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Abstract

Smart cities embrace cutting-edge technologies to improve transportation
efficiency and safety. With the rollout of 5G and an ever-growing network
of connected infrastructure sensors, real-time road condition awareness is
becoming a reality. However, this progress brings new challenges. The
communication and vast amounts of data generated by autonomous vehicles
and the connected infrastructure must be navigated. Furthermore, different
levels of autonomous driving (ranging from 0 to 5) are rolled out gradually
and human-driven vehicles will continue to share the roads with autonomous
vehicles for some time. In this work, we apply a data-driven control scheme
called Learning Model Predictive Control (LMPC) to three different smart
city scenarios of increasing complexity. Given a successful execution of a
scenario, LMPC uses the trajectory data from previous executions to improve
the performance of subsequent executions while guaranteeing safety and
recursive feasibility. Furthermore, the performance from one execution to
another is guaranteed to be non-decreasing. For our three smart-city scenarios,
we apply a minimum time objective and start with a single vehicle in a two-
lane intersection. Then, we add an obstacle on the lane of the ego vehicle,
and lastly, we add oncoming traffic. We find that LMPC gives us improved
traffic efficiency with shorter travel. However, we find that LMPC may not be
suitable for real-time training in smart city scenarios. Thus, we conclude that
this approach is suitable for simulator-driven, offline, training on any trajectory
data that might be generated from autonomous vehicles and the infrastructure
sensors in future smart cities. Over time, this can be used to construct large
data sets of optimal trajectories which are available for the connected vehicles
in most urban scenarios.

Keywords

LMPC, multi-agent control, Smart City, Data-driven Control, multi-level
autonomy.
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Sammanfattning

Smarta städer använder modern teknik för att förbättra transporteffektiviteten
och säkerheten. Med införandet av 5G och ett allt större nätverk av
uppkopplade sensorsystem för infrastruktur blir realtidsmedvetenhet om
vägförhållandena en verklighet. Denna utveckling medför nya utmaningar.
Kommunikationen mellan autonoma fordon och uppkopplade sensorsystem
ger upphov till stora mängder data som måste hanteras. Dessutom kommer
fordon med olika autocnominivåer (från 0 till 5) att behöva dela gatorna
tillsammans med människostyrda fordon samtidigt under en tid. I detta arbete
tillämpar vi en datadriven reglermetod som heter Learning Model Predictive
Control (LMPC) på tre olika scenarier i en smart stad med ökande komplexitet.
LMPC utnyttjar data från en tidigare lyckad körning av ett visst scenario för att
förbättra prestandan på efterföljande körningar samtidigt som säkerheten och
rekursiv genomförbarhet garanteras. Vidare garanteras att prestandan från en
körning till en annan inte minskar. För våra tre scenarier är målet att minimerar
restiden och börjar med ett enda fordon i en tvåfilig korsning. Sedan lägger
vi till ett hinder på högra filen och till sist lägger vi till mötande trafik. Vi
finner att LMPC ger oss förbättrad trafikeffektivitet med kortare restid. Vi
finner dock att LMPC må vara mindre lämplig för realtids scenarier. Således
drar vi slutsatsen att denna metod är lämplig för optimering i simulatorer,
offline, på data som kan genereras från autonoma fordon och sensorsystemet i
infrastrukturen. Så småningom kan vår metod användas för att konstruera stora
dataset av optimala trajektorier som är tillgängliga för uppkopplade fordon i
framtidens smarta städer.

Nyckelord

LMPC, smarta städer, multiagentsystem, datadriven reglerteknik.
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Chapter 1

Introduction

In this chapter, we overview the problem addressed in this thesis and define
the scope of the project. Furthermore, the introduction includes an illustration
highlighting how we tackle the research question in focus.

1.1 Overview

Our cities are increasingly becoming smart. Smart cities are urban
areas that utilize technology to improve quality of life and increase
efficiency. This includes the use of connected infrastructure sensors and
connected/autonomous vehicles to improve transportation efficiency and
safety. With the rollout of 5G, edge computing, and ever more connected
infrastructure sensors, we are given an unparalleled situational awareness of
road conditions in real time. Work on making road vehicles connected and
autonomous provides new opportunities to improve transportation efficiency
and safety on our roads. For example, connected infrastructure sensors can
monitor the environment in real time and provide detailed information about
the road conditions such as traffic flow, road surface quality, and weather
conditions. Connected autonomous vehicles can then use this information to
adjust their behavior accordingly to improve safety and efficiency. This can
yield many benefits such as reducing congestion, reducing fuel consumption,
and reducing the number of accidents. Smart cities also provide the
opportunity to experiment with new technologies and approaches to urban
transportation, such as platooning of autonomous vehicles.

As we move towards a future with autonomous vehicles and connected
infrastructure, there are undoubtedly many opportunities for improved safety
and efficiency. However, there are also numerous challenges that need
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to be addressed. One of the primary challenges is the management and
communication of the large amounts of data that will be generated. Effective
data-driven methodologies, such as the Learning Model Predictive Control
(LMPC) approach used in this study, will be crucial in dealing with this
challenge. Another challenge is the gradual rollout of autonomous driving,
which will require the coexistence of human-driven and autonomous vehicles
of varying levels. Finally, with multiple OEMs and service providers
providing both infrastructure and vehicles, data generation and utilization will
be a challenge that requires scalable solutions such as edge computing and
decentralized algorithms.

To address some of these challenges, we use LMPC to manage three
different smart city scenarios of increasing complexity. By leveraging
trajectory data from past executions, LMPC can optimize future executions
while ensuring safety and recursive feasibility. Additionally, LMPC
guarantees a non-decreasing performance from one execution to the next. This
data-driven approach provides a promising solution to some of the challenges
we face in managing and utilizing the vast amounts of data generated by
autonomous vehicles and connected infrastructure.

1.2 Problem formulation

This project utilizes the LMPC framework to find time-optimal trajectories for
complex, multi-vehicle scenarios in a smart city environment. To achieve this,
the project follows a procedure that involves formulating a smart city scenario
by defining the dynamics of the vehicles involved and their initial and final
states. An initial feasible trajectory is generated using a safe and conservative
algorithm, which is then used to synthesize the terminal components for the
LMPC problem corresponding to the scenario. The LMPC training is run over
multiple iterations until convergence is achieved, i.e., a locally time-optimal
trajectory is found for all vehicles. Finally, the time-optimal trajectory is stored
in a database of time-optimal trajectories corresponding to each scenario and
variation within the scenario. The database can then be queried for an optimal
trajectory when an optimized scenario is encountered in the future. The overall
procedure is illustrated in fig. 1.1.

The project focuses on three scenarios of increasing complexity, starting
with a simple scenario where a single vehicle is driving on a two-lane road
segment with a right turn followed by a left turn, followed by a scenario where
an obstacle is added on the main lane mid-way through the road segment,
and finally, a scenario with oncoming traffic in a multi-vehicle scenario. The
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Figure 1.1: Overview of the procedure used to optimize smart-city trajectories.

project also investigates how the converged solution in the LMPC framework
depends on the initial feasible trajectory, particularly in the third scenario
where the ego vehicle has no option but to meet the oncoming traffic head-
on. Ultimately, the project aims to find locally time-optimal trajectories for all
vehicles in complex, multi-vehicle scenarios and store them in a database for
future use.

1.3 Objective

The goal of this project is to evaluate the performance of Learning Model
Predictive Control (LMPC) in three smart city scenarios of increasing
complexity. The focus is on improving traffic efficiency by minimizing travel
time, as well as assessing LMPC’s safety and recursive feasibility. To do
this, simulation software and mathematical analysis will be used to study the
scenarios and analyze the data. The project will then provide a comprehensive
report on LMPC’s performance in these three scenarios, which will guide
further research into its application in smart cities. Ultimately, our objective is
to answer the research question: How do we utilize vehicle and infrastructure
data to improve traffic efficiency while guaranteeing safety in smart city
scenarios?
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1.4 Structure of the thesis

Chapter 2 presents relevant background information about theoretical
frameworks used in this work. Chapter 3 presents the methodology and
method used to apply the theoretical frameworks on the three smart city
scenarios described above. In Chapter 4 the results of the work are presented.
In Chapter 5 the results are analysed and discussed. Finally, Chapter 6 presents
the concluding remarks and highlights possible future work.
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Chapter 2

Background

2.1 Model Predictive Control

In Model Predictive Control (MPC), we solve an open loop optimization
problem for a system and apply the solution as an optimal control law. A
feedback loop is formed by repeating this procedure every time step. This is
known as a receding horizon control strategy. We consider a discrete-time,
nonlinear system

xt+1 = f(xt, ut). (2.1)

The discrete-time and infinite-horizon optimization problem of the MPC
scheme is formulated according to the following

J∗
t→∞(xt) = min

ut|t,ut+1|t,...

∞∑
k=t

h(xk|t, uk|t) (2.2a)

s.t. xk+1|t = f(xk|t, uk|t) ∀k ≥ t (2.2b)
xk|t ∈ X uk|t ∈ U ∀k ≥ t (2.2c)

xt|t = xt, (2.2d)

where (2.2a) represents the optimization objective, (2.2b) the system
dynamics constraints, and (2.2c) the state constraints (e.g., collision
avoidance) and control constraints (e.g., actuation limits). Equation (2.2d)
sets the first step in the optimization horizon to the current state of the system.
We assume that the stage cost h(·, ·) in (2.2a) is a continuous function which
satisfies

h(xF , 0) = 0 and h(xt, ut) ≻ 0 ∀xt ∈ Rn \ {xF}, ut ∈ Rm \ {0}, (2.3)
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i.e., it is strictly postive and zero at the state xF which is assumed to be a stable
equilibrium for the unforced system (2.1) [1].

Note that in this project, we use nonlinear system dynamics, so our
MPC problem becomes a nonlinear MPC, commonly referred to as NMPC
in the literature. In the remainder of the report we use MPC and NMPC
interchangeably.

In practice, the infinite horizon formulation suffers from two limitations.
Firstly, implementing eq. (2.2) in a computer becomes infeasible because
it requires infinite computation time. Even for large optimization horizons
the problem is hard to solve [1]. Secondly, there might be disturbances
to the system or model inaccuracies in the system dynamics f(x, u) which
over a long horizon could accumulate to large errors and render the solution
ineffective in closed loop. To overcome both limitations, we use a shorter
optimization horizon of N steps and solve the following discrete-time
problem:

JMPC
t→t+N(xt) = min

ut|t,...,ut+N−1|t

N−1∑
k=t

h(xk|t, uk|t) + V (xt+N |t) (2.4a)

s.t. xk+1|t = f(xk|t, uk|t) (2.4b)
xk|t ∈ X uk|t ∈ U (2.4c)

xt+N |t ∈ XN (2.4d)
xt|t = xt (2.4e)

∀k ∈ {t, . . . , t+N − 1}. (2.4f)

The predicted state trajectory and optimal control sequence which solve (2.4),
at time t, are expressed as

x∗ = [x∗
t|t, x

∗
t+1|t, . . . , x

∗
t+N |t]

u∗ = [u∗
t|t, u

∗
t+1|t, . . . , u

∗
t+N−1|t].

We define the closed loop feedback policy for MPC as

ut = πMPC
t (xt) = u∗

t|t. (2.5)

The feedback policy (2.23) is applied at time t and in the next time step, t+1,
we repeat the procedure and solve (2.4) with the new state of the system in a
receding horizon fashion.
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2.1.1 Terminal Components

Compared to the infinite horizon problem in (2.2), we notice that the finite
time formulation in (2.4) includes the term V (xt+N |t) in the cost (2.4a) and
an additional state constraint (2.4d). The additional term in the cost function
(2.4a) is known as the terminal cost, and the additional state constraint (2.4d)
is known as the terminal state constraint. Together, they are known as the
terminal components and play a vital role in the MPC scheme.

A key concept in the MPC scheme is known as recursive feasibility, which
means that solving the MPC problem successfully at time t guarantees that we
can solve the problem for all future times without taking short-sighted action
that break the constraints [2]. The terminal state constraint (2.4d) forces the
optimization problem to bring the system into a set of states XN at the end
of the horizon. For a nonlinear system, recursive feasibility is achieved if the
set XN is a control invariant set [2]. A control invariant set contains all states
which have a control input that keeps the system within the set while satisfying
all constraints. A formal definition, adopted from [3], is given in 2.1.1.

Definition 2.1.1 (Control Invariant Set) A control invariant set C ⊆ X for
the system (2.4b) subject to constraints (2.4c), is defined as:

C = {xt ∈ XN | ∃ut ∈ U such that f(xt, ut) ∈ XN ,∀t ≥ 0 }.

The terminal cost, V (xt+N |t), contains the cost-to-go for all subsequent
steps starting from the terminal state xt+N |t. For closed-loop stability of the
finite horizon MPC problem (2.4), we want the terminal cost function in (2.4a)
to be a control Lyapunov function (defined in 2.1.2 [4], which means that every
state, xt, has a control input, ut, that takes the system to a state, xt+1 with a
lower cost along the closed-loop trajectory.

Definition 2.1.2 (Control Lyapunov function) A control Lyapunov function
is a function V : R⋉ → R for the system (2.4b) subject to constraints (2.4c),
such that for all x ∈ X there exists u ∈ U such that

V (f(x, u))− V (x) ≤ −h(x, u)

for some positive semi-definite function h(x, u).

2.1.2 MPC Optimality

While the above conditions on the terminal components guarantee recursive
feasibility and asymptotic stability, they do not guarantee optimality for the
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cost JMPC
t→t+N(xt) in (2.4a). This becomes evident if we rewrite the cost function

of the infinite-horizon MPC problem (2.2) as

J∗
t→∞(xt) = min

ut|t,...,uN−1|t

N−1∑
k=t

h(xk|t, uk|t) + J∗
t+N→∞(xt+N |t),

and introduce the terminal state constraint

xt+N |t ∈ X∞,

where X∞ is the maximal stabilizable set. In this infinite-horizon formulation
we see that the terminal cost is the optimal cost-to-go and the terminal state
set is the corresponding maximal stabilizable set, loosely defined as largest set
of states which satisfy the control task. Note that XN ⊆ X∞ i.e., the control
invariant, terminal state set in (2.4d) is a subset of the maximal stabilizable
set.

In practice, computing the optimal terminal cost J∗(·) and the maximal
stabilizable setX∞ can be as complex as solving the problem itself. Therefore,
we resort to using approximation of the terminal components. Thus, the closer
the terminal components in (2.4) approximate J∗(·) and X∞, the closer we get
to the optimal solution [1].

2.2 Learning Model Predictive Control

We have previously discussed that the finite-time formulation of the MPC
problem (2.4) requires the introduction of a terminal cost and terminal state
constraint. The Learning Model Predicitve Control (LMPC) scheme provides
a data-driven approach to synthesising the terminal components. This is
achieved by utilizing historic data from the system to construct control
invariant sets and control Lyapunov functions [1].

LMPC is an extension of the MPC scheme applied to systems that
perform an iterative task and have no particular reference trajectory. In other
words, it is a reference free control scheme. Through repeated iterations the
LMPC scheme finds a trajectory for the system such that the performance
of the current iteration is at least as good as the performance of previous
iterations. Furthermore, the LMPC framework guarantees convergences of
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the performance [5]. The infinite horizon LMPC problem is formulated as

J∗,j
t→∞(xt) = min

uj
t|t,u

j
t+1|t,...

∞∑
k=t

h(xj
k|t, u

j
k|t) (2.6a)

s.t. xj
k+1|t = f(xj

k|t, u
j
k|t) ∀k ≥ t (2.6b)

xj
k|t ∈ X uj

k|t ∈ U ∀k ≥ t (2.6c)

xj
t|t = xt, (2.6d)

where j indicates the iteration number, and the stage cost h(·, ·) in (2.6a)
satisfies the condition in (2.3).

The cost-to-go at time t of the j-th iteration is given by

J j
t→∞(xj

t) =
∞∑
k=t

h(xj
k, u

j
k), (2.7)

and the overall iteration cost which quantifies the performance of the controller
performance is given by

J j
0→∞(xj

0) =
∞∑
k=0

h(xj
k, u

j
k), (2.8)

where xj
0 = xS for all iterations [5].

2.2.1 LMPC Assumptions

The LMPC scheme builds on the assumption that we have an iterative
task which starts in a known state xS and ends in another known state
xF . Successfully taking the system from xS to xF counts as one iteration.
Furthermore, we assume that every iteration starts and finishes in the same
state, in other words

xj
0 = xS ∀j ∈ {0, . . . , J}

xj
T j = xF ∀j ∈ {0, . . . , J}

where j denotes the iteration index and T j denotes the total number of time-
steps in the iteration.

Finally, the LMPC scheme assumes that there exists an initial feasible
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trajectory, at j = 0,

x0 = [x0
0, . . . , x

0
T 0 ]

u0 = [u0
0, . . . , u

0
T 0−1],

which successfully takes the system from x0
0 = xS to x0

T 0 = xF while
satisfying all constraints.

In summary, the LMPC assumptions are:

1. We are solving an iterative task

2. Every iteration has the same starting and finishing states

3. There exists an initial trajectory from a successful iteration

2.2.2 Sampled Safe Set and Value Function

Given the iterative nature of the control problems in focus, we can collect
historic data from previous iterations into a set of states which are known to
be safe. We know these states to be safe because we assume that they were
generated through a successful previous iteration of a deterministic system.
Formally, we define the safe set at iteration j as

SSj =
⋃

i∈Mj

∞⋃
i=t

xi
t, (2.9)

where the set
M j = {i ∈ [0, j] : lim

t→∞
xi
t = xF}, (2.10)

contains all indices which correspond to a successful iteration [5], see fig. 2.1.
We see that by definition M i ⊆ M j, ∀i ≤ j, and thus, SS i ⊆ SSj, ∀i ≤ j.
Furthermore, we see that SSj ⊆ X∞, i.e., the sampled safe set is a subset of
the maximal stabilizable set since for every state in SSj there exists a control
input which satisfies the constraints and takes the system to the equilibrium
state xF [1].

Since the sampled safe set SSj collects the states of all successful past
trajectory, we define a value function which assigns the cost-to-go for each
point in SSj

V j(x) =

{
min(i,t)∈F j(x) J

i
t→∞(x), if x ∈ SSj

∞ if x /∈ SSj
, (2.11)
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Figure 2.1: An illustration of the sampled safe set consisting of the initial
trajectory 0 and the converged trajectory J .

where J i
t→∞(·) is the cost-to-go defined in (2.7) and the function

F j(x) =
{
(i, t) : i ∈ [0, j], t ≥ 0 with xi

t = x for xi
t ∈ SSj

}
,

collects all index pairs corresponding to the iteration numbers and time steps
of a particular state x inside SSj . We see that the value function in (2.11)
computes the minimum cost-to-go for every point in SSj , i.e., it gives us the
best possible performance for every state we have visited in past trajectories
[5].

2.2.3 Minimum Time Safe Set and Value Function

If we have a control problem with the objective of steering the system from xS

to xF in minimum time, we can express the stage cost as

h(xj
t , u

j
t) = 1xF

(xj
t) =

{
1 if xj

t ̸= xF

0 else
. (2.12)

Taking this into account, we define the optimal trajectory time as

T j,∗ = min
i∈[0,...,j]

T i,
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and construct the time-varying sampled safe-sets

SSj
t =

j⋃
i=0

T i⋃
k=δj,it

xi
k, (2.13)

where
δj,it = min(T i − T j,∗ + t, T i). (2.14)

The value function which approximates the cost-to-go for each state SSj
t

becomes

V j
t (x) = min

i∈[0,...,j]
k∈[δj,it ,...,T i]

J i
t→T i(xi

k), (2.15)

s.t. x = xi
k ∈ SSj

t

where J j
t→T j(·) is the cost-to-go given by

J j
t→T j(x

j
t) =

T j∑
k=t

1xF
(xj

k), (2.16)

with the indicator function 1xF
(·) defined in (2.12).

At time t, the time varying safe set SSj
t collects all states from which the

system can reach the target in at most (T j,∗ − t) time steps. By construction,
the time-varying sampled safe set SSj

t is a control invariant set since we know
that at time t for each xj

t ∈ SSj
t there exists a control input uj

t ∈ U which keeps
the trajectory of the system (2.1) within the time-varying safe set at time t+1,
i.e., f(xj

t , u
j
t) ∈ SSj

t+1 [6].

2.2.4 Convexified Safe Set and Value Function

The general sampled safe set SSj and the time-varying sampled safe SSj
t are

both sets of discrete points. Consequently, the value function approximations
V j(x) and V j

t (x) are also discrete functions over the safe sets SSj and SSj
t ,

respectively. In some cases, it is desirable to express the sampled safe set as a
convex set and this can be achieved by constructing the convex hull of the set.
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For the general sampled safe set SSj , the convex hull is given by

CSj =


|SSj |∑
t=1

λtxt : λt ≥ 0,

|SSj |∑
t=1

λt = 1, xt ∈ SSj

 , (2.17)

where |SSj| is the cardinality of SSj . With the assumption that the state and
input constraints sets, X and U respectively, are also convex, we see that CSj

is a control invariant set [7]. Furthermore, we define the convex value function

V (x)j = min
λj
t≥0,∀t∈[0,∞)

j∑
i=0

∞∑
t=0

λi
tJ

i
t→∞(xi

t) (2.18)

s.t.
j∑

i=0

∞∑
t=0

λi
t = 1

j∑
i=0

∞∑
t=0

λi
tx

i
t = x,

where xi
t ∈ SSj and J j

0→∞(·) is the cost-to-go defined in (2.7). The convex
value function V (·)j in (2.18) constitutes a piecewise-affine interpolation of
(2.11) over the convex safe set CSj [7].

For the minimum time case, we construct a time-varying convex hull of
SSj

t

CSj
t =


j∑

i=0

T i∑
k=δj,it

λi
kx

i
k : [λ

0
δj,it

, . . . , λj
T j ] ≥ 0,

j∑
i=0

T i∑
k=δj,it

λi
k = 1, xi

k ∈ SSj
t

 ,

(2.19)
where δj,it is defined in (2.14), and the piecewise-value function interpolation
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of (2.15) is given by

V t(x)
j = min

[λ0

δ
j,0
t

,...,λj

Tj ]≥0

j∑
i=0

T i∑
k=δj,it

λi
kJ

i
k→T i(xi

t) (2.20)

s.t.
j∑

i=0

T i∑
k=δj,it

λi
k = 1

j∑
i=0

T i∑
k=δj,it

λi
kx

i
k = x,

where xj
t ∈ SSj

t and J i
t→T i(·) is the cost-to-go defined in (2.16) [6].

2.2.5 LMPC Mixed-Integer Formulation

The core motivation behind the LMPC framework is that we use historic
data from previous trajectories to approximate the terminal components in the
finite time LMPC for discrete systems. Put together, we get the following
optimization problem

JLMPC,j
t→t+N (x

j
t) = min

uj
t|t,...,u

j
t+N−1|t

N−1∑
k=t

h(xj
k|t, u

j
k|t) + V j−1(xj

t+N |t) (2.21a)

s.t. xj
k+1|t = f(xj

k|t, u
j
k|t) (2.21b)

xj
k|t ∈ X uj

k|t ∈ U (2.21c)

xj
t+N |t ∈ SSj (2.21d)

xj
t|t = xj

t (2.21e)

∀k ∈ {t, . . . , t+N − 1}, (2.21f)

where j indicates the iteration number, SSj is defined in (2.9) and V j−1(·) is
the cost-to-go presented in (2.11). When comparing the LMPC formulation
(2.21) with the finite time MPC problem in (2.4), we see that the terminal state
constraint XN is replaced with the sampled safe SSj and the terminal cost is
replaced with value function V j(·) which assigns the minimum cost-to-go for
each state in the sampled safe set.

For the minimum time case where the stage cost is the indicator function,
defined in (2.12), we replace the sampled safe set SSj and the value function
approximation V (·)j with their time-varying counterparts SSj

t in (2.13) and
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V (·)jt in (2.15), respectively.

2.2.6 LMPC Relaxed Formulation

Due to the nature of the sampled safe set (2.21d), the LMPC problem (2.21)
becomes a mixed-integer problem, since we need to perform the optimization
for each discrete point in SSj and the discrete value function V j(·). To
avoid this, it is possible to relax the terminal state constraint of the LMPC
formulation by replacing the sampled safe set SSj with its convex hull CSj

in (2.17) and replacing the terminal cost with its affine interpolation V
j
(·) in

(2.18) [7]. Put together, we get the following relaxed optimization problem
over a convex set of points

JLMPC,j
t→t+N (x

j
t) = min

uj ,λj

N−1∑
k=t

h(xj
k|t, u

j
k|t) +

j−1∑
i=0

T i∑
k=0

λi
kJ

i
k→T ixi

k (2.22a)

s.t. xj
k+1|t = f(xj

k|t, u
j
k|t) (2.22b)

xj
k|t ∈ X uj

k|t ∈ U (2.22c)
j−1∑
i=0

T i∑
k=0

λi
kx

i
k = xj

t+N |t (2.22d)

j−1∑
i=0

T i∑
k=0

λi
kλ

i
k = 1 (2.22e)

xj
t|t = xj

t (2.22f)

∀k ∈ {t, . . . , t+N − 1}, (2.22g)

For the minimum time case, where the stage cost h(·, ·) is the indicator function
(2.12), we use the time-varying convex hull CSj

t in (2.19) and the time-varying
value function approximation V

j

t(·) in (2.20) [6].

2.2.7 Properties of LMPC

At iteration j and time t, the the optimal solution to the LMPC problems
presented in (2.21), (2.22) are expressed as

xj,∗ = [xj,∗
t|t , x

j,∗
t+1|t, . . . , x

j,∗
t+N |t]

uj,∗ = [uj,∗
t|t , u

j,∗
t+1|t, . . . , u

j,∗
t+N−1|t],
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and we define the closed loop feedback policy for LMPC as

uj
t = πLMPC,j

t (xt) = uj,∗
t|t . (2.23)

We apply this policy to the system (2.1) at time t and get the next state xj
t+1 =

f(xj
t , u

j
t) from which we repeat the optimization step, and so on. At the end of

the iteration, when the system reaches the goal state xF , we collect all the states
that were actualized by the system into the sampled safe set and compute the
corresponding minimum cost-to-go. The overall performance of the iteration
is computed using (2.8).

We have already argued that the safe set SSj and SSj
t are control

invariant. In [5] we find proof that the optimal cost JLMPC,j
t→t+N(·) is indeed a

control Lyapunov function, which makes the sampled safe set and the value
function approximations, V j(·) and V j

t (·), valid terminal components which
yield recursive feasibility and closed loop stability. Furthermore, given the
assumptions presented in section 2.2.1 we have that over each iteration, the
LMPC framework guarantees:

1. Recursive feasibility

2. Finite-time closed-loop convergence

3. Non-decreasing performance between iterations.

The first and second guarantees imply that the system will always be able to
reach the target state xF without risking any short-sighted actions that would
lead to infeasibilities. The third guarantee means that the iterations cost for
iteration j is at least as good as the iteration cost of iteration j − 1, i.e.,
JLMPC,j
0→∞ ≥ JLMPC,j−1

0→∞ . We refer the reader to [5] for a rigours proof of the
above guarantees in the general case. For proofs taking into account the the
minimum time and relaxed constraint cases, we refer the reader to [7], [6], and
[1].

We end this section by highlighting that for the relaxed, minimum time-
case, i.e., (2.22) with the indicator function (2.12) as stage cost and time-
varying terminal components, we have two additional assumptions for the
above guarantees to hold:

1. X and U in (2.22c) are convex

2. Considering the convex safe set CSj
t constructed using the stored closed-

loop trajectories for i ∈ {0, . . . , j}. Then, for all k ∈ {1, . . . , n + 1},
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x(k) ∈ {∪j
i=0∪T i

t=0x
i
t} and x ∈ Conv(∪n+1

k=1x
(k)), we have that there exists

an input u ∈ U such that

f(x, u) ∈ Conv

(
n+1⋃
k=1

f(x(k), u(k))

)
,

where u(k) is the stored input applied at the store state x(k) ∈ {∪j
i=0∪T i

t=0

xi
t}

The second assumption is adopted from Assumption 4 in [6]. This assumption
is in general difficult to confirm analytically and requires empirical analysis for
each system. We find an analysis for a system similar to the one used in this
project in [6].

2.3 Multi-agent LMPC

So far, in the system equation (2.1) we have only considered a a single-
agent system with nonlinear dynamics. In this section we extend the LMPC
formulation to the multi-agent case. We introduce a new index i ∈ M =

{1, . . . ,M} which assigns a unique number to each agent for a system of M
agents. Like the single-agent case, we assume that an initial feasible trajectory
exists for all agents and that the starting and goal states are the same for all
future iteration, i.e., xj

i,0 = xi,S and xj
i,∞ = xi,F ∀i ∈ M. The global state

vector of the system is formed by stacking the state vector of each agent. At
time t and iteration j we get xj

t = [xj,T
1,t , . . . , x

j,T
M,t]

T ∈ Rn, where xj
i,t ∈ Rni

∀i ∈ M. Similarly, the control input for the global system at time t and
iteration j is given by uj

t = [uj,T
1,t , . . . , u

j,T
M,t]

T ∈ Rm where ui,t ∈ Rmi ∀i ∈ M.
The global system dynamics are described by (2.1) using the stacked state
and control vectors. By assuming that the system dynamics of the agents are
decoupled, the system dynamics for the global system (2.1) can also be written
as xi,t+1 = fi(xi,t, ui,t) for each agent i ∈ M.

2.3.1 Centralized, Decentralized, and Distributed LMPC

In the field of control systems, there are three main approaches to managing
groups of agents: centralized, decentralized, and distributed. The centralized
approach relies on a single control system to manage all the agents in the group.
In contrast, the decentralized approach delegates control to each individual
agent, allowing them to make decisions based on their own local information.
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Finally, the distributed approach involves agents communicating with each
other to coordinate their actions [8].

Each approach has its own set of advantages and disadvantages.
For example, centralized LMPC has the advantage of being able to
leverage the global information of all the agents to make optimal control
decisions. However, it can quickly become computationally intractable
and communication-heavy as the number of agents increases. In contrast,
decentralized LMPC allows each agent to independently generate control
decisions based on its own local information. This reduces the communication
load and allows agents to work together in parallel, leading to improved
efficiency. However, decentralized LMPC may not always guarantee optimal
performance, especially in complex systems with significant interactions
between agents. Distributed LMPC strikes a balance between the two by
allowing agents to communicate and coordinate with each other while still
maintaining some level of decentralization. This approach can work well in
systems with moderate complexity, but can become difficult to manage in
larger systems with a higher number of agents [9], [10].

In this project, we are focusing on the centralized approach for our smart
city application since it allows us to make optimal control decisions by
leveraging global information. This is particularly useful in simulations where
we can coordinate the actions of a relatively small number of agents for
improved performance and efficiency.

2.3.2 Centralized Multi-agent LMPC Formulation

The overall control objective is to design a controller that drives the global
system from an initial state xS = [xT

1,S, . . . , x
T
M,S]

T to a target state xF =

[xT
1,F , . . . , x

T
M,F ]

T . In the centralized case, where all computation is done on
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the same machine, we get the following formulation

JLMPC,j
t→t+N (x

j
t) = min

uj
t|t,...,u

j
t+N−1|t

N−1∑
k=t

h(xj
k|t, u

j
k|t) + V j−1(xj

t+N |t) (2.24a)

s.t. xj
k+1|t = f(xj

k|t, u
j
k|t) (2.24b)

xj
k|t ∈ X uj

k|t ∈ U (2.24c)

xj
t+N |t ∈ SSj (2.24d)

g(xj
k|t) ≼ 0 (2.24e)

xj
t|t = xj

t (2.24f)

∀k ∈ {t, . . . , t+N − 1}, (2.24g)

where ≼ indicates the element-wise inequality and the state and input
constraints in (2.24c) are the Cartesian products X = X1 × · · · × XM =

{(x1, . . . , xM) : xi ∈ Xi ∈ Rni ∀i ∈ M} and U = Ui × · · · × UM =

{(u1, . . . , uM) : ui ∈ Ui ∈ Rmi ∀i ∈ M}. The sets Xi and Ui are assumed to
be closed, compact and contain the target state xi,F in their interior [9].

The multi-agent formulation (2.24) is almost identical to the LMPC
problem presented in (2.21) with the additional global constraint g(·) ⪯ 0

which impose, for instance, safety criteria and collision avoidance constraints
between the agents. In the decentralized case, the problem is deconstructed
such that each agent is able to solve the problem independently during an
iteration. After every iteration, the collected data is used to a synthesize the
terminal components and a time-varying deconstruction of the global coupling
constraint (2.24e) for the local LMPC problem of each agent. However, the
decentralized implementation is outside the scope of the work and we refer the
reader to [9] and [10] for further reading. In [9] it is shown that the multi-agent
LMPC formulation (2.24) maintains the properties presented in section 2.2.7.

2.4 Related work

In this section we overview some of the work related to the project. We remind
the reader that the aim of the project is to utilize the LMPC framework for
finding time optimal paths in complex, multi-vehicle, smart city scenarios.
As far as we are aware, the LMPC framework as presented in the previous
chapter has not been used for any smart city scenarios yet. In the literature,
we find several uses for LMPC in single vehicle racing in for instance [11],
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[12], and [13]. In [14], we find the LMPC framework applied to minimum
time trajectories for a quadrotor.

The LMPC framework is distinct from other techniques such as dynamic
programming optimization [15], multi-agent motion planning (see [16],
[17]), and reinforcement learning (see [18], [19], and [20] for traffic related
literature) in that it is a data-driven method which converges in few iterations
and inherently guarantees that safety constraints are fulfilled by construction.
This makes it particularly useful for safety-critical systems in smart cities. In
contrast to LMPC, reinforcement learning applied to traffic scenarios requires
thousands of episodes to converge to a good policy ([18], [19], [20]). However,
the LMPC framework might suffer for tasks that take a long time to complete.
In that case the sampled safe sets would grow very large between iteration and
increasing the optimization horizon might speed up the learning but it would
slow down the solution for each time step [6].
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Chapter 3

Method

3.1 System and Scenario Overview

The aim of the project is to utilize the LMPC framework for finding time
optimal trajectories in complex, multi-vehicle, smart city scenarios. Since
LMPC is a reference free control scheme, it lends itself well for tasks where
the optimal trajectory is not easy to compute for a global system with multiple
agents; each having their own constraints as well as coupling constraints
between the agents.

Overall, the procedure used in this work begins by formulating a smart
city scenario, for example an intersection of three vehicles. Formulating
the scenario entails defining the dynamics of the vehicles involved as well
as the initial and final states for each vehicle. Then, we generate an initial
feasible trajectory by taking the system from the initial state to the target
state, in simulation, using a safe and conservative algorithm. We use the
initial trajectory to synthesize the terminal components for the LMPC problem
corresponding to the scenario. Then, we run the LMPC training over multiple
iterations until convergence is achieved, i.e., we have found the locally time
optimal trajectory for all vehicles. Finally, we store the time optimal trajectory
in a database of time optimal trajectories corresponding to each scenario and
variation within the scenario. This procedure is depicted in more detail in
fig. 3.1.

In this project, we split the study into three different scenarios of increasing
complexity (see fig. 3.2):

1. Single Vehicle: We begin with a simple scenario where a single vehicle
(the “Ego” vehicle) is driving on a two-lane road segment with a right
turn followed by a left turn.
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Generate Initial Feasible Trajectory

Scenario
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Controller

Cost Constraints

Conservative
Reference
Trajectory
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Terminal

Components

LMPC
Controller

Scenario
Model

Cost Constraints

Trajectory
DB

Optimize trajectory using LMPC

Figure 3.1: Detailed overview of the data-driven approach used to optimize
smart-city trajectories.

2. Single Vehicle with Obstacle: In the second scenario, we add an
obstacle (the “Obs” vehicle), resembling a broken down vehicle, on the
main lane mid-way through the road segment.

3. Oncoming traffic: The last scenario introduces oncoming traffic (the
“Onc” vehicle) in a multi-vehicle scenario.

Single Vehicle Stationary Obstacle Oncoming Traffic
Ego
Obs
Onc

Figure 3.2: The three different scenarios considered in this project.

Since we are using a minimum time objective in the LMPC formulations,
our hypothesis is that the ego vehicle should behave like a racing car upon
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convergence. This is particularly true for the first and second scenarios.
However, in the third scenario the ego vehicle has no option but to meet
the oncoming traffic head on. This gives us the opportunity to investigate
how the converged solution in the LMPC framework depends on the initial
feasible trajectory. In essence, we can construct a scenario where the ego
vehicle initially can either wait for the oncoming vehicle to pass or to over
take the obstacle before the oncoming vehicle passes. As we have discussed
before, the terminal components constructed in the LMPC framework are mere
approximations of the complete sets. Therefore, the converged trajectories
might not be the global optimum and this would partially depend on how the
initial feasible trajectory looks like.

3.2 Road Model

We use a well-known approach in tracking control theory known as the Frenet
frame method to model the road. We follow the modelling approach used
in [21] and [22]. The Frenet frame describes the movement of a point-mass
object along a differentiable curve in R2. The coordinates used in the Frenet
frame consists of the tangential direction ŝ along the curve and a normal
direction ê pointing to the left in the positive direction. Thus, the coordinate s
denotes the distance travelled along the curve, while the coordinate e denotes
the deviation from the center line, see fig. 3.3.

At a high-level, the road is constructed from a combination of K curve
segments. Each curve segment consists of a circle arc (indexed k ∈ K =

{1, . . . , K}) with a particular curvature κk and a length Lk or coverage angle
θk. We have the following relation between the curvature κ and radius r of a
circle arc

κ(s) =
1

r(s)
, (3.1)

where s denotes the dependence on the distance along the curve. Thus, a circle
with zero radius gives an infinite curvature and a circle with an infinite radius
gives zero curvature which makes up a straight line. The sign of the curvature
determines whether the circle arc points in the positive or negative ê-direction,
i.e., it determines whether it is a left or a right turn.

In practice, we construct the road segments from a set of discrete points.
Suppose that the road length is L meters and the desired point density is ρ

points/m. Then, the distance between two consecutive points is ∆L = L
ρL

=
1
ρ
. Assuming that each curve segment consists of a circle arc with a known

curvature, we get the following relations between two consecutive points on
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Figure 3.3: Representation of the coordinate system in the Frenet frame along
the curve s

the k-th arc

si+1 =si +∆L (3.2)
xsi+1

=xsi −∆L cos(π − ϕsi) (3.3)
ysi+1

=ysi −∆L sin(π − ϕsi) (3.4)
ϕsi+1

=(ϕsi +∆θk) (mod 2π), (3.5)

where ∆θk = ∆Lκk. Each point encodes its distance in the Frenet Frame and
the position and tangent values in the Cartesian frames, i.e., (si, xsi , ysi , ϕsi).
We initialise the construction process with (0, xs0 , ys0 , ϕs0), where xs0 , ys0 ,
and ϕs0 denote the desired starting positions and heading of the road in the
Cartesian frame. This process is repeated for each arc, where the last point
of the previous arc becomes the starting point of the next arc. To transform a
point (s, e) in the Frenet to the point (x, y) in the Cartesian frame, we have the
relations

i =argmin
i

|s− si| (3.6)

x =xsi − e sin(ϕsi) (3.7)
y =ysi + e cos(ϕsi). (3.8)
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In the opposite direction, we transform the point (x, y) in the Cartesian frame
to the point (s, e) in the Frenet frame, through the relations

i =argmin
i

||[x, y]T − [xsi , ysi ]
T ||2 (3.9)

s =si (3.10)

e =

{ (y−ysi )

cos(ϕsi )
if ϕsi = 0

(xsi−x)

sin(ϕsi )
else.

(3.11)

The road used for all scenarios in this projects represents a two-lane street
consisting of five arcs with the parameters detailed in table 3.1. In fig. 3.4
we see the road represented in the Cartesian and Frenet frames side-by-side.
Figure 3.4 demonstrates how complicated curved roads in the Cartesian frame
become simple rectangular shapes in the Frenet frame. This is particularly
useful when modelling vehicles in a smart city scenario since it allows us
to express the state constraints for the vehicles as convex box constraints.
We assume a lane width of 0.5 meters since the vehicles in this project are
modelled after the 1/10 scale vehicle platform presented in [23].

Table 3.1: Arc parameters for the road used in the project

Arc index k Curvature κk Length Lk Angle θk
1 0 1.85 -
2 −1

0.65
√
2

- π/2

3 0 4 -
4 1

0.65
√
2

- π/2

5 0 1.85 -

3.3 Vehicle Model

Our simulated vehicles are modelled after the 1/10 scale car known as the
Small Vehicle for Autonomy (SVEA) test-bed, presented in [23]. We take
advantage of the kinematic bicycle model to describe the motion of the vehicle.
The dynamic bicycle model (see [24]) is not used in this project because we
assume that the vehicle will not be driven at its dynamical limits and can
therefore neglect the tire forces in both lateral and longitudinal directions.
Furthermore, we are only considering planar scenarios and omit the pitch
state of the vehicle caused by ground inclinations. We find further evidence
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Figure 3.4: Representation of the Cartesian and Frenet frames side-by-side.

confirming the justification to use the kinematic bicycle model, for our case, in
the following analysis [25] which compares the two bicycle models. Note that
despite using a minimum time objective function, we will add a constraint
limiting the velocity to 0.7 m s−1 which represent the assumed speed limit.
This speed is well below the maximum velocity of the SVEA car, which at
low gear is approximately 1.7 m s−1.

3.3.1 Kinematic Bicycle Model in the Cartesian Frame

We derive the bicycle model in the Cartesian frame using a similar approach to
[26]. However, in our derivation, we place the point of reference at the center
of the rear axle. In the XY-plane, the kinematic bicycle model is described by
the state vector

x = [x, y, v, ϕ]T (3.12)

where x and y denote the positions in the XY-plane, while v and ϕ denotes
the longitudinal velocity and heading angle, respectively. We can see a
representation of these quantities in fig. 3.5. The equations describing the
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motion of the kinematic model are given by

ẋ = v cos(ϕ) (3.13)
ẏ = v sin(ϕ) (3.14)

v̇ =
vu − v

τ
(3.15)

ϕ̇ =
v tan δ

lwb

, (3.16)

where lwb denotes the wheelbase and δ denotes the steering angle. The
SVEA cars take the velocity vu as input, instead of the acceleration a as in
[26]. Therefore, we introduce the gain τ and compute vu−v

τ
to emulate the

acceleration dynamics of the electrical speed controller on the vehicle. This
introduces an additional layer of model mismatch. However, in practice, this
approach is found to be sufficient.

3.3.2 Kinematic Bicycle Model in the Frenet Frame

The model used in the project is the kinematic bicycle model expressed in the
Frenet frame. In the Frenet frame, the xy-positions of the vehicle are replaced
by the s and e coordinates which denote the distance traveled along the road
and the lateral deviation from the center line, respectively. To express the
kinematic bicycle model in the Frenet frame, we follow the transformation
approach described in [21].

The state of the car in the Frenet frame is illustrated in fig. 3.5. We define
the term

eϕ = ϕ− ϕs(s), (3.17)

which computes the deviation of the car heading from the curve tangent. The
curve tangent is itself a function of the distance travelled, s. Furthermore, we
have that the tangential component of the vehicles longitudinal velocity is

vs = v cos(eϕ) = (r(s)− e)ϕ̇s(s)
eq. (3.1)
= (1/κ(s)− e)ϕ̇s(s). (3.18)

From (3.18), we can factor out the rate of change of the curve tangent

ϕ̇s(s) = κ(s)
v cos(eϕ)

1− κ(s)e
(3.19)
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Figure 3.5: Kinematic Bicycle model in the Cartesian and Frenet frames. lwb

represents the wheelbase, and lbtw is the distance from the rear-end to the rear-
axle.

From fig. 3.5, we can deduce the following relation

ṡ = r(s)ϕ̇s(s), (3.20)

which combined with (3.1) and (3.19) gives us

ṡ =
v cos(eϕ)

1− κ(s)e
. (3.21)

We also have that
ė = v sin(eϕ), (3.22)

which can be derived through inspection of fig. 3.5 or from the relations
presented in [21]. Lastly, we differentiate (3.17) and plug in (3.16) as well
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as (3.19) which gives us

ėϕ = ϕ̇− ϕ̇s(s) =
v tan δ

lwb

− κ(s)
v cos(eϕ)

1− κ(s)e
. (3.23)

Combining the above derivation gives us the state vector in the Frenet frame

x = [s, e, v, ϕ, eϕ], (3.24)

where eϕ is defined in (3.17), and the heading angle ϕ is not strictly necessary.
However, we keep it for visualization purposes. Putting together the above
derivations gives us the equations describing the motion of the kinematic
bicycle model in the Frenet frame

ṡ =
v cos(eϕ)

1− κ(s)e
(3.25)

ė =v sin(eϕ) (3.26)

v̇ =
vu − v

τ
(3.27)

ϕ̇ =
v tan δ

lwb

(3.28)

ėϕ =
v tan δ

lwb

− κ(s)
v cos(eϕ)

1− κ(s)e
. (3.29)

where lwb = 0.324m denotes the wheelbase and v̇ is described in details in
section 3.3.1. In our implementation, we discretize the above equations using
the fourth order Runge-Kutta method [27], with the discretization step dt =

0.1 and express the discrete-time system dynamics for the vehicles as

xt+1 = frk4(xt, ut), (3.30)

with the state vector
xt = [st, et, vt, ϕt, eϕ,t]

T , (3.31)

and the input control vector

ut = [vu,t, δt]
T , (3.32)

where vu,t denotes the input velocity and δt denotes the steering angle. See
section 3.3.1 for an explanation on why we use the input velocity vu instead
of the acceleration a. The system in (3.30) is the one used in all subsequent
MPC and LMPC formulations.
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As explained in section 3.2, the road model consists of a set of discrete
points. Therefore it is important that the discretization step for the road, ∆L,
is proportional to the vehicle velocity and the time discretization step, i.e.,
∆L = vtdt. This ensures that the curvature term κ(s) in (3.25) and (3.29)
reflects the accurate road curvature value when given to a predictive control
of a certain horizon N .

Notice that the state space in the feedback loop is assumed to be fully
observable with no noise and that the system dynamics are known perfectly.
This is not true in the real world. There are methods to extend the LMPC
framework with robust control approaches to mitigate these factors in the real
world, see for example [28] and [29]. However, in this work, we are focusing
on optimizing trajectories in simulation and intend to use optimal trajectories
as references for an online reference tracking controller on the real system.
Therefore, the use of robust control approaches fall outside the scope of our
implementation.

3.4 Hyperellipse Obstacle Constraints

In two of the three scenarios studies in this project, we introduce obstacle
vehicles on the road. There are different ways of modelling an obstacle
vehicles. For example, one can model the obstacle vehicles as rectangles or
inflated ellipses. We opt for modelling the obstacles as superellipse which
gives us a smooth and convex shape that is in between a rectangle and an
ellipse. Superellipses were discovered by Lamé in 1818 and have the following
implicit formulation ∣∣∣x

a

∣∣∣n + ∣∣∣y
b

∣∣∣n = 1, a, b, n > 0 (3.33)

which gives a convex shape centered at (0, 0) and bounded inside a rectangle
with side lengths 2a in the x-axis and 2b in the y-axis [30]. When n = 2we get
an ellipse and when n > 2 we get a a shape that looks like a rounded rectangle
of size a × b known as a “hyperellipse”. The case where a = b and n = 4 is
known as a “squircle” [31].

In our implementation we want to derive the formula for a hyperellipse
which inscribes a rectangle of dimensions (l, w). Suppose we have a square
with side length l centered at (0, 0). Then, we know that the squircle inscribed
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inside the square is given by(
2x

l

)4

+

(
2y

l

)4

= 1. (3.34)

The squircle which inscribes the square of size (l, l) must be slightly larger.
Let’s call the additional length required ∆l. By definition, we know that such a
squircle should contain the corners of the square. We plug the top right corner
( l
2
, l
2
) into (3.34) and get(

2(l/2)

l +∆l

)4

+

(
2(l/2)

l +∆l

)4

= 1. (3.35)

Solving for ∆l gives us
∆l = (21/4 − 1)l. (3.36)

Thus, the formula for a squircle which inscribes a square of size (l, l), centered
at (x0, y0), is given by(

2(x− x0)

l +∆l

)4

+

(
2(y − y0)

l +∆l

)4

= 1, (3.37)

where ∆l = (21/4 − 1)l.
To extend this result to the hyperellipse, we use the fact that the aspect ratio

between the hyperellipse and the rectangle inside it must be the same. Thus,
if the hyperellipse has the dimensions (l + ∆l, w + ∆w) and the rectangle it
inscribes has the dimensions (l, w), the following relation must hold

l +∆l

w +∆w

=
l

w
, (3.38)

which solving for ∆w gives us

∆w =
w

l
∆l (3.39)

By combining the results for the squircle inscribing a square (3.37) and
(3.39) we get the following general formula for a hyperellipse which inscribes
a rectangle of size (l, w), centered at (x0, y0)(

2(x− x0)

l +∆l

)n

+

(
2(y − y0)

w +∆w

)n

= 1, n ≥ 2 (3.40)
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where∆l = (21/n−1)l and∆w = w
l
∆l. To express the hyperellipse conditions

in the Frenet frame we simply replace the points (x, y) with (s, e), which
means that our hyperellipse will also conform to the curved shape of the road.
This is a desired side-effect of the Frenet frame. Furthermore, we assume
that the ego vehicle is a point mass object. Therefore, we need to inflate the
hyperellipse and replace the denumerators in (3.40) by (2l+∆l) and (2w+∆w)

to account for the dimensions of the ego vehicle in the obstacle avoidance
formulation. This is illustrated in fig. 3.6.

Figure 3.6: Hyperellipses of different orders. With inflation on the top row
and without inflation on the bottom.

A limitation of this approach is the fact that we do not account for the
heading angle of the obstacle vehicles. In the Cartesian frame, this would not
be sufficient and we would need to define rotated hyperellipses. However,
in the Frenet Frame, the hyperellipses are always rotated in parallel with
the tangent of the road curve, which is sufficient for expressing an inflated
collision avoidance condition, since the ego vehicle are modelled as point
mass objects. If we want to avoid inflating the obstacles and express the ego
vehicle with its own hyperellipse, we would need to compute the minimum
distance between two hyperellipses to ensure safety. Computing the minimum
distance between hyperellipses is itself an optimization problem [32], which
would further complicate the overall LMPC problem. In that case, we refer
to the work in [33] and [34], which develops an optimization based collision
avoidance constraint formulation that can account for the dimensions of both
the obstacles and the ego vehicle.
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3.5 Generating Initial Feasible Trajectory

The initial trajectories for each scenario are generated using a reference
tracking MPC with a quadratic cost-to-go and no terminal components, which
at time t is formulated as

JMPC
t→t+N(xt) = min

ut|t,...,ut+N−1|t

N−1∑
k=t

x̄T
k|tQx̄k|t + uT

k|tRuk|t (3.41a)

s.t. xk+1|t = frk4(xk|t, uk|t) (3.41b)

|xk|t| ≤


2L

wlane − wcar/2

0.5

2π

2π

 |uk|t| ≤
[
1.7

π/4

]
(3.41c)

xt|t = xt (3.41d)
∀k ∈ {t, . . . , t+N − 1}, (3.41e)

with Q = diag(1, 500, 100, 20, 20), R = diag(1, 2), L denotes the track
length, wlane = 0.5 denotes the lane width, and wcar = 0.2485 denotes the
vehicle track width. The vector x̄t computes the deviation from the reference,
i.e., x̄t = xt − xref,t. The above nonlinear MPC and all subsequent LMPC
controllers are implemented in Python using the CasADi library [35] with the
IPOPT optimizer and horizon length N = 7.

The references vector for the single vehicle scenario is given by

xref,t =


sref,t

−wlane/2

0.5

ϕs,t

0

 , ∀t ≥ 0 (3.42)

where sref,t and ϕs,t are provided by the discrete implementation of the road
curve (see section 3.2), going from sref,0 = 0 to sref,T 0 = L. In other words, we
follow the road curve on the right lane. For the second and third scenarios, we
use a similar approach and ensure that the ego vehicle overtakes the obstacle
vehicle by changing the reference on the et state when the ego vehicle is within
a distance of two vehicle lengths, i.e., 2lcar in the s-direction. For the oncoming
vehicle, we generate the reference trajectory in the opposite direction, going
from sref,0 = L to sref,T 0 = 0.
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3.6 Algebraic Sigmoid Mini-time Stage cost

To avoid defining a discrete minimum time stage cost as in (2.12), we define the
following approximation of the stage cost using the algebric Sigmoid function,
similar to [14],

h(xt, ut) =

{
1 ([1, 0, 0, 0, 0]xt = st) < L

0 otherwise
(3.43)

≈1

2

(
k(st − L)√

1 + (k(st − L))2
+ 1

)
, (3.44)

where k = −4 and L denotes the road length. This stage cost is used in all
subsequent LMPC formulations.

3.7 Modelling the Single Vehicle Scenario

The first scenario consists of a single car starting and finishing at the states xS

and xF , respectively, with

xS =


0

−wlane/2

0

π

0

 xF =


L

−wlane/2

0

π

0

 (3.45)

Since the first scenario has no obstacles, we can define the state and input
constraints as convex sets and, hence, we can adopt the following relaxed
LMPC formulation
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JLMPC,j
t→t+N (x

j
t) = min

uj ,λj

N−1∑
k=t

h(xj
k|t, u

j
k|t) +

j−1∑
i=0

T i∑
k=0

λi
kJ

i
k→T ixi

k (3.46a)

s.t. xj
k+1|t = frk4(x

j
k|t, u

j
k|t) (3.46b)

|xj
k|t| ≤


2L

wlane − wcar/2

0.7

2π

2π

 |uj
k|t| ≤

[
1.7

π/4

]
(3.46c)

|uj
k+1|t − uj

k|t| < dt

[
1

0.7

]
(3.46d)

|uj
t|t − uj

t−1| < dt

[
1

0.7

]
(3.46e)

j−1∑
i=0

T i∑
k=0

λi
kx

i
k = xj

t+N |t (3.46f)

j−1∑
i=0

T i∑
k=0

λi
kλ

i
k = 1 (3.46g)

xj
t|t = xj

t (3.46h)

∀k ∈ {t, . . . , t+N − 1}, (3.46i)

where (3.46e) and (3.46e) include additional input rate constraint.

3.8 Modelling the Stationary Obstacle Sce-
nario

In this scenario, we add a stationary vehicle on the same lane as the ego vehicle
in the middle of the road. This could, for example, represent a broken-down
vehicle or a very slow tractor. In this case, the ego vehicle will be forced
to switch lanes and overtake the obstacle vehicle. We represent the obstacle
avoidance constraint with an inflated hyperellipse that inscribes the rectangular
shape of the vehicle of dimensions (lcar, wcar) = (0.586, 0.2485) given by

l(xj
k|t) =

(
2(sjk|t − sobs)

2lcar +∆l

)n

+

(
2(ejk|t − eobs)

2wcar +∆w

)n

≽ 1, (3.47)
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where (sobs, eobs) denotes the position of the obstacle vehicle in the Frenet
frame, and ∆l as well as ∆w are defined in section 3.4. Adding this inequality
as a state constraint means that we no longer have a convex set of state
constraints and therefore have to solve the mixed-integer LMPC problem,
meaning that for each time step, we need to solve the optimization problem
for every state in the sampled safe set, compute the optimal cost and pick
the terminal state which gives the smallest cost. We get the following LMPC
formulation

JLMPC,j
t→t+N (x

j
t) = min

uj
t|t,...,u

j
t+N−1|t

N−1∑
k=t

h(xj
k|t, u

j
k|t) + V j−1

t (xj
t+N |t) (3.48a)

s.t. xj
k+1|t = frk4(x

j
k|t, u

j
k|t) (3.48b)

|xj
k|t| ≤


2L

wlane − wcar/2

0.7

2π

2π

 |uj
k|t| ≤

[
1.7

π/4

]
(3.48c)

|uj
k+1|t − uj

k|t| < dt

[
1

0.7

]
(3.48d)

|uj
t|t − uj

t−1| < dt

[
1

0.7

]
(3.48e)

xj
t+N |t ∈ SSj

t (3.48f)

xj
t|t = xj

t (3.48g)

l(xj
k|t) ≽ 1 (3.48h)

∀k ∈ {t, . . . , t+N − 1}, (3.48i)

3.9 Modelling the Oncoming Traffic Scenario

This scenario builds on the previous one by introducing another vehicle into
the overall system dynamics. The oncoming vehicle will have the same
parameters with the only difference that it will be traveling in the negative
s direction as oncoming traffic on the left lane, relative to ego vehicle. We
use the centralized multi-agent LMPC formulation described in section 2.3.2
and stack the dynamics, states and inputs of the vehicles into new column
vectors representing the global system. Besides the obstacle, state, and
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input constraints, the multi-agent formulation requires the introduction of a
global constraint that represents the collision avoidance coupling between the
vehicles. At each time step, we know the position of every vehicle. Combining
this with the terminal state constraint from the sampled safe set, we form
an elongated hyperellipse representing the overall area covered by the other
vehicle over the horizon N , see fig. 3.7. This is expressed by the following
global constraint condition

g(xj
k|t) =

1−
(

2(cj
k|t,ego−cjonc)

2lonc+∆lonc

)n

+

(
2(ej

k|t,ego−ej
k|t,onc

)

2wcar+∆wonc

)n

1−
(

2(cj
k|t,onc

−cjego)

2lego+∆lego

)n

+

(
2(ej

k|t,onc
−ej

k|t,ego)

2wcar+∆wego

)n

 ≼ 0, (3.49)

with

cjk|t,ego =sjk|t,ego +
lcar
2

− lbtw

cjk|t,onc =sjk|t,onc −
lcar
2

+ lbtw

cjego =
cjt+N |t,ego + cjt|t,ego

2

cjonc =
cjt+N |t,onc + cjt|t,onc

2
lego =ct+N |t,ego − ct|t,ego + 2lcar

lonc =ct|t,onc − ct+N |t,onc + 2lcar

∆lego =(21/n − 1)lego

∆lonc =(21/n − 1)lonc

∆wego =
wcar

lego
∆lego

∆wonc =
wcar

lonc
∆lonc ,

where lbtw = 0.16m is the distance from the rear-end of the vehicle to
the rear-axle, cjk|t,ego denotes the center of the Ego vehicle, cjk|t,onc denotes the
center of the Onc vehicle, cjonc denotes the center of the elongated Onc vehicle,
cjonc denotes the center of the elongated Ego vehicle, and lego and lonc denote
the elongation lengths for the Ego and Onc vehicle respectively. The overall
multi-agent LMPC formulation of the two vehicles is given by
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Figure 3.7: Elongated hyperellipse forming the area covered by the vehicle
during N time-steps.

JLMPC,j
t→t+N (x

j
t) = min

uj
t|t,...,u

j
t+N−1|t

N−1∑
k=t

h(xj
k|t, u

j
k|t) + V j−1

t (xj
t+N |t) (3.50a)

s.t. xj
k+1|t = frk4(x

j
k|t, u

j
k|t) (3.50b)

|xj
k|t| ≤



2L

wlane − wcar/2

0.7

2π

2π

2L

wlane − wcar/2

0.5

2π

2π


|uj

k|t| ≤


1.7

π/4

1.7

π/4

 (3.50c)

|uj
k+1|t − uj

k|t| < dt


1

0.7

1

0.7

 (3.50d)

|uj
t|t − uj

t−1| < dt


1

0.7

1

0.7

 (3.50e)

xj
t+N |t ∈ SSj

t (3.50f)

xj
t|t = xj

t (3.50g)

l(xj
k|t) ≽ 1 (3.50h)

g(xj
k|t) ≼ 0 (3.50i)

∀k ∈ {t, . . . , t+N − 1}, (3.50j)
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Chapter 4

Results

In this chapter, we present the results of this work. First, we present the results
related to the single vehicle scenario, then we present the results of the LMPC
framework applied to the stationary obstacle scenario and, lastly, we provide
the results for the multi-agent case in the oncoming traffic scenario. All code
used to generate the results is availabe on the following GitHub repository:
https://github.com/aljanabim/city-lmpc.

4.1 Single Vehicle Scenario

In fig. 4.1, the trajectories taken by the car over the different iterations are
presented. As expected, we see that the vehicle follows what seems to be the
shortest possible trajectory, similar to a racing driver, in the final iteration.
From fig. 4.2 we observe that the converged iteration saturates both the input
velocity vu and the steering angle δ, whereas the initial trajectory, generated by
the reference tracking MPC in section 3.5, is more conservative with respect
to the control inputs since we have a quadratic term applied to the cost. The
overall iteration performances are presented in table 4.1.

https://github.com/aljanabim/city-lmpc
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Iteration 5
Iteration 6

Figure 4.1: Single vehicle trajectories over the the LMPC iterations. The final
iteration is indicated by the blue line.
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Figure 4.2: Single vehicle control inputs for the initial and final iterations. The
top plot shows the input velocity vu and the bottom plot shows the steering
inputs δ.

Table 4.1: Iteration performance for the single vehicle scenario

Iteration j Travel Time
0 215
1 152
2 150
3 146
4 145
5 144
6 144
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4.2 Stationary Obstacle Scenario

Similar to the previous scenario, we present the trajectories for the stationary
obstacle scenario together in fig. 4.3. Again, we see that the ego vehicle
follows the shortest path possible and gets as close as possible to the obstacle
vehicle without breaking the hyperellipse constraint. This suggest that we
might need to inflate the obstacle further to take into account a safety margin
for the overtake. We notice, in fig. 4.3, that the vehicle appears to be slightly
rotated in its final position at the converged iteration, i.e., x0

T 0 ̸= x9
T 9 , which

would suggest that the LMPC assumption of xF = xj
T j is no longer satisfied.

However, this is not a problem since our stopping condition only specifies that
a successful mission depends on reaching the end of the road, i.e., st < L, as
seen in (3.43). Hence, the final rotation of the vehicle is not relevant for an
iteration to succeed.

Furthermore, we observe in fig. 4.4 that the vehicle uses more aggressive
steering, δ, and saturates the input velocity, vu, upon convergence. This
scenario is slightly more complicated than the single vehicle and as seen in
table 4.2, it takes 3 more iterations before it converges compared to the results
in table 4.1.
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Obs
Iteration 0
Iteration 1
Iteration 3
Iteration 5
Iteration 7
Iteration 9

Figure 4.3: Vehicle trajectories for the obstacle scenario over the odd-
numbered iterations. The final iteration is indicated by the blue line.
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Figure 4.4: The control inputs applied in the stationary obstacle scenario for
the initial and final iterations. In the top plot we see the input velocity vu and
the bottom plot shows the steering inputs δ.

Table 4.2: Iteration performance for the obstacle scenario

Iteration j Travel Time
0 219
1 151
2 146
3 145
4 144
5 143
6 142
7 141
8 140
9 140
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4.3 Oncoming Traffic Scenario

For the third scenario, we provide two different initial trajectories, one where
we make the ego vehicle wait behind the obstacle vehicle until the oncoming
vehicle passes, and one where we overtake the obstacle before the oncoming
vehicle gets too close. We run the LMPC trajectory optimization procedure
for both initial trajectories and find, from table 4.3 and table 4.4, that they lead
to the same trajectory cost upon convergence. However, we note that the more
conservative initial trajectory requires an additional iteration to converge; 5
when waiting and 4 without waiting.

Table 4.3: Iteration performance for the oncoming scenario for the case where
the ego vehicle waits for the oncoming vehicle to pass in the initial trajectory.

Iteration j Travel Time
0 386
1 149
2 148
3 146
4 145
5 145

Table 4.4: Iteration performance for the oncoming scenario for the case where
the ego vehicle overtakes the obstacle before the oncoming vehicle passes in
the initial trajectory.

Iteration j Travel Time
0 240
1 148
2 147
3 145
4 145

In fig. 4.5, we show snapshots of the different initial trajectories and the
time-optimal trajectory. Both initial trajectories lead to very similar optimal
trajectories and therefore, we only show one of them. We note that the optimal
trajectory, again, attempts to drive as close as possible to the obstacle vehicle
and appears to follow the racing lines by cutting corners and driving recklessly
close to the other vehicles in the road.
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Figure 4.6 shows the control inputs for the different iterations. Since
both initial trajectories lead to the same trajectory cost at iteration 4, we
omit showing control inputs from other iterations. We note that the input
velocity, vu, is set to 0 for almost half the trajectory time when waiting for
the oncoming vehicle to pass, while the initial trajectory that does not wait
finishes approximately when the waiting vehicle would have started to move
again. As with the previous scenarios, we see in fig. 4.6, that the optimal
trajectory saturates the inputs and achieved a faster trajectory than both initial
conditions.

To confirm that the collision avoidance constraints are indeed satisfied, we
evaluate the hyperellipse conditions for the time-optimal trajectory in fig. 4.7.
We note that both conditions remain above the safety line. However, for
the collision condition with the Onc vehicle, we notice that the hyperellipse
condition drops below the safety line at approximately step 105. This is caused
by the fact that our implementation includes a slack variable on that particular
safety condition to ensure LMPC feasibility in practice. In this case, this
implies that the Ego vehicle would make contact with the Onc vehicle near
the left bend of the track. To mitigate this, we would increase the inflation
factor in the collision hyperellipse formulation.

Note that we got infeasible solutions when we tried shorter optimization
horizons than N = 7, for the cases where the ego vehicle waits for the
oncoming vehicle to pass in the initial trajectory. In fact, for the results of
this scenario we used N = 15.
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Step 1 Step 240 Step 300 Step 386
Obs
Ego
Onc

Ego waits for Onc to pass

Step 1 Step 80 Step 140 Step 240
Ego moves before Onc passes

Step 1 Step 80 Step 140 Step 145
Time-optimal trajectory

Figure 4.5: Snapshots of the vehicle trajectories at different time steps for the
different initial trajectories and the time-optimal trajectory in the oncoming
traffic scenario.
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Figure 4.6: The control inputs applied in the oncoming traffic scenario for
the different initial trajectories and the time-optimal trajectory achieved at
iteration 4. In the top plot see the input velocity vu and the bottom plot shows
the steering inputs δ.
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Figure 4.7: Evaluating the hyperellipse obstacle avoidance constraint with
respect to the Ego vehicle in the oncoming traffic scenario.
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Chapter 5

Discussion

Overall, we see that LMPC is a data-driven method that proves to be sample-
efficient compared to other approaches such as reinforcement learning where
convergence toward reasonable behavior might take thousands of episodes
instead of just a few iterations as in LMPC. We see from tables 4.1, 4.2, 4.3,
and 4.4 that all scenarios converged in less than 10 iterations.

Due to the mixed-integer nature of the scenarios, which cannot adopt
relaxed constraints, we find that LMPC is not well-suited for real-time control
and lends itself better as an optimal trajectory generator running on generated
data and trained in simulations. In this mode of operation, we see from figures
4.1, 4.3, and 4.5 that LMPC is capable of generating time-optimal trajectories
which satisfy all constraints. It is also possible to modify the optimality
criteria. For instance we could add a penalty on actuation. Another reason
for why LMPC is not suitable for physical, real-time scenarios is due to the
assumption that every task execution has to have the same initial and final
states, whereas when running online, traffic scenarios tend to be non-iterative
with varying starting and final states. In contrast, LMPC is well-suited for
iterative tasks such as racing, where lap times can be improved after each
lap is completed. However, in fig. 4.5 we see that given the same initial
and final states, LMPC can converge to the optimal solution even when the
initial trajectory might not be close to the optimal solution, such as in the third
scenario, when one of the initial trajectories had the ego vehicle wait for the
oncoming traffic to pass.

We found that a step horizon shorter than N = 7 led to infeasible solutions
in the third scenario with an initial trajectory that had the ego vehicle waiting.
With a shorter horizon, LMPC was subject to making short-sighted decisions
which led to an overall increased travel time. For instance, if it begins the
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overtake too late, it would need to reverse to make way for the oncoming
vehicle before it can drive towards the goal. We conclude that the horizon
length N is a parameter which plays an important role in finding an optimal
solution for initial feasible trajectories that might not be close to the optimal
trajectory.

In the multi-vehicle LMPC formulation of the third scenario, we use
the centralized approach since we are generating the optimal trajectories
in simulation and can afford the increased computational efficiency while
in return getting a solution which takes advantage of the complete system.
However, if the learning was to happen on real vehicles, we believe that the
centralized approach becomes intractable due to the computation times we
experienced.

We note that the LMPC assumption on having an initial feasible trajectory
is not difficult to satisfy for a smart city scenario because we can find
demonstrations by humans or use a conservative strategy to achieve this.
In future smart cities, this approach can be suitable for offline training on
any trajectory data that may be generated from autonomous vehicles and the
infrastructure sensors. Over time, the accumulated data from multiple sections
of a smart city can be used to construct large data sets of optimal trajectories
that will inform autonomous connected vehicles in most urban scenarios.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

The LMPC framework gives us a sample-efficient method to utilize vehicle
and infrastructure data to improve traffic efficiency while guaranteeing safety.
Multi-level autonomy can be assessed by varying the observability and
controllability of the vehicles in a multi-vehicle scenario. As discussed above,
the framework does have some shortcomings which make it not suitable for
online use. However, for offline trajectory optimization, it’s an effective
method that is well-suited for smart-city scenarios.

There are multiple factors that make the LMPC framework suitable for
trajectory optimization in vehicles. Traffic efficiency can be improved through
the use of this framework to achieve shorter travel time. The specific objective
that is targeted to be optimized can also change according to other desired
criteria. For example, fuel efficiency can be a targeted outcome that can
be optimized for through LMPC. The great advantage that this framework
offers is that it is sample efficient; it does not require thousands of episodes
which allows it to have fast convergence. These qualities of LMPC make
it particularly useful in optimization of iterative tasks and is suitable for
offline trajectory optimization. One drawback of the LMPC framework is
that optimality could depend on the initial trajectory and horizon length of the
optimization problem. This means that without a sufficient initial trajectory
which satisfies all constraints, the resulting LMPC trajectory may not serve
the intended objective. However, LMPC can be very useful as a data-driven
trajectory generator for multi-agent systems which can cover large sets of
scenarios depending on the available initial feasible trajectories.

Given arbitrary trajectory data that could be collected in a future smart-
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city, LMPC can unlock some generalized optimization possibilities across
multiple city scenarios. For example, in a certain city, different intersections
may have varying driving behaviours depending on a plethora of variables
such as the number of lanes, congestion level of the intersection, and area
of the city. By using LMPC, a generalized pattern of optimized driving
across all intersections may be derived. Moreover, we can further increase
sample efficiency by augmenting scenarios coming from the real world (such
as varying the starting and goal positions) and running the training offline
preemptively.

6.2 Future work

Future work includes developing an algorithm for systematically augmenting
traffic scenarios and running the trajectory optimization offline. There is also
an interest in testing this on a more complicated four-way intersection with
more vehicles including vehicle platoons with coupled dynamics.

Another direction for future work is to implement an extension of multi-
vehicle LMPC based on the work in [9] that turns the centralized multi-
vehicle problem into a decentralized optimization problem solved on each
vehicle independently. We see that the formulation is similar to the centralized
approach. However, the global constraints and the time-varying sample safe
sets are synthesized in the central layer between each iteration based on new
trajectory data. This method yields a marginally lower performance, but it
is much more efficient since the computation for each vehicle can be done
in parallel. It is worth investigating whether this enables online trajectory
optimization for smart-city scenarios.
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