted diagonal.  

To understand how a segment of the population is affected, Figure 2 shows the LC for the population 

between x1 and x2. This group are those that are included in the bottom x2 percent of the population, 

in terms of policy effect per capita received, but not the bottom x1 percent. This group receives the 

share (y2-y1)/(x2-x1) of the total policy effect per capita. If the slope, α, is 45 degrees, then the 

segment receives a policy effect in proportion to its size, if α is larger they receive an outsized share 

and if α is smaller they receive a lower than proportional share. Since the ordering of the population 

is by increasing share of policy effect per capita, α of the LC will always be equal or increasing with 

increasing x. If the policy effect is equal for each person in the population, the LC will trace the dotted 

diagonal. 
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Figure 2 Interpretation of a segment of the Lorenz curve. 

The Gini coefficient (G) is a scalar measure of the Lorenz curve. It takes values between 0 (equal) and 

1 (unequal) and is defined by the relative size of the areas below the diagonal and the LC. If the area 

below the diagonal is D and the area below the LC is L, then the Gini coefficient is formulated as: 

 

𝐺𝑖𝑛𝑖 =  
(𝐷 − 𝐿)

𝐷
= 1 −

𝐿

𝐷
 

1 

 

Figure 3 show three examples of LC with associated G (Table 1 reports their tabulated distributions). 

One can note that e.g. a G of 0.02 is associated with the bottom half of the population receiving 49 

percent of the policy effect (almost entirely proportional), while a G of 0.51 mean that the bottom half 

only receives 15 percent of the policy effect. 
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Figure 3 Example of three Lorenz curves with associated Gini coefficients (G). 

 

Table 1 Tabulated accumulated policy effects received in the three example distributions 

Accumulated Population  
(ordered by increasing policy effect/capita) 

L1 L2 L3 

0 0 0 0 

10 9 6 1 

25 24 15 5 

50 49 35 15 

75 74 60 35 

90 89 80 60 

100 100 100 100 
 

To compute the Suits coefficient (S), there has to be another sorting of the population for the LC. 

Instead of sorting it by per capita received policy effect, the sorting is by the variable that distinguishes 

the vertical dimension of the vertical equity. In this project, this dimension is income, so the population 

is sorted by increased income. This means that the point (x,y) on the LC represents that the x percent 

of the population with the lowest incomes receive y percent of the total policy effect. The slope for 

this LC has the same interpretation as the more common LC, but in contrast to the common definition, 

this LC can be above the diagonal. In fact, if the LC is constantly above the diagonal, then the policy 

effect is more geared toward low incomes than high incomes. If it is constantly below, the effect falls 

out towards those with high incomes. With L and D defined as for the Gini coefficient, the equation for 

Suits is: 

𝑆𝑢𝑖𝑡𝑠 =  
(𝐿 − 𝐷)

𝐷
= −1 +

𝐿

𝐷
 

2 

 



 
 

 

30 
 
 

 

 

Note that in contrast to Gini, Suits take values between 1 (effects to the poor), through 0 (proportional 

shares of the effects to all), to -1 (effects to the rich). Table 2 and Figure 4 show three tabulated 

distributions and their associated Lorenz curves and Suits coefficients.  A suits coefficient of -0.21 is 

associated with the half of the population with the lowest incomes receive 35 percent of the policy 

effects while a Suits of 0.18 give them 65 percent of the effects.  

 

Figure 4 Example of three Lorenz curves with associated Suits coefficients (S) 

Table 2 Tabulated accumulated policy effects received in the three example distributions 

Accumulated Population  
(ordered by increasing income) 

L4 L5 L5 

0 0 0 0 

10 6 14 17 

25 15 35 40 

50 35 65 55 

75 60 85 65 

90 80 95 85 

100 100 100 100 

 

4.2 QUANTIFYING EQUITY EFFECTS OF FARE CHANGE 
Quantifying effects of fare changes is straightforward with the use of LC, G and S. The policy effect to 

be evaluated is the total fares paid. High Gini coefficients will imply that some segments of the 

population pay much more in fares for their trips than others, positive Suits coefficients will imply that 

low-income segments pay disproportionally much in fares and high-income segments pay 

disproportionally less. The converse holds for negative Suits coefficients. 

Rubensson et al (2019) computed distributional effects for fare changes using transport model data, 

without changes in demand with changed fares. Chapter Error! Reference source not found. presents a
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 more full-fledged analysis, using travel patterns extracted from smart card data and the natural 

experiment of the Stockholm fare change of January 2017.  

4.3 QUANTIFYING EQUITY EFFECTS OF CHANGES IN ACCESSIBILITY 
The primary output of public transport is the accessibility, i.e. what ability the system renders to 

residents in terms of getting to locations where they can perform sought after activities. Accessibility 

of public transport is strongly uneven in its distribution, with more accessibility in central and densely 

populated areas than in remote and sparsely populated areas. It is impractical and hard to justify full 

equality of accessibility, since it will never be possible to let the rural traveller have the short travel 

time, frequency of service and breadth of close by attractive destination as the resident in the 

downtown central business district.  

One worthy equity goal, however, could be that residents on the same distance from the city center 

and living in equally densely populated areas have the same accessibility. Rubensson et al (2020) 

proposes this equity goal and develops a methodology by which public transport accessibility can be 

measured and assessed with regard to this goal. The proposed accessibility measure uses model-

generated logsums wich encompass generalized travel costs (time and money) as well as destination 

attractivity. These logsum accessibility measures are then used as dependent variables in a linear 

regression with two independent variables; distance to city centre and population density in the origin 

zone. To measure distributional impact, the monetized difference between the logsum and the 

expected logsum (from the regression) is then used as policy effect in a LC, G and S analysis. 
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5 BEFORE-AFTER ANALYSIS OF CHANGES IN FARE SCHEME 

5.1 PRODUCT SELECTION 
Among the entire product range, Figure 1 shows that five products form the demand basis. 30-day 
passes with the full and reduced fare, together account for 60% of journeys and 35% of cards. Travel 
funds (full and reduced) have a much lower share of journeys 11%, but the largest share of cards 40%. 
General school passes comprise 9% of journeys and 7% of cards.  

 

Figure 5.1: Cumulative distribution of cards and journeys by products 

In terms of the policy impact, it is important to look at the product split from the O/D perspective, as 
exhibited in Table 1. All products except for travel funds show a fairly coherent growth among the fare 
zones. This increases on both the negative and positive side when it comes to remote combinations 
that include fare zone C, namely A-C (C-A), B-C (C-B), and especially C-C. It is partly explained by lower 
demand levels for these O/D pairs, so every incremental change is weighted more, however a 
redistribution of demand undoubtedly takes place. Considering these circumstances, travel funds pose 
the highest interest for evaluation. It is the only product group which price scheme got greatly affected 
by the fare policy, which also creates favorable conditions for an elasticity analysis. The effect on 
demand is evident - the disparity between one-zone O/D and two- or three-zone O/D is substantial (0-
5% against 20-60%). This observation falls in line with the expectations on increasing ridership with 
more affordable fares. Moreover, the market penetration of travel funds is large enough for 
representative outcomes.  

Travel funds reach a disproportionate development of journeys and cards that also reduces the 
average frequency, especially for reduced fare. To investigate the origins of the card influx, a card 
migration analysis can be performed. The card flows from and into the travel funds category is very 
symmetrical between the years, for both full and reduced fares. The former has a slightly lower 
migration rate of around 38%, while the latter reaches the share of 44%. Forming the largest 
proportion of migrated cards, the same product contributes up to 85% of the overall migration, 
followed by either another product in the travel funds range, a 30-day pass, or a combination of both. 
The reduced fare is more self-contained, whereas the full fare is tightly connected to the 30-day pass, 
having a card exchange rate of around 22%. Ultimately, the influx is mainly caused by newly introduced 
cards, as the migration is proven to be quite identical in both directions.  
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Product ID 

 

Product name 

A - A A - B A - C B - A B - B B - C C - A C - B C - C 

 

Absolute 
Relative, 

% 

 

Absolute 
Relative, 

% 

 

Absolute 
Relative, 

% 

 

Absolute 
Relative, 

% 

 

Absolute 
Relative, 

% 

 

Absolute 
Relative, 

% 

 

Absolute 
Relative, 

% 

 

Absolute 
Relative, 

% 

 

Absolute 
Relative, 

% 

1022 30 days Full 8.693 2,2 1.031 2,1 324 4,7 1.262 2,4 818 3,4 33 1,3 350 5,0 76 3,4 2.881 43,4 

1024 / 1356 30 days Reduced 

/ Student 

-6.835 -4,8 -867 -5,6 -250 -11,6 -832 -5,2 -780 -6,1 -98 -10,4 -170 -7,9 -65 -7,5 435 11,0 

1064 90 days Full 6.645 37,0 874 36,7 125 44,2 951 36,9 356 39,1 40 47,6 121 39,7 34 41,5 181 108,4 

1065 / 1357 90 days Reduced 

/ Student 

-934 -2,5 -24 -0,6 -15 -3,6 4 0,1 -4 -0,2 7 4,9 -15 -3,4 14 11,1 23 5,6 

1104 / 1107 Annual pass Full 2.138 6,3 296 6,7 73 12,7 303 6,3 86 4,9 22 13,6 96 15,3 12 7,7 82 21,4 

1108 Annual pass 

Reduced 

1.417 26,8 98 19,6 14 25,0 113 21,1 87 23,3 5 21,7 16 26,7 5 23,8 32 42,1 

1250 / 1266 School term pass 2.349 3,8 245 2,9 21 2,4 530 5,5 915 4,8 34 3,0 46 4,5 74 7,5 -476 -7,6 

1309 School leisure pass -685 -3,8 -173 -6,9 -42 -15,2 -173 -7,2 -129 -3,7 -27 -15,0 -38 -15,4 -23 -14,6 -107 -16,6 

40_1 Travel funds Full -3.449 -5,1 660 22,8 241 68,3 1.028 22,8 98 4,8 61 49,2 358 56,9 76 56,7 24 2,5 

40_2 Travel funds Reduced 89 0,2 549 21,3 161 47,8 760 18,6 188 5,0 57 38,3 228 36,1 59 35,1 -43 -2,9 

Total 9.428 1,1 2.689 2,9 652 5,3 3.946 3,9 1.635 2,3 134 2,5 992 7,6 262 5,3 3.032 14,5 
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5.2 ELASTICITIES 
User sensitivity is tested for different factors, such as socioeconomic characteristics, transport modes, 
travel time period, travel distance, regularity of usage, fare category and directionality of fare change. 
Within the elasticity of every factor, a split is made between fare categories and O/D fare zones. In the 
former case, this means that full, reduced and combined fares of travel funds are distinguished. In the 
latter case, the O/D groups indicate how many fare zones a user crosses. In order to acquire aggregate 
values, elasticities of each O/D group are weighted based on the corresponding ridership share and 
summarized afterwards. 

The selection of travel metrics as sensitivity factors includes the following. The transport modes are 
metro, bus and commuter train. The time periods are an average weekday and weekend, with the 
weekday also split into morning peak, evening peak and off-peak. The travel distance groups are 0-1, 
1-3, 3-5, 5-10, 10-20 and 20+ km. In order to find a good balance between reliable outcomes and a fine 
level of disaggregation, three user groups are distinguished within each socioeconomic factor. 
Consequently, the total population is divided into the lowest 25%, middle 50% and highest 25%, as two 
extremes and an average majority. The demarcation values of each factor in this distribution are used 
to separate the groups. As a result, the income levels are 0-220, 220-350 and 350+ thousand SEK, the 
socioeconomic index ranges are 3-4, 5-11 and 12-15, the car ownership groups are 0-0.25, 0.25-0.55 
and 0.55+ cars/adult. Factors such as age and citizenship status do not provide a distinct partition at 
the census zonal level, and hence are not used in the elasticity analysis.  

All elasticity values estimated in this study are shown in the tables below. The overall fare elasticity of 
travel funds is found to be -0,46, which means that a 1% price increase entails a 0,46% decrease in 
demand, and vice versa for the opposite signs. Further on, each factor is examined closely with the 
main observations highlighted and interpreted.  

  



 

35 
 

 

 

O/D group 

General 

Frequency threshold 2 Frequency threshold 9 

Combined fare 
Full fare 

Reduced fare Combined fare 
Full fare 

Reduced fare 

1 zone -0,14 -0,24 0,02 -0,32 -0,47 -0,10 

2 zones -0,14 -0,09 -0,21 -0,13 -0,09 -0,20 

3 zones -0,01 -0,01 -0,02 -0,01 -0,01 -0,01 

All -0,29 -0,34 -0,21 -0,46 -0,57 -0,31 

 

 

 

 

 

 

O/D group Time of the day 

Combined fare Full fare Reduced fare 

Weekend Weekday 
Morning peak Evening peak Off- 

peak 
Weekend Weekday 

Morning 

peak 

Evening peak Off- 

peak 
Weekend Weekday 

Morning 

peak 

Evening peak Off- 

peak 

1 zone -0,37 -0,30 -0,42 -0,29 -0,28 -0,58 -0,45 -0,51 -0,43 -0,43 -0,10 -0,10 -0,05 -0,08 -0,11 

2 zones -0,12 -0,14 -0,16 -0,14 -0,13 -0,06 -0,09 -0,12 -0,10 -0,08 -0,19 -0,21 -0,31 -0,20 -0,20 

3 zones -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 

All -0,50 -0,45 -0,58 -0,44 -0,43 -0,65 -0,55 -0,64 -0,53 -0,52 -0,31 -0,31 -0,38 -0,29 -0,31 

 

O/D group 

Transport mode 

Combined fare Full fare Reduced fare 

Metro Bus Train Metro Bus Train Metro Bus Train 

1 zone -0,35 -0,35 0,06 -0,50 -0,56 0,04 -0,10 -0,14 0,10 

2 zones -0,09 -0,19 -0,89 -0,05 -0,14 -0,58 -0,16 -0,25 -1,33 

3 zones -0,01 -0,01 -0,08 0,00 -0,01 -0,07 -0,01 -0,01 -0,10 

All -0,45 -0,56 -0,90 -0,56 -0,71 -0,61 -0,26 -0,40 -1,32 
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O/D group 

Income level, thousand SEK 

Combined fare Full fare Reduced fare 

0-220 220-350 350+ 0-220 220-350 350+ 0-220 220-350 350+ 

1 zone -0,28 -0,33 -0,30 -0,43 -0,48 -0,47 -0,10 -0,11 -0,02 

2 zones -0,08 -0,15 -0,12 -0,04 -0,09 -0,08 -0,12 -0,22 -0,19 

3 zones -0,02 -0,01 -0,01 -0,02 -0,01 -0,01 -0,02 -0,01 -0,01 

All -0,37 -0,49 -0,43 -0,48 -0,58 -0,56 -0,24 -0,35 -0,22 

 

 

 

 

 

 

 

 

O/D group 

Journey distance, km 

Combined fare Full fare Reduced fare 

0-1 1-3 3-5 5-10 10-20 20+ 0-1 1-3 3-5 5-10 10-20 20+ 0-1 1-3 3-5 5-10 10-20 20+ 

1 zone -0,28 -0,37 -0,37 -0,31 -0,19 0,03 -0,42 -0,55 -0,56 -0,42 -0,31 0,03 -0,13 -0,12 -0,07 -0,12 -0,04 0,03 

2 zones 0,00 0,00 -0,01 -0,06 -0,79 -0,83 0,00 0,00 0,00 -0,04 -0,56 -0,63 -0,01 -0,01 -0,02 -0,11 -1,06 -1,02 

3 zones 0,00 0,00 0,00 0,00 0,00 -0,39 0,00 0,00 0,00 0,00 0,00 -0,40 0,00 0,00 0,00 0,00 0,00 -0,38 

All -0,28 -0,37 -0,39 -0,37 -0,98 -1,19 -0,42 -0,55 -0,56 -0,46 -0,87 -1,00 -0,14 -0,13 -0,09 -0,23 -1,11 -1,37 

 

O/D group 

Socioeconomic index 

Combined fare Full fare Reduced fare 

3-4 5-11 12-15 3-4 5-11 12-15 3-4 5-11 12-15 

1 zone -0,34 -0,31 -0,26 -0,49 -0,45 -0,42 -0,18 -0,12 0,02 

2 zones -0,09 -0,14 -0,16 -0,05 -0,09 -0,11 -0,14 -0,21 -0,25 

3 zones -0,03 -0,01 -0,01 -0,03 -0,01 0,00 -0,03 -0,01 -0,01 

All -0,46 -0,47 -0,43 -0,56 -0,56 -0,53 -0,36 -0,34 -0,24 
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O/D group 

Car ownership rate, cars/adult 

Combined fare Full fare Reduced fare 

0-0,25 0,25-0,55 0,55+ 0-0,25 0,25-0,55 0,55+ 0-0,25 0,25-0,55 0,55+ 

1 zone -0,46 -0,19 -0,11 -0,63 -0,29 -0,19 -0,13 -0,08 -0,06 

2 zones -0,04 -0,22 -0,38 -0,02 -0,15 -0,38 -0,07 -0,29 -0,38 

3 zones 0,00 -0,02 -0,02 0,00 -0,01 -0,03 0,00 -0,02 -0,02 

All -0,50 -0,42 -0,52 -0,65 -0,46 -0,59 -0,21 -0,39 -0,46 
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Looking at the general elasticity, it becomes evident that the group of regular users is more sensitive 
to the fare policy (-0,46 versus -0,29 for both regular and sporadic). Such travelers have a higher degree 
of involvement or dependency on public transport and are thus expected to be aware about newly 
introduced changes and consider price of a single journey as an important aspect. Reduced fares 
demonstrate a sensitivity that is half as large compared to the case of full fares (-0,31 versus -0,57) due 
to the fact that they are mostly used by specific travelers with reduced mobility or no opportunity for 
private transport. This makes them captive riders who usually have to comply with any fare updates. 
The directionality of the fare change is also relevant. Full fare users, especially the regular ones, are 
more sensitive to price increase, while reduced fare users are the opposite, yet with a subtle margin.  

Sensitivity by transport modes for the combined fare presents a distinct hierarchy. Metro has the 
lowest elasticity of -0,45. Bus has a slightly higher elasticity of -0,56 whilst commuter train exhibits by 
far the largest coefficient of -0,90. The same trend is maintained among fare groups, however the 
elasticity of train for the full fare users is notably lower and approaches metro (-0,61 and -0,56 
respectively). These findings reflect on the general features of each mode. For instance, the 
importance and advantage of the metro system is that it outperforms any other mode in terms of 
speed and frequency. Bus in turn provides a better connectivity and directness, however it lacks 
comfort and relies on traffic conditions, hence is less retaining. Train plays an almost as crucial role for 
commuters as metro. The directionality with transport modes might be biased, as metro and bus are 
mostly present in urban areas and used for shorter journeys, while commuter train undoubtedly 
dominates in the interzonal travel.  

In terms of the journey distance factor, the results are fairly consistent among user groups as well as 
fare categories. Elasticity gradually increases with distance (from -0,28 to -1,19 for combined fare) and 
substantially jumps at the 10 km mark (from -0,37 to -0,98 for combined fare), yet a minor drop is 
observed at medium distances (around 5 km). Higher elasticity for short journeys reflects the fact that 
they can be taken with the use of active modes as well. In the case of long journeys, the level of public 
transport service declines in more remote areas. This incentivizes travelers, especially commuters, to 
consider other available options, for instance private transport. This reasoning is underlined by Figure 
1 that evidently displays areas with higher rate of car ownership located primarily in fare zones B and 
C. Asymmetry in values should not be considered due to the same bias as in the case of transport 
modes. The average length of travel through two and three fare zones exceeds 10 km, that is why 
elasticity for these O/D groups appears at longer distances only.  

Sensitivity of users in time does not have a lot of variation. The elasticity values of each period are 
relatively consistent within the fare categories. The periods with coefficients higher than average are 
morning peaks and weekends for the full fare (-0,64 and -0,65 respectively versus -0,44 for the rest) 
and morning peaks for the reduced fare (-0,38 versus -0,30 for the rest). Evening peaks do not have 
the same value as morning peaks due to the fact that the former are more spread over the time, thus 
do not represent the commuter group that distinctly.  

Socioeconomic factors, including income, socioeconomic index and car ownership, can be investigated 
simultaneously. This is based on the high correlation between the factors. The Pearson coefficients for 
each combination are: 0,976 for income - car ownership, 0,944 for socioeconomic index - car 
ownership and 0,915 for income - socioeconomic index. All the values are close to the maximum 1,0, 
which indicates a very strong positive correlation.  
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Figure 5.2: Spatial distribution of car ownership in Stockholm County 

As expected, the elasticity results for all the factors are very much in line with each other. At the 
aggregated O/D level, it is difficult to draw particular conclusions, apart from the common fact that 
the reduced fare users are less sensitive in general. Nevertheless, the situation changes when one 
looks into disaggregated numbers. In both fare categories, the factor growth induces a reduction in 
the one-zone elasticity (price increase) and a rise in the two- and three-zone elasticity (price decrease). 
Altogether, this reflects on two aspects, namely how captive on public transport a user group is and 
how much importance fare costs bear for the group. The low-factor groups assign more weight to the 
price aspect and at the same time rely more on public transport. Therefore, a price increase 
significantly affects their choice, while a price decrease does almost not attract new users, as it is likely 
that the patronage rate has already reached its higher boundary. The high-factor groups in turn are 
more prone to joining the system and less prone to leaving it. This is because the cost element becomes 
less crucial along with a wider range of alternatives to travel. Consequently, the users’ choice is slightly 
influenced by a price increase, whereas a price decrease draws more attention to the travel funds 
product. The explained tendency becomes even more prevalent with the reduced fare and the car 
ownership factor. Car ownership is the most representative case among the three which is logical due 
to its direct relevance to the research topic.  

On top of the detailed analysis of the determined elasticity values, it is as important to look at them 
also from a broader perspective, which means how they fit into the existing research. Figure 2 presents 
the elasticity ranges found in the literature as well as the aggregated values (for the combined fare 
category and all O/D groups) from the current study. For most of the factors, the fit is noted to be 
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satisfactory, as the values either match with the common averages or stay fairly close to them. In total, 
there are only one outlier and three extreme values, two of which are in the longer distance group.  

 

Lastly, directionality, which is mentioned numerous times and outlined as the key element, requires 
further inspection. So far in this section, elasticity values have always been weighted by ridership share, 
which did not allow to fully understand the scale of asymmetry within one user group. Table 1 delivers 
unweighted elasticity for the dataset of regular users. Directionality creates a great contrast, where a 
price decrease has a two-times respectively up to sixteen-times larger effect on the full and reduced 
groups. This observation is contrary to the existing research. Nevertheless, the current study fare 
sensitivity is also combined with service sensitivity. After the fare zones got removed, along with the 
price change came transparency and convenience associated with the use of travel funds. This aspect 
is most likely to be the main driving force in the changing travel behavior, especially in the case of the 
reduced fare users. With the current study’s scope and input, it is not possible to fully distinguish 
impacts of the two sensitivities.  
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Table 1: Unweighted general elasticity for regular users  

O/D group Full fare Reduced fare 

1 zone (increase in price, no effect on 

convenience) 

-0,51 -0,11 

2 zones (slight decrease in price, 

improved convenience) 

-1,09 -1,81 

3 zones (great decrease in price, 

improved convenience) 

-1,13 -1,03 

5.3 DISTRIBUTIONAL EFFECTS 
As the policy introduced in 2017 affected the price of the travel funds product and consequently led 
to changes in ridership, this analysis looks into two intertwined aspects, namely the distribution of 
mobility and travel expenses. The former represents how product usage is allocated among various 
population groups, while the latter covers the distribution of expenditures on this product.  

First, within each factor, user groups are determined, this time with a higher level of detail than in the 
case of the elasticity analysis. The general population is split into 26 communes. Income levels progress 
with a step of 25.000 SEK, the socioeconomic index with 2 scores, the car ownership rate with 0.1 
cars/adult, and the distance from the city center with a step of 5 km. Second, for travel funds and all 
products data is extracted representing the population, journeys and expenses in the years 2016 and 
2017. Third, Gini (Suits) indices are computed for two product categories and every user group (see 
Table 2). The last task is to estimate the following indicators for travel funds: journeys/capita, 
expenses/capita, average journey cost, and their growth rates (see Table 3). Altogether, this 
information can serve as an input for the analysis of distributional effects.  

Table 2: Overview of equity indices  

 

Distribution type 

Travel funds All products 

2016 2017 2016 2017 

Horizontal (Gini index) 0,249 0,242 0,180 0,174 

Vertical (Suits index)  

• income 0,050 0,050 -0,067 -0,075 

• socioeconomic index 0,140 0,144 0,063 0,066 

• car ownership -0,581 -0,557 -0,430 -0,426 

• distance from the city center -0,561 -0,562 -0,217 -0,208 

Looking at the horizontal distribution (Table 2 and Figure 3), there is a disparity within the general 
population in terms of travel expenses, which grows significantly for travel funds. In every community 
diverse groups are present, including captive riders and car advocates, frequent commuters and 
occasional travelers. Eventually, it results in an uneven distribution of the money spent on public 
transport. Nevertheless, the degree of unevenness is relatively low, with the Gini coefficient being 
0,180 for all products which is close to the state of perfect uniformity. This is a sign of a substantial 
public transport penetration rate in Stockholm County. Travel funds in particular is a more specific 
product. Despite the largest number of cards in the system, a smaller group of people actually uses it 
often enough to lead to large expenses. Between the two periods, there is no significant change, 
meaning that the transport system as a whole did not get affected by the fare policy.  
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Through a more detailed analysis of travel funds, it can be seen that travel expenses grew for every 
commune, with a rate ranging from 3% to 43%. This is related to the increasing frequency and 
decreasing costs for some groups and the opposite situation for others. Figure 4 is provided to explain 
these relations. Most of the communes in the fare zone A experience an increase in journey costs along 
with a declining frequency (fewer journeys are made for higher cost). Within the zone B, all areas 
experience a growth in frequency, especially the ones that are closer to the city core. However, not all 
of them have a consistent reduction in journey costs, which could be an indicator for a larger share of 
one-zone journeys in 2017. Very similar trends can be observed in zone C, where traveling in the 
southern part seems to be more locally oriented, while interzonal journeys prevail in the northern part 
(growing frequency with lower expenses). To sum up, in all communes the price decrease resulted in 
a higher frequency, yet the opposite conclusion cannot be drawn. It is fully valid for the zone A only, 
while in some cases in the zones B and C the ridership was not only promoted by the price change, but 
most likely by the improved convenience of the product.  

In terms of income category (Figure 5), no substantial distinction can be made neither between user 
groups nor time periods. Expenses on all products slightly shift towards the lower income travelers, 
whereas travel funds alone involve a slightly higher expenditure for the wealthier groups. These 
findings are supported by the detailed results that can be seen in Table 3, where all the three indicators 
are fairly consistent among the groups. Expenses grow by a rate of 9% to 16%, together with moderate 
decline in frequency by 1% to 8%, which leads to higher journey costs (from 12% to 18%). Only users 
with the highest income demonstrate a distinct behavior, with a more intense growth in journey costs 
(almost 21%) and reduction in frequency by 13%. Notwithstanding, having one group with slightly 
higher values is not sufficient to establish some relevance of the fare policy to vertical distribution 
improvements.  

 

User 
group 

Journeys/capita Expenses/capita Average journey cost 

 

2016 

 

2017 

 

Absolute 
growth 

Relative 
growth, 

% 

 

2016 

 

2017 

 

Absolute 
growth 

Relative 
growth, 

% 

 

2016 

 

2017 

 

Absolute 
growth 

Relative 
growth, 

% 

General population (split by commune) 

Upplands Väsby 0,32 0,35 0,04 11,3 7,2 8,5 1,2 17,2 23,0 24,2 1,2 5,3 

Vallentuna 0,23 0,31 0,08 35,8 5,5 7,5 2,0 36,5 24,1 24,2 0,1 0,5 

Österåker 0,32 0,39 0,07 21,1 7,7 9,7 2,0 25,2 23,9 24,7 0,8 3,4 

Värmdö 0,30 0,40 0,10 34,2 7,9 9,9 1,9 24,5 26,4 24,5 -1,9 -7,2 

Järfälla 0,39 0,47 0,08 20,9 9,5 11,5 2,0 21,3 24,4 24,5 0,1 0,3 

Ekerö 0,38 0,47 0,09 24,4 9,2 11,4 2,2 23,4 24,3 24,1 -0,2 -0,8 

Huddinge 0,43 0,50 0,07 16,5 10,7 12,6 1,9 17,8 24,7 25,0 0,3 1,1 

Botkyrka 0,44 0,45 0,01 2,4 10,8 11,2 0,3 3,1 24,7 24,9 0,2 0,8 

Salem 0,36 0,46 0,10 26,1 8,7 11,2 2,5 28,6 23,9 24,4 0,5 2,0 

Haninge 0,36 0,38 0,02 7,0 8,2 9,3 1,1 13,8 22,8 24,3 1,5 6,4 

Tyresö 0,41 0,51 0,10 25,0 9,8 12,3 2,4 24,9 24,0 24,0 0,0 -0,1 

Upplands-Bro 0,22 0,36 0,14 66,2 6,1 8,8 2,7 43,1 28,4 24,4 -3,9 -13,9 

Nykvarn 0,13 0,13 0,00 -1,2 2,5 3,1 0,6 23,6 19,5 24,4 4,9 25,2 

Täby 0,27 0,32 0,04 16,3 6,2 7,5 1,4 21,9 22,7 23,8 1,1 4,8 

Danderyd 1,38 1,31 -0,07 -5,1 29,3 33,7 4,3 14,7 21,2 25,6 4,4 20,8 

Sollentuna 0,52 0,62 0,10 18,5 13,2 15,3 2,1 15,7 25,2 24,6 -0,6 -2,3 

Stockholm 1,71 1,57 -0,15 -8,7 37,2 40,9 3,8 10,1 21,7 26,1 4,5 20,5 

Södertälje 0,25 0,32 0,06 24,7 5,6 7,8 2,1 37,4 22,2 24,4 2,3 10,2 
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Nacka 0,74 0,77 0,04 4,7 16,5 19,6 3,1 19,1 22,3 25,3 3,1 13,7 

Sundbyberg 1,18 1,12 -0,06 -4,8 25,8 29,5 3,7 14,5 21,9 26,4 4,4 20,2 

Solna 1,48 1,33 -0,15 -10,0 31,3 34,2 2,9 9,2 21,2 25,8 4,5 21,4 

Lidingö 1,18 0,91 -0,27 -22,7 23,3 22,3 -1,0 -4,2 19,7 24,4 4,7 23,9 

Vaxholm 0,45 0,52 0,07 14,7 11,0 12,5 1,5 13,4 24,4 24,1 -0,3 -1,2 

Norrtälje 0,23 0,26 0,03 12,5 5,7 6,3 0,6 10,0 24,5 23,9 -0,5 -2,2 

Sigtuna 0,30 0,34 0,04 12,2 7,3 8,4 1,1 15,3 24,1 24,7 0,7 2,8 

Nynäshamn 0,23 0,23 0,00 0,9 5,1 5,6 0,5 10,4 22,0 24,1 2,1 9,4 

Total 1,02 0,97 -0,05 -4,6 22,4 25,0 2,6 11,6 22,0 25,7 3,7 17,0 

Population split by income, thousand SEK 

0-225 0,87 0,84 -0,04 -4,2 19,2 21,3 2,0 10,5 22,1 25,5 3,4 15,3 

225-250 0,61 0,63 0,02 4,1 13,6 15,8 2,2 16,6 22,3 25,0 2,7 12,0 

250-275 1,13 1,11 -0,02 -2,0 25,1 28,2 3,1 12,5 22,1 25,4 3,3 14,8 

275-300 0,96 0,91 -0,06 -6,0 20,9 23,3 2,3 11,1 21,8 25,7 4,0 18,2 

300-325 1,30 1,20 -0,10 -7,8 28,4 31,1 2,7 9,4 21,9 25,9 4,1 18,6 

325-350 1,21 1,15 -0,06 -5,0 26,6 29,9 3,2 12,2 22,0 26,0 4,0 18,1 

350-375 0,82 0,82 0,00 -0,5 18,0 21,0 3,0 16,5 21,9 25,6 3,7 17,0 

375-400 1,13 1,08 -0,05 -4,6 25,5 28,7 3,3 12,9 22,5 26,7 4,1 18,3 

400+ 0,90 0,78 -0,12 -13,1 19,6 20,6 1,0 4,9 21,8 26,3 4,5 20,8 

Total 1,02 0,97 -0,05 -4,6 22,4 25,0 2,6 11,6 22,0 25,7 3,7 17,0 

Population split by car ownership rate 

0-0,2 2,87 2,66 -0,21 -7,3 63,5 70,4 6,8 10,8 22,1 26,4 4,3 19,4 

0,2-0,3 1,41 1,30 -0,11 -8,1 30,7 33,7 3,0 9,7 21,7 26,0 4,2 19,4 

0,3-0,4 0,75 0,75 0,01 0,8 16,5 18,9 2,4 14,5 22,1 25,1 3,0 13,6 

0,4-0,5 0,65 0,67 0,02 2,9 14,5 16,6 2,2 14,9 22,3 24,9 2,6 11,6 

0,5-0,6 0,41 0,42 0,01 2,9 9,2 10,5 1,3 14,1 22,3 24,7 2,4 10,8 

0,6+ 0,17 0,20 0,03 17,5 3,7 4,8 1,1 29,2 22,1 24,3 2,2 10,0 

Total 1,00 0,95 -0,05 -4,7 21,9 24,5 2,5 11,5 22,0 25,7 3,8 17,1 

Population split by socioeconomic index 

3-4 0,56 0,54 -0,03 -4,6 12,3 13,5 1,2 9,5 21,8 25,0 3,2 14,8 

5-6 0,63 0,64 0,01 1,7 13,9 16,0 2,1 14,9 22,0 24,8 2,8 12,9 

7-8 1,00 0,95 -0,04 -4,5 22,3 24,5 2,1 9,5 22,4 25,7 3,3 14,7 

9-10 0,74 0,73 -0,01 -1,0 16,5 18,6 2,1 12,9 22,4 25,6 3,2 14,1 

11-12 1,68 1,57 -0,11 -6,7 36,9 41,0 4,1 11,1 21,9 26,1 4,2 19,0 

13-15 0,93 0,92 0,00 -0,3 20,5 23,8 3,3 16,2 22,2 25,8 3,7 16,6 

Total 1,00 0,96 -0,04 -4,1 22,0 24,6 2,6 11,8 22,1 25,7 3,7 16,7 

Population split by distance from the city center, km 

0-5 2,41 2,18 -0,23 -9,5 51,7 56,2 4,6 8,9 21,5 25,8 4,4 20,3 

5-10 1,20 1,11 -0,09 -7,8 25,6 28,7 3,1 12,1 21,2 25,8 4,6 21,6 

10-15 0,74 0,68 -0,06 -8,1 15,6 16,5 0,9 5,5 21,3 24,4 3,2 14,8 

15-20 0,80 0,76 -0,04 -4,6 14,9 15,5 0,7 4,4 18,6 20,4 1,7 9,4 

20-25 0,46 0,59 0,13 28,2 8,9 11,5 2,6 29,3 19,4 19,5 0,2 0,9 

25-30 0,35 0,46 0,11 30,7 7,2 10,2 3,0 40,9 20,4 22,0 1,6 7,8 

30-35 0,23 0,27 0,04 19,0 6,0 7,2 1,3 21,0 26,1 26,5 0,4 1,7 
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35-45 0,31 0,24 -0,07 -23,9 6,7 5,6 -1,0 -15,7 21,3 23,5 2,3 10,8 

45-60 0,46 0,45 -0,01 -1,9 7,7 8,0 0,2 3,2 16,7 17,6 0,9 5,1 

60+ 0,49 0,40 -0,09 -18,3 12,6 11,5 -1,1 -8,8 25,5 28,5 2,9 11,5 

Total 1,23 1,12 -0,11 -8,6 26,0 28,0 2,0 7,8 21,2 25,0 3,8 18,0 

 

 

Figure 5.3: Lorenz curves for horizontal equity 
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Figure 5.4: Year-on-year (2016 vs 2017) change of expenses (left) and mobility (right) at the communal 
level (fare zones highlighted in bold) 
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Figure 5.5: Lorenz curves for vertical equity by income 

The socioeconomic index as a factor resembles the income results in its structure and trends. The only 
major difference is that both travel funds and all products have a lower fraction of expenses from the 
low-factor groups, with a larger shift to the high-factor users for travel funds. This is caused by the 
higher frequency of traveling, as the average journey cost is very similar among the groups. In terms 
of year-on-year growth, no change is noted for the overall distribution (see Figure 6). The indicators in 
Table 3 display exactly the same rates as in the income category: an increase of 9% to 16% in expenses, 
an increase of 12% to 19% in journey costs and a decline in frequency by 1% to 8%. Therefore, no 
strong relevance to effects on vertical distribution can be established for socioeconomic index either.  
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Figure 5.6: Lorenz curves for vertical equity by socioeconomic index 

The two other factors, namely car ownership rate and distance from the city center, pose more interest 
due to their diversity between user groups and temporal development. Figure 7 clearly distinguishes 
users with lower car ownership rate and the according expenses which are significantly higher. In this 
domain, travelers from all products and travel funds categories tend to spend very similar amounts on 
public transport. With the new fare policy introduced in 2017, travel funds slightly moved towards 
perfect uniformity, which is also pointed out by the change in the Suits coefficient from -0,581 to -
0,557.  

Table 3 allows to verify these observations. Expenses/capita vary widely between the groups, where 
the value for the lowest group is 17 times higher than for the highest one. Despite the larger relative 
growth for the high-rate users, the absolute values for the low-rate stand out more (6,8 SEK against 
1,1 SEK). This is accompanied by the expanding disparity in the average journey costs. Being almost 
equal in 2016 (21,7 to 22,3 SEK/journey), the indicator drastically changed in 2017, rising up to 26,4 
SEK/journey (19,4%) for the low-rate users and to only 24,3 SEK/journey (10,0%) for the high-rate. 
Even with higher expenses, the low-rate groups (rate 0-0,3 cars/adult) reduced their frequency, 
whereas users on the opposite side started to travel slightly more often. This analysis demonstrates 
that the fare policy mainly affected the low-rate users, imposing higher prices on them, which 
consequently led to a decline in ridership and yet still higher expenses. The high-rate users started to 
spend a little more due to the moderate improvement in their public transport use.  
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Figure 5.7: Lorenz curves for vertical equity by car ownership rate 

The last factor in the equity evaluation procedure is distance from the city center. It has a very distinct 
Lorenz curve (see Figure 8), with a great proportion of expenses being on the side of centrally allocated 
users. Travel funds are twice as imbalanced in this distribution than all products. Temporally, the 
distribution seems to be very stable at the aggregate level, with absolutely equal Suits indices for both 
years. Nevertheless, Table e reveals some important details. People in general tend to travel much 
more frequently when they are based closer to the city, having more than 2 journeys/capita within the 
first 5 km, opposed to 0,2- 0,5 journeys/capita after the 20 km mark.  

This leads to unevenness in public transport expenditures. With regard to changes brought by the fare 
policy, three main groups can be identified. Between 0 and 20 km, travelers experience the highest 
growth of journey costs and try to compensate for this by reducing travel frequency, which still results 
in a moderate increase of expenses. This happens due to the fact that the 20 km radius outlines the 
fare zone A, with the increased price of dominating A-A journeys. Between 20 and 35 km, the average 
journey cost does not change much. This in turn stimulates an intense increase of ridership and travel 
expenses. Beyond 35 km, journey costs grow again, and the lowered frequency helps to balance out 
and reduce expenses. Ultimately, the fare policy supports the mid-distance users that are mostly 
located in the fare zone B. Making intrazonal journeys cheaper, it incentivizes traveling on the route 
A-B (B-A), which is prevalent for the mid-distance users. The fare zone C, located further away, is 
imposed with a larger burden because of the higher share of local journeys made with travel funds. 
These findings are mostly in line with Figure 4, but also exhibit some differences due to the various 
ways of aggregation, namely zonal and radial.  



 
 

 

49 
 
 

 

 

 

Figure 5.8: Lorenz curves for vertical equity by distance from the city centre 
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6 CONCLUSIONS AND FUTURE WORK 

As stated in Section 1, this project has had three main motivations. First, the availability of large-scale 
passively collected passenger data, which until now have been greatly underutilized. Second, the 
increased focus on inclusive transport service for all as a prime policy and planning goal, which requires 
a way to quantify the distributional effects of policy measures. Third, the lack of knowledge regarding 
the impacts of the change from zone-based to flat fares in Stockholm. This section summarizes our 
conclusions from the project with respect to each of the three themes. 

6.1 THE POTENTIAL OF SMART CARD DATA  
In this project, we have processed Access card data and performed a sequence of inferences to derive 
time-dependent origin-destination matrices for the entire Region Stockholm system. Tap-in records 
have been matched with corresponding inferred tap-out locations and time stamps for about 80% of 
all records. Moreover, we have implemented an algorithm to generate a journey database based on 
our transfer inference method. We use the outputs of this process to evaluate the impacts of 
Stockholm’s fare scheme change in 2017 (i.e. from zone-based to flat fare) on different user profiles. 
Access card products and zonal attributes have been used for analyzing policy impacts on different 
market segments. 

Through the practical development work, the project has demonstrated the feasibility of extracting 
valuable information about travel patterns from smart card validation records. The rates with which 
journey destinations and transfer locations can be inferred are on par with reported results from 
similar systems internationally. The developed algorithms are readily implemented at 
Trafikförvaltningen. They also lay a necessary foundation for further methodological developments 
and analyses such as on-board crowding evaluation, demand forecasting and identifying user groups.  

6.2 QUANTIFYING DISTRIBUTIONAL POLICY EFFECTS 
There are many proposed metrics for assessing horizontal equity in the literature, but the most used 

method is the combination of Lorenz-curves and Gini-coefficient. In studies of vertical equity, there is 

not such a clear front-runner metric as Gini is for horizontal equity. In this project we have chosen the 

Suits metric due to its neat symmetrical similarity with Gini in computation and interpretation. Both 

Suits and Gini use the Lorenz curve for their computation, but the curve is also in its own right a source 

of information on the distributional effects studied. 

The proposed equity metrics were first used to compute distributional effects for fare changes using 

transport model data. The same metrics were the applied to travel patterns extracted from smart card 

data and the natural experiment of the Stockholm fare change of January 2017. The project has 

demonstrated that the equity metrics are applicable in both model-based and empirical smart card-

based analyses. 

6.3 IMPACT OF FARE CHANGE 
The results from the evaluation of the fare change can be compared to the initial policy objectives of 
SLL. First and foremost, there is an observable effect of product consistency and user-friendliness on 
the demand growth for the single-use category. As expected, simplification and unification of the fare 
scheme substantially contributed to its attractiveness, especially for new users. However, the initial 
ridership increase rates appear to be quite inaccurate compared to the actual rates found empirically. 
A much larger growth is obtained for journeys crossing two and three fare zones: 1.4% versus 18-22%, 
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2.0% versus 35-55% and 6.2% versus 35-65% for the fare zone O/D pairs A-B, B-C and A-C respectively. 
In addition to this, a growth took place within zones B and C, which were expected to demonstrate a 
negative change: -0.2% versus 5% and -0.3% versus 2.5% respectively. The preliminary report used the 
existing price elasticities to predict the effects that the policy would entail, yet it underestimated the 
significance of the policy’s service component. The latter eventually becomes the main driver of the 
great demand increase despite the higher journey costs, as in the case with intra-zonal journeys in B 
and C.  

The inaccurately predicted demand implications led in turn to the imbalanced pricing of the single fare. 
Even though the objective was to achieve a neutral economy, it consequently reaches a positive 
balance, as the ticket revenues within the analysis period grow by almost 7 million SEK, or 13.5%. The 
distribution of travel expenses highlights the points of attention. The highest increase in the average 
journey cost is observed for fare zone A, where users mostly travel within one zone and hence try to 
compensate for the price increase by reducing the frequency of their product use. For zones B and C, 
travelers use the product more often, being stimulated by its improved convenience, but end up paying 
a higher price in some areas where local journeys still prevail. Therefore, the policy contributes to the 
reduction of geographical disparity in terms of mobility, yet brings an additional inconsistency when it 
comes to travel expenses.  

To conclude, the introduced fare policy delivered the desirable result of an increased ridership through 
improved convenience of the single-use products. Nevertheless, the significance of the service 
convenience component was underestimated, which resulted in the price adjustments being not in 
line with the mobility effects.  

6.4 FURTHER WORK 
The planning and development of the Stockholm public transport system must rely on the best 
empirical foundations available to support evidence-based decision-making and make the right 
priorities. It is therefore essential to unravel the demand patterns by utilizing the Access card data and 
the data processing and inference techniques that have already been developed for generating the 
passenger journey database. An important direction for further work is to advance the analysis 
capabilities by discovering to provide a more nuanced understanding of the impacts of a particular 
infrastructural investment the prevailing demand patterns and identify distinctive user profiles from 
the data. These may then be used, (e.g., the opening of the Citybanan commuter train railway), on 
how different user groups travel.  

As part of this research direction, several useful algorithmic developments can be identified. First, a 
data-driven zonal definition that reflects observed demand patterns rather than administrative regions 
would increase the meaningfulness and explanatory power of the subsequent travel pattern analysis. 
Following this, origin-destination matrices based on the zones obtained can be derived. Third, a 
detailed description of user profiles based on the market segmentation analysis can be performed, 
which allows a better characterisation of distinct user groups in the public transport system. 

With the advent of smart card travel patterns, accessibility could be assessed by revealed preference 

modelling. Adapting a simple utility function with only travel time, travel cost and destination 

attractiveness, these attractiveness measures could be estimated together with time and cost 

parameters and then Logsums could be calculated for all origins. This would have the added bonus of 

also be able to capture improvements in destination quality over time. Such a smart card based 

accessibility study is a strong recommendation should this project continue in a second phase. 
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APPENDIX: NOTE ON DATA HANDLING AND SECURITY  

All people accessing smart card data had to sign “SEKRETESSFÖRBINDELSE M.M. KONSULTER (Non- 
disclosure agreement)” and be approved by TF to access data. For approved people, access card data 
has been made available to us via a log-in procedure to the AnalysisDM-database hosted by 
TF/Soprasteria. Project team members that were granted by TF access are Matej Cebecauer, Alex 
Vermeulen and Yaroslav Kholodov. No other person was granted access in this project. 

The output data of the project, anonymized individual travel diaries and aggregated origin-destination 
matrices without any connection to the original card number or holder are stored at KTH iMobility lab 
server. The server has limited access with three security layers for securing the access to data. First 
layer: any computer trying to access the server have to be on KTH-VPN subnetwork, credentials are 
issued only by KTH to students, employees or after ordering credentials by employees for not affiliated 
person with KTH. All these credentials are for limited time period and the KTH (Royal Institute of 
Technology) Rules for computer, network and system facilities” document has to be sign. 

The server is accepting communication only on two ports for ssh and PostgreSQL port with ssh-tunnel 
only. All other ports are closed. KTH-IRT division is permanently scanning computers and servers at 
KTH for potential vulnerabilities. KTH iMobility lab server is considered by KTH IT as secured and close 
for KTH-VPN only. 

The access to any data or scripts on the server is strictly limited to the member of a defined group 
working on access card data project and approved by TF. In order to connect to the server, user have 
to connect to KTH-VPN with issued credentials, use ssh tunnel with ssh-rsa private key. A user has to 
generate two ssh-rsa keys private and public. The used keys are 2048 bits long. The public key is sent 
and placed on the server. The private key should be never sent and located on the server for security 
reasons and user that generate public key should be the only one with a particular private key. User 
has to provide private key and password defined by user during generation of keys. Private key is not 
located on the server and only user that generate the both keys has it. This increase the security of 
login process. Authentication is as follows: user have to provide private key ssh-rsa key and after that 
provide the password defined by user. Login to Database requires different credentials. 

In summary, a user needs KTH-VPN credentials, ssh-rsa keys, and database credentials. Credentials to 
connecting to the server and database are sent by combination of different channels SMS, in person 
and e-mail and, never by only one channel in once. 

 
 
 


