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Abstract—Model selection in linear regression models is a
major challenge when dealing with high-dimensional data where
the number of available measurements (sample size) is much
smaller than the dimension of the parameter space. Traditional
methods for model selection such as Akaike information criterion,
Bayesian information criterion (BIC), and minimum description
length are heavily prone to overfitting in the high-dimensional
setting. In this regard, extended BIC (EBIC), which is an
extended version of the original BIC, and extended Fisher
information criterion (EFIC), which is a combination of EBIC
and Fisher information criterion, are consistent estimators of the
true model as the number of measurements grows very large.
However, EBIC is not consistent in high signal-to-noise-ratio
(SNR) scenarios where the sample size is fixed and EFIC is not
invariant to data scaling resulting in unstable behaviour. In this
paper, we propose a new form of the EBIC criterion called EBIC-
Robust, which is invariant to data scaling and consistent in both
large sample sizes and high-SNR scenarios. Analytical proofs are
presented to guarantee its consistency. Simulation results indicate
that the performance of EBIC-Robust is quite superior to that
of both EBIC and EFIC.

Index Terms—High-dimension, linear regression, data scaling,
statistical model selection, subset selection, sparse estimation,
scale-invariant, variable selection.

I. INTRODUCTION

Selecting the true or best set of covariates from a large

pool of potential covariates is a fundamental requirement in

many applications of science, engineering, and biology. In this

paper, our primary focus is on model selection (MS) in high-

dimensional linear regression models associated with the max-

imum likelihood (ML) method of parameter estimation where

the number of measurements, N , is quite small compared to

the model space or parameter dimension, p, i.e., N < p. High-

dimensional datasets are common phenomena in many fields

of scientific studies, and as such MS is a central element of

data analysis and statistical inference [1].

Consider the linear model

y = Ax+ e, (1)

where y ∈ R
N is the measurement vector and A ∈ R

N×p

is the known design matrix. We consider a high-dimensional

setting, hence p > N . Also, p can be linked to N as p = Nd,

where d > 0 is a real value. e ∈ R
N is the associated noise

vector whose elements are assumed to be i.i.d. following a
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Gaussian distribution, i.e., e ∼ N (0, σ2IN ) where σ2 is the

unknown true noise power. x ∈ R
p is the unknown parameter

vector. Here, x is assumed to be sparse, which implies that

very few of the elements of x are non-zero. We denote S as

the true support of x, i.e., S = {i : xi �= 0} having cardinality

card(S) = k0 � N and AS as the set of columns of A

corresponding to the support S . The goal of MS is estimating

S given y and A.

A popular approach for MS is using information theoretic

criteria [2], [3], [4], [5]. A typical information criterion based

MS rule picks the best model that minimizes some statistical

metric as shown below

Ŝ = argmin
I∈J

{f(MI) + P(I)}, (2)

where Ŝ is the model estimate, J is the set of candidate mod-

els under consideration, and MI denotes the model with sup-

port I. The statistical metric consists of two parts: (1) f(MI)
representing the goodness of fit of model MI and (2) P(I)
is the penalty term that compensates for overparameterization.

The literature on MS is quite extensive. Some of the popular

classical MS rules include Akaike information criterion [6],

Bayesian information criterion (BIC)[7], minimum description

length (MDL)[8], gMDL[9], nMDL[10], penalizing adaptively

the likelihood (PAL) [11], Bayesian model comparison with

g-prior [12], etc. However, these classical methods in their

current form fail to handle the large dimension cases and tend

to overfit the final model [13], [14].

Among the classical methods of MS, BIC has been quite

successful due to its simplicity and consistent performance

in many fields. BIC is asymptotically consistent in selecting

the true model as N grows very large given that p and the

true noise variance σ2 is fixed. However, its performance in

high-dimensional settings when p > N is not satisfactory and

it has a tendency to select more co-variates than required,

thus overfitting the model [13]. To handle the large-p small-

N scenario, the authors in [13] proposed a novel extension

to the original BIC called extended BIC (EBIC), that takes

into account both the number of unknown parameters and

the complexity of the model space. EBIC adds dynamic prior

model probabilities to each of the models under consideration

that is inversely proportional to the model set dimension. This

eliminates the earlier assumption of assigning uniform prior

to all models irrespective of their sizes, which goes against

the principle of parsimony. EBIC is consistent in selecting the

true model as N tends to infinity [13]. However, the consistent

behaviour of EBIC fails when N is small and fixed and σ2

tends to zero [14]. This new consistency requirement was
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first introduced in [15], where the authors highlighted that the

original BIC is also inconsistent for fixed N and decreasing

noise variance scenarios where N > p.

To overcome the drawbacks of EBIC, the authors in [14]

proposed a criterion called extended Fisher information crite-

rion (EFIC) that is inspired by EBIC and the MS criteria with

Fisher information [16]. The authors analyzed the performance

of EFIC in the high-dimensional setting for two key cases:

(1) when σ2 is fixed and N tends to infinity; (2) when N is

fixed and σ2 tends to zero. In each case, it was shown that

EFIC selects the true model with a probability approaching

one. However, as indicated in our simulations, EFIC is not

invariant to data scaling and it tends to suffer from overfitting

issues (and sometimes underfitting) in practical sizes of N
when the data is scaled. This scaling problem is a result of

the data-dependent penalty design that may blow the penalty

to extremely small or large values depending on how the data

is scaled.

Apart from the criteria mentioned above, there are other

non-information theoretic methods available for MS. One

such popular method is cross-validation (CV) [17], [18].

However, CV-based procedures can be computationally in-

tensive and their performance in high-dimensional problems

is not satisfactory [19], [20]. Recent additions to the list

of MS methods for high-dimensional data are residual ratio

thresholding (RRT)[21] and multi-beta-test (MBT) [22]. Both

are non-information theoretic methods based on hypothesis

testing using a test statistic. They operate along with a greedy

variable selection method such as orthogonal matching pursuit

(OMP) [23] and involve a tuning parameter (TP) ∈ [0, 1], that

is connected to the probability of false selection. However,

there is no optimal way to set it and as such, they may

tend to overfit or underfit the model depending on the chosen

TP value. Moreover, in their current form, they can only be

used with algorithms that generate monotonic sequences of

support estimates such as OMP, which restricts their usability.

Knockoff filters [24] are newly developed methods for variable

selection in high dimensional inference. Initially designed

for linear regression but later generalized to other regression

models [25].

The contributions of the paper are as follows: (i) This paper

proposes a modified criterion for MS in high-dimensional

linear regression models called EBIC-Robust or EBICR in

short. EBICR mitigates the data-scaling problem of EFIC and

unlike EBIC it is consistent for both large N and high-SNR

scenarios. Some preliminary results have been published in

[26]. (ii) To guarantee consistency of the criterion, analytical

proofs are provided to show that under a suitable asymptotic

identifiability condition, EBICR selects the true model with

a probability approaching one as N → ∞ as well as when

σ2 → 0. (iii) The theoretical analysis also provides a lower

bound on the TP of EBICR such that the criterion is consistent

as N → ∞ under the setting that p grows with N as p = Nd.

(iv) In theory, EBICR can be seen as an extension of BICR [27],

which was designed under the classical order selection setting.

However, the paper highlights through extensive simulations

the ineffectiveness of the classical methods (including BICR)

when dealing with high-dimensional data employing greedy

algorithms for predictor selection and the advantage of EBICR

over existing methods.

Notations used in the paper are as follows. Boldface letters

denote matrices and vectors. The notation (·)T stands for

transpose. AI denotes a sub-matrix of the full matrix A

formed using the columns indexed by the support set I.

IN is an N × N identity matrix. ΠI = AI(A
T
IAI)

−1AT
I

denotes the orthogonal projection matrix on the span of

AI and Π⊥
I = IN − ΠI . The notation

∣∣X∣∣ denotes the

determinant of the matrix X and ‖·‖2 denotes the Euclidean

norm. X ∼ N (μ,Σ) denotes a Gaussian distributed random

variable with mean μ and covariance matrix Σ. X ∼ χ2
k is a

central chi-squared distributed random variable with k degrees

of freedom, X ∼ χ2
k(λ) is a noncentral chi-squared distributed

random variable with k degrees of freedom and non-centrality

parameter λ. Further, O(·) denotes the standard Big-O notation

and we use O(·) to denote dominating order of growth.

II. BACKGROUND

Given the linear model (1), the entire process of MS or

in other words estimating the true support set S involves

two major steps: (i) Predictor/subset selection, which includes

finding a competent set of candidate models out of all the

(2p − 1) possible models. In our work, we consider the set

of competing models as the collection of all plausible com-

binatorial models up to a maximum cardinality K, under the

assumption that k0 ≤ K � N ; (ii) estimating the true model

among the candidate models using a suitable MS criterion.

For a candidate model with support I having cardinality

card(I) = k, the linear model in (1) can be reformulated

as follows

HI : y = AIxI + eI , (3)

where HI denotes the hypothesis that the data y is truly

generated according to (3), AI ∈ R
N×k is the sub-design

matrix consisting of columns from the known design matrix

A with support I, xI ∈ R
k is the corresponding unknown

parameter vector and eI ∈ R
N is the associated noise vector

following eI ∼ N (0, σ2
IIN ) where σ2

I is the unknown noise

variance corresponding to the hypothesis HI .

A. Bayesian Framework for Model Selection

To motivate the proposed criterion we start by describing the

Bayesian framework that leads to the maximum a-posteriori

(MAP) estimator, which in turn forms the backbone for

deriving BIC and its extended versions, viz., EBIC, EFIC, as

well as the proposed criterion EBICR. Now, for the considered

model in (3), the probability density function (pdf) of the data

vector y is given as

p(y|θI ,HI) =
exp{−‖y −AIxI‖22/2σ2

I}
(2πσ2

I)
N/2

, (4)

where θI = [xT
I , σ

2
I ]

T comprises of all the parameters of

the model. Under hypothesis HI , the maximum likelihood

estimates (MLEs) of θ̂I = [x̂T
I , σ̂

2
I ]

T are obtained as [28]

x̂I =
(
AT

IAI

)−1
AT

Iy & σ̂2
I =

yTΠ⊥
I y

N
. (5)
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EBICR is derived using the Bayesian framework of MS. The

maximum a-posteriori (MAP) criterion is first derived and after

some suitable modifications and reasonable assumptions we

arrive at the EBICR. We follow similar steps as in [27], [26]

but include them here for completeness. Let us denote the prior

pdf of the parameter vector θI as p(θI |HI), the marginal of y

as p(y|HI) and the prior probability of the model with support

I as Pr(HI). Then the MAP estimate of S is equivalently

given by [29], [27]

ŜMAP = argmax
I

{
ln p(y|HI) + lnPr (HI)

}
. (6)

The classical derivation employs a second-order Taylor series

expansion around the MLE to obtain an approximation of

ln p(y|HI) under the premise that N is large or/and SNR

is high (see [29], [30])

ln p(y|HI) ≈ ln p(y|θ̂I ,HI) + ln p(θ̂I |HI)

+

(
k + 1

2

)
ln(2π)− 1

2
ln
∣∣F̂I

∣∣, (7)

where k = card(I) and F̂I is the sample Fisher information

matrix (FIM) under HI given as [28]

F̂I = −∂2 ln p(y|θI ,HI)

∂θI∂θ
T
I

∣∣∣∣
θI=θ̂I

. (8)

Evaluating (8) using (4) and (5) we get [29]

F̂I =

[
1
σ̂2

I

AT
IAI 0

0 N
2σ̂4

I

]
. (9)

Now, for the considered linear model we have

−2 ln p(y|θ̂I ,HI) = N ln σ̂2
I + const. (10)

Therefore, using (10), we can rewrite (7) as

−2 ln p(y|HI) ≈ N ln σ̂2
I + ln

∣∣F̂I

∣∣− 2 ln p(θ̂I |HI)

−k ln 2π + const.
(11)

Traditionally, the prior term in (7), i.e., ln p(θ̂I |HI) is as-

sumed to be flat and uninformative, and hence omitted from

the analysis. Thus, dropping the constants and the terms

independent of the model dimension k, we can equivalently

reformulate the MAP based model estimate as

ŜMAP = argmin
I

{
N ln σ̂2

I+ln
∣∣F̂I

∣∣−k ln 2π−2 lnPr (HI)
}
.

(12)

B. BIC

The classical BIC can be derived from the MAP estimator

in (12). The term −k ln 2π is ignored as it weakly depends on

the model dimension k and hence is typically much smaller

than the dominating terms. Moreover, the prior probability of

each candidate model is assumed to be equiprobable. Hence,

the −2 lnPr(HI) term is dropped as well. Now, expanding

the |F̂I | term of (12) using (9) we have

ln
∣∣F̂I

∣∣ = ln(N/2)− (k + 2) ln σ̂2
I + ln

∣∣AT
IAI

∣∣ . (13)

Assumption 1: The further analysis of BIC considers the

following property of the design matrix A [29], [31]

lim
N→∞

{
N−1(AT

IAI)
}
= MI , (14)

where MI is a k× k positive definite matrix and bounded as

N → ∞.

Assumption 1 is true in many applications but not all (see

[32] for more details). Using (14), it is possible to show that

for large N

ln
∣∣AT

IAI

∣∣ = ln

∣∣∣∣N ·N−1(AT
IAI)

∣∣∣∣ = k lnN +O(1). (15)

Furthermore, σ̂2
I is considered to be of O(1) since it does

not grow with N . Dropping the O(1) term, (k+2) ln σ̂2
I and

ln(N/2) (a constant) from (13) leads to the BIC

BIC(I) = N ln σ̂2
I + k lnN. (16)

BIC is consistent when p is fixed and N → ∞. However, it is

inconsistent when N is fixed and σ2 → 0 [33], [27] as well

as when p > N and p grows with N [13].

C. EBIC

The authors in [13] proposed an extended version of the

BIC, i.e., EBIC, to mitigate the drawbacks of BIC for large-

p small-N scenarios. EBIC can be derived from the MAP

estimator in (12), using the same assumptions as in BIC,

except for the prior probability term Pr(HI). In EBIC, the

idea of equiprobable models is discredited and instead a prior

probability is assigned that is inversely proportional to the

size of the model space. Thus, a model with dimension k

is assigned prior probability of Pr(HI) ∝ (
p
k

)−γ
, where

0 ≤ γ ≤ 1 is a TP. Thus, the EBIC is

EBIC(I) = N ln σ̂2
I + k lnN + 2γ ln

(
p

k

)
. (17)

When γ = 0, EBIC boils down to BIC (16). Moreover, unlike

BIC, EBIC is consistent in selecting the true model for p � N
cases where p grows with N . However, it has been observed

in [14] that EBIC is inconsistent when N is fixed and σ2 → 0.

D. EFIC

To circumvent the shortcomings of EBIC in high-SNR

cases, the authors in [14] proposed EFIC. In EFIC, the

assumptions imposed on the sample FIM (13) are removed and

the entire structure is included as it is in the criterion except

for the constant term ln(N/2). Some further simplifications

are involved:

N ln σ̂2
I = N ln

∥∥Π⊥
I y
∥∥2
2
−N lnN (18)

(k + 2) ln σ̂2
I = (k + 2)

[
ln
∥∥Π⊥

I y
∥∥2
2
− lnN

]
. (19)

The −N lnN and −2 lnN term of (18) and (19) respectively

are independent of the model dimension k and hence ignored.

Similar to EBIC the prior probability term is assumed to be

proportional to the model space, hence Pr(HI) ∝ (
p
k

)−c
,
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where c > 0 is a TP. Furthermore, under the large-p approxi-

mation and since k ≤ K � p, the ln
(
p
k

)
term is approximated

as

ln

(
p

k

)
=

k−1∑
i=0

ln(p− i)− ln(k!) ≈ k ln p. (20)

Hence, for large-p case, we can set −2 ln p(HI) ≈ 2ck ln p.
Thus, the EFIC is given as

EFIC(I) = N ln
∥∥Π⊥

I y
∥∥2
2
+ k lnN + ln

∣∣AT
IAI

∣∣
−(k + 2) ln

∥∥Π⊥
I y
∥∥2
2
+ 2ck ln p.

(21)

EFIC is consistent in both large-N and high-SNR scenarios

[14]. However, EFIC suffers from a data scaling problem due

to the inclusion of the data-dependent penalty term and as such

the performance of EFIC is not invariant to data scaling. See

further in Section III-A.

III. PROPOSED CRITERION: EBIC-ROBUST (EBICR)

In this section, we present the necessary steps for deriving

EBICR. EBICR can be seen as a natural extension of BICR

[27] for performing MS in large-p small-N scenarios. Below,

we provide a detailed derivation and establish the connection

to BICR. First we factorize the ln
∣∣F̂I

∣∣ term in (12) in the

following manner [29], [27]

ln
∣∣F̂I

∣∣ = ln
[∣∣L∣∣ ∣∣∣L−1/2F̂IL

−1/2
∣∣∣]

= ln |L|+ ln
∣∣∣L−1/2F̂IL

−1/2
∣∣∣︸ ︷︷ ︸

T

. (22)

The goal here is to choose a suitable L matrix that normalizes

the sample FIM F̂I such that the T term in (22) is O(1), i.e.,

in this case T should be bounded as N → ∞ and/or σ2 → 0.

To accomplish this objective, we choose the following L−1/2

matrix

L−1/2 =

⎡⎣√ 1
N

√
σ̂2

I

σ̂2
0

Ik 0

0

√
1
N

σ̂2

I

σ̂2
0

⎤⎦ , (23)

where σ̂2
0 = ‖y‖22/N . The factor, σ̂2

0 , is used in L−1/2 in order

to neutralize the data scaling problem and is motivated by the

fact that given (14), when the SNR is a constant, we have

E[σ̂2
0 ] → const. & Var[σ̂2

0 ] → 0 (24)

as N → ∞. Also, from the considered generating model

in (1), when N is fixed, (24) is also satisfied as σ2 → 0
(see Appendix C for details on σ̂2

0). Now using (9), (23), the

assumption 1 in (14), and (24) it is possible to show that∣∣∣L−1/2F̂IL
−1/2

∣∣∣ = ∣∣∣∣∣ 1
σ̂2
0

A
T
I
AI

N 0

0 1
2σ̂4

0

∣∣∣∣∣ = O(1), (25)

and therefore may be discarded without much effect on the

criterion. Further, the ln
∣∣L∣∣ term can be expanded as

ln |L| = ln

∣∣∣∣∣∣
N
(

σ̂2

0

σ̂2

I

)
Ik 0

0 N
(

σ̂2

0

σ̂2

I

)2
∣∣∣∣∣∣

= (k + 1) lnN + (k + 2) ln

(
σ̂2
0

σ̂2
I

)
. (26)

Therefore, using (25) and (26) we can rewrite (22) as

ln
∣∣F̂I

∣∣ = k lnN + (k + 2) ln

(
σ̂2
0

σ̂2
I

)
+O(1) + lnN. (27)

Next, for the model prior probability term −2 lnPr(HI) in

(12), a similar proposition is taken as in EBIC such that

Pr(HI) ∝
(
p
k

)−ζ
, where ζ ≥ 0 is a TP. For large-p, we follow

a similar approach as in EFIC by employing the following

approximation ln
(
p
k

) ≈ k ln p . This gives

−2 lnPr(HI) = 2ζk ln p+ const. (28)

Now, substituting (27), (28) in (12) and dropping the O(1), the

lnN term (independent of k), the constant and the p(θ̂I |HI)
term we arrive at the EBICR:

EBICR(I) = N ln σ̂2
I + k ln

(
N

2π

)
+(k + 2) ln

(
σ̂2
0

σ̂2
I

)
+ 2kζ ln p.

(29)

The true model is estimated as

ŜEBICR
= argmin

I

{
EBICR(I)

}
, (30)

It can be observed from (29) that the penalty of EBICR is a

function of N , the ratio (σ̂2
0/σ̂

2
I) and p. Furthermore, when

S �⊂ I, the ratio (σ̂2
0/σ̂

2
I) = O(1) and for S ⊂ I we have

(σ̂2
0/σ̂

2
I) = O(SNR+1). Hence, the behaviour of the penalty

can be summarized as follows: (i) For fixed p and SNR, as

N → ∞ the penalty grows as O(lnN); (ii) If N and p are

constant, as SNR → ∞, the penalty grows as O(ln(SNR+1))
for all I ⊃ S; (iii) when SNR is a constant and given that p
grows with N , then as N → ∞ the penalty grows as O(lnN)
+ O(ln p).

A. Scaling Robustness as Compared to EFIC

In this section, we elaborately discuss the data scaling

problem. Ideally, any MS criterion should be invariant to data

scaling, which means that if y is scaled by any arbitrary

constant C > 0, the equivalent penalty for each of the models

I should not change. This property is necessary because

otherwise the behaviour of the MS criterion will be unreliable

and may suffer from overfitting or underfitting issues when

the data is scaled. As mentioned before, the penalty of EFIC

is not invariant to data scaling. This can be observed from

the following analysis. Let Δ = card(I) − card(S). Now,

consider the difference assuming I �= S
EFIC(I)− EFIC(S)

= (N − 2) ln

∥∥Π⊥
I y
∥∥2
2∥∥Π⊥

S y
∥∥2
2

+ ln

∣∣AT
IAI

∣∣∣∣AT
SAS

∣∣ − k ln
∥∥Π⊥

I y
∥∥2
2

+ k0 ln
∥∥Π⊥

S y
∥∥2
2
+Δ(lnN + 2c ln p) = DEFIC (say).

(31)

Ideally, for correct MS, DEFIC > 0 for all I �= S . Now, if

we scale the data y by a constant C > 0, the data dependent

term becomes ln‖Π⊥
I Cy‖22 = lnC2 + ln‖Π⊥

I y‖22 and the

difference becomes

EFIC(I)− EFIC(S) = DEFIC −ΔlnC2. (32)
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It is evident that (31) and (32) are unequal and the difference

after scaling contains an additional term −ΔlnC2. This

implies that scaling the data changes the EFIC score difference

between any arbitrary model I and the true model S . Hence,

depending on the C value (C < 1 or C ≥ 1) and Δ > 0 or

Δ < 0, the difference in (32) may become negative leading

to a false MS. Thus, EFIC is not invariant to data scaling. On

the contrary, consider the difference for EBICR,

EBICR(I)− EBICR(S)
= (N − 2) ln

(
σ̂2
I

σ̂2
S

)
− k ln σ̂2

I + k0 ln σ̂
2
S +Δ ln σ̂2

0

+Δ(ln(N/2π) + 2ζ ln p) = DEBICR
(say) (33)

Now, scaling y by C, scales the noise variance estimates σ̂2
I ,

σ̂2
S and σ̂2

0 by C2, however, the difference remains the same,

i.e., DEBICR
. This is because in this case the −ΔlnC2 term is

cancelled by +Δ lnC2 generated by Δln σ̂2
0 . Hence, EBICR

is invariant to data scaling, which is a desired property of any

MS criterion.

IV. CONSISTENCY OF EBICR

This section discusses the consistency of the proposed

EBICR. Generally speaking, a MS criterion with Ŝ as its

estimate of the true model S is consistent if it satisfies the

following conditions [14]

lim
σ2→0

Pr{Ŝ = S} = 1 when N is fixed,

lim
N→∞

Pr{Ŝ = S} = 1 when σ2 is fixed, and p = Nd.
(34)

Here p is allowed to grow with N . This is a common setting

in the MS literature (see, e.g., [13], [14], [34]). Now, let

us define the set of all overfitted models of dimension k as

Ik
o = {I : card(I) = k,S ⊂ I} and the set of all misfitted

models of dimension k as Ik
m = {I : card(I) = k,S �⊂ I}.

Furthermore, let O denote the set of all Ik
o for k = k0 +

1, . . . ,K, and let M denote the set of all Ik
m for k = 1, . . . ,K,

i.e.,

O =

K⋃
k=k0+1

Ik
o and M =

K⋃
k=1

Ik
m , (35)

where K is some upper bound for k0 and k0 ≤ K � N .

In practice, EBICR picks the true model S , if the following

conditions are satisfied:

C1 : EBICR(S) < EBICR(I) ∀ I ∈ O (36)

C2 : EBICR(S) < EBICR(I) ∀ I ∈ M. (37)

A. Asymptotic Identifiability of the Model

In general, the model is identifiable if no model of compa-

rable size other than the true submodel can predict the noise

free response almost equally well [13]. In the context of linear

regression, this is equivalent to say y = ASxS �= AIxI

for
{I : card(I) ≤ card(S), I �= S}. The identifiability

of the true model in the high-dimensional linear regression

setup is uniformly maintained if the minimal eigenvalue of all

restricted sub-matrices, AT
IAI for {I : card(I) ≤ 2K}, is

bounded away from zero [14].

Assumption 2: A sufficient assumption on the design matrix

A to prove the consistency of EBICR is the sparse Riesz

condition [35]:

lim
N→∞

{
N−1

(
AT

IAI

)}
= MI , ∀ card(I) ≤ 2K, (38)

where MI denotes a bounded positive definite matrix.

While a weaker assumption may be possible (cf. [13]), we

believe this is a natural condition. It connects well to Assump-

tion 1 in (14) and should hold in well-designed experiments

where, e.g., near identical regressors have been pruned away.

Now, we present the consistency theorems of EBICR for

large-N and high-SNR. The consistency of EBICR as σ2 → 0
or SNR → ∞ for fixed N is summarized as a theorem stated

below.

Theorem 1: Assume that N and p are fixed and the matrix

A satisfies the condition given by (38). If K ≥ k0, then

Pr {EBICR(S) < EBICR(I)} → 1 as σ2 → 0 for all I �= S
and card(I) = 1, . . . ,K.

The proof of Theorem 1 is given in Appendix A.

Next, we consider the consistency of EBICR as the sample

size N → ∞ given that σ2 is fixed and under the setting

p = Nd for some d > 0. This leads to the following theorem.

Theorem 2: Assume that p = Nd for some constant d > 0,

the SNR is fixed and the matrix A satisfies (38). If K ≥ k0,

then Pr {EBICR(S) < EBICR(I)} → 1 as N → ∞ for all

I �= S and card(I) = 1, . . . ,K under the condition ζ >
1− 1/2d.

The proof of Theorem 2 is given in Appendix B.

V. PREDICTOR SELECTION ALGORITHMS

In the high-dimensional scenario, when p is large, it is

infeasible to perform MS in the conventional manner. For a

design matrix with parameter dimension p, the number of

possible candidate models is 2p − 1. Hence, the candidate

model space grows with p and we cannot afford to calculate the

model score for all possible models. Therefore, to perform MS,

we combine a MS criterion with a predictor selection (support

recovery) algorithm such as OMP or LASSO (least absolute

shrinkage and selection operator) [36]. The goal of predictor

selection is to pick a subset of important predictors from the

entire set of p predictors. In this context, the most important

predictors refer to the positions of the nonzero elements of

the input signal x. Using a predictor selection algorithm we

reduce the cardinality of the candidate model space to some

upper bound K such that k0 ≤ K � N under the assumption

of a sparse parameter vector. This enables us to apply the MS

criterion to the smaller set of candidate models to pick the

best model. The OMP algorithm is shown in Algorithm 1.

To perform MS, we combine OMP with EBICR as shown in

Algorithm 2.

LASSO is a shrinkage method for variable selec-

tion/estimation in linear regression models developed by Tib-

shirani [36]. Given the linear model in (1), the LASSO solution

for x for a particular choice of the regularization parameter

λ ≥ 0 is obtained as

x̂lasso(λ) = min
x∈Rp

{
1

2N
‖y −Ax‖22 + λ‖x‖1

}
, (39)
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Algorithm 1 OMP with K iterations

Inputs: Design matrix A, measurement vector y.

Initialization: ‖aj‖2 = 1 ∀j, r0 = y, S0
OMP = ∅

for i = 1 to K do

Find next column index: di = argmax
j

∣∣aTj ri−1
∣∣

Add current index: Si
OMP = Si−1

OMP ∪ {di}
Update residual: ri =

(
IN −ΠSi

OMP

)
y

end for

Output: OMP generated index sequence SK
OMP

where ‖·‖1 denotes the l1 norm. The parameter λ determines

the level of sparsity. When λ → ∞ the objective function in

(39) attains the minimum with x̂lasso(λ) being a zero vector.

As we gradually lower the λ value, the number of non-

zero components in x̂lasso(λ) starts increasing. MS combining

LASSO and EBICR can be performed as shown in Algorithm

3. Gradually decrease λ from a high value so that the num-

ber of non-zero components in x̂lasso(λ) gradually increases.

Therefore, for each decreasing unique value of λ say λi, we

acquire a different solution x̂lasso(λi), with increasing support

and thus obtaining a sequence of candidate models with

maximum cardinality K. The value of EBICR is computed for

each of the candidate models and the model corresponding

to the smallest EBICR score is selected as the final model.

A most useful method for solving LASSO in our context is

the (modified) least angle regression (LARS) algorithm [37],

since it also provides the required sequence of regularization

parameters for which the support changes.

VI. SIMULATION RESULTS

In this section, we provide numerical simulation results to il-

lustrate the empirical performance of EBICR. The performance

of EBICR is compared with the ‘oracle’, EBIC, EFIC, RRT,

and knockoff filter. The ‘oracle’ criterion assumes a priori

knowledge of the true cardinality k0. Thus, the oracle provides

the upper bound on the MS performance that can be achieved

using a particular predictor selection algorithm and for a given

set of data settings. Additionally, we also provide simulation

results to highlight the drawbacks of classical methods for

model selection in high-dimensional linear regression models

with a sparse parameter vector.

General Simulation Setup: In the simulations, we consider

the model y = Ax+ e, where the design matrix A ∈ R
N×p

is generated with independent entries following normal dis-

tribution N (0, 1). Furthermore, without loss of generality, we

Algorithm 2 Model selection combining EBICR with OMP

Run OMP for K iterations to obtain SK
OMP

for k = 1 to K do

I = Sk
OMP

Compute EBICR(I)
end for

Estimated true support: ŜEBICR
= argmin

I
{EBICR(I)}

Algorithm 3 Model selection combining EBICR with LASSO

Compute LASSO estimates {x̂lasso(λ1), . . . , x̂lasso(λKmax
)}

where card(supp (x̂lasso(λKmax
))) = K

for i = 1 to Kmax do

I = supp (x̂lasso(λi))
Compute EBICR(I)

end for

Estimated true support: ŜEBICR
= argmin

I
{EBICR(I)}

assume that the true support is S = [1, 2, . . . , k0], therefore,

xS = [x1, x2, . . . , xk0
]T and AS = [a1,a2, . . . ,ak0

]. This im-

plies that the elements of x follows xk �= 0 for k = 1, . . . , k0
and xk = 0 for k > k0. The SNR in dB is SNR (dB) =

10 log10(σ
2
s/σ

2), where σ2
s and σ2 denote signal and true

noise power, respectively. The signal power is computed as

σ2
s = ||ASxS ||22/N . Based on σ2

s and the chosen SNR (dB),

the noise power is set as σ2 = σ2
s/10

SNR (dB)/10. Using this

σ2, the noise vector e is generated following N (0, σ2IN ).
The probability of correct model selection (PCMS), i.e.,

Pr{Ŝ = S}, is estimated over 300 Monte Carlo trials. To

maintain randomness in the data, a new design matrix A is

generated at each Monte Carlo trial. OMP is used for predictor

selection for its simplicity and wider range of applicability.

Tuning Parameter Selection: An important step in MS is

the choice of the TP. In the case of EBICR, if ζ is too high,

the overall penalty may become too large as k increases. In

such a situation, it is more likely that the minimum EBICR

score occurs at some k < k0 such that some of the weaker

signals are left out leading to an underfitted model. On the

contrary, if ζ is too low, the penalty may not be sufficiently

large to compensate for the overparameterization due to large

parameter dimension. As such, the minimum EBICR score

may occur at some k > k0 consequently leading to an

overfitted model. However, in practical scenarios, it is hard

to decide if the chosen ζ is high or low. Theorem 2 provides

a lower bound on ζ such that consistency is guaranteed as N
grows large. Recall that ζ was introduced in the derivation

of EBICR as a parameter of the prior probability (see (28)).

The most natural choice from that Bayesian perspective is to

set ζ = 1. Furthermore, it can be shown that the probability

in (97) will correspond to 1 − 1/
√
N by choosing ζ = 1

(and Δ = 1). Again, this appears as a natural rate as the

standard deviations of the parameter estimation errors decay

as 1/
√
N . Hence, both these arguments suggest that ζ = 1

is a natural choice. This is also illustrated in the following

simulation. Fig. 1 shows a performance comparison of EBICR

for four different values of ζ (0.4, 0.6, 1, and 2). Here, we set

p = Nd where d = 1.1. Hence, from Theorem 2 we require

ζ > 1− 1/2d = 0.55 to achieve consistency. From the figure,

we see that for ζ = 0.4, the performance of EBICR degrades

after a certain point with increasing N , which justifies the

theory. For all other ζ > 0.55, the performances improve with

increasing N . For ζ = 0.6, which is very close to the lower

bound, the convergence to PCMS = 1 is slow and will require

a very large sample size. For, ζ = 2, the performance suffers

(due to underfitting) in the small-N regime, but does achieve
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Fig. 1: PCMS vs N with k0 = 5, xS = [1, 1, 1, 1, 1], SNR =

5 dB, p = Nd and d = 1.1.

perfect selection as N increases. In this case, ζ = 1 provides a

much better overall performance for a broader range of N . A

similar trend as in EBICR is observed even in EBIC and EFIC

for different choices of γ and c. Hence, to maintain fairness,

the following TP settings are considered for further analysis:

ζ = 1 (EBICR), c = 1 (EFIC), and γ = 1 (EBIC). For RRT,

lim
N→∞

PCMS → 1 as α → 0. Hence, we choose α = 0.01

[21]. For the knockoff filter, the false discovery rate (FDR) is

set to FDR = 0.1 for all cases (which is the default setting in

the R package and it gave the best results among other choices

of FDR such as 0.05 and 0.2).

A. Performance comparison with classical methods

In this section, we present simulation results for MS us-

ing classical methods in high-dimensional linear regression

models and compare their performances with EBICR. The

purpose of these results is to highlight the limitations of the

classical methods in dealing with large-p small-N scenarios.

The classical methods used here are BIC [7], B̃ICN,SNR[29],

BICR[27], gMDL [9], and PAL [11]. Here, we choose k0 = 5
and the true parameter vector as xS = [5, 4, 3, 2, 1]T . Fig. 2

presents the plot for PCMS versus N for SNR = 30 dB with

p = Nd where d = 1.1. The figure shows that EBICR (ζ = 1)

clearly surpasses the classical methods with huge differences

in performance. In general, when p is fixed and N → ∞,

Fig. 2: The PCMS versus N for SNR = 30 dB with xS =
[5, 4, 3, 2, 1] and p = Nd where d = 1.1.

the classical methods are consistent [27]. However, when p is

varying and grows with N , the consistency attribute does not

hold any longer, hence, we see the decreasing performance

trend in Fig. 2.

Fig. 3 illustrates the PCMS versus SNR in dB for fixed

N = 100 and p = 500. This gives d = log(p)/ log(N) ≈
1.35, and hence from Theorem 2, ζ > 1− 1/2d ≈ 0.63. The

first major observation from the figure is that EBICR (ζ = 1)

clearly outperforms all the classical methods by a huge margin.

Secondly, for the considered setting, the performances of BICR

and gMDL are quite similar followed by B̃ICN,SNR. The

criteria BICR, gMDL and B̃ICN,SNR do achieve convergence to

detection probability one but at the expense of very high values

of SNR. The performances of PAL and BIC are extremely poor

in this case, even in the high-SNR regions.

B. Performance comparison with the latest methods

In Section VI-A, we highlighted the drawbacks of clas-

sical methods in MS under the high-dimensional setting.

We observed that the performance of the classical methods

collapses when p grows with N and the consistency property

breaks down. In this section, we present simulation results

for MS comparing EBICR to existing state-of-the-art methods,

designed to deal with the large-p small-N scenarios.

To raise the simulation complexity, here we consider cor-

related predictors. The rows of A are generated as i.i.d.

following N (0,Σ) where the covariance matrix Σ ∈ R
p×p

is chosen as

Σ =

⎡⎢⎢⎢⎣
1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

...
...

...

ρ ρ . . . ρ 1

⎤⎥⎥⎥⎦
p×p

. (40)

For the above choice of Σ, the ρ denotes the level of

correlation between the predictor ai’s. This structure of Σ

further indicates that the ai’s are statistically equiangular.

As a side remark, please note that for this model of A,

the matrix MI in the sparse Riesz assumption (38) is

MI = ΣI , where ΣI ∈ R
k×k is a positive definite

sub-covariance matrix of Σ. To highlight the scale-

invariant and consistent behaviour of EBICR, we consider

Fig. 3: The PCMS versus SNR (dB) for N = 100, p = 500
and xS = [5, 4, 3, 2, 1].
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(a) Case I: xS = [0.055,−0.05, . . . , 0.015, 0.01]T (b) Case II: xS = [55,−50, . . . , 15, 10]T

Fig. 4: The PCMS versus SNR (dB) for N = 100, p = 500, k0 = 10, ρ = 0.2, K = 30.

two scenarios. In the first scenario, we choose xS =
[0.055,−0.05, 0.045,−0.04, 0.035,−0.03, 0.025,−0.02, 0.015,
0.01]T , which we denote as Case I. In the second scenario, we

choose xS = [55,−50, 45,−40, 35,−30, 25,−20, 15, 10]T

denoted as Case II. Observe that Case II is a scaled version

of Case I, where the scaling factor is 1000.

1) Model Selection versus SNR: To simulate the PCMS

versus SNR in a high-dimensional setting we fixed N = 100
and p = 500. This gives d = log(p)/ log(N) ≈ 1.35, hence,

ζ > 1 − 1/2d ≈ 0.63. The correlation factor ρ in (40) is

chosen as 0.2 for both cases. Fig. 4 shows the empirical

PCMS versus SNR (dB). Fig. 4a and Fig. 4b correspond to

Case I and Case II, respectively. Both the figures depict a

fixed-N increasing-SNR scenario. Comparing the figures, the

first clear observation is that, unlike the other criteria, the

behaviour of EFIC is not identical for the two different xS

given that the other parameters viz, N , p and k0 are constant

and the performance is evaluated for the same SNR range. This

illustrates the scaling problem present in EFIC that leads to

either high underfitting or overfitting issues. This behavior of

EFIC can be explained as follows. The data dependent penalty

term (DDPT) of EFIC is DDPT = −(k + 2) ln‖Π⊥
I y‖22,

whose overall value depends on the value ‖Π⊥
I y‖22, which in

turn is influenced by the signal and noise powers σ2
s and σ2,

Fig. 5: The PCMS vs N for SNR = 8 dB, p = 500.

respectively. If ‖Π⊥
I y‖22 � 1, then DDPT � 0, which may

blow the overall penalty to a large value leading to underfitting

issues. This is most likely Case I (Fig. 4a). On the contrary

if ‖Π⊥
I y‖22 � 1, then DDPT � 0, thus lowering the overall

penalty leading to overfitting issues (Case II, Fig. 4b). The

second major observation is that EBIC is inconsistent when

SNR is high but N is small and fixed. This behaviour of

EBIC is already reported in [14]. The performance of knockoff

is also quite unsatisfactory compared to all methods even

though it appears to be scale-invariant. In general, EFIC, RRT

(for α → 0), and EBICR are consistent for increasing SNR

scenarios given that N is fixed, but while EBICR and RRT

are invariant to data scaling EFIC is not.

2) Model Selection versus N : Fig. 5 illustrates the empir-

ical PCMS versus N for SNR = 8 dB, ρ = 0.2 and a fixed

p = 500. Further we consider Case I for the choice of xS ,

i.e., [55,−50, . . . , 15, 10]T . It depicts a low-SNR increasing-N
scenario. It is clearly seen that compared to the other criteria,

EFIC suffers from the scaling issue and requires a large sample

size to achieve detection probability one. It is interesting to

note that the behavior of knockoff is quite subpar even in

the large-N scenario. Among all the criteria, the performance

of EBIC and EBICR are closest to the oracle. Furthermore,

observe that the performance of EBICR and EBIC are more or

Fig. 6: The PCMS vs N for SNR = 25 dB, p = Nd, d = 1.2.
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(a) ρ = 0.05 (b) ρ = 0.5

Fig. 7: The PCMS versus SNR (dB) for N = 55 and p = 1000 and xS = [50, 40, 30, 20, 10]T .

(a) ρ = 0.05 (b) ρ = 0.5

Fig. 8: The PCMS versus N for SNR = 25 dB and p = Nd, d = 1.2 and xS = [50, 40, 30, 20, 10]T .

less alike for the current setting. This is primarily because the

SNR is low (8 dB) hence the (k+2) ln(σ̂2
0/σ̂

2
I) term of EBICR

behaves very close to a O(1) quantity for k ≥ k0. Thus,

for low-SNR scenarios, the penalties of EBIC and EBICR

are similar, and as such the behaviour of these two criteria

overlaps. However, this is not true in the high-SNR cases,

which will be evident from the discussion following Fig. 6.

The plots shown in Fig. 4 and Fig. 5 represent fixed-N
increasing-SNR and low-SNR increasing-N scenarios, respec-

tively. In Fig. 6, we present a high-SNR increasing-N case.

Here, we consider a varying p such that p = Nd and d = 1.2.

It is clearly observed that for high-SNR scenarios, EBICR and

RRT provide much faster convergence to oracle behaviour

as compared to EBIC which requires a higher sample size

to achieve detection probability one. Furthermore, we also

notice that EFIC suffers from a higher false selection error and

performs worse than EBIC in a certain region of the sample

size. This clearly shows the effects of scaling on the behaviour

of EFIC.

The simulation results so far covered two important aspects:

(1) failure of classical methods in high-dimensional MS and

(2) performance comparison of the improved criterion EBICR

with existing methods with a special highlight on the data

scaling problem and high-SNR consistency. However, since a

constant value of the correlation coefficient, ρ is chosen, it is

hard to visualize its effect for different values on the overall

performance. In the final part, we emphasize the effect of ρ on

the MS performance. For this we choose two different values

of ρ, one small and the other slightly larger i.e., ρ = 0.05
and ρ = 0.5. Fig. 7 presents PCMS vs SNR (dB) with N =
55 and p = 1000, where Fig. 7a corresponds to ρ = 0.05
and Fig.7b to ρ = 0.5. A straightforward comparison clearly

reveals that as the ρ increases, the performance curves of all

methods shifts towards the right, i.e., a bigger SNR is required

when ρ = 0.5 to reach the same PCMS when ρ = 0.05. In

fact, the interesting observation is the oracle in Fig. 7b does

not reach PCMS = 1 as SNR increases and gets saturated at

some PCMS < 0.8. However, the performance of the other

methods relative to the oracle is similar in both plots. Since

the oracle performance is the upper bound, the MS methods

are bounded by the oracle behaviour in this case.

Fig. 8 presents PCMS vs N , with a fixed SNR of 25 dB,

where Fig. 8a corresponds to ρ = 0.05 and Fig. 8b to ρ = 0.5.

A similar shift of performance curves to the right is observed

here as well when ρ is increased from 0.05 to 0.5. However,

in this case, the PCMS of the methods in both plots tends

to one as N grows large given that the SNR is fixed. Also,

the performance of the methods relative to the oracle remains

identical where EBICR provides higher PCMS compared to

the other methods.
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C. Real data analysis

In this section, we apply different MS methods to real-

world data and analyze the results. Two different datasets

are considered, viz. (1) Air pollution and mortality in US

metropolitan areas [38] and (2) Breast cancer gene expression

data from The Cancer Genome Atlas [39]. For each dataset, we

compute the model order (cardinality of the estimated model

excluding the intercept term) selected by different methods

for different values of their respective TP. However, the data

analysis steps are different for both the datasets which are

further discussed below.

1) Air pollution and mortality data analysis: In this dataset,

N = 60 and p = 15, hence N > p. The response vector y

denotes the total age-adjusted mortality from all causes (annual

deaths per 100,000 people). The rows of the design matrix

A are labeled with the name of the metropolitan area. Each

column denotes a specific predictor variable, for example, SO2

(pollution potential of sulfur dioxide), House (population per

household), etc. OMP is employed for predictor selection with

K = 15. Note that a pre-processing step before using OMP is

centering y (i.e., subtracting the mean) and standardizing the

A matrix (i.e., columns have zero mean and variance one).

However, while computing the information criterion scores

we use the y and A without centering or standardizing, but

append an all one column at the beginning of A to take care

of the intercept term. Three different TP values are chosen

for EBICR, EFIC, and EBIC, viz., 0, 0.5, and 1. Note that,

even though this is a low-dimensional scenario (i.e., N > p),

but since p >
√
N ≈ 8, thus as per [13], the original BIC is

inconsistent. Here, d = log(p)/ log(N) ≈ 0.661. Therefore,

for EBICR, ζ > 1 − 1/2d ≈ 0.25 as recommended from

theory. For RRT three values of α are chosen as well, viz.

0.5, 0.1, and 0.01. Further, MS results for CV-Lasso (using

glmnet package in R) are also provided. In CV-Lasso, the

best value of λ is chosen using CV. Here, λmin is the value

of λ that gives minimum mean cross-validated error, while

λ1se is the value of λ that gives the most regularized model

such that the cross-validated error is within one standard error

of the minimum. Table I presents the MS results for the air

pollution and mortality data. The R2 (R-squared) value is

computed for each selected model, which gives us an idea

Method Tuning Para. Model Order R2

0 4 0.683
EBICR 0.5 2 0.562

1 2 0.562

0 11 0.755
EFIC 0.5 6 0.735

1 4 0.683

0 5 0.717
EBIC 0.5 4 0.683

1 4 0.683

0.5 4 0.683
RRT 0.1 2 0.562

0.01 2 0.562

CV-Lasso
λmin = 2.02 9 0.745
λ1se = 7.4 5 0.717

Least-squares λ = 0 k = p = 15 0.765

TABLE I: Results for air pollution and mortality data.

of the goodness of fit. The R2 value is computed as 1− SSE
SST

where SST is the total sum of squares and SSE is the residual

sum of squares, i.e., SST =
∑N

i=1(yi − ȳ)2 (ȳ is the mean)

and SSE =
∑N

i=1(yi − ŷi)
2. Observe that ζ = γ = 0 implies

EBICR ≡ BICR and EBIC ≡ BIC. As we increase the TP

from 0 to 1, the model order decreases. For RRT the estimated

model order is the same (i.e., 2) for α = 0.1, 0.01 and it is

identical to that of EBICR for ζ = 0.5, 1 (> 0.25). However,

for α = 0.5, the model order picked by RRT is 4 which

is in line with EBICR with ζ = 0. Also, for model orders,

k ≥ 5, the R2 values are > 0.7 and close to that of the least-

squares (k = p = 15). This gives an indication that k ≥ 5 is

most likely the overfitting region (under the assumption that

k0 < p).

2) Breast cancer gene expression data analysis: This

dataset comes from breast cancer tissue samples deposited

to The Cancer Genome Atlas (TCGA) project. It compiles

results obtained using Agilent mRNA expression microarrays.

BRCA1 is the first gene identified that increases the risk of

early onset breast cancer. Here we have expression measure-

ments of 17,322 genes from 536 patients, hence N = 536
and p = 17322 (p � N ). The response y denotes the

gene expression measurement for BRCA1 gene and the design

matrix A represents gene expression measurements for the

remaining genes. In this case, we take a different approach

to demonstrate the broader applicability of the MS criteria.

The data is split into 75% training (Itrain) and 25% test

dataset (Itest) with Ntrain and Ntest number of samples,

respectively. This gives Ntrain = 536 × 0.75 = 402 samples

for estimating the model and Ntest = 536 × 0.25 = 134
for evaluating the mean squared prediction error (MSPE) =

1/Ntest

∑
i∈Itest

(yi − ŷi)
2 of the chosen model, where yi’s

are responses in the test set Itest and ŷi the estimated response.

Please note that the MSPE measure was not used in the air

pollution example because it contained very few data points

and splitting the dataset into training and test sets led to

unreliable results. Lasso is employed to generate the set of

candidate models that corresponds to a particular value of λ in

the lasso path. Model scores are evaluated for each candidate

model, and the final model is picked as the one with the

minimum score. RRT is excluded in this case since in its

current form RRT cannot be used to estimate the true model.

Table II presents the results for the breast cancer data. We run

the experiment 100 times with a random selection of training

Method
Tuning Mean Std. Dev. Average

Parameter Order Order MSPE

0.3 6.45 1.51 0.240
EBICR 0.7 5.27 1.37 0.248

1 4.95 1.13 0.255

0.3 6.55 1.47 0.240
EFIC 0.7 5.28 1.34 0.248

1 5.03 1.21 0.252

0.3 6.82 1.74 0.240
EBIC 0.7 5.33 1.39 0.248

1 5.04 1.21 0.252

CV-Lasso
λmin 139.10 62.39 0.256
λ1se 44.77 19.12 0.230

TABLE II: Results for breast cancer gene expression data.
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and test sets to evaluate the average MSPE, the empirical mean

order selected by each method, and the standard deviation

of the model order. Here, d = log(p)/ log(Ntrain) = 1.62.

Hence, as per Theorem 2, for EBICR, ζ > 1−1/2d ≈ 0.69 will

guarantee consistency if the sample size is assumed to be large.

However, it does not imply optimal ζ since it also depends on

the true SNR, which is unknown. CV-lasso with λ = λ1se

as the regularization parameter generates the lowest average

MSPE (0.23). For the remaining MS criteria, the TP choice of

0.3 generates the lowest average MSPE (≈ 0.24). However,

note that the mean order for CV-lasso (λ1se) is ≈ 45 whereas,

for the remaining MS criteria with TP = 0.3, the mean model

order is ≈ 7. If we compute the difference between the average

MSPE we have 0.24 − 0.23 = 0.01, which is practically

negligible. This clearly highlights that CV overfits the final

model and picks more parameters than needed. Furthermore,

the standard deviation of the model order shows that there is

a high variability in the model order for CV as compared to

the rest. This indicates that for different training and test sets

of the same dataset, CV will pick models with a wide range

of model orders. This makes it an unreliable method for MS,

especially in the high-dimensional scenario.

3) Remarks from real data analysis: In this section, we

provide some further discussion on the results obtained in

sections VI-C1 and VI-C2. For the air pollution data, EBICR

and RRT appear to have a consensus on the model order. EFIC

seems to have high variability in the model orders for different

values of the TP. This might be a result of the scaling issue

with EFIC. EBIC gives decent and stable model orders for

all the choices of parameters. Furthermore, CV-Lasso (λmin)

is clearly an overfitting case while CV-Lasso (λ1se) delivers

parsimonious model order.

In the breast cancer data, increasing the TP from 0.3 to 1 led

to an increase in the average MSPE. However, the differences

are not that significant for this case. Model orders in the

range of 5 − 7 � 17322 provide a decent average MSPE.

We see that choosing the TP above the theoretical consistency

condition > 0.69 provides stable model order estimates around

5 for all information criteria. From the real data examples, we

do not really see any strong arguments speaking against the

previously discussed suggestion of using the TP ζ = 1 in

EBICR.

VII. CONCLUSION

In this paper, we provided a new criterion, which is an

extension of BICR, to handle model selection in sparse high-

dimensional linear regression models employing sparse meth-

ods for predictor selection. The extended version is named

EBICR, where the subscript ‘R’ stands for robust and it is a

scale-invariant and consistent model selection criterion. Ad-

ditionally, we analytically examined the behaviour of EBICR

as σ2 → 0 and as N → ∞. In both cases, it is shown that

the probability of detecting the true model approaches one.

The paper further highlighted the data scaling issue present in

EFIC, which is a consistent criterion for both large sample size

and high-SNR scenarios. Extensive simulation results show

that the performance of EBICR is either similar or superior to

that of EBIC, EFIC, RRT, MBT, and knockoff filters.

APPENDIX A

PROOF OF THEOREM 1

Proof. The proof consists of two parts. In part (a) we show

that the probability of overfitting (S ⊂ ŜEBICR
) tends to 0

as σ2 → 0, which in this case is equivalent to showing

limσ2→0 Pr(C1) = 1, cf. (36). In part (b) we show that the

probability of misfitting (S �⊂ ŜEBICR
) also tends to 0 as

σ2 → 0, which is equivalent to limσ2→0 Pr(C2) = 1, cf. (37).

(a) Over-fitting case (S ⊂ ŜEBICR
): Consider the set of

overfitted subsets having cardinality k, which we have denoted

as Ik
o . Let Ij denote the jth subset in the set Ik

o . The total

number of subsets in Ik
o is

(
p−k0

Δ

)
where Δ = k−k0 . For any

overfitted subset Ij ∈ Ik
o , consider the following inequality

EBICR(S) < EBICR(Ij), Ij ∈ Ik
o , (41)

where j = 1, . . . ,
(
p−k0

Δ

)
. Using the relation p = Nd and after

some straightforward rearrangement of (41) we get

(N − k0 − 2) ln σ̂2
S − (N − k − 2) ln σ̂2

Ij

−Δ(1 + 2ζd) lnN −Δln σ̂2
0 +Δ ln 2π < 0. (42)

Let us define a random variable XIj
= σ̂2

Ij
/σ2, then

N ·XIj
∼ χ2

N−k, ∀ Ij ∈ Ik
o . (43)

This implies that the variables XIj
are independent of σ2.

Now, we can express

(N − k− 2) ln σ̂2
Ij

= lnXN−k−2
Ij

+ (N − k− 2) lnσ2, (44)

and similarly by defining XS = σ̂2
S/σ

2 we get

(N−k0−2) ln σ̂2
S = lnXN−k0−2

S +(N−k0−2) lnσ2. (45)

Using (44) and (45) in (42) and after exponentiation we get(
XN−k0−2

S

XN−k−2
Ij

)(
1

N

)Δ(1+2ζd)(
2π

σ̂2
0

)Δ

<

(
1

σ2

)Δ

. (46)

Let Ek
Ij

denote the entire left hand-side and let ηk denote the

right-hand side of the inequality in (46). Let I∗ ∈ Ik
o denote

the subset that produces the maximum value of Ek
Ij

among

all such subsets Ij ∈ Ik
o . Then, let us denote

Ek
I∗ = max

Ij∈Ik
o

{
Ek

Ij

}
, j = 1, 2, . . . ,

(
p− k0
Δ

)
. (47)

The condition C1 in (36) is satisfied as σ2 → 0 under the event

Ek
I∗ < ηk, for all k = k0 + 1, . . . ,K. Now, we can express

the probability that Ek
I∗ < ηk as follows

Pr
(
Ek

I∗ < ηk
)
= Pr

⎧⎪⎨⎪⎩
(p−k0

Δ )⋂
j=1

(
Ek

Ij
< ηk

)⎫⎪⎬⎪⎭
= 1− Pr

⎧⎪⎨⎪⎩
(p−k0

Δ )⋃
j=1

(
Ek

Ij
> ηk

)⎫⎪⎬⎪⎭
≥ 1−

(
p− k0
Δ

)
Pr
(
Ek

Ij
> ηk

)
=⇒ Pr

(
Ek

I∗ > ηk
) ≤ (

p− k0
Δ

)
Pr
(
Ek

Ij
> ηk

)
, (48)
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where the inequality follows from the union bound. Now

consider the following probability Pr
{
Ek

Ij
> ηk

}
for any

arbitrary subset Ij ∈ Ik
o , which can be expressed as

Pr

{(
XN−k0−2

S

XN−k−2
Ij

)(
1

N

)Δ(1+2ζd)(
2π

σ̂2
0

)Δ

>

(
1

σ2

)Δ
}
.

(49)

Let W = XN−k0−2
S /XN−k−2

Ij
. Notice that the random vari-

able W is independent of the noise variance σ2 and since N
is fixed W is bounded as σ2 → 0. Furthermore, lim

σ2→0
σ̂2
0 = c

(see Appendix C) and the right-hand side of the inequality in

(49) grows unbounded as σ2 → 0. Thus, we have

lim
σ2→0

Pr
{
Ek

Ij
> ηk

}
= 0. (50)

Therefore, using (48) and the result in (50), we have

lim
σ2→0

Pr
(
Ek

I∗ > ηk
)
= 0, ∀ k = k0 + 1, . . . ,K. (51)

Finally, using the union bound, and the result in (51), we get

Pr {C1} =Pr

{
K⋂

k=k0+1

Ek
I∗ < ηk

}

≥1−
K∑

k=k0+1

Pr
{
Ek

I∗ > ηk
}→ 1, (52)

as σ2 → 0.

(b) Misfitting case (S �⊂ ŜEBICR
): Let Ij be any arbitrary jth

subset belonging to the set of misfitted subsets of dimension

k, i.e., Ik
m. We consider the following inequality

EBICR(S) < EBICR(Ij), Ij ∈ Ik
m, (53)

where j = 1, . . . , t. Here, t denotes the total number of subsets

in the set Ik
m and t =

(
p
k

)
if k < k0, otherwise t =

(
p
k

) −(
p−k0

Δ

)
if k ≥ k0, where Δ = k−k0. Denoting XS = σ̂2

S/σ
2,

rearranging and applying exponentiation we can express (53)

as(
XN−k0−2

S

(σ̂2
Ij
)N−k−2

)(
1

N

)Δ(1+2ζd)(
2π

σ̂2
0

)Δ

<

(
1

σ2

)N−k0−2

.

(54)

Similar to the overfitting case, let Ek
Ij

denote the entire left-

hand side and η the right-hand side of (54). Also, let Ek
I∗ =

max
Ij∈Ik

m

{
Ek

Ij

}
for j = 1, . . . , t, where I∗ is the subset that

leads to the maximum value of Ek
Ij

among all such subsets of

dimension k. The condition C2 in (37) is satisfied as σ2 → 0
under the event Ek

I∗ < η, for all k = 1, . . . ,K. Now, we can

express the probability that Ek
I∗ < η as

Pr
(
Ek

I∗ < η
)
=Pr

⎧⎨⎩
t⋂

j=1

(
Ek

Ij
< η

)⎫⎬⎭
=⇒ Pr

(
Ek

I∗ > η
) ≤tPr

(
Ek

Ij
> η

)
, (55)

where the inequality follows from the union bound. Now

consider the following probability for any arbitrary subset

Ij ∈ Ik
m

Pr
(
Ek

Ij
> η

)
= Pr

{(
XN−k0−2

S

(σ̂2
Ij
)N−k−2

)(
1

N

)Δ(1+2ζd)

×
(
2π

σ̂2
0

)Δ

>

(
1

σ2

)N−k0−2}
.

(56)

Here, XN−k0−2
S is independent of σ2 and N is fixed,

therefore XN−k0−2
S is bounded as σ2 → 0. Also σ̂2

Ij
→

‖Π⊥
Ij
ASxS‖22/N in probability as σ2 → 0 and since we are

in the misfitting scenario, from Lemma 4 in Appendix E we

have ‖Π⊥
Ij
ASxS‖22/N > 0. Furthermore, lim

σ2→0
σ̂2
0 = const.

(see Appendix C) and the right-hand side of the inequality in

(56) grows unbounded as σ2 → 0. Hence,

lim
σ2→0

Pr
{
Ek

Ij
> η

}
= 0. (57)

Using (55) and the result in (57) we get

lim
σ2→0

Pr
{
Ek

I∗ > η
}
= 0, ∀ k = 1, . . . ,K. (58)

Finally, using the union bound and the result in (58), we get

Pr {C2} ≥ 1−
K∑

k=1

Pr
{
Ek

I∗ > η
}→ 1 as σ2 → 0. (59)

From (52) and (59) we can conclude that EBICR is consistent

as σ2 → 0, which proves Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

Proof. As in the previous section, we have two parts of

the proof. Part (a) is the overfitting case where we show that

Pr(C1) → 1 (cf. (36)) as N → ∞ and part (b) is the misfitting

case where we show that Pr(C2) → 1 (cf. (37)) as N → ∞.

(a) Overfitting case (S ⊂ ŜEBICR
): Let Ij ∈ Ik

o be any

overfitted subset of dimension k. Consider the following

inequality

EBICR(Ij) > EBICR(S), Ij ∈ Ik
o . (60)

Denoting Δ = k − k0 and rearranging (60) we get

(N − k − 2) ln

(
σ̂2
Ij

σ̂2
S

)
+Δ(1 + 2ζd) lnN

+Δ ln

(
σ̂2
0

σ̂2
S

)
−Δ ln 2π > 0. (61)

Let Ek
Ij

denote the entire left side of the inequality (61) and

I∗ denote the subset that leads to the minimum value of Ek
Ij

among all such subsets of dimension k. Hence,

Ek
I∗ = min

Ij∈Ik
o

{
Ek

Ij

}
, j = 1, 2, . . . ,

(
p− k0
Δ

)
. (62)
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The condition C1 in (36) is satisfied as N → ∞ under the

event Ek
I∗ > 0, for all k = k0 + 1, . . . ,K. Expanding the

ratio we have

ln

(
σ̂2
Ij

σ̂2
S

)
= ln

(
eTΠ⊥

Ij
e

eTΠ⊥
S e

)

= ln

[
eT
(
I−ΠIj

+ΠS −ΠS

)
e

eTΠ⊥
S e

]

= ln

(
eTΠ⊥

S e− eTΠIj\Se

eTΠ⊥
S e

)

= ln

(
1− eTΠIj\S

eTΠ⊥
S e

)
, (63)

where ΠIj\S = ΠIj
−ΠS . Now we can write

min
1≤j≤T

{
(N − k − 2) ln

(
σ̂2
Ij

σ̂2
S

)}
=

(N − k − 2) ln

⎡⎣1− max
1≤j≤T

{(
eTΠIj\Se

)
/σ2

}
(
eTΠ⊥

S e
)
/σ2

⎤⎦ , (64)

where T =
(
p−k0

Δ

)
. Now the term, (eTΠIj\Se)/σ

2 ∼ χ2
Δ

(see Appendix D). Then from Lemma 2 in Appendix E we

have the following upper bound

max
1≤j≤T

{
(eTΠIj\Se)/σ

2
}
≤ Δ+ 2

√
Δψ lnT + 2ψ lnT,

(65)

with probability approaching one as N → ∞ if ψ > 1. Now,

for sufficiently large p = Nd we can write lnT = ln
(
p−k0

Δ

) ≈
Δd lnN . This gives

max
1≤j≤T

{
(eT

ΠIj\Se)/σ
2

}
≤ Δ+ 2Δ

√
ψd lnN + 2ψΔd lnN

= 2ψΔd lnN

(
1 +

1√
ψd lnN

+
1

2ψd lnN

)
≈ 2ψΔd lnN, (66)

as N grows large. Furthermore, the term in the denominator

in (64), (eTΠ⊥
S e)/σ

2 ∼ χ2
N−k0

and based on the law of large

numbers tends to N − k0 ≈ N . Therefore, using (66) in (64)

and (N − k − 2) ≈ N under the large-N approximation we

get

min
1≤j≤T

{
N ln

(
σ̂2
Ij

σ̂2
S

)}
≥ N ln

(
1− 2Δψd lnN

N

)
≈ −2Δψd lnN, (67)

where the last approximation follows by linearization of the

logarithm for small 2Δψd lnN/N value. Thus, we can write

Ek
I∗ ≥ −2Δψd lnN +Δ(1 + 2ζd) lnN +Δ ln

(
σ̂2
0

σ̂2
S

)
−Δ ln 2π

= Δ(1 + 2ζd− 2ψd) lnN +Δ ln

(
σ̂2
0

σ̂2
S

)
−Δ ln 2π.

(68)

Since limN→∞ σ̂2
0 = const. > 0 (see Appendix C) and

limN→∞ σ̂2
S = σ2 (see Appendix D), Ek

I∗ → ∞ as N → ∞
for all k = k0+1, . . . ,K under the condition 1+2ζd−2ψd >
0 for any ψ > 1. Hence, the lower bound on ζ becomes

ζ > 1− 1

2d
. (69)

From the above analysis, we can say that

lim
N→∞

Pr
{
Ek

I∗ < 0
}
= 0, ∀ k = k0 + 1, . . . ,K. (70)

Finally, using the union bound and the result in (70) we can

express the probability of C1 (36) happening as

Pr {C1} =Pr

{
K⋂

k=k0+1

Ek
I∗ > 0

}

≥ 1−
K∑

k=k0+1

Pr
{
Ek

I∗ < 0
}→ 1 (71)

as N → ∞.

(b) Misfitting case (S �⊂ ŜEBICR
): Let Ij ∈ Ik

m be

any misfitted subset of dimension k. Consider the following

inequality

EBICR(Ij) > EBICR(S), Ij ∈ Ik
m. (72)

Denoting Δ = k − k0 and rearranging (72) we get

(N − k − 2) ln

(
σ̂2
Ij

σ̂2
S

)
+ (1 + 2ζd)Δ lnN

+Δ ln

(
σ̂2
0

σ̂2
S

)
+Δ ln

(
1

2π

)
> 0.

(73)

Let Ek
Ij

denote the entire left hand side of the inequality in

(73) and I∗ denote the subset that generates the minimum

value of Ek
Ij

among all such subsets of dimension k. Then

we have

Ek
I∗ = min

Ij∈Ik
m

{
Ek

Ij

}
, j = 1, 2, . . . , T, (74)

where T =
(
p
k

)
if k < k0 otherwise T =

(
p
k

) − (
p−k0

Δ

)
if

k ≥ k0. The condition C2 in (37) is satisfied as N → ∞
under the event Ek

I∗ > 0, for all k = 1, . . . ,K. Now, let

u = E[y] = ASxS . Using this, the ratio
σ̂2

Ij

σ̂2

S

can be expanded

as

σ̂2
Ij

σ̂2
S

=
yTΠ⊥

Ij
y

yTΠ⊥
S y

=
(u+ e)TΠ⊥

Ij
(u+ e)

eTΠ⊥
S e

=
uTΠ⊥

Ij
u+ 2σ

√
uTΠ⊥

Ij
u · Zj + eTΠ⊥

Ij
e

eTΠ⊥
S e

, (75)

where

Zj =
uTΠ⊥

Ij
e

σ
√
uTΠ⊥

Ij
u

∼ N (0, 1). (76)
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Now

min
1≤j≤T

{
σ̂2
Ij
/σ̂2

S

}
=

min
1≤j≤T

{
u
T
Π

⊥
Ij
u+ 2σ

√
uTΠ

⊥
Ij
u · Zj + e

T
Π

⊥
Ij
e

}/
e
T
Π

⊥
S e

≥
[
min

1≤j≤T

{
uTΠ⊥

Ij
u
}
+ σ2 min

1≤j≤T

{
eTΠ⊥

Ij
e/σ2

}
− 2σ

√
max

1≤j≤T

{
uTΠ⊥

Ij
u
} · max

1≤j≤T

{
Zj

}]/
eTΠ⊥

S e. (77)

In the misfitting scenario we have two cases: (i) k < k0 (ii)

k ≥ k0. We consider case (i) in our further analysis, which also

encapsulates case (ii). For k < k0 we have lnT = ln
(
p
k

) ≈
kd lnN . Therefore, using the result in Lemma 2 we have the

following lower bound under large-N approximation

min
1≤j≤T

{
eTΠ⊥

Ij
e/σ2

}
= eT e/σ2 − max

1≤j≤T

{
eTΠIj

e/σ2

}
≥ N − 2ψ′kd lnN, (78)

where ψ′ > 1 and eT e/σ2 ≈ N for large-N . Furthermore,

from the result in Lemma 3 we have the following upper bound

max
1≤j≤T

{Zj} ≤
√

2ψ′kd lnN, (79)

where ψ′ > 1. Now, let Cmin = min
1≤j≤T

{
uTΠ⊥

Ij
u
}

and Cmax =

max
1≤j≤T

{
uTΠ⊥

Ij
u
}

. Also as N → ∞ we can approximate (N−
k − 2) ≈ N and eTΠ⊥

S e ≈ σ2N . Using this, and the results

in (78) and (79) we get

min
1≤j≤T

{
N ln

(
σ̂2
Ij

σ̂2
S

)}
= N ln

[
min

1≤j≤T

{
σ̂2
Ij

σ̂2
S

}]

≥ N ln

[{
Cmin − 2σ

√
Cmax ·

√
2ψ′kd lnN

+ σ2 (N − 2ψ′kd lnN)

}/
σ2N

]
. (80)

Now, observe that Cmin = uTΠ⊥
I∗u = xT

SA
T
SΠ

⊥
I∗ASxS .

Since, we are in the misfitting scenario, from Lemma 4,

in Appendix E, we can express Cmin = Nbmin where

bmin = const. > 0. Similarly, Cmax = Nbmax where

bmax = const. > 0 and 0 < bmin ≤ bmax. Hence, we can

rewrite (80) as

min
1≤j≤T

{
N ln

(
σ̂2
Ij

σ̂2
S

)}
≥

N ln

(
1 +

bmin

σ2
− 2

√
bmax

σ

√
2ψ′kd lnN

N
− 2ψ′kd lnN

N

)

≈ N ln

(
1 +

bmin

σ2

)
(81)

as N grows large. For k < k0, we get Δ < 0, therefore, in

this case we have

Ek
I∗ ≥ N ln

(
1 +

bmin

σ2

)
− |Δ|(1 + 2ζd) lnN

−|Δ| ln
(

σ̂2
0

2πσ̂2
S

)
→ ∞

(82)

as N → ∞ for all k = 1, . . . ,K, since N ln(1 + bmin/σ
2) is

the dominating term as it tends to infinity much faster than

the lnN term and limN→∞ σ̂2
0 = const. > 0 (see Appendix

C) and limN→∞ σ̂2
S = σ2 (see Appendix D). From the above

analysis, we can say that

lim
N→∞

Pr
{
Ek

I∗ < 0
}
= 0, ∀ k = 1, . . . ,K. (83)

Finally, using the union bound and the result in (83) we can

express the probability of C2 (37) happening as

Pr {C2} = Pr

{
K⋂

k=1

Ek
I∗ > 0

}

≥ 1−
K∑

k=1

Pr
{
Ek

I∗ < 0
}→ 1 as N → ∞. (84)

From (71) and (84) we can conclude that EBICR is consistent

as N → ∞, which proves Theorem 2.

APPENDIX C

STATISTICAL ANALYSIS OF THE FACTOR σ̂2
0

From the generating model (1), the true data vector follows

y ∼ N (
ASxS , σ

2IN
)
. Consider the factor σ̂2

0 , which is

defined as

σ̂2
0 =

‖y‖22
N

=

(
σ2

N

)
yT INy

σ2
. (85)

From Lemma 1 in Appendix E we have

yT INy

σ2
∼ χ2

N (λ) where λ =
‖ASxS‖22

σ2
. (86)

This implies that
(
N
σ2

)
σ̂2
0 ∼ χ2

N (λ). Therefore, the mean and

variance of σ̂2
0 are:

E[σ̂2
0 ] =

σ2

N
(N + λ) = σ2 +

‖ASxS‖22
N

Var[σ̂2
0 ] = 2

σ4

N2
(N + 2λ) = 2

σ4

N
+ 4

σ2

N2
‖ASxS‖22.

(87)

Hence, for a fixed N ,

lim
σ2→0

E[σ̂2
0 ] =

‖ASxS‖22
N

& lim
σ2→0

Var[σ̂2
0 ] = 0. (88)

Further, when SNR or σ2 is fixed, using the assumption

limN→∞

{
A

T
S
AS

N

}
= MS we get

lim
N→∞

E[σ̂2
0 ] = σ2 + xT

SMSxS & lim
N→∞

Var[σ̂2
0 ] = 0,

(89)

where MS is a bounded positive definite matrix and as such

xT
SMSxS = O(1) as N grows large.

APPENDIX D

STATISTICAL ANALYSIS OF σ̂2
I WHEN S ⊆ I

The noise variance estimate under hypothesis HI can be

rewritten as

σ̂2
I =

(
σ2

N

)
yTΠ⊥

I y

σ2
. (90)

The true model u = ASxS lies in a linear subspace spanned

by the columns of AS . Consequently, for I ⊇ S we have
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Π⊥
I u = 0. This implies that yTΠ⊥

I y = eTΠ⊥
I e. Thus we

have,

yTΠ⊥
I y

σ2
=

eTΠ⊥
I e

σ2
∼ χ2

N−k (Using Lemma 1), (91)

where k = card(I) ≥ k0. This implies that
(
N
σ2

)
σ̂2
I ∼ χ2

N−k.
Therefore, the mean and variance of σ̂2

I for I ⊇ S are:

E[σ̂2
I ] =

σ2

N
(N − k) & Var[σ̂2

I ] = 2
σ4

N2
(N − k). (92)

Hence, when σ2 is a constant,

lim
N→∞

E[σ̂2
I ] = σ2 & lim

N→∞
Var[σ̂2

I ] = 0. (93)

APPENDIX E

Lemma 1: Let y be a N × 1 dimensional vector following

y ∼ N (μ, σ2IN ) and Π be a N ×N symmetric, idempotent

matrix with rank(Π) = r. Then the ratio yTΠy/σ2 has a

non-central chi-square distribution χ2
r(λ) with r degrees of

freedom and non-centrality parameter λ = μTΠμ/σ2 (see,

e.g., Chapter 5 of [40]).

Lemma 2: Let Zmax = max
i

{
Zi

}m
i=1

where Z1, Z2, . . . , Zm

is a sequence of identically distributed random variables

(not necessarily independent) having a Chi-square distribution

with k degrees of freedom where k < m. Then Zmax ≤
k + 2

√
kψ lnm + 2ψ lnm for some constant ψ > 1 with

probability approaching one as m → ∞.

Proof: From the union bound we have

Pr (Zmax ≤ η) ≥ 1−mPr (Zi ≥ η) . (94)

Since Zi ∼ χ2
k, then from the Chi-square tail bound (Lemma

1 of [41]) we have the following result

Pr
(
Zi ≥ k + 2

√
kt+ 2t

)
≤ e−t. (95)

Setting t = ψ lnm in (95) where ψ > 1 we get

Pr
(
Zi ≥ k + 2

√
kψ lnm+ 2ψ lnm

)
≤ e−ψ lnm = m−ψ.

(96)

Using (96) in (94) we get

Pr
(
Zmax ≤ k + 2

√
kψ lnm+ 2ψ lnm

)
≥ 1− 1

mψ−1
. (97)

Therefore, Zmax ≤ k+2
√
kψ lnm+2ψ lnm with probability

approaching one as m → ∞ if ψ > 1.

Lemma 3: Let Xmax = max
i

{
Xi

}m
i=1

where

X1, X2, . . . , Xm is a sequence of identically distributed

random variables (not necessarily independent) having a

Gaussian distribution with zero mean and variance one.

Then Xmax ≤ √
2 lnm with probability approaching one as

m → ∞.

Proof: From the union bound we have

Pr (Xmax ≤ η) ≥ 1−mPr (Xi ≥ η) . (98)

Since Xi ∼ N (0, 1), from the Gaussian tail bound we have

Pr (Xi ≥ η) ≤ 1

η

e−η2/2

√
2π

, (99)

for all η > 0. Setting η =
√
2 lnm in (99) we get

Pr
(
Xi ≥

√
2 lnm

)
≤ m−1

2
√
π lnm

. (100)

Using (100) in (98) we get

Pr
(
Xmax ≤

√
2 lnm

)
≥ 1− 1

2
√
π lnm

. (101)

Therefore, Xmax ≤ √
2 lnm with probability approaching one

as m → ∞.

Lemma 4: For any arbitrary support I ∈ Ik
m ∈ M, under

the asymptotic identifiability condition in (38) the following

inequality holds ∥∥Π⊥
I ASxS

∥∥2
2
> 0.

Proof: Let S ′ = {S \ I}. The true support S can be split

into two disjoint subsets as S = {S ∩ I} ∪ {S \ I}. Since

span(AS∩I) ⊂ span(AI) we have

‖Π⊥
I ASxS‖22 =‖Π⊥

I AS′xS′‖22
=NxT

S′

(
N−1AT

S′Π
⊥
I AS′

)
xS′ .

Now, consider the matrix M =
[
AS′ AI

]
where

card(S ′) ≤ K and card(I) ≤ K, such that card(S ′ ∪ I) ≤
2K. Under the assumption (38)

N−1MTM = N−1

[
AT

S′AS′ AT
S′AI

AT
IAS′ AT

IAI

]
(102)

is a bounded positive definite matrix. Then the Schur comple-

ment of the block matrix AT
IAI is

N−1
[
AT

S′AS′ −AT
S′AI(A

T
IAI)

−1AT
IAS′

]
=N−1AT

S′Π
⊥
I AS′

is also positive definite and bounded as N → ∞. Let M̃ =
N−1AT

S′Π⊥
I AS′ , then, xT

S′M̃xS′ = b (say) = const. > 0.

Hence, ‖Π⊥
I ASxS‖22 = Nb > 0 for all I ∈ Ik

m ∈ M.
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